最新溴化锂水溶液的特性

合集下载

制冷技术 第8章 溴化锂吸收式制冷系统

制冷技术 第8章 溴化锂吸收式制冷系统
第八章
溴化锂吸收式制冷系统
>
(1)溴化锂水溶液的特性
溴化锂(LiBr)是无色结晶物,无毒,化学稳定性好,在大气中 不变质、不分解和不挥发。
溴化锂的分子量为86.856, 溴化锂溶点549℃,沸点1265℃, 溴化锂水溶液是无色液体,有咸味。
(1)溴化锂水溶液的特性-溶解度
析冰
析盐
饱和线
共晶点
(1)溴化锂水溶液的特性-吸收能力 溴化锂水溶液的水蒸气分压力很小。 例如,ξ=58%的溴化锂水溶液,当t=32℃时,溶液的水蒸气分
8.3.1 溴化锂吸收式机组的性能特点
(1)部分负荷性能
右图给出了直燃机在部分负荷条件下运行时的制冷量 与燃料耗量的关系,其测试条件为: ①冷水出口温度7℃,流量为100%,蒸发器水侧污垢系数 0.018㎡· ℃/kW; ②冷却水流量为100%,其进口温度在100%负荷率时为32℃, 20%负荷率时为24℃,中间温度随负荷减小呈线性变化, 污垢系数为0.086㎡· ℃/kW。
AB:发生器等压发生过程。
45℃
C点溶液等压下吸收水蒸气并被
冷却,则浓度减少 状态D。
此压力所吸收的水蒸气所对应的
饱和温度为5℃(蒸发温度)。
5℃
CD:吸收器等压吸收过程。
(3)溴化锂水溶液的比焓-浓度图
等压线 液相区
等温线
溶液相平衡的水蒸气 等压辅助曲线
h-ξ图是进行吸收式 制冷循环过程的理论分 析、热力计算和运行特 性分析的主要线图。
则会使蒸发器液囊的冷剂水位下降,造成蒸发器泵吸空,同时
制冷量的上升也趋于平缓。
8.3.1 溴化锂吸收式机组的性能特点
(2)变工况性能——冷却水温度
右图给出了蒸汽型溴化锂吸收式冷水机组性能随冷却水入口 温度的变化情况。

溴化锂

溴化锂

溴化锂名称:溴化锂化学式:LiBr分子量:86.85物理性质:极易潮解。

一水溴化锂干燥失水可得无水物。

状态:白色立方晶系结晶体或粒状粉末。

密度:3.64g/cm^3熔点:560℃沸点1265℃溶解性:易溶于水、乙醚、乙醇,可溶于甲醇、丙酮、乙二醇等有机溶剂,微溶于吡啶。

热的溴化锂溶液可溶解纤维。

其水溶液具有强烈的吸湿性,而且,在常温下饱和溴化锂水溶液的浓度达60% ,浓度越大,温度越低,吸湿能力越强。

化学性质:性质稳定,在大气中不易变质不易分解。

可与氨或胺形成一系列的加成化合物,如一氨合溴化程、二氨合溴化锂、三氨合溴化锂、四氨合溴化锂。

与溴化铜、溴化高汞、碘化高汞、氰化高汞、溴化锶等能形成可溶性盐。

溴化锂在空气中对钢铁有很强的腐蚀作用,但在真空状态下加入缓蚀剂,基本上不腐蚀金属。

毒性:大剂量服入溴化锂会抑制中枢神经系统,长期吸入可导致皮肤斑疹及中枢神经的紊乱。

应用是一种高效水蒸气吸收剂和空气湿度调节剂。

致冷工业广泛用作吸收式制冷剂,有机工业用作氯化氢脱陈剂和有机纤维膨胀剂。

医药上用作催眠剂和镇静剂。

电池工业用作高能电池和微型电池的电解质。

此外,也用于照相行业和分析化学中。

溴化锂水溶液性质(1)无色液体,有咸味,无毒,加入铬酸锂后溶液呈淡黄色。

(2)溴化锂在水中的溶解度随温度的降低而降低。

如图1所示。

图中的曲线为结晶线,曲线上的点表示溶液处于饱和状态,它的左上方表示有固体溴化锂结晶析出,右下方表示溶液中没有结晶存在。

所谓溶解度是指饱和液体中所含溴化锂无水化合物的质量成分,也就是溴化锂水溶液的质量浓度。

由图中曲线可知,溴化锂的质量浓度不宜超过66%,否则在运行中当溶液温度降低时将有结晶析出,破坏制冷机的正常运行。

(3)水蒸气分压力很低,它比同温度下纯水的饱和蒸气压力低得多,因而有强烈的吸湿性。

液体与蒸气之间的平衡属于动平衡,此时分子穿过液体表面到蒸气中去的速率等于分子从蒸气中回到液体内的速率。

因为溴化锂溶液中溴化锂分子对水分子的吸引力比水分子之间的吸引力强,也因为在单位液体容积内溴化锂分子的存在而使水分子的数目减少,所以在相同温度的条件下,液面上单位蒸气容积内水分子的数目比纯水表面上水分子数目少。

溴化锂(全文)

溴化锂(全文)

溴化锂百科名片溴化锂晶体结构溴化锂,分子式:LiBr。

白色立方晶系结晶或粒状粉末,极易溶于水,溶于乙醇和乙醚,微溶于吡啶,可溶于甲醇、丙酮、乙二醇等有机溶剂。

目录简介化学性质毒性应用溴化锂水溶液性质编辑本段简介名称:溴化锂化学式:LiBr分子量:86.85 物理性质:极易潮解。

一水溴化锂干燥失水可得无水物。

状态:白色立方晶系结晶体或粒状粉末。

密度:3.64g /cm^3 熔点:560℃沸点1265℃溶解性:易溶于水、乙醚、乙醇,可溶于甲醇、丙酮、乙二醇等有机溶剂,微溶于吡啶。

热的溴化锂溶液可溶解纤维。

其水溶液具有强烈的吸湿性,而且,在常温下饱和溴化锂水溶液的浓度达60% ,浓度越大,温度越低,吸湿能力越强。

编辑本段化学性质性质稳定,在大气中不易变质不易分解。

可与氨或胺形成一系列的加成化合物,如一氨合溴化锂、二氨合溴化锂、三氨合溴化锂、四氨合溴化锂。

与溴化铜、溴化高汞、碘化高汞、氰化高汞、溴化锶等能形成可溶性盐。

溴化锂在空气中对钢铁有很强的腐蚀作用,但在真空状态下加入缓蚀剂,基本上不腐蚀金属。

编辑本段毒性大剂量服入溴化锂会抑制中枢神经系统,长期吸入可导致皮肤斑疹及中枢神经的紊乱。

编辑本段应用是一种高效水蒸气吸收剂和空气湿度调节剂。

致冷工业广泛用作吸收式制冷剂,有机工业用作氯化氢脱陈剂和有机纤维膨胀剂。

医药上用作催眠剂和镇静剂。

电池工业用作高能电池和微型电池的电解质。

此外,也用于照相行业和分析化学中。

编辑本段溴化锂水溶液性质(1)无色液体,有咸味,无毒,加入铬酸锂后溶液呈淡黄色。

(2)溴化锂在水中的溶解度随温度的降低而降低。

如图1所示。

图中的曲线为结晶线,曲线上的点表示溶液处于饱和状态,它的左上方表示有固体溴化锂结晶析出,右下方表示溶液中没有结晶存在。

所谓溶解度是指饱和液体中所含溴化锂无水化合物的质量成分,也就是溴化锂水溶液的质量浓度。

由图中曲线可知,溴化锂的质量浓度不宜超过66%,否则在运行中当溶液温度降低时将有结晶析出,破坏制冷机的正常运行。

溴化锂溶液

溴化锂溶液

第一章物料说明一、吸收剂——溴化锂1.物理性质:分子式:分工量:86.86,比重:3.464(25℃)。

熔点:549℃;沸点:1265℃固体溴化锂产品常含有一个、两个或多个结晶水,其化学式分别为:LiBrH2O,LiBr2H2O2.机用溴化锂溶液的要求:溴化锂溶液的技术要求:溶液中不应含有二氧化碳等不凝性气体,同时用以配制溴化锂溶液的水也必须是蒸馏水或经离子交换树脂处理过的水。

3.溴化锂溶液的物理特性:1)溴化锂溶液的浓度:无水溴化锂的吸湿性很强。

但是在水中的溶解度有一定限度,此溶液称为饱和溶液。

溶液的浓度过高,温度过低都可能结晶,当二者同时存在时,结晶的可能性大大增加。

2)溶液的比重:溴化锂溶液的比重与温度和浓度有关。

温度不变时,浓度越大,比重越大;溶液不变时,温度越高,比重越小。

在机组运行过程中有时需要测定溶液的浓度,只要我们同时测出其比重与温度,便可以用图查出对应浓度。

3)溴化锂溶液的饱和水蒸汽压:溴化锂溶液的饱和水蒸汽压同时与温度、浓度有关,而水的饱和蒸汽压仅与温度有关。

下表是几个状态下的数值:4.溴化昔水溶液对金属的腐蚀1)氧的影响:溶液与氧接触腐蚀特别严重。

在使用过程中应维护保养好机组,严防空气侵入。

2)溶液中添加缓蚀剂可有效地抑制溴化锂溶液对金属材料的腐蚀。

目前在实际运行的溶液中加入1~3%的铬酸锂并保持溶液的PH值在9.5~10之间。

未加入缓蚀剂的溴化锂溶液无色透明,加入之后呈金黄色。

二、冷水冷水是冷水机组的产品,它是冷量的载体或冷量传递的媒体。

由于冷水的温度低,结垢及腐蚀远比冷却水轻微。

在使用过程中应该做到以下几点:1.一次性注入软水。

2.水中添加适当的缓蚀剂。

3.维持值7~8。

三、制冷剂——冷却水冷却水用以吸收热量,冷却机组之用。

它带走的热量是冷剂蒸汽冷凝成冷剂水和溴化锂溶液在吸收器里吸收水蒸汽时放出的热量。

冷却塔出水温度的极限值——最低温度和当时空气中的湿球温度相等(当然是不可能的),也就是说冷却水温度值主要取决于当时空气的湿球温度冷却塔中由于冷却水以水蒸汽的形式排走,使冷却水量减少,化学性杂质逐步被浓缩,最终对机组金属造成结垢、腐蚀,因此,应当往冷却水中添加有针对性的水质稳定剂。

溴化锂制冷原理及计算

溴化锂制冷原理及计算

一、溴化锂水溶液的性质1、水:无毒、不燃烧、不爆炸;气化潜热大(约2500kJ/kg);常压下的蒸发温度较高,常温下的饱和压力很低。

当温度为25℃时,它的饱和压力为3.167kPa,比体积为43.37m3/kg。

2、溴化锂水溶液:①无色液体,加入铬酸锂后溶液至淡黄色;②溴化锂有强烈的吸湿性,在水中的溶解度随温度的降低而降低,具有吸收温度比它低的水蒸气的能力;例如,当溴化锂水溶液浓度为50%、温度为25℃时,饱和蒸气压力为0.85kPa,只要水的饱和蒸气压大于0.85kPa时,上述溴化锂溶液就具有吸收它的能力。

③溴化锂水溶液中产生的水蒸气总是处于过热状态;如果压力相同,溶液的饱和温度一定大于水的饱和温度;密度比水大,并随溶液的浓度和温度而变;④比热容较小,这意味着加给溶液较少的热量水就会蒸发;⑤粘度、表面张力较大;⑥溴化锂水溶液的导热系数随浓度之增大而降低,随温度的升高而增大;⑦对黑色金属和紫铜等材料有强烈的腐蚀性,有空气存在时更为严重,因腐蚀而产生的不凝性气体对装置的制冷量影响很大。

二、溴化锂吸收式制冷机原理溴化锂吸收式机组根据用途主要分为冷水、热泵、冷热水;根据驱动热源主要分为蒸汽、直燃、热水;根据热源利用方式主要分为单效、双效、多效;根据溶液循环方式主要分为串联、并联、串并联;根据筒体数量可以分为双筒、单筒、多筒。

单效蒸汽型溴化锂吸收式制冷系统的组成:发生器,冷凝器,节流阀,蒸发器,蒸发泵,吸收器,吸收泵,发生泵,溶液热交换器组成。

单效蒸汽型机组的流程:发生器中产生的冷剂蒸气在冷凝器中冷凝成冷剂水,经U形管进入蒸发器,在低压下蒸发,产生制冷效应。

发生器中流出的浓溶液降压后进入吸收器、吸收由蒸发器产生的冷剂蒸气,形成稀溶液,用泵将稀溶液输送至发生器,重新加热,形成浓溶液。

整个系统构成五个回路:热源回路,溶液回路,冷却水回路,制冷回路,冷媒水回路。

溶液回路:(焓-浓度图)①发生过程(2-7-5-4);②热交换(4-8、2-7);③稀浓混合(8-9、2-9);④浓溶液吸收(9’-2)冷媒水回路:①冷凝过程(3’-3);②节流过程(3-1);③蒸发过程(1-1’)单效单筒蒸汽型溴化锂冷水机组双效双筒蒸汽型溴化锂冷水机组并联流程三、热力计算1、已知参数:制冷量Q0;冷媒水出口温度t x’;冷却水进口温度t w’;加热热源温度2、设计参数的选择:●吸收器、发生器冷却水出口温度tw1、tw2,考虑串连情况:总温升控制在7~9℃。

溴化锂制冷基础

溴化锂制冷基础
一:溴化锂水溶液的性质
1:水的特点:便宜,安全,汽化潜热大(2520kj/kg),传热系数高,常压下沸点高100度,常温下饱和压力低,0度以下结冰。
2:溴化锂
盐类,熔点549度,沸点高(1265度,不揮发),易溶于水,化学性质稳定,分子量86.856,成份Li7.99%;Br92.01%相对密度3.464(35度)。
二:制冷相关的物理性质:
1:溶解度:是饱和溶液的浓度。溴化锂极易溶于水,常温下饱和浓液的浓度可达60%左右。
溴化锂溶液中是否有晶体析出,取决于温度和浓度两个状态参数。但作为制冷机的工质,溴化锂溶液应该始终处于溶体状态,无论是运行或是停机期间,都不允许有晶体析出。
2:密度:单位体积物体的质量。用ρ表示,单位是kg/m2
7:饱和蒸汽压:溴化锂溶液的蒸汽分压力较小,或-密度(kg/m3);η--动力粘度(Pa*s);ν--运动粘度(m3/s).
在一定的温度下,随着浓度的增加,粘度急剧增大;
在一定的浓度下,随着温度的降低,粘度增大。
粘度的大小对溶液的流动状态有很大影响。
5:表面张力:表面张力用σ表示,单位为N/m.
3:用与制冷机的溴化锂水溶液
a:无色透明液体、咸味、无毒。
b:溶解度(质量浓度)随温度降低而降低。不宜超过66%,以防结晶。浓度为50%-51%。
C:PH值为9.0——10.5对碳钢、紫铜具有较强的腐蚀性。而引起腐蚀的主要原因是氧的作用,因此隔绝氧气是最根本的防腐措施。添加0.2%左右的铬酸锂并维持浓液在一定的范围内(PH=9.0--10.5),对抑制溴化锂溶液对金属材料的腐蚀也有重要作用。
只要同时测出溶液的密度和温度,就能查得溶液的浓度。
3:比热容:单位质量溶液温度升高(或降低1度)时,所吸收(或放出)的热量。用符号C表示,单位KJ/(Kg*K)。

溴化锂溶液的特性

溴化锂溶液的特性

溴化锂溶液的特性溴化锂机组溴化锂溶液的特性在溴化锂吸收式制冷机中,水作为制冷剂用来产生冷效应,溴化锂溶液作为吸收剂,用来吸收产生冷效应后的冷剂蒸汽。

因此,水和溴化锂溶液组成制冷机中的工质对(吸收式制冷循环是由发生器、吸收器、冷凝器、蒸发器、溶液泵和节流器等组成。

它的工质通常是由高沸点的吸收剂和低沸点的制冷剂混合组成的工质对)。

1. 溴化锂水溶液是由固体的溴化锂溶质溶解在水溶剂中而成。

常压下,水的沸点是100℃,而溴化锂的沸点为1265℃。

供制冷机应用的溴化锂,一般以水溶液的形式供应。

性状为无色透明液体;浓度不低于50%;水溶液PH值8以上。

2. 20℃时溴化锂溶解至饱和时量为111.2克,即溴化锂的溶解度为111.2克。

溶解度的大小与溶质和溶剂的特性的关,还与温度有关,一般随温度升高而增大,当温度降低时,溶解度减小,溶液中会有溴化锂的晶体析出而形成结晶现象。

这一点在溴冷机中是非常重要,运行中必须注意结晶现象,否则常会由此影响制冷机的正常运行。

3. 溴化锂溶液对普通金属有腐蚀作用。

尤其在有氧气存在的情况下腐蚀更为严重。

溴化锂制冷原理溴化锂吸收式制冷原理和蒸汽压缩制冷原理有相同之处,都是利用液态制冷剂在低温、低压条件下,蒸发、汽化吸收载冷剂的热负荷,产生制冷效应。

所不同的是,溴化锂吸收式制冷是在利用“溴化锂-水”组成的二元溶液为工质对,完成制冷循环的。

在溴化锂吸收式制冷机内循环的二元工质中,水是制冷剂。

水在真空状态下蒸发,具有较低的蒸发温度(6℃),从而吸收载冷剂热负荷,使之温度降低。

溴化锂水溶液是吸收剂,在常温和低温下强烈地吸收水蒸气,但在高温下又能将其吸收的水分释放出来。

吸收与释放周而复始制冷循环不断。

制冷过程中的热能为蒸汽,也可叫动力。

双效溴化锂制冷机工作原理双效溴化锂制冷机,一般形式为三筒式。

主要部件由:高压发生器、低压发生器、冷凝器、吸收器、蒸发器、高温换热器、低温换热器、冷凝水回热器、冷剂水冷却器及发生器泵、吸收器泵、蒸发器泵和电气控制系统等组成。

溴化锂水溶液的性质

溴化锂水溶液的性质

1.水滴形成圆球状,
2.豉豆虫和水黾可在水面上行走。 3.针会浮在水面 4.荷叶上的水滴成圆球状
表面张力定义

要扩大一个一定体积的液体的表面,那么作功。表面张力的定义为在扩大一个液体的表面 时所作的功除以被增大的面积。因此表面张力也可以 被看作是表面能的密度。
锂 水
热力学定义









如对已含有溴化锂水合物晶
第 三
体的溶液加热升温,在某一 温度下,溶液中的晶体会全

被溶解消失,这一温度即为

该质量分数下溴化锂溶液的
化 锂
结晶温度。测定各质量分数

下溴化锂溶液的结晶温度,
溶 液
可绘制成图3-2所示的结晶温

度曲线,该图表示了在溴化
性 质
锂吸收式机组工作的范围内 的结晶温度。当溶液的状态
性 质
数的增大而降低,并远低于同温度下水的饱和蒸汽压。
例如,在25℃时,质量

分数为50%的溴化锂溶液

的水蒸气压仅为

0.8kPa(6mmHg),而水在

此时的饱和蒸汽压约为
化 锂 水
3.16kPa(23.8mmHg)。这 表明溴化锂溶液的吸湿性

很强,因为只要水蒸气的
液 的 性
压力大于0.8kPa,如 0.93kPa(水的饱和温度为
溶 液
热力学对表面张力的广义定义为:
的 性
表面张力σ是在温度T和压力p不变的情况下吉布斯自

由能G对面积A的偏导数:
G
A
T , p
吉布斯自由能的单位是能量单位,因此表面张力的单

溴化锂溶液对直燃机组运行的影响

溴化锂溶液对直燃机组运行的影响

溴化锂溶液对直燃机组的影响一、溴化锂直燃机组的的工作原理1、溴化锂-水溶液的性质溴化锂-水溶液是由溴化锂固体溶于水而得,常压下溴化锂固体的沸点是1265度,水的沸点是100度,二者相差很大,因此溴化锂溶液沸腾时产生的蒸汽基本上没有溴化锂,只有水蒸气。

溴化锂溶液是一种无色无毒的液体,具有强烈的腐蚀性和吸收性,因此通常情况下都是密封保存的。

2、溴化锂吸收式直燃机组的工作原理机组由高压发生器、低压发生器、吸收器、蒸发器、冷凝器、低温热交换器、高温热交换器等主要部件组成。

稀溶液经发生泵后分两路,一路经高温热交换器到高压发生器由燃烧机加热分离成高温蒸汽和浓溶液,高温蒸汽首先进入低压发生器,加热其中的稀溶液,同时自身降温后进入冷凝器,冷凝成冷剂水后进入蒸发器进行喷淋。

高压发生器中的浓溶液经高温热交换器后进入吸收器,经吸收泵进行喷淋吸收蒸发器中的冷剂水蒸汽成为稀溶液后再次循环,如此往复。

另一路稀溶液经低温热交换器进入低压发生器,经高压发生器中来的高温蒸汽加热后分离成蒸汽和浓溶液后,蒸汽进入冷凝器,浓溶液经低温热交换器进入吸收器后进行喷淋,吸收蒸发器中的冷剂水蒸汽成为稀溶液后再次循环。

以上过程全部在真空状态下进行,蒸发器中的最低压甚至可以达到 6mmHg,再此环境下水的蒸发温度只有 4 度,而溴化锂溶液具有强烈的吸收性,可以吸收周围的冷剂水蒸汽,从而维持一个低压的环境,溴化锂吸收式直燃机组的制冷就是利用这个原理实现的。

二、溴化锂-水溶液对溴化锂直燃机组的影响1、溴化锂-水溶液对机组真空的影响通过溴化锂直燃机组的工作原理我们知道机组的工作是在真空状态下进行的。

不凝性气体是指溴化锂吸收式机组工作时,既不被冷凝,也无法被溴化锂溶液所吸收的气体。

外部泄入机组的空气(O2 、N2 等)及内部因腐蚀而产生的气体,均属不凝性气体。

由于溴化锂吸收式机组是在高真空下工作的。

蒸发器、吸收器中的绝对工作压力仅几百帕,外部空气极易漏入,即使制造完好的机组,随着运转时间的不断增加及自身构造方面的原因(机组难免会有调节阀,视镜等必要的部件),也难免保证机组的绝对气密性。

溴化锂-的性质

溴化锂-的性质

溴化锂名称:溴化锂化学式:LiBr分子量:86.85物理性质:极易潮解。

一水溴化锂干燥失水可得无水物。

状态:白色立方晶系结晶体或粒状粉末。

密度:3.64g/cm^3熔点:560℃沸点1265℃溶解性:易溶于水、乙醚、乙醇,可溶于甲醇、丙酮、乙二醇等有机溶剂,微溶于吡啶。

热的溴化锂溶液可溶解纤维。

其水溶液具有强烈的吸湿性,而且,在常温下饱和溴化锂水溶液的浓度达60% ,浓度越大,温度越低,吸湿能力越强。

化学性质:性质稳定,在大气中不易变质不易分解。

可与氨或胺形成一系列的加成化合物,如一氨合溴化程、二氨合溴化锂、三氨合溴化锂、四氨合溴化锂。

与溴化铜、溴化高汞、碘化高汞、氰化高汞、溴化锶等能形成可溶性盐。

溴化锂在空气中对钢铁有很强的腐蚀作用,但在真空状态下加入缓蚀剂,基本上不腐蚀金属。

毒性:大剂量服入溴化锂会抑制中枢神经系统,长期吸入可导致皮肤斑疹及中枢神经的紊乱。

应用是一种高效水蒸气吸收剂和空气湿度调节剂。

致冷工业广泛用作吸收式制冷剂,有机工业用作氯化氢脱陈剂和有机纤维膨胀剂。

医药上用作催眠剂和镇静剂。

电池工业用作高能电池和微型电池的电解质。

此外,也用于照相行业和分析化学中。

溴化锂水溶液性质(1)无色液体,有咸味,无毒,加入铬酸锂后溶液呈淡黄色。

(2)溴化锂在水中的溶解度随温度的降低而降低。

如图1所示。

图中的曲线为结晶线,曲线上的点表示溶液处于饱和状态,它的左上方表示有固体溴化锂结晶析出,右下方表示溶液中没有结晶存在。

所谓溶解度是指饱和液体中所含溴化锂无水化合物的质量成分,也就是溴化锂水溶液的质量浓度。

由图中曲线可知,溴化锂的质量浓度不宜超过66%,否则在运行中当溶液温度降低时将有结晶析出,破坏制冷机的正常运行。

(3)水蒸气分压力很低,它比同温度下纯水的饱和蒸气压力低得多,因而有强烈的吸湿性。

液体与蒸气之间的平衡属于动平衡,此时分子穿过液体表面到蒸气中去的速率等于分子从蒸气中回到液体内的速率。

因为溴化锂溶液中溴化锂分子对水分子的吸引力比水分子之间的吸引力强,也因为在单位液体容积内溴化锂分子的存在而使水分子的数目减少,所以在相同温度的条件下,液面上单位蒸气容积内水分子的数目比纯水表面上水分子数目少。

溴化锂溶液冰点-概述说明以及解释

溴化锂溶液冰点-概述说明以及解释

溴化锂溶液冰点-概述说明以及解释1.引言1.1 概述溴化锂溶液是指将溴化锂固体溶解在水中而形成的溶液。

溴化锂是一种无机化合物,具有较高的溶解度和独特的性质。

它广泛应用于工业生产和实验室研究中,尤其是在制冷领域中具有重要的作用。

本文主要关注溴化锂溶液的一个特性,即其冰点。

冰点是溴化锂溶液在逐渐降温过程中发生凝固的温度。

研究溴化锂溶液的冰点可以帮助我们更好地了解其物理性质和溶解过程中的相变行为。

通过对溴化锂溶液冰点的研究,能够揭示溴化锂溶液的浓度、温度和压力等因素对冰点的影响。

这不仅对于工业生产中溴化锂制冷剂的选择和控制具有指导意义,而且对于相关领域的科学研究也有着重要的应用价值。

本文将首先介绍溴化锂溶液的基本性质,包括其化学成分、溶解度和物理性质等方面的内容。

然后,将重点探讨溴化锂溶液的冰点特性,并对影响其冰点的因素进行深入分析和讨论。

最后,将总结研究结果,给出对溴化锂溶液冰点意义的探究,并展望未来研究的方向。

通过本文的阐述,读者将能够全面了解溴化锂溶液的冰点特性及其影响因素,为相关领域的研究和实践提供参考依据。

同时,本文也将为溴化锂制冷剂的应用和开发提供有益的指导。

1.2文章结构文章结构部分的内容可以是以下内容:文章结构:本文按照以下顺序来组织和呈现研究结果和分析。

首先,我们将在第二部分中介绍溴化锂溶液的性质,包括其化学性质和物理性质。

然后,我们将在第三部分中详细探讨溴化锂溶液的冰点,包括冰点的定义、测量方法以及已有的研究成果。

接下来,我们将在第四部分中分析影响溴化锂溶液冰点的因素,包括溶液浓度、溶剂种类、温度等。

在第五部分,我们将讨论溴化锂溶液冰点的意义,包括它在工业生产和科学研究中的应用。

最后,我们将在第六部分总结本文的主要结论,并展望进一步的研究方向。

通过以上的文章结构,我们将全面而系统地介绍溴化锂溶液冰点的相关内容,从而使读者对该研究主题有一个清晰的整体认识。

同时,通过对溴化锂溶液的性质及其冰点的探讨,我们希望能够揭示出影响溴化锂溶液冰点的原因,为相关工业和科研领域提供一定的参考和指导。

最新溴化锂水溶液的特性

最新溴化锂水溶液的特性

溴化锂水溶液的特性- 溴化锂机组溴化锂水溶液的特性本文从水的性质介绍到溴化锂的物理性质,解释了为什么溴化锂机组可以有效的制冷。

水的性质水是很容易获得的物质,它无毒、不燃烧、不爆炸、汽化潜热大、比容大。

溴化锂的物理性质无色粒状晶体,有咸味,性质与食盐相似,无毒。

熔点高。

549℃沸点高。

1265℃吸水性强性质稳定,在大气中不变质、不分解。

溴化锂水溶液的物理性质无色液体,有咸味,无毒。

溴化锂在水中的溶解度随温度的降低而降低。

溴化锂溶液的水蒸汽分压力很小。

溴化锂溶液的密度比水大。

溴化锂溶液的密度比热较小。

溴化锂溶液的粘度较大。

溴化锂溶液的表面张力大。

(不容易吸收水蒸汽,需加表面活性剂)溴化锂溶液对金属有腐蚀性。

(加缓蚀剂:钼酸锂、铬酸锂)表面活性剂正辛醇〔CH。

(CH:)3CHCZH6CHZOH〕或异辛醇〔CH:(CH:)。

CH:OH〕为提高热交换效果,常在溴化锂溶液中加入表面活性剂。

常用表面活性剂是异辛醇或正辛醇。

辛醇在常压下,是无色有刺激性气味的液体,在溶液中溶解度很小。

试验表明,添加辛醇后,制冷量约提高10%左右。

一般机组中添加0.1-0.3%(V%)的辛醇就能达到效果。

作用机理提高吸收器的吸收效果降低溶液表面张力,提高溶液的吸收水蒸汽的能力。

水蒸汽由膜状冷凝转变为珠状冷凝,提高了冷凝器的冷凝效果。

且使溶液沸点下降,尤其是在高浓度时影响比较显著。

这对溶液发生有利。

同时,辛醇对溶液还有起泡的作用,可促进发生器中溶液沸腾时气泡的逸出。

添加0.1~0.3%(重量百分比)的辛醇已能满足要求,再提高添加量,制冷量则无明显的增加。

辛醇的性质与溴化锂溶液基本不溶。

易挥发,有可能在真空泵抽气时随不凝气体带出机外,抽气次数越多,抽出机外的辛醇量越大,当真空泵排出的气体中无辛醇气味,或辛醇气味很小时,应进行补充.腐蚀与防腐溴化锂溶液对金属产生腐蚀的原因铁、铜在溴化锂溶液中,在有氧气存在的情况下,与溴化锂溶液发生化学反应,而被腐蚀,同时产生氢气。

溴化锂水溶液的性质

溴化锂水溶液的性质

溴化锂水溶液的性质溴化锂水溶液性质:(1)无色液体,有咸味,无毒,加入铬酸锂后溶液呈淡黄色。

(2)溴化锂在水中的溶解度随温度的降低而降低。

如图1所示。

图中的曲线为结晶线,曲线上的点表示溶液处于饱和状态,它的左上方表示有固体溴化锂结晶析出,右下方表示溶液中没有结晶存在。

所谓溶解度是指饱和液体中所含溴化锂无水化合物的质量成分,也就是溴化锂水溶液的质量浓度。

由图中曲线可知,溴化锂的质量浓度不宜超过66%,否则在运行中当溶液温度降低时将有结晶析出,破坏制冷机的正常运行。

(3)水蒸气分压力很低,它比同温度下纯水的饱和蒸气压力低得多,因而有强烈的吸湿性。

液体与蒸气之间的平衡属于动平衡,此时分子穿过液体表面到蒸气中去的速率等于分子从蒸气中回到液体内的速率。

因为溴化锂溶液中溴化锂分子对水分子的吸引力比水分子之间的吸引力强,也因为在单位液体容积内溴化锂分子的存在而使水分子的数目减少,所以在相同温度的条件下,液面上单位蒸气容积内水分子的数目比纯水表面上水分子数目少。

由于溴化锂的沸点很高,在所采用的温度范围内不会挥发,因此和溶液处于平衡状态的蒸气的总压力就等于水蒸气的压力,从而可知温度相等时,溴化锂溶液面上的水蒸气分压力小于纯水的饱和蒸气压力,且浓度愈高或温度愈低时水蒸气的分压力愈低。

图2表示溴化锂溶液的温度、浓度与压力之间的关系。

由图可知,当浓度为50%、温度为25℃时,饱和蒸气压力0.85kPa,而水在同样温度下的饱和蒸气压力为3.167kPa。

如果水的饱和蒸压力大于0.85kPa,例如压力为1kPa(相当于饱和温度为7℃)时,上述溴化锂溶液就具有吸收它的能力,也就是说溴化锂水溶液具有吸收温度比它低的水蒸气的能力,这一点正是溴化锂吸收式制冷机的机理之一。

同理,如果压力相同,溶液的饱和温度一定大于水的饱和温度,由溶液中产生的水蒸气总是处于过热状态的。

(4)密度比水大,并随溶液的浓度和温度而变,如图3所示。

(5)比热容较小,如图4所示。

溴化锂溶液性质腐蚀性回收及再生利用-回收二手制冷机溴化锂

溴化锂溶液性质腐蚀性回收及再生利用-回收二手制冷机溴化锂

流入吸收器使发生器内液位升高。

当液位升高到某一位置时,高温的溶液便通过丁形管直接进入吸收器;而当溶液泵将此高温的溶液经溶液热交换器送住发外器时,就会在热交换器中的结品自动地溶解,消除结晶现象。

除了采用丁字形管作为自动融晶装置外,在溴化锂制冷机中,还必须配置一定的自控元件,来顶防结晶现象的产生。

1,在发生器出口的浓溶液管道上装设温度继电器。

2,在蒸发器液囊中装设液位控制器。

3,冷却水断水或者流量过低保护装置。

4,直接停机检修,查明原因。

溴化锂制冷机中空腔吸收器中只进行质交换的吸收过程。

与吸收器相比,更要求喷嘴具有颗粒度小、雾化好、喷淋均匀等特点。

试验认明;接近喷嘴处,吸收过程最为剧烈,距离喷嘴出口300--450毫米处,吸收过程基本完成成,因此,空腔吸收器不需要过大的空间。

吸收器中溶液带走的热量即为水--溶液热交换器的热负荷对一定的吸收器热负荷来说,增加喷淋溶液循环量,可降低溶液进出口温差。

反之,增大溶液进出口温差。

喷淋溶液循环量可减少。

喷淋溶液循环量应根据机组设计参数来确定。

在冷却水量、溶液循环量、热交换储出口浓溶液温度与吸收器出口稀溶液温度(受稀溶掖浓度与蒸发压力的制约)不变的前提下,无疑,冷却水温愈低,溶液出口温度(溶液预冷后温度)愈低,进出口温差愈大,吸收器热负荷提高。

要是吸收器负荷一定,则喷淋溶液循环量可减少,这对于降低治液泵功率有着显著的效果。

发生器是回收溴化锂制冷机中温度最高的部分。

由于筒体与管簇通过管板连成一体,筒体与管簇因温度引起的伸长又各不相同,因而在管子与管板的连接处就产生了热应力。

这达种热应力易溴化锂空调回收运转中,溶液(或冷剂水)的注入或取出:为满足一定工况的要求,运转中需调节机组中的溶液(或冷剂水)量,不足部分应补充、多余部分则徘出。

一般由稀溶液取样阀或冷剂水取样阀取出多余的溶液或冷剂水,方法与取样时相同。

补充溶液时,一般由浓溶液取样阀吸入,方法与注入溶液时相同,但应严防空气泄入。

溴化锂溶液说明书

溴化锂溶液说明书

用于制药工业中。
水中溶解度(g/100ml)不同温度(℃)时每 100 毫升水中的溶解克数:
143g/0℃;147g/10℃;160g/20℃;183g/30℃;211g/40℃
223g/60℃;245g/80℃;266g/100℃
用途
54%~55%溴化锂溶液作吸收制冷剂,用于大规
用途
无水溴化锂主要应用于水蒸气吸收剂和空气湿度调节剂,可用作吸收式制冷剂,同时还应用于有机
化学、医药行业、感光工业等行业
用途
用于医药行业、制冷行业等
形态
powder
颜色
White
水溶解性
61 g/100 mL (25 ºC)
溴化锂 用途与合成方法
概述
溴化锂是一种无色的呈粒状的结晶物,性质稳定,在大气中不会分解挥发和变质,无毒(有镇静作
剧),对皮肤无刺激作用。易潮解,有微苦味。熔点 547℃,沸点 1265℃,相对密度 3.46425,折
光率 1.784。能溶于甲醇、乙醇、戊醇、甘油、乙二醇、丙酮、乙醚、许多有机酸、酯类等有机溶
剂,不溶于液溴中,不能形成多溴化物。具有很强的吸水性,并极易溶于水,能形成一系列水合
物:LiBr·H2O、LiBr·2H2O、 LiBr ·3H2O。常温下为二水合物,为白色晶体,44℃失去 1 分子结
晶水,高于 160℃变为无水物。其水溶液呈中性或微碱性。对一般金属具有极大的腐蚀性。防腐蚀
的主要措施是首先是保持高度的真空以隔绝氧气,其次是加入缓蚀剂,并使溶液温度不超过 12
中文名称: 溴化锂
英文名称: Lithium bromide CAS 号: 7550-35-8 分子式: BrLi 分子量: 86.85
溴化锂溶液性质说明书

溴化锂冷水机组工作原理及分类

溴化锂冷水机组工作原理及分类

溴化锂冷水机组工作原理及分类溴化锂制冷机的工作原理和分类溴化锂溶液的特性在溴化锂吸收式制冷机中,水作为制冷剂产生冷效应,溴化锂溶液作为吸收剂吸收冷效应产生后的制冷剂蒸汽因此,水和溴化锂溶液形成了冰箱中的工作对1。

溴化锂水溶液是通过将固体溴化锂溶质溶解在水溶剂中而形成的在常压下,水的沸点是100℃,而溴化锂的沸点是1265℃冰箱用溴化锂通常以水溶液的形式提供。

字符是无色透明的液体。

浓度不得低于50%;水溶液的酸碱度在8以上2。

20℃时,溶解至饱和的溴化锂的量为111.2克,即溴化锂的溶解度为111.2克溶解度与溶质和溶剂的特性有关,也与温度有关。

通常,溶解度随着温度的升高而增加。

当温度降低时,溶解度降低,溴化锂晶体将在溶液中沉淀形成晶体。

这一点在溴冷却器中非常重要。

运行中必须注意结晶现象,否则会影响冰箱的正常运行。

3。

溴化锂溶液对普通金属有腐蚀作用特别是在有氧气的情况下,腐蚀更严重。

溴化锂制冷原理溴化锂吸收式制冷原理和蒸汽压缩式制冷原理相同。

两者都使用液态制冷剂在低温和低压条件下蒸发和汽化,以吸收冷却剂的热负荷并产生制冷效果不同之处在于溴化锂吸收式制冷采用“溴化锂-水”组成的二元溶液作为工质对来完成制冷循环。

是在溴化锂吸收式制冷机中循环的二元制冷剂,水是制冷剂。

水在真空状态下蒸发,蒸发温度较低(6℃),因此吸收了冷却剂的热负荷并降低了其温度。

溴化锂水溶液是一种吸收剂,在常温和低温下能强烈吸收水蒸气,但在高温下会释放出它所吸收的水分。

吸收和释放循环制冷循环制冷过程中的热能是蒸汽,也可以称为动力。

双效溴化锂制冷机的工作原理是双效溴化锂制冷机,一般为三缸形式主要部件由:高压发生器、低压发生器、冷凝器、吸收器、蒸发器、高温换热器、低温换热器、冷凝水再生器、冷却水冷却器和发生器泵、吸收器泵、蒸发器泵和电气控制系统等组成。

制冷原理是吸收器中的稀溶液由发生器双向泵入高温换热器和低温换热器,进入高温换热器的稀溶液被从高压发生器流出的高温浓溶液加热后进入高压发生器。

溴化锂吸收式制冷机原理及特点蒸发器

溴化锂吸收式制冷机原理及特点蒸发器

熔晶管
安装在发生器与吸收器之间,是溶液交换器结晶后浓溶液流回吸收器的 通道。当溶液交换器内的浓溶液因结晶堵塞时,发生器液位上升,浓溶 液溢流入熔晶管,直接进入吸收器。未经过溶液热交换器降温的浓溶液 进入吸收器后,使吸收器中的稀溶液温度升高。高温稀溶液流经溶液热 交换器,加热传热管外的浓溶液,由此达到熔晶的目的。
溴化锂吸收式制冷机原理及特点
溴化锂吸收式制冷机
溴化锂吸收式制冷机是指以水为制冷剂,溴化锂溶液为吸收剂,制取0℃ 以上的低温的制冷机组
吸收式制冷机的原理和吸收液
制冷原理:由于液体蒸发时必须从周围获取热量。制冷装置就是根据蒸 发吸收热量的原理设计。在大气压力(760mmHg)下,水要达到100℃ 才沸腾蒸发,而在低于大气压力(即真空)环境下,水可在温度很低时 沸腾蒸发。如果在密闭的容器里获得6 mmHg的低压条件,水的沸腾蒸 发温度只有4℃。溴化锂溶液是一种吸水性极强的物质,可以连续不断地 将周围空间的水蒸汽吸收过来,维持低压条件。蒸汽溴化锂制冷机就是 利用这一原理设计的:水在真空环境下蒸发带走系统的热量,溴化锂溶 液吸收水蒸汽,将水蒸汽中的热量传递给冷却水,再通过冷却塔释放到 大气中去,变稀了的溴化锂溶液通过加热浓缩,分离出水蒸汽冷凝后再 次去蒸发,浓溶液再次去吸收。
溴化锂吸收式制冷机原理及特点
发生器
管壳式结构, 由管体、传热管、隔热层、挡液板和传热管支 撑板等组成。来自锅炉或其它设备的热水流经发生器的传热 管内,加热管外的溴化锂稀溶液,使其产生出冷剂蒸汽,溶 液浓缩成浓溶液。发生器内压力约为7.6kPa(57mmHg)。 热水型机组的热水在传热管内放出热量,温度降低后流出机 组。 重要参数 压力:50-60mmHg 温度:100-120℃左右。

溴化锂水溶液的特性

溴化锂水溶液的特性

溴化锂水溶液的特性- 溴化锂机组溴化锂水溶液的特性本文从水的性质介绍到溴化锂的物理性质,解释了为什么溴化锂机组可以有效的制冷。

水的性质水是很容易获得的物质,它无毒、不燃烧、不爆炸、汽化潜热大、比容大。

溴化锂的物理性质无色粒状晶体,有咸味,性质与食盐相似,无毒。

熔点高。

549℃沸点高。

1265℃吸水性强性质稳定,在大气中不变质、不分解。

溴化锂水溶液的物理性质无色液体,有咸味,无毒。

溴化锂在水中的溶解度随温度的降低而降低。

溴化锂溶液的水蒸汽分压力很小。

溴化锂溶液的密度比水大。

溴化锂溶液的密度比热较小。

溴化锂溶液的粘度较大。

溴化锂溶液的表面张力大。

(不容易吸收水蒸汽,需加表面活性剂)溴化锂溶液对金属有腐蚀性。

(加缓蚀剂:钼酸锂、铬酸锂)表面活性剂正辛醇〔CH。

(CH:)3CHCZH6CHZOH〕或异辛醇〔CH:(CH:)。

CH:OH〕为提高热交换效果,常在溴化锂溶液中加入表面活性剂。

常用表面活性剂是异辛醇或正辛醇。

辛醇在常压下,是无色有刺激性气味的液体,在溶液中溶解度很小。

试验表明,添加辛醇后,制冷量约提高10%左右。

一般机组中添加0.1-0.3%(V%)的辛醇就能达到效果。

作用机理提高吸收器的吸收效果降低溶液表面张力,提高溶液的吸收水蒸汽的能力。

水蒸汽由膜状冷凝转变为珠状冷凝,提高了冷凝器的冷凝效果。

且使溶液沸点下降,尤其是在高浓度时影响比较显著。

这对溶液发生有利。

同时,辛醇对溶液还有起泡的作用,可促进发生器中溶液沸腾时气泡的逸出。

添加0.1~0.3%(重量百分比)的辛醇已能满足要求,再提高添加量,制冷量则无明显的增加。

辛醇的性质与溴化锂溶液基本不溶。

易挥发,有可能在真空泵抽气时随不凝气体带出机外,抽气次数越多,抽出机外的辛醇量越大,当真空泵排出的气体中无辛醇气味,或辛醇气味很小时,应进行补充.腐蚀与防腐溴化锂溶液对金属产生腐蚀的原因铁、铜在溴化锂溶液中,在有氧气存在的情况下,与溴化锂溶液发生化学反应,而被腐蚀,同时产生氢气。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

溴化锂水溶液的特性- 溴化锂机组溴化锂水溶液的特性
本文从水的性质介绍到溴化锂的物理性质,解释了为什么溴化锂机组可以有效的制冷。

水的性质
水是很容易获得的物质,它无毒、不燃烧、不爆炸、汽化潜热大、比容大。

溴化锂的物理性质
无色粒状晶体,有咸味,性质与食盐相似,无毒。

熔点高。

549℃
沸点高。

1265℃
吸水性强
性质稳定,在大气中不变质、不分解。

溴化锂水溶液的物理性质
无色液体,有咸味,无毒。

溴化锂在水中的溶解度随温度的降低而降低。

溴化锂溶液的水蒸汽分压力很小。

溴化锂溶液的密度比水大。

溴化锂溶液的密度比热较小。

溴化锂溶液的粘度较大。

溴化锂溶液的表面张力大。

(不容易吸收水蒸汽,需加表面活性剂)溴化锂溶液对金属有腐蚀性。

(加缓蚀剂:钼酸锂、铬酸锂)
表面活性剂
正辛醇〔CH。

(CH:)3CHCZH6CHZOH〕或异辛醇〔CH:(CH:)。

CH:OH〕为提高热交换效果,常在溴化锂溶液中加入表面活性剂。

常用表面活性剂是异辛醇或正辛醇。

辛醇在常压下,是无色有刺激性气味的液体,在溶液中溶解度很小。

试验表明,添加辛醇后,制冷量约提高10%左右。

一般机组中添加0.1-0.3%(V%)的辛醇就能达到效果。

作用机理
提高吸收器的吸收效果降低溶液表面张力,提高溶液的吸收水蒸汽的能力。

水蒸汽由膜状冷凝转变为珠状冷凝,提高了冷凝器的冷凝效果。

且使溶液沸点下降,尤其是在高浓度时影响比较显著。

这对溶液发生有利。

同时,辛醇对溶液还有起泡的作用,可促进发生器中溶液沸腾时气泡的逸出。

添加0.1~0.3%(重量百分比)的辛醇已能满足要求,再提高添加量,制冷量则无明显的增加。

辛醇的性质
与溴化锂溶液基本不溶。

易挥发,有可能在真空泵抽气时随不凝气体带出机外,抽气次数越多,抽出机外的辛醇量越大,当真空泵排出的气体中无辛醇气味,或辛醇气味很小时,应进行补充.
腐蚀与防腐
溴化锂溶液对金属产生腐蚀的原因
铁、铜在溴化锂溶液中,在有氧气存在的情况下,与溴化锂溶液发生化学反应,而被腐蚀,同时产生氢气。

影响溴化锂溶液对金属产生腐蚀的因素
氧气的存在
氧气的存在是导致溴化锂溶液对金属腐蚀的主要因素。

溶液的温度
试验表明:当温度低于165℃时,溶液温度对金属腐蚀影响不大;当温度高于165℃时,溶液对碳钢及紫铜的腐蚀急剧增大。

(高温再生器温度指标为:<165℃,蒸汽正常使用6kgf/cm2蒸汽,防止产生腐蚀)
溶液的酸碱度
溶液的PH值小于7时,溶液呈酸性,对金属腐蚀严重,PH值过大,易引起碱性腐蚀。

一般PH值范围在9.0-10.5之间。

溶液的浓度
在常压下,稀溶液中氧的溶解度比浓溶液大,所以稀溶液的腐蚀大,但在真空条件下,由于含氧量少,所以金属的腐蚀性几乎与溶液的浓度无关。

缓蚀机理及缓蚀剂
在溶液中加入各种缓蚀剂可有效抑制溴化锂溶液对金属的腐蚀。

缓蚀剂通过化学反应,在金属表面形成一层细密的保护膜,阻止溶液、氧气和金属腐蚀。

所用的缓蚀剂为钼酸锂:形成的保护膜致密均匀,且高温下不分解,
缓蚀性能好,但反应速度慢,形成保护膜时间长,对氢气抑制能力低。

冷剂水污染
由于运转条件变化,或操作不当等原因,发生器中的溴化锂溶液可
能随冷剂蒸汽进入冷凝器和蒸发器中,使冷剂水中含溴化锂,这种现
象称为冷剂污染。

发生冷剂污染,将使机组制冷量下降。

冷剂污染的原因
热源温度突然升高;
冷却水温度过低。

冷剂水再生处理
当冷剂水相对密度大于1.04时,说明发生了冷剂水污染,应进行
冷剂水的再生处理,将污染后的冷剂向吸收液一侧转移,再生成干净
的冷剂。

再生处理操作
打开冷媒溢流阀,注意不能把蒸发器内冷剂水放光,开冷剂泵循环,
操作2-3次。

225+214= 521+26= 97+535= 362-138= 479-254= 450-242= 198+157= 283+76=
349+231= 400-206= 574-390= 56+238= 679-497= 835-209= 374+226= 666+286= 702-173= 575+322= 417-223= 806+95=
145-68= 548+452= 85+263= 293-56= 560+380= 725-388= 292-187= 366+207= 900-405= 629+240= 927-254= 628-255= 223+404= 85+37= 602-336= 300-185=
900-461= 319+250= 326+588= 800-695=。

相关文档
最新文档