奥数五年级等差数列练习题

合集下载

奥数题-等差数列求和及应用一

奥数题-等差数列求和及应用一

等差数列求和及应用一等差数列的定义:一列数,如果相邻两个数的差相等,我们就说这个数列叫做等差数列;相等的差叫做这列数的公差,这列数的个数叫做项数,最小的数叫做首项,最大的数叫做末项。

〔以下公式要求熟记〕基本公式:和=〔首项+末项〕×项数÷2 末项=首项+〔项数-1〕×公差项数=〔末项-首项〕÷公差+1 首项=末项-〔项数-1〕×公差 公差=1--项数首项末项例1、 计算:1+2+3+4+…+99+100=?例2、 计算:1+3+5+7+…+1995+1997+1999=?例3、 数列4,9,14,19,…的第80项是多少?例4、 有一列数按如下规律排列:6,10,14,18,…这数列中前100个数的和是多少?例5、 求100至200之间被7除余2的所有三位数的和是多少?例6、 学校进行乒乓球选拔赛,每个参赛选手要和其他选手赛一场,⑴如果一共有10外队员,一共要进行多少场比赛?⑵一共进行了78场比赛,有多少人参加了选拔赛?例7、 小红家在一条胡同里,这条胡同门牌号从1开始,挨着号码编下去。

如果除小红家外,其余各家的门牌号加起来,减去小红家的门牌号数,恰好等于100。

问小红家的门牌是几号?全胡同里共有几家?例8、 假设干个同样的盒子排成一排,小明把50多个同样的棋子分装在盒中,其中只有一个盒子没有棋子,然后他外出了。

小光从每个有棋子的盒子里各拿出一个其中放在空盒里,再把盒子重新排列了一下,小明回来查看一番,没发现有人动过。

问:共有多少个盒子?家庭作业:【1】计算 ⑴ 2+4+6+8…+198+200 ⑵ 3+10+17+24+31+…+94 ⑶ 77+74+71+……+11+8+5【2】已知等差数列3,7,11,15,…,195,问这个数列共有多少项?【3】已知等差数列2,7,12,17,……它的第25项是多少?第36项是多少?【4】一个有30项的等差数列,公差是5,末项为154,这个数的首项是多少?【5】一个等差数列,首项是4,末项是88,公差是6,这列数的总和是多少?【6】有一列数,已知第一个数是9,从第二个数起,每个数都比前一个数多4,这列数的前50个数的和是多少?【7】学校举行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行91场比赛,有多少人参加了选拔赛?【8】一个物体从空中降落,第一秒落下9米,以后每秒都比前一秒多落下9米,经过10秒到达地面,这个场体原来离地面的高是多少米?【9】上体育课时,我们几个同学站成一排,从1开始顺序报数,除我以外的其他同学报的数之和减去我报的数恰好等于72。

奥数等差数列

奥数等差数列

1、求1+2+3+4+……+24+25的和2、甲数=1+3+5+……+97+99,乙数=2+4+6+……+98+100,问:甲数和乙数谁大?大多少?3、从4到81所有自然数的和是多少?4、五个连续自然数的和是100,求这五个数各是多少?5、四个连续自然数的和是162,求这四个数。

6、比101小的所有双数的和是多少?7、7个连续自然数的和是105,其中最小的数是多少?最大的数是多少?8、39个连续奇数的和是1989,其中最大的一个奇数是多少?9、全部三位数的和是多少?10、三年级52名学生站成4排照相,每一排都要比前一排多2人,每排各站多少人?11、十五个连续自然数中,最大数是最小数的3倍。

这十五个数的和是多少?12、11至18八个连续自然数的和加上1992,所得结果恰巧等于另外八个连续自然数的和,这另外八个连续自然数中,最小的是多少?13、四个连续奇数,第一个是第四个数的19/21,那么这四个数的和是多少?14、从1到n的连续自然数n个,这些自然数中偶数和是90,奇数和是100,n 是多少?15、在从1992开始的100个连续自然数中,前50个数的和比后50个数的和小多少?16、3=1+2,1、2是连续自然数,10以内能用连续自然数的和表示出来的数有哪几个,请你写出来。

35能不能用几个连续自然数的和表示出来?如能,你能写出几种表示形式?请写出来。

17、有些数既能表示成3个连续自然数的和,又能表示成4个连续自然数的和,还能表示成5个连续自然数的和。

例如:30就满足上述要求。

因为30=9+10+11,30=6+7+8+9,30=4+5+6+7+8。

请你在700至1000之间找出所有满足上述要求的数,并简述理由。

18、有三个连续偶数,如果最大的一个偶数增加6之后,正好是原来三个偶数和的一半,最大的一个偶数是多少?19、1~1991这1991个自然数中,所有奇数之和与所有偶数之和的差是多少?20、1+2+3+4+…+1990+1991所得的和是奇数还是偶数?21、从100到200之间,所有奇数相加的和是多少?22、有100个连续自然数的和是8450,第一个自然数是多少?23、三个连续自然数,后两个数的积与前两个数的积之差是114,最小数是多少?24、五个连续奇数和的倒数是1/45,这五个奇数中最大的数是多少?25、在两位数10、11、……、98、99中,将每个被7除余2的数的个位与十位之间添加一个小数点,其余的数不变,问:经过这样改变之后,所有数的和是多少?1、1+2+3+…+19992、2+5+8+…+2993、求数列6,9,12,…前100个数的和。

小学奥数1-2-1-3 等差数列应用题.专项练习及答案解析

小学奥数1-2-1-3 等差数列应用题.专项练习及答案解析

【例 1】 100以内的自然数中。

所有是3的倍数的数的平均数是 。

【考点】等差数列应用题 【难度】1星 【题型】填空 【关键词】希望杯,五年级,复赛,第3题,5分 【解析】 100以内的自然数中是3的倍数的数有0,3,6,9,99共33个,他们的和是()09934179916832+⨯=⨯=,则他们的平均数为1683÷34=49.5。

【答案】49.5【例 2】 一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。

最后,每只小猴分得8个野果。

这群小猴一共有_________只。

【考点】等差数列应用题 【难度】2星 【题型】填空 【关键词】希望杯,四年级,二试,第7题【解析】 平均每只猴分8个野果,所以最后一只猴摘了821=15⨯-只果,共有15只猴. 【答案】15只猴子【例 3】 15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有 位同学.【考点】等差数列应用题 【难度】2星 【题型】填空 【关键词】学而思杯,1年级【解析】 因为从左边起思思报10,所以,思思的右边还有15105-=(个);又因为从右边起学学报12,所以,学学的左边还有15123-=(个),15645--=(个)学学和思思中间排着5位同学.<考点> 排队问题 【答案】5位【例 4】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依例题精讲等差数列应用题次报数。

如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题【难度】2星【题型】解答【解析】首项=17,末项=150,公差=7,项数=(150-17)÷7+1=20【答案】20【例 5】一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人,那么这个队列共有多少人?【考点】等差数列应用题【难度】2星【题型】解答【解析】(方法一)利用等差数列求和公式:通过例1的学习可以知道,这个数列一共有50个数,再将和为102的两个数一一配对,可配成25对.所以2469698100++++++=2+10025=10325=2550()⨯⨯(方法二)根据12398991005050+++++的++++++=,从这个和中减去1357 (99)和,就可得出此题的结果,这样从“反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例 6】有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题【难度】2星【题型】解答【解析】也就是已知一个数列:3、5、7、9、11、13、15、……,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式——第n项=首项+公差(),⨯-n1所以,第102项321021205(-);由“项数=(末项-首项)÷公差1=+⨯=+”,999所处的项数是:()-÷+=÷+=+=999321996214981499【答案】499【例 7】如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。

小学奥数:等差数列应用题.专项练习及答案解析

小学奥数:等差数列应用题.专项练习及答案解析

【例 1】 100以内的自然数中。

所有是3的倍数的数的平均数是 。

【考点】等差数列应用题 【难度】1星 【题型】填空【关键词】希望杯,五年级,复赛,第3题,5分【解析】 100以内的自然数中是3的倍数的数有0,3,6,9,99L 共33个,他们的和是()09934179916832+⨯=⨯=,则他们的平均数为1683÷34=49.5。

【答案】49.5【例 2】 一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。

最后,每只小猴分得8个野果。

这群小猴一共有_________只。

【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】希望杯,四年级,二试,第7题【解析】 平均每只猴分8个野果,所以最后一只猴摘了821=15⨯-只果,共有15只猴.【答案】15只猴子【例 3】 15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有 位同学.【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】学而思杯,1年级【解析】 因为从左边起思思报10,所以,思思的右边还有15105-=(个);又因为从右边起学学报12,所以,学学的左边还有15123-=(个),15645--=(个)学学和思思中间排着5位同学.<考点> 排队问题【答案】5位【例 4】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。

如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 首项=17,末项=150,公差=7,项数=(150-17)÷7+1=20【答案】20【例 5】 一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人 ,那么这个队列共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 (方法一)利用等差数列求和公式:通过例1的学习可以知道,这个数列一共有50个数,再将和为102的两个数一一配对,可配成25对.所以2469698100++++++L =2+10025=10325=2550⨯⨯()(方法二)根据12398991005050++++++=L ,从这个和中减去1357...99+++++的和,例题精讲等差数列应用题就可得出此题的结果,这样从“反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例 6】 有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 也就是已知一个数列:3、5、7、9、11、13、15、…… ,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式——第n 项=首项+公差1n ⨯-(), 所以,第102项321021205=+⨯=(-);由“项数=(末项-首项)÷公差1+”,999所处的项数是:999321996214981499-÷+=÷+=+=()【答案】499【例 7】 如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。

2022-2023学年小学五年级奥数(全国通用)测评卷02《等差数列》(解析版)

2022-2023学年小学五年级奥数(全国通用)测评卷02《等差数列》(解析版)

【五年级奥数举一反三—全国通用】测评卷02《等差数列》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共6小题,满分12分,每小题2分)1.(2分)(2011•其他模拟)有20个数,第一个数是9,以后每一个数都比前一个数大2,第20个数是()A.47 B.49 C.51 D.53【分析】由于第一个数是9,从第二个数起,每一个数都比前一个数大2,所以第20个数比9大19个2.【解答】解:9+(20﹣1)×2=9+19×2=9+38=47.答:第20个数是47.故选:A.2.(2分)下面一列数5、8、11、14、…、第()个数为2015.A.667 B.668 C.669 D.671【分析】此题首项是5,末项是2015,公差是3,求第几个数为2015,即求项数,根据等差数列的通项公式进行求解即可.【解答】解:首项是5,末项是2015,公差是3,(2015﹣5)÷3+1=2010÷3+1=671答:第671个数为2015.故选:D.3.(2分)(2015•创新杯)从小到大排列99个数,每两个相邻数的差都相等,第7个与第93个的和为262,则这列数的第50个数为()A.50 B.51 C.120 D.131【分析】因为一共有99个,所以正中间的一个数是50,这个数就是这个数列之和的平均数.第93个数是倒数第7个数,所以此题常采用画图的方法解决.【解答】解:262÷2=131故选:D.4.(2分)(2014•迎春杯)一个12项的等差数列,公差是2,且前8项的和等于后4项的和,那么,这个数列的第二项是()A.7 B.9 C.11 D.13【分析】找出前8项数字和与后4项数字和相等,列出关系式,求出其中一项即可.【解答】解:根据题意后4项和前8项数字和相等可知,这个数列是递增数列,(a1+a8)×8÷2=(a9+a12)×4÷2,因为a8=a1+14,a9=a1+16,a12=a1+22,所以代入得(a1+a1+14)×8÷2=(a1+16+a1+22)×4÷2,解得a1=5,所以a2=a1+2=7.故选:A.5.(2分)5个连续自然数的和是315,那么紧接在这5个自然数后面的5个连续自然数的和是()A.360 B.340 C.350 D.无法求出【分析】这些自然数是等差数列,紧接在这5个自然数后面的5个连续自然数的和比315多5×5,然后进一步解答即可.【解答】解:315+5×5=315+25=340故选:B.6.(2分)(2011•其他模拟)有10只盒子,44只羽毛球.能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球不相等?()A.能B.不能C.不确定【分析】这是一个等差数列的应用题,解题关键是由已知数列所有项的个数按最少量算出它们的总和,然后与题意中给的羽毛球的总数44相比较,如果相等,就说明能够将44只羽毛球放到10个盒子中去,且使各盒子里的羽毛球数不相等;否则就不能.【解答】解:由题意,要使10个盒子中羽毛球的数量不相等,最少的放法是:0,1,2…9.计算总和:0+1+2+…+9=9×5=45,因为45>44,所以原题不能.答:不能使各个盒子里的羽毛球数不相等.故选:B.二.填空题(共12小题,满分31分)7.(2分)(2017•走美杯)一箱苹果60个,第一天大家一起吃了17个,以后我每天吃1个,过了几天发现只剩下16个,苹果怎么少这么快?有人告诉我,小张每天都去偷偷地拿2个.请你算一算:这几天小张共拿了18个苹果.【分析】可以先用总数减去大家吃的苹果数和剩下的苹果数,再除以我每天吃的苹果数和小张偷的苹果数之和,就能求得天数,就能知道小张偷了几天,不难求得小张偷拿了多少苹果.【解答】解:根据分析,先求得小张偷拿苹果的天数,故有:(60﹣17﹣16)÷(2+1)=9(天),小张共偷了:9×2=18个.故答案是:18.8.(2分)(2016•学而思杯)表中每行,每列分别从左至右、从上至下构成等差数列,那么m×n=300.4 89 1512 nm25【分析】首先,确定第一行公差,填全第一行;从第二列确定公差,确定m;同样从第四列,确定n.【解答】解:第一行公差为(8﹣4)÷2=2,第一行数字为:4、6、8、10;确定第二列确定公差为12﹣9=3,确定m=12+3=15;同样确定n=20.m×n=300即:填3009.(2分)(2018•陈省身杯)小明去麦当当打暑期工,连续工作了5天后共挣了180元,如果这5天里他每一天所挣的钱都比前一天多6元.那么第1天小明挣了24元.【分析】根据等差数列的规律,第三天小明挣了180÷5=36元,公差是6,所以第一天小明挣了36﹣6×2=24元,据此解答即可.【解答】解:180÷5=36(元)36﹣6×2=24(元)故答案为:24.10.(2分)(2017•其他杯赛)小明希望通过做一些数学题目来巩固知识,他每天都会比前一天多做2道题目.如果小明第一天做了2道题目,那么前七天他共做了56道题目.【分析】首项是2,末项是2+(7﹣1)×2=14,然后利用等差数列求和公式:(首项+末项)×项数÷2求出结果.【解答】解:2+(7﹣1)×2=14(道)(2+14)×7÷2=56(道)故填56.11.(2分)(2017•小机灵杯)从1,2,3,4,…,50中取5个不同的数,使这5个数构成一个等差数列,那么,可以得到不同的等差数列的个数为576.【分析】根据题意,分析当得到的等差数列公差为1、2、3时,可以得到的等差数列的数目,依此类推,发现其数目的变化规律,进而根据等差数列的前n项公式计算可得答案.【解答】解:根据题意,当得到的等差数列公差为1时,有1、2、3、4、5,…,46、47、48、49、50,共46种情况;当其公差为2时,有1、3、5、7、9,…,42、44、46、48、50,共42种情况;…当其公差为12时,有1、13、25、37、49,2、14、26、38、50,共2种情况;综上所述,共有2+6+…+46==288种,考虑到等差数列也可以是从大到小,所以共有288×2=576种不同的等差数列,故答案为576.12.(2017•春蕾杯)九只小猴子依次去摘桃子,每一只都比前一只多摘2个桃子,摘得最多的一只猴子摘了25个桃子,那么这些猴子一共摘了153个桃子.【分析】九只小猴子摘桃子数,构成一个等差数列,公差是2,末项是25,那么首项是25﹣2×(9﹣1)=9,然后根据高斯求和公式解答即可.【解答】解:25﹣2×(9﹣1)=9(个)(9+25)×9÷2=153(个)故答案为:153.13.(2016•迎春杯)帅帅背了7天单词,从第2天开始每天都比前一天多背1个单词,且前4天所背单词个数的和等于后3天所背单词个数的和,那么帅帅这7天一共背了单词84个.【分析】首先表示出这7天的数量关系,然后根据前4天等于后3天的数量列出等式,求出每天的数量相加即可.【解答】解:依题意可知:设帅帅背单词的数量为:a,a+1,a+2,a+3,a+4,a+5,a+6共7天a+a+1+a+2+a+3=a+4+a+5+a+6解:a=9.共背9+10+11+12+13+14+15=84故答案为:8414.(2015•走美杯)梯形的上底、高、下底依次构成一个等差数列,其中高是12,那么梯形的面积是144.【分析】首先根据梯形的上底、高、下底依次构成一个等差数列,可得:上底+下底=高×2,据此求出梯形的上底和下底的和是多少;然后根据:梯形的面积=(上底+下底)×高÷2,求出梯形的面积是多少即可.【解答】解:(12×2)×12÷2=24×12÷2=288÷2=144答:梯形的面积是144.故答案为:144.15.(2018•迎春杯)四位同学一起讨论一个由无数个自然数组成的等差数列:小叶说:这个等差数列的第一项是个两位数.小刚说:数列中不大于215的数有20多个.小王说:数列的公差小于5.小红说:数列前两项的平均数是102.这四位同学的话中只有一句是错的,那么这个等差数列的第100项是496.【分析】如果小叶和小红说得对,那么前两项的和是102×2=204,根据小叶说的,可以确定第一个数最大是99,那第二个数就是105,说明公差至少是105﹣99=6,与小王说的相矛盾,因此可以判断出小叶、小红和小王三人之中肯定有一个是错的,那么小刚说的话肯定是对的.根据小刚说的,那说明公差一定不大于215÷20≈10,假设小王说的是错的,则说明公差大于或等于6,根据小叶和小红说的话可以确定公差是一个偶数,因此接下来验证公差是6、8、10的情况.如果公差是6,则第1项是99,第2项是105,那么第21项就是99+20×6=219,大于215,所以公差不是6;如果公差是8,那么第1项就是98,第21项就是98+20×8>215,所以公差也不是8,同样的道理公差也不是10,由此可以判断出小王说的话是对的.那只有小叶和小红两人有一个说错了.根据公差小于5,说明公差最大是4,那第一个数最大是215﹣28×4=103,最小是215﹣28×4﹣3=100,说明小叶说错了;同样根据公差是3、2、1,也能得出第一个数是三位数.根据前两项的和的平均数是102,说明这两个数可能是100和104,也可能是101和103,如果是100和104,那么第100项就是100+99×4=496;如果前两项是101和103,那么215之前就不止20多个数,故不对.【解答】解:根据上面的推理可以知道是小叶说错了.102×2=100+104=101+103如果公差是104﹣100=4,则第100项是100+99×4=496;如果公差是103﹣101=2,则第30项是101+29×2=159<215,与小刚说的话矛盾.故答案为:496.16.(2016•创新杯)已知数列a1,a2,…,a n为一等差数列,平均数为71,把相邻的4个数相加,其和为新的一列数,这新一列数的总和为28400,则n=103.【分析】由题意,a1+a2+…+a n﹣1+a n=71n①,a1+2a2+3a3+4a4+4a5+…+4a n﹣4+4a n﹣3+3a n﹣2+﹣2a n﹣1+a n=28400②,②﹣①可以得到a2+2a3+3a4+3a5+…+3a n﹣4+3a n﹣3+2a n﹣2+a n﹣1=28400﹣71n③,依次利用①式进行变换最后得出a4+a5+…+a n﹣4+a n﹣3=28400﹣71(3n﹣6)⑤,利用等差数列的求和公式,即可得出结论.【解答】解:由题意,a1+a2+…+a n﹣1+a n=71n①,a1+2a2+3a3+4a4+4a5+…+4a n﹣4+4a n﹣3+3a n﹣2+﹣2a n﹣1+a n=28400②,②﹣①可得a2+2a3+3a4+3a5+…+3a n﹣4+3a n﹣3+2a n﹣2+a n﹣1=28400﹣71n③,a2+a3+…+a n﹣2+a n﹣1=71(n﹣2)④,③﹣④可得a3+2a4+2a5+…+2a n﹣4+2a n﹣3+a n﹣2=28400﹣71(2n﹣2)⑤,a3+a4+…+a n﹣3+a n﹣2=71(n﹣4)④,⑤﹣④可得a4+a5+…+a n﹣4+a n﹣3=28400﹣71(3n﹣6)⑤,(n﹣3﹣4+1)×71=28400﹣71(3n﹣6),解得n=103,故答案为:103.17.(2014•其他模拟)艾丽斯工作5天后,共挣了65元,其中每一天所挣的都比前一天多2元.她第一天挣了9元.【分析】每天的钱数构成一个公差为“2”的等差数列,首项是要求的数,项数为5.因此本题根据高斯求和公式“S n=na1+n(n﹣1)÷2”进行计算即可:【解答】解:设她第一天挣了x元,5x+5×(5﹣1)×2÷2=655x+20=655x=45x=9故答案为:9.18.一个电影院的第一排有15个座位,以后每排都比前排多2个座位,最后一排有53个座位,这个电影院共有20排座位.【分析】把座位数可以看作是一个等差数列:首项是15,末项是53,公差是2,求这个电影院共有几排座位,就相当于等差数列的项数,列式是(53﹣15)÷2+1=20,然后解答即可求出一共有的排数.【解答】解:根据分析可得,(53﹣15)÷2+1,=38÷2+1,=20(排),答:这个电影院共有20排座位.故答案为:20.三.计算题(共1小题,满分3分,每小题3分)19.92+90+88+ (2)【分析】根据等差数列通项公式:项数=(末项﹣首项)÷公差+1,(首数+尾数)×项数÷2=和解答即可.【解答】解:(2+92)×[(92﹣2)÷2+1]÷2=94×46÷2=2162四.解答题(共12小题,满分54分)20.(4分)(2012•其他模拟)把一堆苹果分给8个朋友,要使每个人都能拿到苹果,而且每个人拿到苹果个数都不同的话,这堆苹果至少应该有几个?【分析】由题意可知,要使8个人中的每个人都能拿到苹果,而且每个人拿到苹果个数都不同,则分到苹果最少的应为1个,而其他人至少分别分到2,3…8个苹果.那么这堆苹果应有的个数为:1+2+3+…+8.计算这个公差为1的等差数列的和即可.【解答】解:1+2+3+4+5+6+7+8=(1+8)×8÷2=9×8÷2=72÷2=36(个).答:这堆苹果至少应有36个.21.(4分)小张看一本故事书,第一天看了25页,以后每天比前一天多看5页,最后一天看55页,刚好看完,这本故事书一共有多少页?【分析】根据题意,可得小红每天看故事书的页数是一个等差数列,数列的首项是25,末项是55,公差是5,所以求出等差数列的项数,即可求出这本故事书共多少页.【解答】解:(55﹣25)÷5+1=30÷5+1=7(25+55)×7÷2=80×7÷2=280(页)答:这本故事书一共有280页.22.(4分)已知一个等差数列第9项等于131,第10项等于137,这个数列的第1项是多少?第19项是多少?【分析】由题可知,本题是一个公差为137﹣131=6的等差数列,因此本题根据高斯求和的有关公式解答即可:末项=首项+(项数﹣1)×公差,首项=末项﹣(项数﹣1)×公差.【解答】解:公差:137﹣131=6第1项:131﹣(9﹣1)×6=131﹣48=83第19项:83+(19﹣1)×6=83+18×6=83+108=191答:这个数列的第1项是83,第19项是191.23.(4分)某电影院有26排座位,后一排比前一排多1个座位,最后一排有45个座位,求这个影院一共有多少个座位?【分析】因后一排在比前一排多1个座位,可看作是看作一个等差数列,末项是45,所以首项是45﹣26+1=20,本题可根据高斯求和公式解答即可.【解答】解:45﹣26+1=20(个)(20+45)×26÷2=845(个)答:这个影院一共有845个座位.24.(4分)有一堆粗细均匀的圆木,最上面一层有6根,每向下一层增加一根,如果最下面一层有98根,那么共堆了多少层?【分析】每层的根数构成了一个等差数列,首项是6,公差是1,末项是98,求项数,根据“项数=(末项﹣首项)÷公差+1”解答即可.【解答】解:(98﹣6)÷1+1=92+1=93(层)答:共堆了93层.25.(4分)求1,5,9,13,…,这个等差数列的第30项.【分析】首先求出1,5,9,13,…,这个等差数列的公差,然后根据:a n=a1+(n﹣1)d(a1、a n、d 分别是等差数列的第1项、第n项、公差),求出这个等差数列的第30项即可.【解答】解:1+(30﹣1)×(5﹣1)=1+29×4=1+116=117答:这个等差数列的第30项是117.26.(5分)(2012•其他杯赛)把90米长的一条绳子分成三段,要使后一段都比前一段多3米.三段绳子的长度各是多少?【分析】设第一段绳子长x米,那么第二段,第三段绳子的长度分别是:(x+3)米,(x+3+3)米,根据三段绳子的长度是90米列方程,依据等式的性质即可解答.【解答】解:设第一段绳子长x米,x+(x+3)+(x+3+3)=90,3x+9=90,3x+9﹣9=90﹣9,3x=81,3x÷3=81÷3,x=27,27+3=30(米),27+3+3,=30+3,=33(米),答:第一段绳子长27米,第二段绳子长30米,第三段绳子长33米.27.(5分)(2009•两岸四地)张师傅做一批零件,第一天做了20个,以后每天都比前一天多做2个,第30天做了78个,正好做完.这批零件共有几个?【分析】第一天20个,根据“以后每天都比前一天多做2个”,求得第二天是22个,第三天为24个,第30天为78个,设s=20+22+24+…+76+78 ①,则s=78+76+74+…+24+22+20 ②,①+②得,2s=(20+22+24+…+76+78)+(78+76+74+…+24+22+20 )=(20+78)+(22+76)+…+(76+22)+(78+20)=98×30,求得问题的答案.【解答】解:因为第一天20个,第二天是22个,第三天为24个,•,则第30天为78个,设s=20+22+24+…+76+78 ①,则s=78+76+74+…+24+22+20 ②,①+②得,2s=(20+22+24+…+76+78)+(78+76+74+…+24+22+20),=(20+78)+(22+76)+…+(76+22)+(78+20),=98×30,=2940,所以s=1470.答:这批零件共有1470个.28.(5分)(2016•学而思杯)若一个三位数的三个数字a、b、c按从小到大排列后,怡好可组成一个等差数列(公差可以为0),这我们将这样的三位数叫做“和谐数”,如375,102,….(1)100至199之间,有多少个“和谐数”?(2)总共有多少个“和谐数”?(3)将所有的“和谐数”排成一列,546排在第几位?【分析】将公差分类,求出相应的“和谐数”,即可得出结论.【解答】解:(1)公差为0:111;公差为1:102,120,123,132;公差为2:135,153;公差为3:147,174;公差为4:159,195,所以100至199之间,有11个“和谐数”;(2)公差为0:111,222, (999)公差为1,(0,1,2),(1,2,3),…,(7,8,9),共8组,第1组有四种情况,其它组有6种情况,4+7×6=46个;公差为2,(0,2,4),(1,3,5),…,(5,7,9),共6组,第1组有四种情况,其它组有6种情况,4+5×6=34个;公差为3,(0,3,6),(1,4,7),(2,5,8),(3,6,9),共4组,第1组有四种情况,其它组有6种情况,4+3×6=22个;公差为4,(0,4,8),(1,5,9),共2组,第1组有四种情况,其它组有6种情况,4+1×6=10个;总共有9+46+34+22+10=121个“和谐数”;(3)将所有的“和谐数”排成一列,100~199:11个;200~299:公差为0:222;公差为1:201,210,213,231,234,243;公差为2:204,240,246,264;公差为3:258,285,共13个;300~399:公差为0:333;公差为1:312,321,324,342,345,354;公差为2:315,351,357,375;公差为3:306,360,369,396,共15个;400~499:公差为0:444;公差为1:423,432,435,453,456,465;公差为2:402,420,426,462,468,486;公差为3:417,471;公差为4:408,480,共17个;500~599:公差为0:555;公差为1:534,543,546,564,567,576;公差为2:513,531,537,573,579,597;公差为3:528,582;公差为4:519,591,共17个;11+13+15+17+8=64,所以546排在第64位.29.(5分)从一列数1,5,9,13,…,93,97中,任取14个数.证明:其中必有两个数的和等于102.【分析】首先根据题意可知这列数是一组公差是4等差数列,根据项数=(末项﹣首项)÷公差+1,求出这组等差数列一共有几项,据此分析解答即可.【解答】解:(97﹣1)÷4+1=25(个)将这25个组分成13组:{1},{5,97},{9,93},{13,89},…,{45,57},{49,53}.在这25个数中任取14个数来,必有二数属于上述13组中的同一组,故这一组二数之和是102.30.(5分)一个项数是偶数的等差数列,奇数项和偶数项的和分别是240和300.若最后一项超过第一项105,那么,该等差数列有多少项?【分析】设给出的数列有2n项,由偶数项的和减去奇数项的和等于n倍的公差,再根据最后一项比第一项多105得到一个关于项数和公差的式子,联立后可求项数.【解答】解:假设数列有2n项,公差为d,因为奇数项之和与偶数项之和分别是240与300所以S偶﹣S奇=300﹣240=nd,即nd=60①.又因为a2n﹣a1=105即a1+(2n﹣1)d﹣a1=105所以(2n﹣1)d=105②.联立①②得:n=4.则这个数列一共有2n项,即8项.答:该等差数列有8项.31.(5分)一堆电线杆,共有5层,第一层有8根,下面每层比上层多一根,这堆电线杆一共有多少根?【分析】根据题意,把第一层的根数看作梯形的上底,最下层的根数看作梯形的下底,层数看作梯形的高,由梯形的面积公式就可以求出结果.【解答】解:根据题意可得最下面的一层的根数是:8+5﹣1=12(根),由梯形的面积公式可得:这垛电线杆的总数为:(12+8)×5÷2=100÷2=50(根);答:这一堆电线杆共有50根.。

小学奥数:等差数列计算题.专项练习及答案解析

小学奥数:等差数列计算题.专项练习及答案解析

等差数列的相关公式(1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、L 、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、L 、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++L11002993985051=++++++++L 1444444442444444443共50个101()()()()101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++LLL 和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=L (),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;知识点拨等差数列计算题②65636153116533233331089L(),++++++=+⨯÷=⨯=题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++=L⑵13578799L++++++=⑶471013404346L+++++++=【考点】等差数列计算题【难度】2星【题型】计算【解析】⑴根据例1的结果知:算式中的等差数列一共有76项,所以:L()+++++++=+⨯÷=34567677783787623078⑵算式中的等差数列一共有50项,所以:13578799(199)5022500L++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:L()471013404346446152375+++++++=+⨯÷=【答案】⑴3078⑵2500⑶375【巩固】1+2+……+8+9+10+9+8+……+2+1=_____。

等差数列(小数数学 五年级奥数)

等差数列(小数数学 五年级奥数)

等差数列知识与方法:像(1)1,2,3,4,5,…;(2)10,20,30,40,50,…从第2项起,每一项与它前一项的差等于同一个常数的数列,叫做等差数列。

这个常数叫做等差数列的公差,通常用字母d表示。

在等差数列a1,a2,a3,…a n中,它的公差是d,那么a2=a1+da3=a2+d=(a1+d)+d=a1+2da4=a3+d=(a1+2d)+d=a1+3d…a n=a1+(n-1)×d(等差数列的通项公式)由此可见,等差数列从第2项起,每一项都等于第一项加上公差的若干倍,这个倍数等于这项的项数减1的差,利用它可以求出等差数列的任何一项。

例题1:求等差数列3,8,13,18......的第38项和第69项。

练习1:求等差数列1,4,7,10,13.....的第20项和第80项.练习2:超市工作人员在商品上依次编号,分别为4,8,12,16......,请问第34个商品上标注的是什么数字?第58个标注的是什么数字?例题2:36个小学生排成一排玩报数游戏,后一个同学报的数总比前一个同学多报8,已知最后一个同学报的数是286,第一个同学报的数是几?练习1:仓库里有一叠被编上号的书,共40本,已知每下面一本书比上面一本书的号码多5,最后一本书的编号是225,请问第一本书的编号是多少?练习2:幼儿园给小朋友们发玩具,共32个小朋友,每人一个,每个玩具上都有编号,已知最后一个小朋友玩具编号是98,每一个玩具的编号比后一个玩具的编号少3,问第一个小朋友上玩具编号是多少?例题3:等差数列4,12,20......,中的580是第几项?练习1:等差数列3,9,15,21.....中381是第几项?练习2:糖果生产商为机器编号,依次为7,13,19,25......。

问编号为433的机器是第几个?例题4:一批货箱上面的标号是按等差数列排列的。

第1项是3.6,第5项是12,求它的第2项.练习1:有一个等差数列的第1项是2.4,第7项是26.4,求它的第5项.练习2:有一排用等差数列编码的彩色小旗,第1面小旗上的号码为3.7,第8面小旗上的号码为38.7。

小学生奥数等差数列练习题及答案

小学生奥数等差数列练习题及答案

小学生奥数等差数列练习题及答案1. 对于下列等差数列,求出其公差并继续列出下一个项:a) 3, 5, 7, 9, ...解答:a) 公差为2。

下一个项为11。

2. 给定等差数列的首项和公差,求出前n项的和。

a) 首项为2,公差为3,求前5项的和。

解答:a) 首项为2,公差为3。

前5项的和为2 + 5 + 8 + 11 + 14 = 40。

3. 给定等差数列的前n项和以及首项,求公差。

a) 前6项的和为42,首项为3,求公差。

解答:a) 前6项的和为42,首项为3。

根据等差数列求和公式,可得到以下方程:(6/2) * (2 * 3 + (6 - 1) * d) = 4218 + 15d = 4215d = 24d = 24/15公差为8/5。

4. 在下列等差数列中,求第n项:a) 1, 4, 7, 10, ...解答:a) 第n项可表示为1 + (n - 1) * 3。

例如,第5项为1 + (5 - 1) * 3 = 13。

5. 已知等差数列的首项和第n项,求公差。

a) 首项为5,第6项为20,求公差。

解答:a) 第n项可表示为首项加上公差乘以(n - 1)。

根据已知条件,可得到以下方程:5 + 5(n - 1) = 205n - 5 = 205n = 25n = 5公差为5。

6. 在下列等差数列中,求第n项的值:a) -2, -5, -8, -11, ...解答:a) 第n项可表示为-2 - (n - 1) * 3。

例如,第6项为-2 - (6 - 1) * 3 = -17。

7. 对于下列等差数列,求出给定的项:a) 2, 5, 8, 11, ...求第10项。

求第20项。

解答:a) 第n项可表示为首项加上公差乘以(n - 1)。

例如,第10项为2 + 3 * (10 - 1) = 29。

第20项为2 + 3 * (20 - 1) = 59。

8. 已知等差数列的首项和公差,求出前n项中大于m的项的个数。

小学奥数 等差数列应用题 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  等差数列应用题 精选练习例题 含答案解析(附知识点拨及考点)

【例 1】 100以内的自然数中。

所有是3的倍数的数的平均数是 。

【考点】等差数列应用题 【难度】1星 【题型】填空【关键词】希望杯,五年级,复赛,第3题,5分【解析】 100以内的自然数中是3的倍数的数有0,3,6,9,99共33个,他们的和是()09934179916832+⨯=⨯=,则他们的平均数为1683÷34=49.5。

【答案】49.5【例 2】 一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。

最后,每只小猴分得8个野果。

这群小猴一共有_________只。

【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】希望杯,四年级,二试,第7题【解析】 平均每只猴分8个野果,所以最后一只猴摘了821=15⨯-只果,共有15只猴.【答案】15只猴子【例 3】 15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有 位同学.【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】学而思杯,1年级【解析】因为从左边起思思报10,所以,思思的右边还有15105-=(个);又因为从右边起学学报12,所以,学学的左边还有15123-=(个),15645--=(个)学学和思思中间排着5位同学.<考点> 排队问题【答案】5位【例 4】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。

如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 首项=17,末项=150,公差=7,项数=(150-17)÷7+1=20【答案】20【例 5】 一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人 ,那么这个队列共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 (方法一)利用等差数列求和公式:通过例1的学习可以知道,这个数列一共有50个数,再将和为102的两个数一一配对,可配成25对.所以2469698100++++++=2+10025=10325=2550⨯⨯()例题精讲等差数列应用题(方法二)根据12398991005050++++++=,从这个和中减去1357...99+++++的和,就可得出此题的结果,这样从“反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例 6】 有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 也就是已知一个数列:3、5、7、9、11、13、15、…… ,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式——第n 项=首项+公差1n ⨯-(), 所以,第102项321021205=+⨯=(-);由“项数=(末项-首项)÷公差1+”,999所处的项数是: 999321996214981499-÷+=÷+=+=()【答案】499【例 7】 如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。

(完整版)小学五年级奥数等差数列练习题

(完整版)小学五年级奥数等差数列练习题

(完整版)小学五年级奥数等差数列练习题练题一:填空题
1. 下面的数列是一个等差数列:3,6,9,12,__,__,__。

请填写下划线处的三个数字。

2. 从-10开始,每次增加7,得到一个等差数列。

请写出这个数列的前5项。

3. 若一个等差数列的首项为2,公差为3,求第5项的值。

练题二:判断正误
判断下列等式是否正确,并简要说明理由。

1. 一个等差数列的公差必须为正数。

2. 如果一个数列是等差数列,那么它的前n项的和一定为n倍首项与末项和的一半。

3. 如果一个数列是等差数列,那么它的前n项的和一定与n的
平方成正比。

练题三:问题解答
回答以下问题:
1. 什么是等差数列?
2. 怎样判断一个数列是等差数列?
3. 如何求等差数列的前n项和?
4. 如果已知一个数列的首项和公差,如何求第n项的值?
练题四:应用题
王老师从一楼到五楼的办公室,每层走3步。

请回答以下问题:
1. 王老师到达五楼时走了多少步?
2. 王老师走了多少层楼梯?
3. 如果王老师继续向上走,每层楼梯增加3步,他走到第n层
楼时将走多少步?
以上是小学五年级奥数等差数列练习题的全部内容,请按照题目要求作答。

(小学奥数)等差数列计算题

(小学奥数)等差数列计算题

等差數列的相關公式(1)三個重要的公式 ① 通項公式:遞增數列:末項=首項+(項數1-)⨯公差,11n a a n d =+-⨯()遞減數列:末項=首項-(項數1-)⨯公差,11n a a n d =--⨯()回憶講解這個公式的時候可以結合具體數列或者原來學的植樹問題的思想,讓學生明白 末項其實就是首項加上(末項與首項的)間隔個公差個數,或者從找規律的情況入手.同時還可延伸出來這樣一個有用的公式:n m a a n m d -=-⨯(),n m >()② 項數公式:項數=(末項-首項)÷公差+1由通項公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找項數還有一種配組的方法,其中運用的思想我們是常常用到的.譬如:找找下麵數列的項數:4、7、10、13、、40、43、46 ,分析:配組:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那麼每組有3個數,我們數列中的數都在每組的第1位,所以46應在最後一組第1位,4到48有484145-+=項,每組3個數,所以共45315÷=組,原數列有15組. 當然還可以有其他的配組方法.③ 求和公式:和=(首項+末項)⨯項數÷2對於這個公式的得到可以從兩個方面入手:(思路1) 1239899100++++++知識點撥等差數列計算題11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)這道題目,還可以這樣理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和(1001)1002101505050=+⨯÷=⨯=(2) 中項定理:對於任意一個項數為奇數的等差數列,中間一項的值等於所有項的平均數,也等於首項與末項和的一半;或者換句話說,各項和等於中間項乘以項數.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),題中的等差數列有9項,中間一項即第5項的值是20,而和恰等於209⨯;② 65636153116533233331089++++++=+⨯÷=⨯=(),題中的等差數列有33項,中間一項即第17項的值是33,而和恰等於3333⨯.【例 1】 用等差數列的求和公式會計算下麵各題嗎? ⑴3456767778+++++++= ⑵13578799++++++= ⑶471013404346+++++++=【巩固】 1+2+……+8+9+10+9+8+……+2+1=_____。

奥数(等差数列)

奥数(等差数列)

1. 在124.68与924.68之间插入3个数,使这样5个数成等差数列,问从小到大排列的第四个数是几?
2. 一个物体从空中落下,经过4秒落地,已知第一秒下落4.9米,以后每秒下落的距离比前一秒多9.8米,这个物体下落前距地面多少米?
3. 计算:202-192+182-172+162-152+…+22-12
4. 一张纸上原写有0.83和1.01各20个,如果画去其中的一些数,使得留下的数之和恰等于19.99,那么应该从这40个数中画去多少个数?
5. 小王和小胡两人赛跑,限定时间为10秒,谁跑的距离长谁就获胜,小王第一秒跑1米,以后每秒都比前一秒多跑0.1米,小胡自始至终每秒跑1.5米,谁能获胜?
6. 蜗牛每小时都比前一小时多爬0.1米,第十小时蜗牛爬了1.9米,第一小时蜗牛爬了多少米?
7. 梯子最高的一级宽3.2分米,最低一级宽11分米,中间还有9级,各级的宽度成等差数列,正中间一级宽多少分米?
8. 三个数成等差数列,它们的和是2.1,积是0.091,求这三个数。

9. 已知等差数列第一项是1.5,第六项是3.5,求公差。

10. 由十二个数组成的等差数列,第六项与第七项之和是1.2,求这十二个数之和。

11. 在0.4和2.2之间插入哪8个数后,能使这十个数成等差数列?
12. 王师傅3月1日开始织布,第一天织10米,以后每天比前一天多织0.2米,则3月31日那天织多少米?。

小学数学五年级《 等差数列》练习题(含答案)

小学数学五年级《 等差数列》练习题(含答案)

《 等差数列》练习题(含答案)内容概述许多同学都知道这样一个故事:大数学家高斯在很小的时候,就利用巧妙的算法迅速计算出从1到100这100个自然数的总和.大家在佩服赞叹之余,有没有仔细想一想,高斯为什么算得这么快呢?当然,小高斯的聪明和善于观察是不必说了,往深处想,最基本的原因却是这100个数及其排列的方法本身具有极强的规律性——每项都比它前面的一项大1,即它们构成了差相等的数列,而这种数列有极简便的求和方法.通过这一讲的学习,我们回顾加强有关等差数列求和的方法,而且学会利用这种数列来解决许多有趣的问题.【复习1】你能给大家说一说有关等差数列的性质、结论以及相关公式吗?分析:以下答案仅供参考!(1) 先介绍一下一些定义和表示方法:定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、…… 从第二项起,每一项比前一项大3 ,递增数列 100、95、90、85、80、…… 从第二项起,每一项比前一项小5 ,递减数列(2) 首项:一个数列的第一项,通常用a 1表示;末项:一个数列的最后一项,通常用a n 表示,它也可表示数列的第n 项. 每个数列都有最后一项吗?数列分有限数列和无限数列;项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变得差,通常用d 来表示;和 :一个数列的某些项的和,常用S n 来表示 .(3) 三个重要的公式:① 通项公式:末项=首项+(项数-1)×公差1(1)n a a n d =+-⨯回忆讲解这个公式的时候我们可以结合具体数列或者原来学的植树问题的思想,让同学明白末项其实就是首项加上(末项与首项的)间隔的公差个数,或者从找规律的情况入手.同时我们还可延伸出来这样一个有用的公式:(),()n m a a n m d n m -=-⨯② 项数公式:项数=(末项-首项)÷公差+1 (其实此公式是由①推导出来的,教师也可以帮助同学推导,可以为以后的解方程做好铺垫)由通项公式可以得到: 1()1n n a a d =-÷+ (1na a 若);1n ()1n a a d =-÷+(1n a a 若).找项数还有一种配组的方法,其中运用的思想我们是常常用到的!譬如:找找下面数列的项数:4、7、10、13、……、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、……、(46、47、48),注意等差是 3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有48-4+1=45项,每组3个数,所以共45÷3=15组,原数列有15组. 当然,我们还可以有其他的配组方法.③ 求和公式:和=(首项+末项)×项数÷21()2n n s a a n =+⨯÷对于这个公式的得到我们可以从两个方面入手:(思路1)1+2+3+…+98+99+100=101×50=5050(思路2)这道题目,我们还可以这样理解:即,和= (100+1)×100÷2=101×50=5050(4)中项定理对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首相与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:(1)4+8+12+…+32+36=(4+36)×9÷2=20×9=180,题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于20×9 ;(2)65+63+61+…+5+3+1=(1+65)×33÷2=33×33=1089 ,题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于33×33 .如果是一个项数为偶数的等差数列,我们该如何运用这个公式呢?其实我们可以将其去掉一项,变成奇数项,求和之后再加上去掉的那一项 .中项定理也可用在速算与巧算中. 譬如:计算:124.68+324.68+524.68+724.68+924.68分析:这是一列等差数列,项数是奇数,中间数是524.68,所以可以用5×524.68=2623.4 .等差数列是小学奥数的一个重要知识,无论是竞赛还是小升初都是一个考核的重点.一部分题目是直接考数列,但更多的是结合到找规律、周期等问题进行考核.复习题目的重点就是让学生熟练掌握等差数列的求和、末项和项数的求解.不能让学生去单纯的背公式,而应该把原理讲透.【复习2】(1)3、5、7、9、11、13、15、……,这个数列有多少项?它的第102项是多少?(2)已知等差数列2、5、8、11、14 …,问47是其中第几项?(3)如果一等差数列的第4项为21,第6项为33,求它的第8项.分析:(1)它是一个无限数列,所以项数有无限多项.第n项=首项+公差×(n-1),所以,第102项=3+2×(102-1)= 205 ;(2)首项=2 ,公差=3 ,我们可以这样看:2、5、8、11、14 …、47 ,那么这个数列有:n=(47-2)÷3+1=16 ,(熟练后,此步可省略),即47是第16项;(3)要求第8项,必须知道首项和公差.第6项-第4项=(6-4)×公差,所以,公差= 6 ;第4项=首项+3×公差,21=首项+3×6 ,所以,首项=3 ;第8项=首项+7×公差=45 ;【复习3】某剧院有25排座位,后一排比前一排多两个座位,最后一排有70个座位.问:这个剧一共有多少个座位?分析:首项:70-(25-1)×2=22 ,座位总数:(22+70)×25÷2=1150.【复习4】小明从1月1日开始写大字。

小学奥数等差数列经典练习题

小学奥数等差数列经典练习题

小学奥数等差数列经典练习题一、判断下面的数列中哪些是等差数列?在等差数列的括号后面打√。

0,2,6,12,20,30,36…… 6,12,18,24,30,36,42……700,693,686,679,673……90,79,68,57,46,35,24,13……1,3,5,7,10,13,16……5,8,11,14,17,20…… 1,5,9,13,17,21,23…90,80,70,60,50,……20,10二、求等差数列3,8,13,18,……的第30项是多少?三、求等差数列8,14,20,26,……302的末项是第几项?四、一个剧院的剧场有20排座位,第一排有38个座位,往后每排比前一排多2个座位,这个剧院一共有多少个座位?五、计算11+12+13……+998+999+10002+6+3+12+4+18+5+24+6+303、求等差数列6,9,12,15,……中第99项是几?4、求等差数列46,52,58……172共有多少项?5、求等差数列245,238,231,224,……中,105是第几项?6、求等差数列0,4,8,12,……中,第31项是几?在这个数列中,2000是第几项?7、从35开始往后面数18个奇数,最后一个奇数是多少?、已知一个等差数列的第二项是8,第3项是13,这1个等差数列的第10项是多少?1、计算:100+200+300+……21001+79+……+17+15+132、有20个同学参加聚会,见面的时候如果每人都和其他同学握手一次,那么参加聚会的同学一共要握手多少次?3、请用被4除余数是1的所有两位数组成一个等差数列。

并求出这个等差数列的和。

4、在13和29之间插三个数,使这个五个数构成一个等差数列,那么插入的三个数分别是多少?5、如果要在30和70之间插入若干个数,使他们组成一个公差是5的等差数列,那么一共要插入多少个数?6、学校举行乒乓球赛,每个参赛选手要和其他选手进行一场比赛,一共进行了78场,计算出一共有多少个参赛选手?7、一把钥匙和一把锁配着,现在有10把钥匙和10把锁混着了,最多要打多少次才能把钥匙和锁都配好?8、40个连续奇数的和是1920,其中最大的一个是多少?9、小明读一本600页的书,他每天比前一天多读1页。

小学奥数:等差数列计算题.专项练习及答案解析

小学奥数:等差数列计算题.专项练习及答案解析

等差数列的相关公式(1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;知识点拨等差数列计算题②65636153116533233331089(),++++++=+⨯÷=⨯=题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++=⑵13578799++++++=⑶471013404346+++++++=【考点】等差数列计算题【难度】2星【题型】计算【解析】⑴根据例1的结果知:算式中的等差数列一共有76项,所以:34567677783787623078()+++++++=+⨯÷=⑵算式中的等差数列一共有50项,所以:13578799(199)5022500++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:()471013404346446152375+++++++=+⨯÷=【答案】⑴3078⑵2500⑶375【巩固】1+2+……+8+9+10+9+8+……+2+1=_____。

奥数-等差数列练习题

奥数-等差数列练习题

奥数-等差数列练习题问题一在一个等差数列中,第1项是5,公差是3。

求第10项的值。

解答一根据等差数列的性质,我们可以使用公式来求解。

公式为:$$a_n = a_1 + (n-1)d$$其中,$a_n$表示第$n$项的值,$a_1$表示第1项的值,$d$表示公差。

代入已知条件,我们可以计算第10项的值:$$a_{10} = 5 + (10-1) \times 3 \\a_{10} = 5 + 9 \times 3 \\a_{10} = 5 + 27 \\a_{10} = 32$$所以,第10项的值为32。

问题二在一个等差数列中,已知第1项是4,最后一项是16,求公差和项数。

解答二同样根据等差数列的性质,我们可以使用公式来求解。

公式为:$$a_n = a_1 + (n-1)d$$已知$a_1=4$,$a_n=16$。

代入公式得:$$16 = 4 + (n-1)d$$整理后得到:$$12 = (n-1)d$$我们还知道$n$是项数,所以可以设立一个方程:$$n-1 = \frac{12}{d}$$从题目的描述中我们可以理解,$n$是整数。

根据这个条件,我们来求解可能的解。

设定公差$d=1$时,代入方程:$$n-1 = \frac{12}{1} \\n-1 = 12 \\n = 13$$得到$n=13$。

但是,我们已知最后一项是16,所以不是$d=1$的解。

设定公差$d=2$时,代入方程:$$n-1 = \frac{12}{2} \\n-1 = 6 \\n = 7$$得到$n=7$。

同时,我们可以验证一下:$$a_7 = 4 + (7-1) \times 2 \\a_7 = 4 + 12 \\a_7 = 16$$符合题目的描述。

所以,公差为2,项数为7。

问题三在一个等差数列中,已知公差是2,第7项是15。

求第41项的值。

解答三我们仍然可以使用等差数列的公式来求解。

公式为:$$a_n = a_1 + (n-1)d$$已知公差$d=2$,第7项的值$a_7=15$。

小学数学《等差数列》练习题(含答案)

小学数学《等差数列》练习题(含答案)

小学数学《等差数列》练习题(含答案)你还记得吗【复习1】你能给大家说一说有关等差数列的性质、结论以及相关公式吗?呵呵!快快举手, 多多贏得小印章!分析:以下答案仅供参考!(1)先介绍一下一些定义和表示方法:定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、……从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、••••••从第二项起,每一项比前一项小5 ,递减数列(2)首项:一个数列的第一项,通常用型表示;末项:一个数列的最后一项,通常用爲表示,它也可表示数列的第n项.每个数列都有最后一项吗?数列分有限数列和无限数列;项数:一个数列全部项的个数,通常用n来表示;公差:等差数列每两项之间固定不变得差,通常用d来表示;和:一个数列的某些项的和,常用Sn来表示・(3)三个重要的公式:①通项公式:末项二首项+(项数-DX公差a n =a i+ (n _ 1) Xd回忆讲解这个公式的时候我们可以结合具体数列或者原来学的植树问题的思想,让同学明白末项其实就是首项加上(末项与首项的)间隔的公差个数,或者从找规律的情况入手.同时我们还可延伸出来这样一个有用的公式:aιl-aιlt=(n-m)×cl,②项数公式:项数二(末项-首项)一公差+1 (其实此公式是由①推导出来的,教师也可以帮助同学推导,可以为以后的解方程做好铺垫)由通项公式可以得到:n = (a lt-a l)÷d + \(若U ll);n = (a l-a n)÷d + \(若A a”).找项数还有一种配组的方法,其中运用的思想我们是常常用到的!譬如:找找下面数列的项数:4、7、10、13、•・••••、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、……、(46、47、48),注意等差是 3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48 有48-4+1=45项,每组3个数,所以共45÷3=15组,原数列有15组.当然,我们还可以有其他的配组方法.③求和公式;和=(首项+末项)X项数÷2s l,=(a l+a n)×n÷2对于这个公式的得到我们可以从两个方面入手:(思路 1) 1+2+3+…+98+99+100=(1 + IOo) + (2 + 99) + (3 + 98) + …+ (50 +51)V ______________________ iz______________________ >50-MoL= 101x50=5050(思路2)这道题目,我们还可以这样理解:和=1 + 2 + 3+ 4+ ....+ 98+ 99+100 + 和二100+99 + 98+ 97+ ....+ 3+2+12 倍和=101 + 101+101+101+ .. + 101 + 101+101100 --------即,和=(IOO+l)xl00∙j∙2=101x50=5050(4)中项定理对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首相与末项和的一半;或者换句话说,各项和等于中间项乘以项数•譬如:(1) 4+8+12+...+32+36= (4+36) ×9÷2=20×9=180 ,题中的等差数列有 9 项, 中间一项即第5项的值是20,而和恰等于20X9 ;(2) 65+63+61 + ...+5+3+1= (1+65) ×33÷2=33X33= 1089 ,题中的等差数列有 33 项,中间一项即第17项的值是33,而和恰等于33X33.如果是一个项数为偶数的等差数列,我们该如何运用这个公式呢?其实我们可以将其去掉一项,变成奇数项,求和之后再加上去掉的那一项.中项定理也可用在速算与巧算中.譬如:计算:124. 68+324. 68+524. 68+724. 68+924. 68分析:这是一列等差数列,项数是奇数,中间数是524. 68,所以可以用5X524. 68=2623.4.等差数列是小学奥数的一个重要知识,无论是竞赛还是小升初都是一个考核的重点. 一部分题目是直接考数列,但更多的是结合到找规律、周期等问题进行考核.复习题目的重点就是让学生熟练掌握等差数列的求和、末项和项数的求解.不能让学生去单纯的背公式,而应该把原理讲透∙【复习2]某剧院有25排座位,后一排比前一排多两个座位,最后一排有70个座位•问: 这个剧一共有多少个座位?分析:首项:70-(25-1)X2=22 ,座位总数:(22+70) × 25÷2=1150 .【复习3】小明从1月1日开始写大字。

小学奥数:等差数列应用题.专项练习

小学奥数:等差数列应用题.专项练习

等差数列应用题例题精讲【例 1】100以内的自然数中。

所有是3的倍数的数的平均数是。

【例 2】一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。

最后,每只小猴分得8个野果。

这群小猴一共有_________只。

【例 3】15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有位同学.【例 4】体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。

如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【例 5】一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人,那么这个队列共有多少人?【例 6】有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【例 7】如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。

其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问:这列数中的第9个是多少?【例 8】有一堆粗细均匀的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增加一根,一共堆了28层.问最下面一层有多少根?【巩固】建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?【例 9】一个建筑工地旁,堆着一些钢管(如图),聪明的小朋友,你能算出这堆钢管一共有多少根吗?【巩固】某剧院有20排座位,后一排都比前一排多2个座位,最后一排有70个座位,这个剧院一共有多少个座位?【巩固】一个大剧院,座位排列成的形状像是一个梯形,而且第一排有10个座位,第二排有12个座位,第三排有14个座位,……最后一排他们数了一下,一共有210个座位,思考一下,剧院中间一排有多少个座位呢?这个剧院一共有多少个座位呢? 【例 10】有码放整齐的一堆球,从上往下看如右图,这堆球共有多少个?【例 11】某年4月所有星期六的日期数之和是54,这年4月的第一个星期六的日期数是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥数五年级(等差数列)姓名:
1、等差数列1、5、9、13、、、、、、中,201是第几项?
1、在10与42之间插入3个数,使5个数成为等差数列,这3个
数各是多少?
2、等差数列第1项是2,第2项是10,求它的第20项是多少?
4、1+2+3+4+、、、、、、、、+2008+2009
5、2001-3-6-9-、、、、、、-57-60
6、20个小朋友排成一排玩报数游戏,后一个同学报的数都比前一个同学报的数多3,已知最后一个同学报的数是62,第一个同学报的数是多少?
7、等差数列3、8、13、18、、、、、、中,188是第几项,第188项是多少?
8、一个等差数列的第一项是5,第六项是35,它的公差是多少?它的第十项是多少?
9、某市举行数学竞赛前规定,前15名可以获奖,比赛结果第一名取1人,第二名并列2人,第三名并列3、、、、、、、,第十五名并列15人,用最简单的方法计算出得奖的一共有多少人?
10、20个同学聚会,见面时每个人都和其余的人握手一次,那么一共握手多少次?
11、学校男教师进行乒乓球比赛,每个参赛选手都要和其他所有选手赛一场,一共进行了45场比赛,共有多少位男教师参加比赛?
12、现有9个盒子,用下面的方法往盒中装小球,第一个盒里装1个,第2个盒装4个,第3个盒装7个、、、、、照这样的装法,则将9个盒都装完,共需多少个小球?
13、已知有一个等差数列:32、32*2、32*3、32*4、、、、
(1)写出这个等差数列中的第2008项?
(2)64064是这个等差数列中的第几项?
14、自然数中所有两位数之和是多少?
综合练习:1、四年级一班和二班的平均人数是48个人,二班和三班的平均人数是50人,一班和三班的平均人数是53人,四年级的三个班共有()人?
2、食堂有大米和面粉共351袋,如果大米增加20袋,面粉减少50袋,那么大米的袋数比面粉的袋数的3倍还多1袋,原来大米有()袋,面粉有()袋?
3、王飞以每小时40千米的速度行了240千米,按原路返回时每小时行60千米,王飞往返的平均速度是每小时行()千米。

4、从1到100的自然数中,完全不含数字“1”的数共有()个
5、如果2*3=2+3+4,5*4=5+6+7+8,那么2*(3*2)=()
6、小刚用绳子测量教室的长,他以为这段绳子的长是2米,于是测量得教室的长是8米,而实际这段绳子的长是3米,教室的实际长是()米。

7、有数组{1、2、3、4},{2、4、6、8},{3、6、9、12},……那么第100个数组的四个数的和是()
8、用10张同样长的纸条接成一条长31厘米的纸带,如果第个接头都重叠1厘米,那么每张纸条长()厘米。

相关文档
最新文档