数学建模的案例之多变量有约束最优化共21页文档
第三讲 多变量最优化
如果在求极值时使用函数的梯度,则在目标函数的m-文件 中应有两个输出,第二个输出为目标函数的梯度向量. function [y, g] = tvsell_b(x) y = -(339 - 0.01*x(1) - 0.003*x(2)) * x(1) - (399 - 0.004*x(1) - 0.01*x(2)) * x(2) + (400000 + 195*x(1) + 225*x(2)); g = [144 - 0.02*x(1) - 0.007*x(2), 174 – 0.007*x(1) – 0.02*x(2))];
144 x 0.01 x 2 174 y 0.01 y 2 0.007 xy 400000
P 求解模型: 144 0.02 x 0.007 y 0 x P 174 0.007 x 0.02 y 0 y
解得全局极大值点
x 4735, y 7043.
h1 7.918, h2 5.367, 3.000
f (h1 , h2 ) 1097.11 (m2 )
模型的敏感性:
拉格朗日乘子的值 3.000, 意思是如果总表面积增加1个单位,水箱的 容积大约增加3m2.
Matlab 的优化函数
约束极小
[x, fval, exitflag, ouput, lambda, grad, hessian] = fmincon(‘objfun’, x0, A, b, A1, b1, LB, UB, ‘nonlcon’, options, p1, p2,…)
Matlab 优化函数
无约束多变量函数极小 1) 建立目标函数的m-文件 function y = tvsell(x) y = -(339 - 0.01*x(1) - 0.003*x(2)) * x(1) - (399 - 0.004*x(1) - 0.01*x(2)) * x(2) + (400000 + 195*x(1) + 225*x(2)); 2)求解 >> x0 = [0, 0]; >> [x, yval] = fminunc(‘tvsell’, x0) fminunc
数学建模《最优化问题》
2c1 rc2
c2 c2 c3
2c1r Q rT c2
c2 c3 记 c3
不 允 许 缺 货
T T ,
Q
Q
1
T ' T , Q' Q
c3
c3 1
T T , Q Q
允许 缺货 模型
2c1 c2 c3 T rc2 c3
利润 Q=R-C=pw -C 求 t 使Q(t)最大 Q(10)=660 > 640
Q(t ) (8 gt)(80 rt ) 4t
4r 40g 2 t =10 rg
10天后出售,可多得利润20元
敏感性分析
4r 40g 2 t rg
研究 r, g变化时对模型结果的影响 • 设g=0.1不变
其中 c1,c2,c3, t1, ,为已知参数
模型求解
dC 0 dx
求 x使 C(x)最小
b 0
c1t12 2c2t1 x 2c32
dB dt
x
t1
t2 t
结果解释
• / 是火势不继续蔓延的最少队员数
结果 解释
c1t1 2c2t1 x 2c32
允许缺货的存贮模型
当贮存量降到零时仍有需求r, 出现缺货,造成损失.
q Q r
Q rT1
t
原模型假设3:贮存量降到零 T1 B T 时Q件立即生产出来(或立即到 0 货). 现假设3:允许缺货, 每天每件缺货损失费 c3 , 缺货需补足. 一周期 c2 贮存费 一周期 c 3 缺货费
A
T1
0
7.1
存贮模型
《约束优化问题》课件
最优解。
03
CHAPTER
常见约束优化问题
线性规划问题
总结词
线性规划问题是最常见的约束优化问题之一,它通过线性不等式或等式约束来 限制决策变量的取值范围,使得目标函数达到最优解。
详细描述
线性规划问题通常用于资源分配、生产计划、运输和分配等问题,其目标函数 和约束条件都是线性函数。求解线性规划问题的方法包括单纯形法、对偶理论 和分解算法等。
约束优化问题的可解释性与鲁棒性研究
总结词
为了更好地应用约束优化问题,需要研究其可解释性 和鲁棒性,以提高模型的可靠性和稳定性。
详细描述
在许多领域中,模型的解释性和鲁棒性是非常重要的 。为了更好地应用约束优化问题,需要研究其可解释 性和鲁棒性,例如通过建立模型的可解释性框架、设 计鲁棒性强的算法等,以提高模型的可靠性和稳定性 。
拉格朗日乘数法
总结词
一种求解约束优化问题的数学方法
详细描述
通过引入拉格朗日乘数,将约束优化问题转化为无约束优化问题,然后利用无约束优化 方法求解。在每一步迭代中,根据当前点的拉格朗日函数值更新拉格朗日乘数和迭代点
,直到满足收敛条件。
拉格朗日乘数法
要点一
适用范围
适用于具有线性约束的优化问题。
要点二
执行。
时间限制
生产计划需要在规定的时间内完 成,因此时间限制也是一个重要 的约束条件。通过约束优化问题 ,可以找到在满足时间限制下的
最优生产计划。
质量限制
在生产过程中,质量是一个重要 的考量因素。通过约束优化问题 ,可以在保证质量的前提下,实
现生产计划的最优配置。
物流配送优化
时间限制
数学建模~最优化模型(课件)
投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法
多变量约束优化方法
多变量约束优化方法多变量约束优化问题是指在给定一组目标函数和一组约束条件下,通过调整多个自变量的取值,找到使目标函数最优化且满足约束条件的解。
这类问题在实际应用中非常常见,如工程设计、金融管理、运筹学、物流和供应链管理等领域。
传统的优化方法对于多变量约束优化问题求解存在一些问题,如计算复杂度高、易陷入局部最优解等。
因此,为了有效解决这类问题,研究者们提出了多种多变量约束优化方法,下面将介绍其中几种主流的方法。
一、线性规划方法(Linear Programming, LP)线性规划是最简单且常用的多变量约束优化方法之一、它的目标函数和约束条件都是线性的。
线性规划问题可以通过单纯形法(Simplex Method)或内点法(Interior Point Method)求解。
虽然线性规划方法的计算复杂度比较低,但它只适用于线性目标函数和线性约束条件的情况。
二、非线性规划方法(Nonlinear Programming, NLP)非线性规划方法可以处理目标函数和约束条件是非线性的情况。
常用的非线性规划方法有梯度法、牛顿法和拟牛顿法等。
这些方法通过迭代的方式,在每一步计算目标函数在当前点的梯度,并根据梯度的信息调整自变量的取值,以逐步逼近最优解。
非线性规划方法的计算复杂度较高,但是可以处理复杂的实际问题。
三、遗传算法(Genetic Algorithm, GA)遗传算法是一种通过模拟生物进化过程的优化方法。
它通过模拟自然选择、交叉和变异等过程,逐步解空间中的最优解。
遗传算法具有全局收敛性和并行计算的特点,对于复杂的多变量约束优化问题有较好的适应性。
四、粒子群优化算法(Particle Swarm Optimization, PSO)粒子群优化算法是一种通过模拟鸟群或鱼群的行为进行优化的方法。
在粒子群优化算法中,每个个体(粒子)的位置代表潜在解,速度代表解的方向。
粒子的位置和速度通过迭代的方式进行更新,直到找到最优解。
多变量约束优化方法
第7章 多维约束优化方法Chapter 7 Constrained Several Variables Technique7-1 概述 Summarize工程中的优化设计问题绝大多数是约束优化问题,即nR X X f ∈)(m innp v X h m u X g t s v u <===≥,,2,10)(,,2,10)(..约束最优点不仅与目标函数的性质有关,也与约束函数的性质有关。
因此,约束优化问题比无约束优化问题情况更复杂,求解困难也更大。
根据对约束条件处理方法的不同,解决约束优化问题的方法分成二类: 1) 直接法 Direct Method寻优过程直接在设计空间的可行域D 内进行,但对每一个迭代点)(k X 必须进行可行性()(()01,2,,)k u g X u m ≤= 和下降性))()(()1()(+>k k X f X f 检查。
直接算法简单,直观性强,对目标函数和约束函数的函数性态没有特殊的要求。
但是它的计算量大、收敛速度慢,因此效率低,比较适用于解决低维数的、具有不等式约束的优化问题。
这类算法包括随机方向法、复合形法等。
2) 间接法 Indirect Method间接法的主要思路是,首先将约束优化问题转化为无约束优化问题,然后再用无约束 优化方法来进行求解。
间接解法分很多类,其中比较有代表性的、用的比较广泛的是惩罚函数法。
7-2 惩罚函数法 Penalty Method在将约束优化问题转换成无约束优化问题时,惩罚函数法的处理思路与拉格朗日法很相似, 都是把目标函数与约束条件合并形成新的函数,而后求其最优解。
但惩罚函数法得到的新函数不是一个而是一个系列。
因此,用无约束优化算法求解得的最优解也是一个系列,即**2*1,,kX X X ,当k →∞时,**k X X →。
因此,惩罚函数法又称序列无约束最小化技术Sequential Unconstrained Minimization Technique , 即SUMT 法。
约束最优化理论与方法
d FD(x*, X ) d SFD(x*, X )
dk
d,k
2k
第13页/共34页
SFD(x*, X ) LFD(x*, X )
d SFD(x*, X ) d LFD(x*, X )
序列可行方向 x * k dk X ,k dk d,k 0和k 0
第5页/共34页
min f (x)
xRn
定理(凸最优性定理) 设f : D Rn R1是凸函数,且 f C1.则
x是 总体极小点 g(x) 0.
定理(一阶必要条件) 设f : D Rn R1在开集D上连续可微,若
x D是min f (x)的局部极小点,则 g(x) 0. xRn
第6页/共34页
线性化可行方向 d T ci (x*) 0, i E;
d T ci (x*) 0, i I (x*);
d 0 √
d 0 x *kdk X
ci (x * k dk ) ci (x*) k dkT ci (x*)
第14页/共34页
引理 设x* X是下列问题的局部极小点 min f (x)
,
就称不等式约束
ci (x) 0在点是x有效约束。
并称可行点 x 位于约束 ci (x) 0的边界。
无效约束:对于可行点 x 若ci (x ) 0
就称不等式约束 ci ( x) 0 在点x 是无效约束
称x是约束ci (x) 0 的内点.
第4页/共34页
E:等式约束指标集 I:不等式约束指标集
I (x*);
(d1
,
d2
)
ai1 ai 2
则称d是X 在x*处的线性化可行方向.
LFD(x*, X ) :
约束问题的最优化方法
m
⑤ .Φ ( x, r ) = f ( x) − r ∑ ln[− g u ( x)]
(k )
其中:惩罚(加权)因子 降低系数 c:
r ( 0 ) > r (1) > ....r ( k )
0< c <1
r ( k −1) ⋅ c = r ( k )
xk * → x *
当lim r ( k ) → 0
新目标函数: Φ ( x, r1 , r2 ) =
(k ) M
(k ) p
G[ g u ( x)] + r2 ∑ H [hv ( x)] f ( x) + r1 ∑ u =1 v =1
m
p
H [hv ( x)] 其中r ∑ G[g u ( x)] 和 r ∑ 称为加权转化项,并根据它们在惩 v =1 u =1 罚函数中的作用,分别称为障碍项和惩罚项。
2、等式约束优化问题(EP型)
x ∈ D ⊂ Rn s.t. hv ( x ) = 0, v = 1,2,..., q min F ( x )
3、一般约束优化问题(GP型)
x ∈ D ⊂ Rn s.t. g u ( x ) ≥ 0, u = 1,2,..., p hv ( x ) = 0, v = 1,2,..., q min F ( x )
(k ) u =1 m
lim r2 H [hv ( x ( k ) )] = 0
k →∞
lim[Φ ( x ( k ) , r1 , r2 ) − f ( x ( k ) )] = 0 k →∞
(k ) (k )
分类: 根据约束形式和定义的泛函及罚因子的递推方法等不同,罚函 数法可分为内点法、外点法和混合罚函数法三种。 这种方法是1968年由美国学者A.V.Fiacco和G.P.Mcormick 提出的,把不等式约束引入数学模型中,为求多维有约束非线性规 划问题开创了一个新局面。 适用范围:求解等式约束优化问题和一般约束优化问题。
第二章多变量最优化
问题1中的全部常量包括:
1.两种彩电的初始定价:339美元和399美元; 2.其对应的成本分别为:195美元和225美元; 3.每种彩电多销售一台,平均售价下降系数a=0.01 美元(称为价格弹性系数),两种彩电之间的销售 相互影响系数分别为0.004美元和0.003美元; 4.固定成本为400000美元。
–
– 因此,原问题转化为求s≥0和t≥0,使得y=P
取得最大值。
2.选择建模方法
概述选定的建模方法
– 这个问题我们视为无约束的多变量最优化问题。这类
问题通常在多元微积分得入门课程中都有介绍。我们 这里只给出模型的要点和一般的求解过程。
2.选择建模方法
的子集S上的函数 y f ( x1 , , xn ) 。我们要求 f 在集合S上的最大值或最小值。一个定 理给出:若 f 在S的某个点内 ( x1 , , xn ) 达到极大值或 极小值,设 f 在这点可微,则在这个点上 f 0 。也 就是说,在极值点有 f f ( x1 , , xn ) 0 ( x1 , , xn ) 0 (2-1) xn x1 据此我们可以在求极大或极小点时,不考虑那些在S内 部使 f 的某一个偏导数不为0的点。因此,要求极大或 极小点,我们就要求解方程组(2-1)给出的n个未知数、 n个方程的联立方程组。然后我们还要检查S的边界上的 点,以及那些一个或多个偏导数没有定义的点。
S x1 , x2 : x1 0, x2
y f x1 , x2 339 0.01x1 0.003 x2 x1 339 0.04 x1 0.01x2 x2 400 000 195 x1 225 x2
4.利用第二步确定的标准过程求解
第二章 多变量优化
代码实现
clear all; clf; syms x1 x2 y = (339-.01*x1-.003*x2)*x1+(399-.004*x1-.01*x2)*x2(400000+195*x1+225*x2); ezsurf(y,[0 10000 0 10000]); dydx1 = diff(y,x1); dydx2 = diff(y,x2); [x1max, x2max] = solve(dydx1,dydx2); x1max = double(x1max); x2max = double(x2max); ymax=subs(y,[x1,x2],[x1max,x2max]);
Optimal level set y = y max and constaints x 1+x 2 10000, x 1 5000, x 2 8000 8000 7000 6000 5000
灵敏性分析
对19英寸彩电的价格弹性系数a做灵敏性分 析。 syms x1 x2 a y = (339-a*x1-.003*x2)*x1+(399-.004*x1.01*x2)*x2-(400000+195*x1+225*x2); dydx1 = diff(y,x1) dydx2 = diff(y,x2) [x1maxa,x2maxa] = solve(dydx1,dydx2)
灵敏性分析
绘制关系曲线 figure, subplot(2,1,1); ezplot(x1maxa,[0.005,0.015]); subplot(2,1,2); ezplot(x2maxa,[0.005,0.015]);
1662000/(-49+40000 a) 10000 8000 6000 4000 0.005 0.006 0.007 0.008 0.009 0.01 0.011 0.012 0.013 0.014 0.015 a 48000 (-21+7250 a)/(-49+40000 a)
7- 优化设计-4多维优化之约束优化方法
4
基本思想:
依据原约束优化问题的约束条件构 建可限制其目标函数值脱离可行域之外的 约束函数,并将其与原目标函数共同组成 一个新目标函数,进而通过对新目标函数 的求解实现约束优化问题向无约束优化问 题的转化和求解.
5
2、惩罚函数法的内涵和本质
原目标函数f(X) 约束条件
+
构建 约束优化问题 转 约束函数
g2(X)=1/ (P· L/(4L2-B2)1/2-π3ET/8L2· (D2+T2))
200 ≤1/2· (4L2-B2)1/2 ≤ 1200
g3(X)=1/(200 - 1/2 · (4L2-B2)1/2 ) g4(X)=1/ (1/2· (4L2-B2)1/2 -1200)
u
2
24
性质3:当迭代次数足够大,惩罚函数
中各项违反约束的函数取值趋于0,惩罚 函数的极小点就是目标函数的最优点
max g x,0
u 1 u
m
2
1 k k x*, r f x * 0 r
25
6)外点法计算步骤
1:给定初始点x0 以及初始惩罚因子 r0、递 增系数a、收敛精度 ε1 ε2 ,令 k=0; 2: 构造惩罚函数; 3:用无约束优化方法求惩罚函数的最优解 xk* 和对应函数值 4:运用终止准则进行收敛判断,满足收敛 条件,计算结束,xk* 为最优点,否则 令X0=xk*;rk+1=a*rk*;k=k+1,返回步骤3 继 续计算
点在约束边 界值趋于∞
惩罚函数为:
1 ( x , r ) f ( x ) r u 1 gu ( x )
k k m
或: ( x, r ) f ( x ) r
k
多目标约束条件下 最优解
多目标约束条件下最优解多目标约束条件下的最优解一、引言在现实生活中,我们常常面临多个目标和约束条件的冲突。
例如,我们在购买商品时可能既追求价格优惠,又希望品质可靠;在规划旅行路线时既希望时间紧凑,又希望玩得尽兴。
这些问题都可以被抽象成多目标优化问题,其中的解称为最优解。
二、多目标优化问题的定义多目标优化问题是指在存在多个目标函数和多个约束条件的情况下,寻找一个解使得目标函数达到最优的同时满足所有约束条件。
其中,目标函数可以是最大化或最小化的目标,约束条件可以是等式约束或不等式约束。
三、多目标优化问题的解决方法1.加权法加权法是一种常用的求解多目标优化问题的方法。
它通过对各个目标函数进行加权,将多个目标函数融合为一个单一的综合目标函数,并通过求解这个综合目标函数的最优解来得到最优解。
加权法的优点是简单易行,但是需要人为设定权重,可能存在主观性。
2. Pareto最优解Pareto最优解是指在多目标优化问题中,无法找到一个解使得所有目标函数同时达到最优,而是存在一组解,其中每个解在某个目标函数上优于其他解。
这些解构成了Pareto最优解集。
Pareto最优解的求解需要使用Pareto支配的概念,即一个解在目标函数上优于另一个解。
通过比较所有解之间的Pareto支配关系,可以找到Pareto最优解集。
四、多目标优化问题的应用多目标优化问题在实际生活中有着广泛的应用。
以下是一些例子:1. 供应链优化:在供应链管理中,需要考虑成本、交货时间、货物质量等多个目标,通过多目标优化可以找到最佳供应链配置方案。
2. 交通规划:在城市交通规划中,需要考虑车流量、行车速度、排放污染物等多个目标,通过多目标优化可以设计出最优的交通路网。
3. 能源系统优化:在能源系统设计中,需要考虑能源利用效率、环境影响、经济性等多个目标,通过多目标优化可以找到最佳的能源系统配置方案。
五、多目标优化问题的挑战与展望多目标优化问题的求解面临着许多挑战。
数学建模中的优化与控制问题
特点:线性系统 控制具有简单、 易于分析和设计 的优点,适用于 一些较为简单的
系统。
应用场景:在工程、 经济、生物等领域 中,对于一些可以 近似为线性系统的 对象,可以采用线 性系统控制方法进
行优化和控制。
局限性:线性系统 控制对于非线性系 统的描述和控制效 果有限,对于一些 复杂的系统可能需 要采用更为复杂的
特点:整数规划 问题在求解过程 中具有较高的难 度,因为整数约 束使得可行解的 范围大大缩小。
应用领域:整 数规划广泛应 用于组合优化、 生产计划、物 流运输等领域。
求解方法:常 见的整数规划 求解方法包括 穷举法、割平 面法、分支定
界法等。
数学建模中的控制 问题
定义:线性系统控 制是数学建模中的 一种重要方法,通 过建立线性方程组 来描述系统的动态 行为,并采用控制 策略对系统进行调
应用领域:生产计划、物流、金融等
求解方法:单纯形法、分解法等
定义:在数学建模中,非线性规划是寻 找一组变量的最优解,使得某个目标函 数达到最小或最大值,同时满足一系列 约束条件。
应用领域:包括但不限于金融、经济、工 程和科学计算等领域。
特点:目标函数或约束条件至少有一个是 非线性的。
求解方法:常见的求解非线性规划的方法 包括梯度下降法、牛顿法、拟牛顿法等。
案例背景:交通信号灯在城市交通中起着至关重要的作用,如何实现高效、合理的控制 是关键问题。
建模过程:通过建立数学模型,对交通信号灯的配时进行优化,提高道路通行效率。
控制策略:采用智能控制算法,如模糊控制、神经网络等,实现自适应调节。
案例结论:通过实际应用,证明优化后的交通信号灯控制能够有效提高道路通行效率, 减少拥堵。
数学建模中的优化与 控制问题
数学建模中的优化问题与约束条件的求解
数学建模中的优化问题与约束条件的求解在数学建模的广阔领域中,优化问题与约束条件的求解是至关重要的组成部分。
优化问题旨在寻找某种最佳的解决方案,而约束条件则限制了可行解的范围。
理解和解决这些问题对于解决实际生活中的各种复杂情况具有深远的意义。
首先,让我们明确什么是优化问题。
简单来说,优化问题就是在给定的一组条件下,寻找能够使某个目标函数达到最大值或最小值的变量取值。
例如,一家工厂在生产多种产品时,需要决定每种产品的产量,以在有限的资源和市场需求的限制下,实现利润最大化。
这里,每种产品的产量就是变量,利润就是目标函数,而资源和市场需求则构成了约束条件。
优化问题的类型多种多样。
常见的有线性规划、非线性规划、整数规划等。
线性规划是指目标函数和约束条件都是线性的问题。
非线性规划则涉及到目标函数或约束条件中至少有一个是非线性的。
整数规划要求变量取整数值。
每种类型的优化问题都有其特定的求解方法和特点。
接下来谈谈约束条件。
约束条件可以分为等式约束和不等式约束。
等式约束表示某些变量之间必须满足精确的相等关系,比如在一个物理系统中,能量守恒定律就可以表示为一个等式约束。
不等式约束则限制了变量的取值范围,比如资源的有限性可能导致生产过程中对某些投入的使用不能超过一定的上限。
在实际问题中,约束条件往往是复杂且多样化的。
它们可能来自于物理规律、经济规律、技术限制、政策法规等多个方面。
例如,在交通运输规划中,道路的容量限制、车辆的速度限制等都是约束条件;在投资决策中,资金预算、风险承受能力等也是约束条件。
求解优化问题与约束条件的方法有很多。
经典的方法如单纯形法,适用于线性规划问题。
对于非线性规划问题,常用的方法有梯度下降法、牛顿法等。
此外,还有一些智能算法,如遗传算法、模拟退火算法等,它们在处理复杂的优化问题时表现出了强大的能力。
单纯形法是一种通过在可行域的顶点上进行搜索来找到最优解的方法。
它的基本思想是从一个可行解开始,通过不断地移动到相邻的顶点,逐步改进目标函数的值,直到找到最优解。
数学建模案例分析最优化方法建模动态规划模型举例
§6 动态规划模型举例以上讨论的优化问题属于静态的,即不必考虑时间的变化,建立的模型——线性规划、非线性规划、整数规划等,都属于静态规划。
多阶段决策属于动态优化问题,即在每个阶段(通常以时间或空间为标志)根据过程的演变情况确定一个决策,使全过程的某个指标达到最优。
例如:(1)化工生产过程中包含一系列的过程设备,如反应器、蒸馏塔、吸收器等,前一设备的输出为后一设备的输入。
因此,应该如何控制生产过程中各个设备的输入和输出,使总产量最大。
(2)发射一枚导弹去击中运动的目标,由于目标的行动是不断改变的,因此应当如何根据目标运动的情况,不断地决定导弹飞行的方向和速度,使之最快地命中目标。
(3)汽车刚买来时故障少、耗油低,出车时间长,处理价值和经济效益高。
随着使用时间的增加则变得故障多,油耗高,维修费用增加,经济效益差。
使用时间俞长,处理价值也俞低。
另外,每次更新都要付出更新费用。
因此,应当如何决定它每年的使用时间,使总的效益最佳。
动态规划模型是解决这类问题的有力工具,下面介绍相关的基本概念及其数学描述。
(1)阶段 整个问题的解决可分为若干个相互联系的阶段依次进行。
通常按时间或空间划分阶段,描述阶段的变量称为阶段变量,记为k 。
(2)状态 状态表示每个阶段开始时所处的自然状况或客观条件,它描述了研究过程的状况。
各阶段的状态通常用状态变量描述。
常用k x 表示第k 阶段的状态变量。
n 个阶段的决策过程有1+n 个状态。
用动态规划方法解决多阶段决策问题时,要求整个过程具有无后效性。
即:如果某阶段的状态给定,则此阶段以后过程的发展不受以前状态的影响,未来状态只依赖于当前状态。
(3)决策 某一阶段的状态确定后,可以作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。
描述决策的变量称为决策变量。
决策变量限制的取值范围称为允许决策集合。
用)(k k x u 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用)(k k x D 表示k x 的允许决策集合。
数学建模案例之多变量有约束最优化
dP da
(2.6)
s2
代入数据 a=0.01,P(3846,6154)=532308,可得
a 0.28 S ( P , a ) dP da P
(2.7)
图 3 画出了曲线 s(a)和 t(a),图 4 画出了曲线 P(a)。
s,t 10000 8000 6000 4000 2000 0
台
sa
P 1000美元 800 700 ta 600
0
a 0.005 0.01 0.015 0.02
美元 台
500 0 0.005 0.01 0.015
a 0.02
美元 台
图 3 s 和 t 关于 a 的曲线
图 4 利润 P 关于 a 的曲线
我们先讨论 19 英寸彩电的价格弹性系数 a 的灵敏性, 即售出量 s,t 和利润 P 关于 a 的 灵敏性,然后讨论最优产量 s,t,利润 P 对可利用生产能力 c=10000 台的灵敏性。
4.1 最优解关于 19 英寸彩电的价格弹性系数 a 的灵敏性分析 仍利用 Lagrange 方法来求解该问题。Lagrange 乘子方程为 P g ,即
144 2as 0.007t 174 0.007 s 0.02t
与约束方程
g( s, t ) s t 10000
联立求解,得到
50000 s( a ) 1000 a3 50000 t ( a ) 10000 1000 a 3 ( a ) 650 26 1000 a 3
(2.5)
计算可得
ds da dt da
50000000 (1000 a 3)2 ds 50000000 da (1000a 3)2