因式分解重点难点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解的一点补充——十字相乘法

教学重点和难点

重点:正确地运用十字相乘法把某些二次项系数不是1的二次三项式因式分解。

难点:灵活运用十字相乘法因分解式。

一、导入新课

前一节课我们学习了关于x2+(p+q)x+pq这类二次三项式的因式分解,这类式子的特点是:二次项系数为1,常数项是两个数之积,一次项系数是常数项的两个因数之和。

因此,我们得到x2+(p+q)x+pq=(x+p)(x+q).

课前练习:下列各式因式分解

1.- x2+2 x+15 2.(x+y)2-8(x+y)+48;

3.x4-7x2+18;4.x2-5xy+6y2。

答:1.-(x+3)(x-5);2.(x+y-12)(x+y+4);

3.(x+3)(x-3)(x2+2);4.(x-2y)(x-3y)。

我们已经学习了把形如x2+px+q的某些二次三项式因式分解,也学习了通过设辅助元的方法把能转化为形如x2+px+q型的某些多项式因式分解。

对于二次项系数不是1的二次三项式如何因式分解呢?这节课就来讨论这个问题,即把某些形如ax2+bx+c的二次三项式因式分解。

二、新课

例1 把2x2-7x+3因式分解。

分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数。

分解二次项系数(只取正因数):

2=1×2=2×1;

分解常数项:

3=1×3=3×1=(-3)×(-1)=(-1)×(-3)。

用画十字交叉线方法表示下列四种情况:

1 1 1 3 1 -1 1 -3

2 ×

3 2 ×1 2 ×-3 2 ×-1

1×3+2×1 1×1+2×3 1×(-3)+2×(-1)1×(-1)+2×(-3)

=5 =7 = -5 =-7

经过观察,第四种情况是正确有。这是因为交叉相乘后,两项代数和恰等于一次项系数-7。

解2x2-7x+3=(x-3)(2x-1)。

一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2排列如下:

a1c1

a2×c2

a1c2 + a2c1

按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即

ax2+bx+c=(a1x+c1)(a2x+c2)。

像这种借助开十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法。

例2把6x2-7x-5分解因式。

分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种

2 1

3 ×-5

2×(-5)+3×1=-7

是正确的,因此原多项式可以用直字相乘法分解因式。

解6x2-7x-5=(2x+1)(3x-5)。

指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式。

对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数。例如把x2+2x-15分解因式,十字相乘法是

1 -3

1 × 5

1×5+1×(-3)=2

所以x2+2x-15=(x-3)(x+5)。

例3把5x2+6xy-8y2分解因式。

分析:这个多项式可以看作是关于x的二次三项式,把-8y2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即

1 2

5 ×-4

1×(-4)+5×2=6

解5x2+6xy-8y2=(x+2y)(5x-4y)。

指出:原式分解为两个关于x,y的一次式。

例4把(x-y)(2x-2y-3)-2分解因式。

分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先化简,进行多项式的乘法运算,把变形后的多项式再因式分解。

问:两个乘积的式子有什么特点,用什么方法进行多项式的乘法运算最简便?

答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用址字相乘法分解因式了。解(x-y)(2x-2y-3)-2

=(x-y)[2(x-y)-3]-2 1 -2

=2(x-y)2-3(x-y)-2 2 ×+1

=[(x-y)-2][2(x-y)+1]1×1+2×(-2)=-3

=(x-y-2)(2x-2y+1)。

指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法。

三、课堂练习

1.用十字相乘法因式分解:

(1)2x2-5x-12;(2)3x2-5x-2;(3)6x2-13x+5;

(4)7x2-19x-6;(5)12x2-13x+3;(6)4x2+24x+27。

2.把下列各式因式分解:

(1)6x2-13x+6y2;(2)8x2y2+6xy-35;

(3)18x2-21xy+5y2;(4)2(a+b)2+(a+b)(a-b)-6(a-b)2。

答案:1.(1)(x-4)(2x+3);(2)(x-2)(3x+1);

(3)(2x-1)(3x-5);(4)(x-3)(7x+2);

(5)(3x-1)(4x-3);(6)(2x+3)(2x+9)。

2.(1)(2x-3y)(3x-2y);(2)(2xy+5)(4xy-7);

(3)(3x-y)(6x-5y);(4)(3a-b)(5b-a)。

四、小结

1.用十字相乘法把某些形如ax2+bx+c的二次三项式分解因式时,应注意以下问题:

(1)正确的十字相乘必须满足以下条件:

a1c1

在式子中,竖向的两个数必须满足关系a1a2=a,c1c2=c;在上式中,斜

a2c2

向的两个数必须满足关系a1c2+a2c1=b,分解思路为“看两端,凑中间。”

(2)由十字相乘的图中的四个数写出分解后的两个一次因式时,图的上一行两个数中,a1是第一个因式中的一次项系数,c1是常数项;在下一行的两个数中,a2是第二个因式中的一次项的系数,c2是常数项。

(3)二次项系数a一般都把它看作是正数(如果是负数,则应提出负号,利用恒等变形把它转化为正数),只需把经分解在两个正的因数。

2.形如x2+px+q的某些二次三项式也可以用十字相乘法分解因式。

3.凡是可用代换的方法转化为二次三项式ax2+bx+c的多项式,有些也可以用十字相乘法分解因式,如例4。

五、作业

1.用十字相乘法分解因式:

(1)2x2+3x+1;(2)2y2+y-6;(3)6x2-13x+6;(4)3a2-7a-6;

(5)6x2-11xy+3y2;(6)4m2+8mn+3n2;(7)10x2-21xy+2y2;

(8)8m2-22mn+15n2。

2.把下列各式分解因式:

(1)4n2+4n-15;(2)6a2+a-35;(3)5x2-8x-13;

(4)4x2+15x+9;(5)15x2+x-2;(6)6y2+19y+10;

(7)20-9y-20y2;(8)7(x-1)2+4(x-1)(y+2)-20(y+2)2。

答案:

1.(1)(2x+1)(x+1);(2)(y+2)(2y-3);(3)(2x-3)(3x-2);(4)(a-3)(3a+2);

(5)(2x-3y)(3x-y);(6)(2m+n)(2m+3n);(7)(x-2y)(10x-y);(8)(2m-3n)(4m-5n)。2.(1)(2n-3)(2n+5);(2)(2a+5)(3a-7);(3)(x+1)(5x-13);(4)(x+3)(4x+3);

(5)(3x-1)(5x+2);(6)(2y+5)(3y+2);(7)-(4y+5)(5y-4);(8)(x+2y+3)(7x-10y-27)。

相关文档
最新文档