单片机最小系统板制作报告书
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实用电子系统的设计与制作》设计报告
目录
1.原理分析 (1)
2.方案选择 (3)
2.1复位开关的选择 (3)
3.电路原理图绘制 (4)
3.1元件型号 (4)
3.2电路原理图 (5)
4.PCB图(protel)绘制 (5)
4.1 PCB设计步骤 (6)
4.2 设计原则 (6)
4.3 PCB图 (8)
5.综合调试 (8)
5.1软件调试 (8)
5.2硬件调试 (10)
6.总结 (11)
《实用电子系统的设计与制作》设计报告
1.原理分析
单片机最小系统主要由ATMEGA16A芯片、电源、复位、振荡电路以及扩展部分等部分组成。
ATMEGA16A芯片:ATmega16是基于增强的AVR RISC结构的低功耗8 位CMOS微控制器。由于其先进的指令集以及单时钟周期指令执行时间,ATmega16的数据吞吐率高达1 MIPS/MHz,从而可以减缓系统在功耗和处理速度之间的矛盾。ATmega16 有如下特点:16K字节的系统内可编程Flash(具有同时读写的能力,即RWW),512 字节EEPROM,1K 字节SRAM,32 个通用I/O 口线,32个通用工作寄存器,用于边界扫描的JTAG 接口,支持片内调试与编程,三个具有比较模式的灵活的定时器/ 计数器(T/C),片内/外中断,可编程串行USART,有起始条件检测器的通用串行接口,8路10位具有可选差分输入级可编程增益(TQFP 封装) 的ADC ,具有片内振荡器的可编程看门狗定时器,一个SPI 串行端口,以及六个可以通过软件进行选择的省电模式。
图1.1ATMEGA16引脚定义
电源模块:此最小系统中的电源供电模块的电源通过计算机的USB口供给。通过开关来控制和通电与否。电源电路中接入了电源指示LED,图中R11为LED的限流电阻。S1 为电源开关。
图1.2 电源模块原理图
复位电路:单片机复位电路原理是在单片机的复位引脚RST上外接电阻和电容,实现上电复位。当复位电平持续两个机器周期以上时复位有效。复位电平的持续时间必须大于单片机的两个机器周期。具体数值可以由RC电路计算出时间常数。复位电路由按键复位和上电复位两部分组成。(1)上电复位:S TC89系列单片及为高电平复位,通常在复位引脚RST上连接一个电容到VCC,再连接一个电阻到GND,由此形成一个RC充放电回路保证单片机在上电时RST脚上有足够时间的高电平进行复位,随后回归到低电平进入正常工作状态,这个电阻和电容的典型值为10K和10uF。(2)按键复位:按键复位就是在复位电容上并联一个开关,当开关按下时电容被放电、RST也被拉到高电平,而且由于电容的充电,会保持一段时间的高电平来使单片机复位。
图1.3 复位电路原理图
振荡电路:单片机系统里都有晶振,在单片机系统里晶振作用非常大,全程叫晶体振荡器,他结合单片机内部电路产生单片机所需的时钟频率,单片机晶振提供的时钟频率越高,那么单片机运行速度就越快,单片接的一切指令的执行都是建立在单片机晶振提供的时钟频率。单片机晶振的作用是为系统提供基本的时
钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。
图1.4 振荡电路原理图
JTAG下载口:
图1.5 JTAG下载口原理图
2.方案选择
2.1复位开关的选择
(1)方案一:单刀双掷开关
铁氧体开关的原理是改变偏置磁场方向,实现导磁率的改变,改变了信号的传输常数,以达到开关目的。PIN管在正反向低频信号作用下,对微波信号有开关作用。正向偏置时对微波信号的衰减很小(0.5dB),反向偏置时对微波信号的衰减很大(25dB)。BJT和FET开关的原理与低频三极管开关的原理相同,基极(栅极)的控制信号决定集电极(漏极)和发射极(源极)的通断。放大器有增益,反向隔离大,特别适合于MMIC开关。
图2.1 单刀双掷开关实物图
(2)方案二:四脚轻触开关
这种开关的工作原理,其实和普通按钮开关的工作原理差不多,由常开触点、常闭触点组合而成,在四脚轻触开关中,常开触点的作用,就是当压力向常开触点施压时,这个电路就呈现接通状态;当撤销这种压力的时候,就恢复到了原始的常闭触点,也就是所谓的断开。这个施压的力,就是用我们的手去开按钮、关按钮的动作。
图2.2 四脚轻触开关实物图
综合考虑后:我选择了方案二。
3.电路原理图绘制
3.1元件型号
图3.1 元件清单3.2电路原理图
图3.2 电路原理图4.PCB图(protel)绘制
4.1PCB设计步骤
(1)方案分析
决定电路原理图如何设计,同时也影响到PCB板如何规划。根据设计要求进行方案比较、选择,元器件的选择等,开发项目中最重要的环节。
(2)电路仿真
在设计电路原理图之前,有时会会对某一部分电路设计并不十分确定,因此需要通过电路方针来验证。还可以用于确定电路中某些重要器件参数。
(3)设计原理图元件
PROTEL和DXP提供了丰富的原理图元件库,但不可能包括所有元件,必要时需动手设计原理图元件,建立自己的元件库。
(4)绘制原理图
找到所有需要的原理元件后,开始原理图绘制。根据电路复杂程度决定是否需要使用层次原理图。完成原理图后,用ERC(电气法则检查)工具查错。找到出错原因并修改原理图电路,重新查错到没有原则性错误为止。
(5)设计元件封装
和原理图元件一样,PROTEL DXP也不可能提供所有元件的封装。需要时自行设计并建立新的元件封装库。
(6)设计PCB板
确认原理图没有错误之后,开始PCB板的绘制。首先绘出PCB板的轮廓,确定工艺要求(如使用几层板等)。然后将原理图传输到PCB板中,在网络表、设计规则和原理图的引导下布局和布线。利用设计规则查错。是电路设计的另一个关键环节,它将决定该产品的实用性能,需要考虑的因素很多,不同的电路有不同要求。
(7)文档整理
对原理图、PCB图及器件清单等文件予以保存,以便以后维护和修改。
4.2 设计原则
(1)元件布局基本原则
1.按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;