生化第十一章

合集下载

生物化学-生化知识点_第十一章 蛋白质的生物合成

生物化学-生化知识点_第十一章  蛋白质的生物合成

第十一章蛋白质的生物合成11-1 遗传密码(下册 P504,37章)蛋白质是生物主要的功能分子,它参与所有的生命活动过程,并起着主导作用。

蛋白质的合成由核酸所控制,决定蛋白质结构的遗传信息编码在核酸分子中。

遗传密码:编码氨基酸的核苷酸序列,通常指核苷酸三联体决定氨基酸的对应关系。

一一一三联密码:核酸分子中只有四种碱基,要为蛋白质分子20种氨基酸编码。

三个碱基编码64个,又称三联密码。

密码子:mRNA上有三个相邻核苷酸组成一个密码子,代表某种氨基酸、肽链合成的起始或终止信号。

蛋白质翻译:在RNA控制下根据核酸链上每3个核苷酸决定一种氨基酸的规则,合成出具有特定氨基酸顺序的蛋白质过程。

全部64个密码子破译后,编写出的遗传密码字典。

见P511 表37-5。

一一一遗传密码的基本特性一1一密码的基本单位遗传密码按5‘→3‘方向编码,为不重叠、无标点的三联体密码子。

起始密码子兼Met:AUG。

终止密码子:UAA、UAG和UGA。

其余61个密码子对应20种氨基酸。

一2一密码的简并性同一种氨基酸有两个或更多密码子的现象称为密码的简并性。

同一种氨基酸不同密码子称为同义密码子,氨基酸密码子的简并见P512表37-6。

简并可以减少有害突变,对物种稳定有一定作用。

一3一密码的变偶性(摆动性)编码同一个氨基酸的密码子前两位碱基都相同,第三位碱基不同,为变偶性。

即密码简并性往往表现在密码子第三位碱基上,如Gly的密码子为GGU、GGC、和GGA。

一4一密码的通用性和变异性通用性:各种低等和高等生物,包括病毒、细菌及真核生物基本上共用一套遗传密码。

变异性:已知线粒体DNA(mtDNA),还有原核生物支原体等少数生物基因密码有一定变异。

一5一密码的防错系统密码的编排方式使得密码子中一个碱基被置换,其结果常常是编码相同的氨基酸或是为物理化学性质接近的氨基酸取代。

11-2 蛋白质合成及转运下册 P5171、氨基酸是怎样被选择及掺入到多肽链当中去的。

第十一章 蛋白质的相互作用(Protein-Protein Interactions)

第十一章 蛋白质的相互作用(Protein-Protein Interactions)

第十一章蛋白质的相互作用(Protein-Protein Interactions)1. 概况随着人类基因组测序工作的完成,生命科学进入到后基因组和蛋白组的时代。

因此,蛋白质的相互作用研究就显得越来越重要。

生命活动过程与蛋白质的相互作用是密不可分的,如DNA合成、基因转录激活、蛋白质翻译、细胞周期调控、信号转导等重要的生命过程均涉及到蛋白质复合体的作用。

下面以Wnt 信号通路为例对此加以说明。

Wnt信号通路是一条保守性很强的信号通路,该通路调节控制许多的生命过程,如细胞形态与功能的分化及维持、免疫、应激、细胞癌变与凋亡等等。

Wnt信号通路的作用分子包括:Wnt蛋白家族成员、卷曲(frizzled) 蛋白、Dishevelled蛋白、β-联蛋白(β-catenin)、轴蛋白(axin)、结肠癌抑制因子(APC)、糖原合酶激酶(GSK3β)、β-TrCP蛋白、淋巴增强因子(LEF)/T细胞因子(TCF) 等。

当没有Wnt信号时,GSK3β、APC、axin组成破坏复合体,使β-联蛋白被磷酸化,最终泛肽化而降解。

细胞核内,转录抑制因子Groucho家族成员与转录因子TCF形成复合物,通过HMG框结合在靶基因上,抑制靶基因的转录。

当有Wnt信号传入时,通路中的下游分子Dsh抑制了破坏复合体的作用,β-联蛋白在胞质中积累进入核内,TCF与入核的β-联蛋白结合,导致其与Groucho的结合下降,从而去除抑制作用,激活了靶基因的转录。

从上面可以看出,蛋白质的相互作用包括三个方面:⑴多亚基蛋白质的形成:即分离纯化后可形成两个或多个不同蛋白质,如血红素、色氨酸合成酶、大肠杆菌DNA合成复合酶等。

⑵多成分的蛋白质相互作用,如核孔复合体、剪接体、纺锤体等。

⑶瞬时的蛋白质相互作用,控制着一些重要的生命活动。

所有的蛋白质修饰过程都需要这类相互作用。

这类相互作用几乎参与调节细胞内基本生命活动的所有形式,如细胞生长、细胞周期、代谢途径、信号转导等。

第11章血液生化(生物化学)

第11章血液生化(生物化学)
- - - - - - - - - + +
注: “+”,“-” 分别表示该途 径有或无 *晚幼红细胞 为“-”
目录
(一)糖代谢 1. 糖酵解和2, 3-二磷酸甘油酸(2, 3-BPG)旁路
2. 磷酸戊糖途径, 主要功能是产生NADPH+H+
目录
葡萄糖
二磷酸甘油酸变位酶
1, 3-BPG
3-磷酸甘 油酸激酶
目录
血液中的电解质则大部分为以离子状态存在的无 机盐

正离子有:Na+、K+、Ca2+、Mg2+; 负离子有:Cl-、HCO3-、HPO42-和SO42-; 血浆中Na+、Cl-的含量最多;细胞内则含K+、HPO42最多。 体液的电中性是由于各种体液内的正、负离子荷电总 量相等 在血浆中,Na+是维持血浆量和渗透压的主要离子; 在红细胞中,K+是维持细胞内液量和渗透压的主要离 子。 血浆中Na+、K+、Ca2+保持适当比例,维持着神经肌肉 的正常兴奋性。
因CO2形成的H2CO3,解离后使H+浓度增高,故CO2对O2饱和度 的影响在很大程度上是通过H+浓度的改变而实现的。 CO2和Hb结合成氨基甲酸血红蛋白时,也能解离出H+以影响Hb 对O2的亲和力。
2GSH
谷胱甘肽过 氧化物酶
H2O2
6-磷酸 葡萄糖酸
NADP++H+
GSSG
2H2O
目录
(二)脂 代 谢

成熟红细胞不能从头合成脂肪酸,通过主动 参入和被动交换不断的与血浆进行脂质交换, 维持其正常的脂类组成、结构和功能。
目录

第十一章内质网

第十一章内质网
二硫键异构酶
(四)膜脂的合成
大部分膜脂在糙面内质网膜组装。膜脂的合成与蛋 白质的合成、运输过程密切相关。是细胞内唯一合成膜 脂的细胞器,作为细胞膜成分的“源泉”。
脂类去向:
一、嵌入到内质网脂类双层中,补充自身膜损失。
二、输送到其它膜性细胞器,补充其他膜相损失。
①胞液面磷脂合成:
新合成的脂类分子最初只嵌入内质网脂双层的细胞质 基质面。
分类: ①粗面内质网(rough endoplasimic reticulum,rER) ②光面内质网(smooth endoplasimic reticulum,sER)
粗面内质网(rER) 滑面内质网(sER)
RER has ribosomes on the cytosolic side of continuous, flattened sacs(cisternae); SER is an interconnecting network of tubular membrane elements.
真核细胞膜结合区室的主要功能
细胞器
胞质溶胶 细胞核 内质网 高尔基 溶酶体 内体 过氧化物酶体 线粒体
主要功能
代谢的主要场所,蛋白质合成部位 基因组存在场所,DNA,RNA的合成地 脂的合成场所,蛋白质合成和集散地 蛋白质和脂的修饰,分选和包装 细胞内的降解作用 内吞物质的分选 毒性分子的氧化 通过氧化磷酸化合成ATP
②一个位于内部的内信号肽疏水序列
(2)多次跨膜蛋白整合到ER膜的方式:
具有两个以上起始转移序列和停止转移序列,多 肽链前后来回重复的通过脂双层。
(二).蛋白质的修饰与加工 包括糖基化、羟基化、酰基化、二硫键形成等,其中最主 要的是糖基化。 糖基化的作用: ①使蛋白质能够抵抗消化酶的作用; ②赋予蛋白质传导信号的功能; ③某些蛋白只有在糖基化之后才能正确折叠。

生化练习题2

生化练习题2

第十一章脂代谢一:填空题1.脂酸的________________是Knoop于1904年最初提出来的。

2.在所有的细胞中,活化酰基化合物的主要载体是________________。

3.脂酸的β-氧化包括________________、________________、________________和________________四个步骤。

4. 乙酰CoA和生成________________,需要消耗________________高能磷酸键,并需要________________辅酶参加。

5. 酮体包括________________、________________和________________三种化合物。

6.限制脂酸生物合成速度的反应是在________________阶段。

7. 胆固醇生物合成的原料是________________8. 丙酰CoA的进一步氧化需要________________和________________作酶的辅助因子9. 脂酸的合成需要原料________________、________________、________________和________________等。

10. 脂酸合成过程中,乙酰CoA来源于________________或________________,NADPH来源于________________途径。

二:是非题1.[ ]动物细胞中,涉及固定的所有羧化反应需要硫胺素焦磷酸(TPP)。

2.[ ]仅仅偶数碳原子的脂酸在氧化降解时产生乙酰CoA。

3.[ ]脂酸的氧化降解是从分子的羧基端开始的。

4.[ ]低糖、高脂膳食情况下,血中酮体浓度增加。

5.[ ]从乙酰CoA合成1分子棕榈酸(软脂酸),必须消耗8分子A TP。

6.[ ]酰基载体蛋白(ACP)是饱和脂酸碳链延长途径中二碳单位的活化供体。

7.[ ] 如果动物长期饥饿,就要动用体内的脂肪,这时分解酮体的速度大于生成酮体的速度。

第十一章 同工酶与气体酶学

第十一章 同工酶与气体酶学

着阳极移动最远的酶开始依次编号。
*实例:乳酸脱氢酶(LDH) 2种亚基类型(M和H)可以配置 成5种4聚体;都催化乳酸脱氢形成丙 酮酸,辅酶都为NAD
乳酸脱氢酶(LDH1~ LDH5)
乳酸脱氢酶同工酶形成示意图
结构基因 a b
乳酸脱氢酶同 工酶电泳图谱
mRNA

多肽 亚基
点样线
M
M4
H
M3H M2H2
1
1、下列关于同工酶的概念的叙述那一项是正确的 A、是结构相同而存在部位不同的一组酶 B、是催化相同化学反应而酶的一级结构和理化性 质不同的一组酶 C、是催化反应及性质都相似而发生不同的一组酶 D、是催化相同反应的所有酶 E、以上都不是
第二节 固氮酶的作用

一.固氮酶

固氮酶是一种能够将分子氮还原成氨的酶。 固氮酶是由两种蛋白质组成的:一种含有 铁,叫做铁蛋白,另一种含铁和钼,称为 钼铁蛋白。只有钼铁蛋白和铁蛋白同时存 在,固氮酶才具有固氮的作用(因为这两种 物质作为电子载体能够起到传递电子的作 用)。
二.固氮酶的研究热点

生物固氮研究正在分子和原子水平上开展



1.固氮基因表达的氨阻遏和氧敏感机制 2.共生结瘤固氮中植物与微生物相互关系的 基因表达和调控 3.根瘤菌结瘤因子的结构和生物合成 4.根瘤菌及其宿主植物的基因组学转录组学 和蛋白质组学 5.固氮酶的结构和功能及其化学模拟
一、自养微生物的CO2固定
1.种类:一种是钼铁蛋白,另一种是铁蛋白 2.催化的反应
生物固氮原理简介 :

生物固氮是固氮微生物特有的一种生理功 能,这种功能是在固氮酶的催化作用下进 行的。 固氮微生物需氧,而固氮必须是在 严格的厌氧微环境中进行。组成固氮酶的 两种蛋白质,钼铁蛋白和铁蛋白,对氧极 端敏感,一旦遇氧就很快导致固氮酶的失 活,而多数的固氮菌都是好氧菌,它们要 利用氧气进行呼吸和产生能量。

生化2017-脂类代谢

生化2017-脂类代谢
低密度脂蛋白 low density lipoprotein (LDL)
高密度脂蛋白 high density lipoprotein (HDL)
70
71
血浆脂蛋白的组成
CM VLDL
密度
<0.95
0.95~1.006
脂类 含TG最多, 含TG

80~90%
成 蛋白 最少, 1%

50~70% 5~10%
L-甘油3-P
甘油
甘油激酶
55
从 甘油-3-磷酸和3个脂酰-CoAs形成三酰甘油
56
甘油三酯的合成代谢
甘油三酯 (肝脏、脂肪组织)
磷酸甘油
脂肪酸
磷酸二羟丙酮
甘油的磷酸化
糖代谢
乙酰CoA
脂肪酸氧化
57
第四节
胆固醇代谢
58
59
一、胆固醇的合成
• 合成部位:肝细胞质基质及光面内质网 • 合成原料:
血液 新生CM
FFA
外周组织
成熟CM
CM残粒
LPL
脂蛋白脂肪酶 肝细胞摄取
74
2. 极低密度脂蛋白(VLDL) ——运输内源性TG
• 由肝细胞合成,将肝细胞合成的TG、磷脂、胆固 醇及其酯转运至其他组织,不断脱脂,转变为 LDL。
VLDL
VLDL
残粒
FFA
FFA
外周组织
LDL
75
3. 低密度脂蛋白(LDL) ——转运内源性胆固醇至肝外 组织
第十一章 脂类代谢及其调节
宋崴
1
第一节 脂肪酸代谢
2
一、脂肪酸的分解代谢
脂肪动员
甘油(glycerol)
脂肪酸(fatty acid)

生化习题第十一章

生化习题第十一章

1.(西南农业大学基础化学2002年)提出DNA半保留复制的科学家是。

A.Pauling CoreyB.Miechaelis MentenC.Meselson & StahlD.Jacob & Mond2.(四川大学2001年)DNA生物合成时,直接参与脱氧核苷酸链合成的部分原料是(多选题)A.dGMPB.dCTPC.dTTPD.dATPE.TTPF.dGTP3.(河北师范大学2000年)与片段TAGCp互补的片段为。

A. TAGCpB.CGATpC.ATCGpD.GCTAp4.(山东大学2001年)有关DNA复制的说明中,错误的是。

A.半保留复制B.半不连续复制C.一般是定点开始双向等速复制D.复制沿模板5'—3'方向进行5.(华南师范大学2003年)在DNA复制过程中,由催化RNA引物的合成。

A.DNA聚合酶IB.DNA聚合酶IIC.DNA聚合酶爪D.RNA酶E.引物合成酶6.(西南农业大学基础化学2003年)DNA复制需要①DNA聚合酶III;②解链酶;③DNA聚合酶I;④引物酶;⑤连接酶,它们在复制中的作用顺序是。

A.④③①②⑤B.④②①③⑤C.②③④①⑤D.②④①③⑤7.(中国科学院2002年)在DNA损伤修复中,哪一种修复可能导致高的变异率?A.光修复B.切除修复C.重组修复D.诱导修复8.(南开大学2000年)在细胞的DNA中。

A.用一个碱基对替换另一个碱基对的突变称为点突变B.插入一个碱基对的突变称为点突变C.一个遗位点上的突变称为点突变D.改变一个基因的突变称为点突变9.(西南农业大学基础化学2003年)逆转录酶是一类。

A.DNA指导的DNA聚合酶B.DNA指导的RNA聚合酶C.RNA指导的DNA聚合酶D.RNA指导的RNA聚合酶10.(西南农业大学基础化学2002年)转录过程中遗传信息的传递方向是。

A.DNA→RNAB.RNA→DNAC.RNA→RNAD.RNA→蛋白质11.(华中农业大学2002年)下列有关RNA聚合酶的陈述中,哪一种是正确的?A.合成多核苷酸链时RNA聚合酶作用于核苷二磷酸B.RNA聚合酶作用时,需要引物C.RNA聚合酶在多核苷酸链的3'端加上核苷酸D.RNA聚合酶可以在DNA模板的两条链上同时分别合成RNA12.(华中农业大学2003年)依赖于DNA的RNA聚合酶,由五个亚基组成,其中与转录起始有关亚基是。

医学有机化学第十一章杂环化合物

医学有机化学第十一章杂环化合物

吡啶环比苯环难氧化 ,环上连有烃基时,侧链可被氧化 吡啶还原后生成饱和的仲胺哌啶
嘧啶及其衍生物 无色固体,熔点22℃,易溶于水,有弱碱性。 胞嘧啶(C)(4-氨基-2-羟基嘧啶) 存在于DNA中
存在于RNA中 尿嘧啶(U)(2,4-二羟基嘧啶)
存在于DNA中 胸腺嘧啶(T)(5-甲基-2,4-二羟基嘧啶)
、吡咯呋喃和噻吩的性质
吡咯具有一定的酸性(pKa=17.5) 原因:N 的给电子共轭效应,使得N上的电子云密度降低,N-H键的极性增加。
、吡咯的酸碱性 吡咯是一种很弱的碱(pKb=13.6) 原因:N上的一对电子参与了共轭。
亲电取代反应的位置:主要是α位。 原因: α位的电子云密度高。
01
18
03
噻吩(thiophene)
吡咯(pyrrole)
吡唑
咪唑
噁唑
噻唑
吡啶(pyridine)
γ-吡喃
哒嗪
嘧啶
吡嗪
6
1
2
3
4
5
1
2
3
4
5
6
二、命名: 音译法:“口”字旁+英文译音。
喹啉
异喹啉
吲哚
嘌呤
1、当环上有取代基时:一般以杂环为“母体”。 编号原则:①含一个杂原子时:把杂原子作1号,沿着使取代基编号最小的方向用阿拉伯数字给环编号;或用希腊字母编号,与杂原子相连的碳为α-位,依次为β- ,γ-位。
尿酸难溶于水。正常人血浆中含尿酸2~6mg%。每天由尿中排出0.5~1g。
尿酸 2,6,8-三羟基嘌呤
尿酸
杂环化合物的命名结构式的写法 五元杂环和六元杂环的化学性质 生物碱的定义及用途
第十四章 要点

生化题_第十一章 脂代谢

生化题_第十一章 脂代谢

姓名______________学号________________ 成绩_____________第十一章脂质代谢一、是非判断题1. 脂肪酸的β-氧化和α-氧化都是从羧基端开始的。

2. 只有偶数碳原子的脂肪才能经β-氧化降解成乙酰CoA.。

3. 脂肪酸β-氧化酶系存在于胞浆中。

4. 肉毒碱可抑制脂肪酸的氧化分解。

5. 萌发的油料种子和某些微生物拥有乙醛酸循环途径,可利用脂肪酸α-氧化生成的乙酰CoA 合成苹果酸,为糖异生和其它生物合成提供碳源。

6. 烯脂酰CoA异构酶的作用是将△2反十二烯脂酰CoA转化为△3顺十二烯脂酰CoA。

7. 脂酰CoA 脱氢酶是一种黄素蛋白。

8. β-羟脂酰CoA 脱氢酶催化L、D 型β-羟脂酰CoA 脱氢。

9. 肉碱脂酰转移酶是一种限速酶,受丙二酸单酰ACP 抑制。

10.脂肪酸的氧化是从分子的羧基端开始的。

11.脂肪酸从头合成中,将糖代谢生成的乙酰CoA从线粒体内转移到胞液中的化合物是苹果酸。

12.脂肪酸的从头合成需要柠檬酸裂解提供乙酰CoA.。

13.在真核细胞内,饱和脂肪酸在O2的参与下和专一的去饱和酶系统催化下进一步生成各种长链脂肪酸。

14.脂肪酸的生物合成包括二个方面:饱和脂肪酸的从头合成及不饱和脂肪酸的合成。

15.甘油在甘油激酶的催化下,生成α-磷酸甘油,反应消耗ATP,为可逆反应。

16.真核生物脂肪酸合成酶系各成员共价串联成一条多肽链发挥作用。

17.硫脂酶是脂肪酸合成酶系中的重要成员。

18.β-羟脂酰ACP脱水酶催化下产生△2反丁烯酰ACP。

19.脂肪酸合成的直接前体是丙二酸单酰CoA。

20.在脂肪酸合成过程中,中间产物以非共价键与载体ACP 相联。

21.从乙酰CoA 合成1 分子棕榈酸,必须消耗8 分子ATP。

22.酰基载体蛋白(ACP)是饱和脂肪酸碳链延长途径中二碳单位的活化供体。

23.如果动物长期饥饿就要动用体内的脂肪,这时分解酮体的速度大于生成酮体的速度。

(武大张楚富版生化原理)第十一章.电子传递与氧化磷酸化

(武大张楚富版生化原理)第十一章.电子传递与氧化磷酸化

CoQH2 (氢醌型或还原型)
19
4. 复合体Ⅲ: 细胞色素C还原酶
• 功能:将电子从CoQ传递给Cytc • 组成:Cytb、Fe-S、Cytc1 • 细胞色素(Cyt):含铁卟啉辅基的色蛋白,分
a、b、c三类, • 呼吸链中含5种(b、c1、c、a和a3),在呼吸链
中作为电子传递体,
20
细胞色素
2.铁-硫蛋白类
黄素蛋白
II (FAD)
铁硫蛋白 (Fe-S)
3.辅酶Q
FADH2 呼吸链
(CoQ)
4.细胞色素类
( b、c1、c、a和a3 )
NADH
黄素蛋白 (FMN)
I
铁硫蛋白 (Fe-S)
CoQ
Cyt b
Fe-S III
NADH 呼吸链
Cyt c1
Cyt c
Cyt aa3 IV
9
O2
(二)电子传递链的组成
细胞色素 还原酶
Cyt c
两条 主要 的呼 吸链
Cyt aa3
复合物 IV
细胞色素
氧化酶
O2
26
NADH呼吸链电子传递和水的生成
AH2
还原型代 谢底物
A
氧化型代 谢底物
NAD+ NADH+H+
FMNH2
Fe
FMN
CoQ
S
CoQH2
2e 2Fe2+
细胞色素
b- c- c1 -aa3
2Fe3+
2H+
1
2 O2 O2H2O
琥珀酸 延胡索酸
FADH2呼吸链电子传递和水的生成
2H+
FAD
Fe

第十一章 氰类毒剂与窒息性毒剂

第十一章 氰类毒剂与窒息性毒剂

第十一章氰类毒剂与窒息性毒剂氰类毒剂与窒息性毒剂的中毒机理有较多相同之处,二者皆为氧利用受阻,引起细胞呼吸链功能降低,ATP合成减少。

所不同的是氰类毒剂是氰离子(CN-)络合铁离子造成呼吸链阻断(细胞内窒息),电子与质子无法传至最终受体氧分子,而窒息性毒剂是由于外呼吸阻塞造成供氧不足(细胞外窒息),使细胞内呼吸链电子和质子传递缺乏氧受体而中断。

第一节氰类毒剂氰类毒剂(cyanide agents)主要指含CN-的一类毒剂, 也称作全身性毒剂(systemic agents)。

包括氢氰酸(hydrogen cyanide,HCN)和氯化氰(cyanogen chloride,CICN)。

此类毒剂施放后呈蒸气态,经呼吸道吸入,作用于细胞呼吸链末端细胞色素氧化酶,使细胞能量代谢受阻,供能失调,迅速导致机体功能障碍。

由于氰类毒剂毒性强,作用快,为速杀性毒剂,但其杀伤作用持续时间短,故又称暂时性毒剂。

第一次世界大战期间,法军在索姆(Somme)前线首先使用了氢氰酸,由于当时释放技术差,难以造成有效杀伤浓度,加上德军装备有防护面具,故未收到预期效果。

1984年震惊世界的印度博帕尔(Bhopal)事件,泄露的异氰酸甲酯(MIC),在200 0C高温下分解释放出氢氰酸,造成52500多人伤亡和20万人受类,是历史上毒剂伤亡人数最多的事件。

氢氰酸具有较强隐蔽性和速杀作用。

平时作为化工原料大量生产和贮存、来源丰富、战时可直接转化为化学战剂,1972年联大裁军委员会会议把氢氰酸列为“双用途毒剂”,加上该类毒剂具有较强的穿透滤毒罐的性能,外军均把它列为制式毒剂。

氢氰酸及其盐类,平时广泛用于化纤、电镀、合成橡胶、有机玻璃、制药、肥料、冶金、灭鼠及杀虫等。

在生产和使用时常有中毒发生。

自然界一些蔷薇科植物的种子如杏、李、桃仁以及大戟科植物木薯的根、茎、叶中都含有氢氰酸的有机衍生物苦扁桃仁甙(amygdalin),若处理不当,食后在体内酶催化作用下分解,放出氢氰酸,也可引起中毒。

第十一章G-微需氧和厌氧菌

第十一章G-微需氧和厌氧菌

第二节
螺杆菌属
是能捕食其他G 是能捕食其他 G - 菌 , 以寄主的结构 物质作为营养的一类细菌, 物质作为营养的一类细菌 , 能吸附在寄 主细胞表面故称蛭弧菌。 主细胞表面故称蛭弧菌。
第十二章
革兰氏阳性无芽胞杆菌 李氏杆菌属
有3个属:李氏杆菌属,丹毒丝菌属,肾杆菌属。 个属:李氏杆菌属,丹毒丝菌属,肾杆菌属。
①空肠弯曲菌:引起多种动物的腹泻和人的急性胃 空肠弯曲菌: 肠炎与食物中毒,也可引起绵羊流产, 肠炎与食物中毒,也可引起绵羊流产,禽类的传 染性肝炎。 染性肝炎。 胎儿弯曲菌: ②胎儿弯曲菌: a. 胎儿亚种:致绵羊流产和牛的散发性流产,感染 胎儿亚种:致绵羊流产和牛的散发性流产, 人引起流产,早产,类似布鲁氏杆菌疗状。 人引起流产,早产,类似布鲁氏杆菌疗状。 性病亚种:致牛流产和不育。存在于牛阴道粘液, b. 性病亚种:致牛流产和不育。存在于牛阴道粘液, 流产胎儿组织,经交配传染。 流产胎儿组织,经交配传染。
(二)形态及染色特征 G+ 大杆菌,无鞭毛,不运动,芽胞位于菌体中央, 大杆菌, 无鞭毛, 不运动, 芽胞位于菌体中央, 直径不大于菌体,可形成荚膜。 直径不大于菌体,可形成荚膜。 在动物组织或血液中,单在或2 5个菌连接成短链, 在动物组织或血液中,单在或2—5个菌连接成短链, 菌体矢直,菌端平截而呈“竹节状” 菌体矢直,菌端平截而呈“竹节状”,围绕以丰厚的 荚膜,荚膜抗腐败能力强,菌体因腐败而消失后, 荚膜,荚膜抗腐败能力强,菌体因腐败而消失后,荚 膜仍可残留称为“菌影” 膜仍可残留称为“菌影”。 组织中的菌体只有遇到游离氧时, 才形成芽孢。 组织中的菌体只有遇到游离氧时 , 才形成芽孢 。 所以怀疑为炭疽病时,严禁剖检,避免与O 接触, 所以怀疑为炭疽病时 , 严禁剖检 , 避免与 O2接触 , 耳 尖采血涂片。 尖采血涂片。 在培养基中,形成长链, 在培养基中,形成长链,在普通培养基上不形成荚 并于培养18 24h开始形成芽孢。 18- 膜,并于培养18-24h开始形成芽孢。

生化习题集第十一章 分子生物学常用技术及其应用

生化习题集第十一章  分子生物学常用技术及其应用

第十一章分子生物学常用技术及其应用一、名词解释1.DNA重组 2.基因工程3.限制性核酸内切酶 4.基因组DNA文库5.cDNA文库 6.聚合酶链反应(PCR)7.载体 8.转化9.感染 10.核酸分子杂交11.Southern印迹杂交 12.Northern印迹杂交13.斑点印迹 14.原位杂交15.DNA芯片 16.基因诊断17.基因治疗二、选择题A型题:1.限制性核酸内切酶作用特点不包括:A.在对称序列处切开DNA B.DNA两链的切点常不在同一位点C.酶切后产生的DNA片段多半具有粘性互补末端 D.DNA两链的切点常在同一位点E.酶辨认的碱基一般为4~6个2.限制性核酸内切酶:A.可将单链DNA任意切断 B.可将双链DNA序列特异切开C.可将两个DNA分子连接起来 D.不受DNA甲基化影响E.由噬菌体提取而得3.cDNA文库包括该种生物的:A.某些蛋白质的结构基因 B.所有基因组C.结构基因与不表达的调控区 D.内含子和调节区E.内含子和外显子4.下列关于建立cDNA文库的叙述哪项是错误的:A.从特定组织或细胞中提取mRNAB.将特定细胞的DNA用限制性核酸内切酶切割后,克隆到噬菌体或质粒中C.用逆转录酶合成mRNA的对应单股DNAD.用DNA聚合酶,以单股DNA为模板合成双链DNAE.加S-腺苷甲硫氨酸(SAM),以使新生的DNA双链甲基化5.限制性核酸内切酶的通常识别序列是:A.粘性末端 B.RNA聚合酶附着点C.回文对称序列 D.聚腺苷酸E.甲基化“帽”结构6.pUC系列是指:A.经人工改造的大肠杆菌质粒 B.天然的大肠杆菌质粒C.天然的酵母质粒 D.经人工改造的大肠杆菌噬菌体E.经人工改造的酵母质粒7.用于转染哺乳类细胞的常用载体是:A.质粒 B.噬菌体C.逆转录病毒RNA D.结构基因E.乳糖操纵子8.转化常指:A.噬菌体感染 B.基因的转位C.摄取外来DNA,引起细胞生物学类型的改变 D.产生点突变E.产生移码突变9.基因工程的操作程序可简单地概括为:A.载体和目的基因的分离、提纯与鉴定 B.分、切、接、转、筛C.将重组体导入宿主细胞,筛选出含目的基因的菌株 D.将载体和目的基因接合成重组体E.限制性核酸内切酶的应用10.用于基因治疗较为理想的载体是:A.质粒 B.噬菌体C.经改造的逆转录病毒 D.人类DNAE.酵母质粒11.常用质粒有以下特性:A.是线形双链DNA B.插入片段的容量比λ噬菌体DNA大C.含有抗生素抗性基因 D.含有同一限制性核酸内切酶的多个切口E.不随细菌繁殖而进行自我复制12.在重组体中切出插入片段最常用的方法是:A.以重组时所用限制性核酸内切酶将其切出 B.用其它限制性酶将其切出C.用S1核酸酶将其切出 D.用DNA酶将切出E.用多种限制性内切酶将其切出13.利用PCR扩增特异DNA序列主要原理之一是:A.反应体系内存在特异DNA片段 B.反应体系内存在特异RNA片段C.反应体系内存在特异DNA引物 D.反应体系内存在特异RNA引物E.反应体系内存在的TaqDNA聚合酶具有识别特异DNA序列的作用14.表达人类蛋白质的最理想的细胞体系是:A.大肠杆菌表达体系 B.原核表达体系C.酵母表达体系 D.昆虫表达体系E.哺乳类细胞表达体系15.限制性核酸内切酶切割DNA后产生:A.3′-磷酸基末端和5′-羟基末端 B.5′-磷酸基末端和3′-羟基末端C.3′-磷酸基末端和5′-磷酸基末端 D.5′-羟基末端和3′-羟基末端E.3′-羟基末端和5′-羟基末端及磷酸16.下列描述最能确切表达质粒DNA作为克隆载体特性的是:A.小型环状双链DNA分子 B.携带有某些抗生素抗性基因C.在细胞分裂时恒定地传给子代细胞 D.具有自我复制功能E.获得目的基因17.在分子生物学领域分子克隆主要是指:A.DNA的大量复制 B.DNA的大量转录C.DNA的大量剪切 D.RNA的大量剪切E.RNA的大量反转录18.在分子生物学领域重组DNA技术又称:A.酶工程 B.蛋白质工程C.细胞工程 D.发酵工程E.分子克隆技术19.在重组DNA技术中不涉及的酶是:A.限制性核酸内切酶 B.DNA聚合酶C.DNA连接酶 D.反转录酶E.DNA解链酶20.多数限制性核酸内切酶切割后的DNA末端为:A.平端末端 B.3′突出末端C.5′突出末端 D.粘性末端E.缺口末端21.可识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类酶为:A.限制性核酸外切酶 B.限制性核酸内切酶C.非限制性核酸外切酶 D.非限制性核酸内切酶E.DNA内切酶22.cDNA是指:A.在体外经反转录合成的与RNA互补的DNA B.在体外经反转录合成的与DNA 互补的DNAC.在体外经转录合成的与DNA互补的RNA D.在体外经反转录合成的与RNA 互补的RNAE.在体外经反转录合成的与DNA互补的RNA23.基因组代表一个细胞或生物体的:A.部分遗传信息 B.整套遗传信息C.可转录基因 D.非转录基因E.可表达基因24.在基因工程中通常所用的质粒存在于:A.细菌染色体 B.酵母染色体C.细菌染色体外 D.酵母染色体外E.病毒DNA外25.就分子结构而论质粒是:A.环状双链DNA分子 B.环状单链DNA分子C.环状双链RNA分子 D.线状双链DNA分子E.线状单链DNA分子26.聚合酶链式反应可表示为:A.PEC B.PERC.PDR D.BCRE.PCR27.在已知序列信息的情况下,获取目的基因的最方便方法是:A.化学合成法 B.基因组文库法C.cDNA文库法 D.PCRE.差异显示法28.重组DNA的基本构建过程是将:A.任意两段DNA接在一起 B.外源DNA接入人体DNA C.外源基因插入宿主基因 D.目的基因接入适当载体E.目的基因接入哺乳类DNA29.EcoRⅠ切割DNA双链产生:A.平端 B.5′突出粘端C.3′突出粘端 D.钝性末端E.配伍末端30.催化PCR的酶是:A.DNA连接酶 B.反转录酶C.末端转移酶 D.碱性磷酸酶E.TaqDNA聚合酶31.将PstⅠ内切酶切割后的目的基因与用相同内切酶切割后的载体DNA连接属:A.同聚物加尾连接 B.人工接头连接C.平端连接 D.粘性末端连接E.非粘性末端连接32.重组DNA技术中实现目的基因与载体DNA拼接的酶是:A.DNA聚合酶 B.RNA聚合酶C.DNA连接酶 D.RNA连接酶E.限制性核酸内切酶33.以质粒为载体,将外源基因导入受体菌的过程称:A.转化 B.转染C.感染 D.转导E.转位34.最常用的筛选转化细菌是否含重组质粒的方法是:A.营养互补筛选 B.抗药性筛选C.免疫化学筛选 D.PCR筛选E.分子杂交筛选35.α互补筛选法属于:A.抗药性标志筛选 B.酶联免疫筛选C.标志补救筛选 D.原位杂交筛选E.免疫化学筛选36.下列常用于原核表达体系的是:A.酵母细胞 B.昆虫细胞C.哺乳类细胞 D.真菌E.大肠杆菌37.在对目的基因和载体DNA进行同聚物加尾时,需采用:A.反转录酶 B.多聚核苷酸激酶C.引物酶 D.RNA聚合酶E.末端转移酶38.在分子生物学领域分子克隆专指:A.细胞克隆 B.RNA克隆C.DNA克隆 D.抗体克隆E.mRNA克隆39.用于重组DNA 的限制性核酸内切酶,识别核苷酸序列的:A.正超螺旋结构 B.负超螺旋结构C.α螺旋结构 D.回文结构E.锌指结构40.在基因工程中通常所用的质粒是:A.细菌染色体DNA B.细菌染色体以外的DNA C.病毒染色体DNA D.病毒染色体以外DNAE.噬菌体DNA41.构建基因组DNA文库时,首先需要分离细胞的:A.染色体DNA B.线粒体DNAC.总mRNA D.tRNAE.rRNA42.DNA连接酶是从T4 噬菌体感染大肠杆菌中分离的,这种连接酶:A.只能催化平末端连接,而不能催化粘性末端连接B.即能催化单链DNA连接又能催化粘性末端双链DNA连接C.双链DNA中不需一条完整的单链D.单链中的切口位点可缺少几个核苷酸E.切口存在相邻的5′-磷酸和3′-羟基末端,使其以磷酸二酯键连接43.末端转移酶是合成酶类:A.作用时不需模板 B.是从小牛胸腺中分离C.能催化单链核苷酸转移到5′-磷酸上 D.需要带有5′-端磷酸的末端的ssDNA E.需要有延伸5′-端磷酸的末端dsDNA44.在基因工程中可用碱性磷酸酶:A.防止DNA的自身环化 B.同多核苷酸激酶一起进行DNA3′-羟基末端标记C.制备突出的3′-末端 D.特异切除DNA或RNA的3′-末端羟基E.水解特异的核苷酸片段45.以下哪种酶作用时需要引物:A.限制性核酸内切酶 B.末端转移酶C.反转录酶 D.DNA连接酶E.碱性磷酸酶46.S1核酸酶的功能是:A.切割双链的DNA B.切割单链的RNA C.切割发夹环 D.切割单链DNA E.以上有两项是正确的47.在cDNA技术中所形成的发夹环可用:A.限制性核酸内切酶切除 B.用3′外切酶切除C.用S1核酸酶切除 D.用5′外切酶切除E.碱性磷酸酶切除48.下面有关限制性内切酶的叙述正确的是:A.限制酶是外切酶而不是内切酶B.限制酶在特异序列(识别位点)对DNA进行切割C.同一种限制酶切割DNA时留下的末端序列总是相同的D.一些限制酶在识别位点稍有不同的点切割双链DNA,产生粘性末端E.一些限制酶在识别位点相同的位置切割双链DNA,产生平末端49.限制性核酸内切酶可以特异识别:A.双链DNA的特定碱基对 B.双链DNA的特定碱基序列C.特定的三联码 D.双链RNA的特定碱基序列E.双链RNA的特定碱基对50.DNA聚合酶的主要用途:A.利用它的3′→5′聚合活性,合成ds-DNA第二条链B.对DNA的5′-端进行填补或末端标记C.大肠杆菌DNA聚合酶Ⅲ用于缺口平移,制作DNA标志探针D.DNA聚合酶Ⅱ可用于DNA测序E.TaqDNA聚合酶用于PCR51.反转录酶:A.是依赖于DNA的RNA聚合酶 B.用于真核DNA反转录生成mRNA C.用于RNA探针的制备 D.用于RNA序列测定E.是依赖于RNA的DNA聚合酶52.基因工程中作为载体应具备以下特点:A.能在宿主细胞中复制繁殖 B.容易进入宿主细胞C.具有多克隆位点 D.容易从宿主细胞中分离出来E.以上均是53.下列哪种克隆载体对外源DNA的容载量最大:A.质粒 B.粘粒C.酵母人工染色体 D.λ噬菌体E.cDNA表达载体54.pUC是一种改造型质粒,含有:A.乳糖操纵子调节基因、启动子 B.多克隆位点C.lacZ′基因 D.氨苄青霉素抗性基因E.以上均有55.质粒具有以下特点:A.是位于细菌染色体外的RNA B.不能自主复制C.为单链环形DNA D.大小在2~300kb之间E.以上都不对56.粘粒是一种人工建造的载体不具有以下特点:A.可借cos位点将多个粘粒串联成大环 B.本身约4~6kb之间C.进入受体细胞后可进行复制 D.可克隆DNA大片段E.以上都不是57.下面关于多克隆位点的描述不正确的是:A.仅位于质粒载体中 B.具有多种限制性内切酶识别的位点C.不同酶的识别序列可以重叠 D.一般是人工合成后添加到载体中E.可位于不同载体中58.下列筛选重组体的方法中不属于遗传学方法的是:A.限制性内切酶图谱法 B.PCRC.Northern印迹法 D.Southern印迹法E.抗药性标记基因59.利用基因工程可以进行:A.建立染色体基因文库 B.分析基因的结构与功能C.疾病的发生、发展及治疗的分子机制 D.疾病的诊断和基因治疗E.以上均可以60.Southern印迹的DNA探针杂交:A.只与序列完全相同的RNA片段 B.可与任何含有相同序列的DNA片段C.可与任何含有互补序列的DNA片段 D.可与用某些限制性核酸内切酶切成的DNA片段E.只与含有互补序列的RNA片段61.下列哪个不是Southern印迹法的步骤:A.用限制性核酸内切酶消化DNA B.DNA与载体连接C.用凝胶电泳分离DNA片段 D.DNA片段转移至硝酸纤维素膜上E.用一个标记的探针与膜杂交62.下列哪个不是Northern印迹法的步骤:A.从细胞和组织中提取RNA B.用凝胶电泳分离RNAC.将RNA转移到支持物上 D.与核酸探针进行杂交E.将RNA反转录合成DNA63.原位杂交具有以下特点:A.不需从组织或细胞中提取核酸 B.对靶序列有很高的灵敏度C.可完整保护组织与细胞的形态 D.准确反映出组织细胞的相互关系及功能状态E.以上均是64.下列哪项不是探针的特点:A.要加以标记 B.应是双链DNAC.只与靶核酸序列杂交 D.探针长度可以是十几个碱基到几千个碱基不等E.高灵敏度65.探针的种类包括:A.基因组DNA探针 B.cDNA探针C.寡核苷酸探针 D.RNA探针E.以上均是66.下面哪一步不是获得基因组DNA探针的步骤:A.从基因组文库筛选得到特定基因 B.克隆、扩增C.纯化 D.连入表达载体E.切取插入片段67.RNA探针具有以下特点,但除外:A.采用反转录方法可以得到 B.单链、杂交效率高C.杂交体系稳定 D.不存在高度重复序列E.特异性高68.下面哪一步不是cDNA探针的步骤:A.从相应组织细胞直接中分离特异的cDNA B.从相应组织细胞中分离特异的mRNA C.反转录合成cDNA D.与载体连接E.切割cDNA,分离纯化69.常用的标记物有,但除外:A.放射性核素 B.生物素C.荧光素 D.地高辛E.NTP70.用于标记核酸探针的放射性核素主要有,但除外:A.32P B.35SC.3H D.125IE.14C71.放射性核素标记物具有,但除外:A.检测时间短 B.灵敏度和特异性高C.可检出样品少于1000个分子的核酸量 D.半衰期短,稳定性差E.污染环境72.非放射性核素标记物包括,但除外:A.生物素 B.地高辛C.荧光素 D.酶E.核酸73.非放射性核素标记物具有,但除外:A.灵敏度高于放射性核素 B.稳定C.经济 D.实验周期短E.安全、无污染74.PCR反应体系包括,但除外:A.基因组DNA(模板) B.引物C.dNTP D.TaqDNA聚合酶E.T4DNA连接酶75.PCR技术主要应用于:A.目的基因的克隆 B.基因表达与调控C.DNA微量分析 D.遗传病与传染性疾病的诊断E.以上均可以76.以DNA为模板的PCR反应,具备以下条件:A.反应体系一般选用50-100μl B.引物、TaqDNA聚合酶C.4种dNTP、模板DNA D.缓冲液E.以上均是77.以mRNA为模板的PCR反应,具备以下条件:A.需将mRNA反转录生成cDNA B.反应体系一般选用20μl体积、4种dNTP、引物C.需要RNA酶抑制剂、反转录酶 D.TaqDNA聚合酶E.以上均是78.关于PCR停滞的原因,取决于很多因素,但除外:A.样品模板的拷贝数 B.PCR扩增效率C.DNA酶种类及活性 D.dNTP的大量消耗E.非特异性的竞争因素79.用于核酸分子杂交的探针可以是放射性核素标记的:A.核糖体 B.RNAC.抗体 D.抗原E.以上都不是80.Southern印迹是用DNA探针检测DNA片段,而Northern印迹则是:A.用RNA探针检测DNA片段 B.用RNA探针检测RNA片段C.用DNA探针检测RNA片段 D.用RNA探针检测蛋白片段E.用DNA探针检测蛋白片段81.用免疫化学筛选重组体的原理是:A.根据外源基因的表达 B.根据载体基因的表达C.根据mRNA与DNA的杂交 D.根据DNA与DNA的杂交E.根据RNA与RNA的杂交82.原位杂交包括:A.转膜杂交 B.斑点杂交C.菌落杂交或噬菌斑杂交 D.直接对染色体或组织的杂交E.以上均有83.外源性DNA进入菌体的方式是:A.转化 B.转录C.翻译 D.半保留复制E.以上都不是84.要将无粘性末端的两种平端DNA片段结合在一起,可在:A.两种片段上都接上聚(dT)尾部 B.一种片段接聚(dT)尾部,另一种接聚(dA)尾部C.两种片段都接上聚(dA)尾部 D.反应液中加以T4DNA连接酶E.有两项是对的85.用原核生物表达真核生物的基因存在的问题是:A.大肠细菌只能表达克隆的cDNA B.细菌不能切除原始转录物中相当于内含子的核苷酸序列C.缺乏翻译后加工机制 D.表达的蛋白质常形成不溶性包涵体E.以上都正确86.常用载体有:A.质粒 B.噬菌体C.病毒DNA D.大肠杆菌基因组DNAE.有3项是正确的87.构建cDNA文库时,首先需分离细胞的:A.染色体DNA B.线粒体DNAC.总mRNA D.tRNAE.rRNA88.构建DNA文库时,首先需分离细胞的:A.染色体DNA B.线粒体DNAC.总mRNA D.tRNAE.rRNA89.设计PCR的引物时,应考虑引物与模板的:A.5ˊ端特定序列互补 B.5ˊ端任意序列互补C.3ˊ端特定序列互补 D.3ˊ端任意序列互补E.中间序列互补90.用于鉴定转化子细胞是否含重组DNA的最常用方法是:A.抗药性选择 B.分子杂交选择C.RNA反转录 D.免疫学方法E.体外翻译91.下列哪一步是DNA芯片技术的最关键的环节:A.样品的准备与标记 B.芯片的制备C.信号的检测 D.数据分析处理E.杂交92.基因诊断常用的技术方法有:A.核酸分子杂交 B.单链构象多态性分析C.DNA序列测定 D.DNA芯片技术E.以上均是B型题:A.基因从原来位置转到基因组的另一位置 B.噬菌体或病毒DNA进入细胞中繁殖C.外来DNA引起细胞生物学特性的改变 D.移码突变 E.非移码突变1.感染是指:2.转化是指:3.转位是指:4.结构基因中3个核苷酸的插入或丢失是指:5.结构基因中1个核苷酸的插入或丢失是指:A.抗药性选择 B.分子杂交选择 C.RNA转录 D.免疫学方法 E.体外翻译6.用于鉴定是否有质粒转入受体菌的一般方法是:7.用于鉴定转化子细胞是否含目的基因的常用方法:8.利用目的基因表达产物的特异抗体来筛选含目的基因的转化子细胞的方法是:A.限制性核酸内切酶 B.DNA连接酶 C.反转录酶 D.TaqDNA聚合酶 E.碱性磷酸酶9.识别DNA回文结构并对其双链进行切割的是:10.用于聚合酶链式反应的是:11.将目的基因与载体DNA进行连接的酶是:12.特异切除DNA或RNA5ˊ端磷酸的酶是:13.mRNA转录合成cDNA的酶是:A.支原体 B.衣原体 C.噬菌体 D.细菌 E.酵母14.常用作原核表达体系的是:15.常用作真核表达体系的是:A.基因组文库 B.cDNA文库 C.mRNA文库 D.tRNA文库 E.rRNA 文库16.分离细胞染色体可制备:17.分离细胞总mRNA可制备:A.抗药性选择 B.RNA反转录 C.免疫化学方法 D.体外翻译E.PCR18.对重组体内基因进行直接选择的方法是:19.通过鉴定基因表达产物筛选重组体的方法是:A.RNA聚合酶 B.末端转移酶 C.碱性磷酸酶 D.反转录酶 E.核苷酸酶20.切除DNA末端磷酸基需要用:21.在DNA3′羟基末端进行同聚物加尾需要用:22.合成cDNA需要用:A.同聚物加尾连接 B.人工接头 C.粘性末端连接 D.缺口末端连接 E.平端连接23.外源基因和载体DNA经限制性酶切后的连接属于:24.在外源基因和载体DNA末端添加同聚物序列后再进行连接属于:25.在外源基因和载体DNA末端添加短核苷酸序列,人为制造粘性末端再进行连接属于:26.需用适当的酶将DNA突出末端削平或补齐的连接属于:A.将单链DNA任意切断 B.将双链DNA序列特异切开 C.将两个DNA分子连接起来D.将缺口末端连接 E.切除DNA末端磷酸基团27.限制性内切酶的作用是:28.DNA连接酶作用是:29.碱性磷酸酶作用是:A.某些蛋白质的结构基因 B.所有基因结构 C.不表达的调控区D.内含子和调节区 E.外显子和调节区30.cDNA文库包括:31.DNA文库包括:32.真核mRNA包括:A.DNA聚合酶 B.RNA聚合酶 C.DNA连接酶D.RNA连接酶 E.限制性核酸内切酶33.切除特异DNA片段:34.连接两个DNA片段:35.大量扩增DNA片段:A.反转录酶 B.多聚核苷酸激酶 C.引物酶 D.RNA聚合酶 E.末端转移酶36.催化ATP的磷酸转移到DNA或RNA的5ˊ端羟基上:37.催化单核苷酸转移到DNA的3ˊ端羟基上:38.合成cDNA:C型题:A.将含有目的基因的噬菌体感染细菌 B.将含有目的基因的质粒导入细菌进行表达C.两者都是 D.两者都不是1.转化:2.感染:A.cDNA文库 B.基因组文库 C.两者都是 D.两者都不是3.含内含子:4.含结构基因:A.将含有目的基因的噬菌体感染细菌 B.将含有目的基因的质粒导入细菌进行表达C.两者都是 D.两者都不是5.转化:6.转位:A.cDNA文库 B.基因组文库 C.两者都是 D.两者都不是7.含转录调控区:8.较易表达:A.cDNA文库 B.基因组文库 C.两者都是 D.两者都不是9.制备目的基因可在真核生物体系中表达:10.几乎含有人的全部基因:A.cDNA文库 B.基因组文库 C.两者都是 D.两者都不是11.具有组织特异性:12.可在原核生物体系中表达:A.光介导原位合成 B.压电打印合成 C.两者都是 D.两者都不是13.原位合成芯片:14.DNA微集阵列:A.喷墨打印 B.针式打印 C.两者都是 D.两者都不是15.原位合成芯片:16.DNA微集阵列:A.光介导原位合成 B.喷墨打印 C.两者都是 D.两者都不是17.原位合成芯片:18.DNA微集阵列:A.压电打印合成 B.针式打印 C.两者都是 D.两者都不是19.原位合成芯片:20.DNA微集阵列:A.DNA序列测定 B.突变分析 C.两者都是 D.两者都不是21.DNA芯片技术可用于:22.PCR技术可用于:A.基因表达 B.DNA的微量分析 C.两者都是 D.两者都不是23.DNA芯片技术可用于:24.PCR技术可用于:A.药物研究 B.基因诊断 C.两者都是 D.两者都不是25.PCR技术可用于:26.核酸分子杂交:A.目的基因克隆 B.基因结构研究 C.两者都是 D.两者都不是27.DNA芯片技术可用于:28.PCR技术可用于:A.DNA与DNA的杂交 B.DNA与RNA杂交 C.两者都是 D.两者都不是29.Southern印迹杂交:30.斑点杂交:A.DNA与RNA杂交 B.DNA与DNA的杂交 C.两者都是 D.两者都不是31.原位杂交:32.Northern杂交:A.遗传性疾病的诊断 B.感染性疾病的诊断 C.两者都是 D.两者都不是33.分子杂交技术可用于:34.PCR技术可用于:A.肿瘤 B.个体鉴别 C.两者都是 D.两者都不是35.PCR技术可用于:36.DNA芯片技术可用于:三、问答题1.简述基因工程的主要过程。

第十一章生化简明教程章节习题集

第十一章生化简明教程章节习题集

第十一章代谢调节一、练习题目(一)名词解释1.限速步骤反应 2.关键酶 3.时序调节和适应调节 4.诱导作用 5.诱导物 6.诱导酶 7.阻遏作用 8.辅阻遏物 9.阻遏物 10.阻遏酶 11.操纵子 12.组成酶 13.组成突变体 14.超阻遏突变体 15.启动子 16.操纵基因 17.结构基因 18.调节基因 19.降解物基因活化蛋白 20.降解物阻遏 21.酶分子的修饰 22.共价修饰调节 23,级联系统 24.反馈抑制 25.累积反馈抑制 26.顺序反馈抑制 27,协同反馈抑制 28.前馈激活 29.前馈抑制 30.反馈激活 3l,交叉调节 32.能荷(二)问答题1.代谢调节的生物学意义是什么?2.生物体在哪几种水平上进行代谢调节?3.对酶促反应来说,可以在哪些方面进行调节?4.底物供应调节的限制因素有哪些?5.酶水平调节包括哪些方面?6.举例说明酶合成的诱导和阻遏现象。

7.操纵子学说的基本内容有哪些?8.酶活性调节的方式有哪些?9.糖元磷酸化酶和糖元合成酶活性是如何联系、调节的?10.根据能荷公式,解释能荷大小对物质代谢的调节作用。

11.真核生物细胞器的分化对代谢调节起什么作用?12.总结各物质代谢相互间的关系。

(三)填空题1.诱导酶的合成是由于___________与由调节基因所产生的__________结合,使_________变构 __________便不能与________基因结合,结构基因不被关闭的缘故。

2.由DNA分子的调节基因编码的蛋白质称为_________。

3.酶合成的调节是__________水平调节,是________调。

4.酶活性的调节是酶分子_________上的调节,是__________调。

5.真核细胞内基因表达的调节因子是___________。

6.糖元磷酸化酶被磷酸基团修饰后,该酶呈___________状态,磷酸基团来自于__________。

7.大肠杆菌乳糖操纵子包含有__________、___________和__________DNA区段。

生化前十一章总结讲解

生化前十一章总结讲解

第1章蛋白质的结构与功能1.蛋白质:是由许多氨基酸通过肽键相连形成的高分子含氮化合物。

2.谷胱甘肽:是由谷氨酸、半胱氨酸和甘氨酸组成的三肽。

3.分子伴侣:通过提供一个保护环境从而加速蛋白质折叠成天然构象或形成四级结构。

4.亚基:有些蛋白质分子含有二条或多条多肽链,每一条多肽链都有完整的三级结构,称为蛋白质的亚基5.蛋白质一级结构:指在蛋白质分子从N-端至C-端的氨基酸排列顺序。

蛋白质二级结构:蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。

蛋白质三级结构:整条肽链中全部氨基酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置。

蛋白质四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用。

6.蛋白质的变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。

蛋白质的复性:若蛋白质变性程度较轻,去除变性因素后,蛋白质仍可恢复或部分恢复其原有的构象和功能。

7肽键的形成方式及构成肽平面的六个原子。

答:肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键。

6个原子Cα1、C、O、N、H、Cα2。

8.蛋白质的一、二、三、四级结构的结构决定因素和维持空间结构稳定的价键,答:正常人血红蛋白β亚基的第6位氨基酸是谷氨酸,而镰刀形贫血患者的血红蛋白中,谷氨酸变成了缬氨酸,即酸性氨基酸被中性氨基酸替代,仅此一个氨基酸之差,原是水溶性的血红蛋白,就聚集成丝,相互黏着,导致红细胞变形成为镰刀状而极易破碎,产生贫血。

10.血红蛋白的携氧机制。

答:①正协同效应;②变构效应;血红素与氧结合后,铁原子半径变小,就能进入卟啉环的小孔中,继而引起肽链位置的变动。

11.了解蛋白质的两性、紫外吸收、显色反应,熟悉电泳的原理。

答:蛋白质的两性:当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。

生化习题_第十一章__RNA的生物合成(转录)[1]

生化习题_第十一章__RNA的生物合成(转录)[1]

生化习题_第十一章__RNA的生物合成(转录)[1]第十一章 RNA的生物合成(转录)一、单项选择题:1、有关转录的叙述正确的是:A、模板为RNAB、需要DDDPC、原料为dNTPD、产物为蛋白质E、产物也包括生成tRNA和rRNA的合成2、转录与复制有许多相同之处,除外:A.都需要依赖DNA的聚合酶B.均需要引物C.合成的方向均为5′—3′D.核苷酸之间均生成磷酸二酯键E.都遵守碱基配对规律3、转录的模板是:A.DNA双链B.DNA分子中任一单链的各个节段C.编码链D.Watson链E.Crick链4、转录所需的聚合酶为:A.DDRP B.RDDPC.DDDP D.RDRPE.Klenow fragment5、原核细胞DDRP全酶是指:A.α2ββ'σ B.αα'β2σC.α2β2β' D.αβ2β'σE、αββ'σ26、原核细胞DDRP核心酶是指:A.α2ββ'σ B.α2ββ'C.αββ'σ D.αβ2β'E、αββ2'7、真核细胞中最重要、经常起作用的RNA聚合酶是:A.RNA聚合酶I B.RNA聚合酶ⅡC.RNA聚合酶Ⅲ D.RNA聚合酶ⅣE、 RNA聚合酶I+Ⅲ8、转录酶的全酶中σ(Sigma )亚基起何作用A、结合模板B、终止作用C、决定特异性D、辨认起始点E、酶解作用9、真核生物的RNA聚体酶I催化的转录产物为:A、5S-rRNAB、tRNAC、45S-rRNAD、hnRNAE、snRNA10、有关转录的叙述,错误的是:A、靠DDRP全酶的σ因子辨认转录起始点B、转录的延长阶段由核心酶催化C、核心酶沿模板链移动的方向是5′—3′D、在同一模板DNA分子上可多位点同时转录E、启动子是控制转录的关键部位11、多数转录起始区的-10bp附近,有一组:A、 5'-AATACTPu 序列B、 5'-ATAAATPu 序列C、 5'-TATATTPu 序列D、 5'-TATAATPu 序列E、 5'-TAATTAPu 序列12、原核生物RNA聚合酶与模板结合的过程正确的是A、RNA聚合酶全酶首先结合到模板-10区B、RNA聚合酶全酶首先结合到模板的pribnow boxC、RNA聚合酶全酶首先结合到模板-35区D、RNA聚合酶与-35区的结合较-10区牢固E、转录的起始点往往就是翻译的起始点13、“转录起始复合物”是指:A、DDRP核心酶—DNA模板—pppGpN—OH3’B、DDRP全酶—DNA模板—pppGC、DDRP全酶—DNA模板—pppGpN OH3’D、DDDP—DNA模板—pppGpN OH3’E、DDRP核心酶—DNA模板—pppGpN—OH5’14、转录产物的第一个核苷酸5′端最为常见的是:A、GTPB、UTPC、GDPD、CTPE、ATP15、参与RNA-polⅡ转录的转录因子TFⅡD的主要功能是A、稳定模板B、促进RNA-polⅡ与模板结合C、具有ATPase功能D、解旋酶功能E、辩认TATA盒16、有关转录的延长的描述错误的是:A、由核心酶发挥作用B、碱基配对的方式为A=T,G=C,T=AC、形成转录空泡D、转录过程形成DNA-RNA的杂化双链E、 RNA链可伸出转录空泡外。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ห้องสมุดไป่ตู้
答:rRNA起装配和催化作用;tRNA携带氨基酸并识别密码子;mRNA携带DNA的遗传信息并作为蛋白质合成的模板。
10.如何看待RNA功能的多样性?它的核心作用是什么?
答:RNA有5类功能:①控制蛋白质合成;②作用于RNA转录后加工与修饰;③基因表达与细胞功能的调节;④生物催化与其他细胞持家功能;⑤遗传信息的加工与进化。核心功能是:遗传信息由DNA到蛋白质的中间传递体。
第十一章 维生素与辅酶
习题 1.例举水溶性维生素与辅酶的关系及其主要生物学功能。 答:水溶性维生素包括维生素B族、硫辛酸和维生素C。维生素B族的主要维生素有维生素B1、B2、PP、B6、泛酸、生物素、叶酸及B12等。 维生素B族在生物体内通过构成辅酶而发挥对物质代谢的影响。这类辅酶在肝脏内含量最丰富,体内不能多储存,多余的自尿中排出。 维生素B1在生物体内常以硫胺素焦磷酸(TPP)的辅酶形式存在,与糖代谢密切,可抑制胆碱脂酶活性。 维生素PP包括烟酸和烟酰胺,在体内烟酰胺与核糖、磷酸、腺嘌呤组成脱氢酶的辅酶,烟酰胺的辅酶是电子载体,在各种酶促氧化-还原过程中起着重要作用。 维生素B2有氧化型和还原型两种形式,在生物体内氧化还原过程中起传递氢的作用,以黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD)形式存在,是生物体内一些氧化还原酶(黄素蛋白)的辅基。 泛酸是辅酶A和磷酸泛酰巯基乙胺的组成成分,辅酶A主要起传递酰基的作用。 维生素B6包括3中物质:吡哆醇、吡哆醛、吡哆胺;在体内以磷酸脂形式存在。 维生素B12在体内转变成2种辅酶形式,参与3种类型的反应:①分子内重排;②核苷酸还原成脱氧核苷酸;③甲基转移。 生物素在种种酶促羧化反应中作为活动羧基载体。 叶酸除了CO2外,是所有氧化水平碳原子一碳单位的重要受体和供体。四氢叶酸是叶酸的活性辅酶形式。 硫辛酸常不游离存在,而同酶分子中赖氨酸残基的ε-NH2以酰胺键共价结合,是一种酰基载体。 维生素C具有机酸性质,有防治坏血病功能。 2.对下列每一个酶促反应,写出参与反应的辅酶。 解:略 3.为谷氨酸变位酶反应选择一种适宜的辅酶并写出一个正确的机制:[化学方程式略] 解:该反应适宜的辅酶可为5ˊ-脱氧腺苷钴胺素,重排机制:Co-碳键裂解,钴还原成Co2+状态,产生一个-CH2基,从底物吸取氢原子形成5ˊ-脱氧腺苷,并脱离底物上的基团(未成电子对),该中间物重排,-CH2-从一个碳原子移动到另一个碳原子,随后氢原子从5ˊ-脱氧腺苷是甲基转移,5ˊ-脱氧腺苷钴胺素重生。 T4、T5、T6与T3同类,略。 7.蛋清可防止蛋黄的腐败,将鸡蛋贮存在冰箱4-6周不腐败。而分离的蛋黄(没有蛋清)甚至在冷冻下也迅速腐败。 腐败是什么引起的? 你如何解释观察到的蛋清存在下防止蛋黄腐败? 答:与生物素有关。 8.肾营养不良(renal osleodystrophy)也叫肾软骨病,是和骨的广泛脱矿物质作用相联系的一种疾病,常发生在肾损伤的病人中。什么维生素涉及到肾的矿质化?为什么肾损伤引起脱矿物质作用? 答:1,25-二羟维生素D3能诱导钙结合蛋白(CaBP)的合成和促进Ca-ATP酶的活性,这都有利于Ca2+的吸收。它也能促进磷的吸收;促进钙盐的更新及新骨的生成;促进肾小管细胞对钙磷的重吸收,减少从尿中排出。1,25-二羟维生素D3的主要耙细胞是小肠粘膜、骨骼和肾小管,肾损伤将影响1,25-二羟维生素D3的作用,故会引起脱矿物质作用。 9.一个临床病人由于代谢紊乱引起酸中毒,即低血和低尿pH。病人体液中化学分析显示分泌大量的甲基丙二酸。将这种化合物饲喂动物时,可以转变成琥珀酸。对于这一观察你能提供营养上的解释吗? 10.四氢叶酸(THF)都以何种形式传递一碳单位? 答:四氢叶酸(THF)传递一碳单位的形式有:N5-甲基-THF、N5,N10-亚甲基-THF、N5-甲酰基-THF、N10-甲酰基-THF、N5-亚胺甲基-THF、N5,N5-次甲基-THF。 第十二章 核酸通论 习题 1.核酸是如何被发现的?为什么早期核酸研究的进展比蛋白质研究缓慢? 答:1868年瑞士青年科学家F.Mescher由脓细胞分离得到细胞核,并从中提取出一种含磷量很高的酸性化合物,称为核素。 核酸中的碱基大部分由Kossel等所鉴定。1910年因其在核酸化学研究中的成就授予他诺贝尔医学奖,但他却认为决定染色体功能的是蛋白质,以后转而研究染色体蛋白质。Levene对核酸的化学结构以及核酸中糖的鉴定作出了重要贡献,但是他的“四核苷酸假说”认为核苷酸中含等量4种核苷酸,这4种核苷酸组成结构单位,核酸是由四核苷酸单位聚合而成。照这一假说,核酸只是一种简单的高聚物,从而使生物学家失去对它的关注,严重阻碍核酸的研究。当时还流行一种错误的看法,认为胸腺核苷酸代表动物核苷酸,酵母核苷酸代表植物核苷酸,这种观点也不利于对核酸生物功能的认识。 2.Watson和Crick提出DNA双螺旋结构模型的背景和依据是什么? 答:背景:20世纪上半叶,数理学科进一步渗入生物学,生物化学本身是一门交叉学科,也就成为数理学科与生物学之间的桥梁。数理学科的渗入不仅带来了新的理论和思想方法,而且引入了许多新的技术和实验方法。 依据:已知核酸的化学结构知识;E.Chargaff发现的DNA碱基组成规律;M.Wilkins和R.Franklin得到的DNA X射线衍射结果。此外,W.T.Astbury对DNA衍射图的研究以及L.Pauling提出蛋白质的α-螺旋结构也都有启发作用。 2.为什么科学界将Watson和Crick提出DNA双螺旋结构模型评为20世纪自然科学最伟大的成就之一? 答:因为DNA双螺旋结构模型的建立说明了基因的结构、信息和功能三者之间的关系,使当时分子生物学先驱者形成的三个学派(结构学派、信息学派和生化遗传学派)得到统一,并推动了分子生物学的迅猛发展。 4.什么是DNA重组技术?为什么说它的兴起导致了分子生物学的第二次革命? 答:DNA重组技术——在细胞体外将两个DNA片段连接成一个DNA分子的技术。在适宜的条件下,一个重组DNA分子能够被引入宿主细胞并在其中大量繁殖。 DNA重组技术极大推动了DNA和RNA的研究,改变了分子生物学的面貌,并导致了一个新的生物技术产业群的兴起,所以被认为是分子生物学的第二次革命/ 5.人类基因组计划是怎样提出来的?它有何重大意义? 答:1986年,著名生物学家、诺贝尔奖获得者H.Dubecco在Sience杂志上率先提出“人类基因组计划”,经过了3年激烈争论,1990年10月美国政府决定出资30亿美元,用15年时间(1990-2005年)完成“基因组计划”。 重大意义:人类对自己遗传信息的认识将有益于人类健康、医疗、制药、人口、环境等诸多方面,并且对生命科学也将有极大贡献。 6.为什么说生命科学已进入后基因时代?它的意思是什么? 答:由于技术上的突破,“人类基因组计划”进度一再提前,全序列的测定现已进入后基因组时代。意思:科学家的研究重心已从揭示基因组DNA的序列转移到在整体水平上对基因组功能的研究。 7.核酸可分为哪几种类?它们是如何分布的? 答:核酸分为脱氧核糖核酸(DNA)和核糖核酸(RNA)两大类。 原核细胞中DNA集中在核区,其核细胞DNA分布在核内,病毒只含DNA或只含RNA,RNA存在于原核生物、真核生物或部分RNA病毒中。 8.如何证明DNA是遗传物质? 答:用35S和32P标记的噬菌体T2感染大肠杆菌,结果发现只有32P标记的DNA进入大肠杆菌细胞内,而35S标记的蛋白质仍留在细胞外,由此证明:噬菌体DNA携带了噬菌体的全部遗传信息,DNA是遗传物质。 9.参与蛋白质合成的三类RNA分别起什么作用?
相关文档
最新文档