初中数学格点与面积(B)同步练习及答案

合集下载

2023年中考数学《网格作图》真题及答案解析

2023年中考数学《网格作图》真题及答案解析

2023中考真题抢先练:数学网格作图1.(2023达州18题)如图,网格中每个小正方形的边长均为1,△ABC 的顶点均在小正方形的格点上.(1)将△ABC 向下平移3个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1;(2)将△ABC 绕点C 顺时针旋转90度得到△A 2B 2C 2,画出△A 2B 2C 2;(3)在(2)的运动过程中请计算出△ABC 扫过的面积.第1题图【推荐区域:安徽陕西】【参考答案】解:(1)如解图,△A 1B 1C 1即为所求;(2)如解图,△A 2B 2C 2即为所求;第1题解图(3)由图可得,△ABC 为等腰直角三角形,∴51222=+==BC AB ,AC =101322=+,∴25552121=´´=×=D BC AB S ABC ,∴△A 1B 1C 1在旋转过程中扫过的面积为2ABCACA S S D +扇形290360p ´=+52=52π+52.反比例与一次函数性质综合题2.(2023自贡24题)如图,点A (2,4)在反比例函数xm y =1图象上,一次函数b kx y +=2的图象经过点A ,分别交x 轴,y 轴于点B ,C ,且△OAC 与△OBC 的面积比为2:1.(1)求反比例函数和一次函数的解析式;(2)请直接写出y 1≥y 2时,x 的取值范围.第2题图【推荐区域:安徽江西甘肃】【参考答案】解:(1)将A (2,4)代入x m y =1中得24m =,解得m =8,∴xy 81=,∵C (0,b ),∴12OAC S OC D =·2=b ,∵△OAC 与△OBC 的面积比为2:1,∴b OB OC S OBC 2121=´=D ,解得OB =1,∴B (-1,0)或(1,0),①将A (2,4),B (-1,0)代入b kx y +=2中,得îíì+-=+=,,b k b k 024解得ïîïíì==,,3434b k ∴34342+=x y ;②将A (2,4),B (1,0)代入b kx y +=2中,得îíì+=+=,,b k b k 024解得îíì-==,,44b k ∴442-=x y ;综上可知,一次函数的解析式为34342+=x y 或442-=x y ;(2)当34342+=x y 时,x ≤-3或0<x ≤2;当442-=x y 时,x ≤-1或0<x ≤2.解直角三角形的实际应用3.(2023达州19题)莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱,如图所示,秋千链子的长度为3m ,当摆角∠BOC 恰为26°时,座板离地面的高度BM 为0.9m ,当摆动至最高位置时,摆角∠AOC 为50°,求座板距地面的最大高度为多少m?(结果精确到0.1m ;参考数据:sin 26°=0.44,cos 26°≈0.9,tan 26°≈0.49,sin 50°≈0.77,cos 50°≈0.64,tan 50°≈1.2)第3题图【推荐区域:安徽江西河南甘肃】【参考答案】解:如解图,过点B 作BD ⊥ON 于点D ,过点A 作AE ⊥ON 于点E ,作AF ⊥MN于点F,第3题解图∴四边形BDNM,AENF均为矩形,∴BM=DN=0.9,AF=EN,在Rt△OBD中,OD=OB·cos26°=3cos26°,∴ON=OD+DN=3cos26°+0.9,在Rt△OAE中,OE=OA·cos50°=3cos50°,∴EN=ON-OE=3cos26°+0.9-3cos50°,∴AF=3cos26°+0.9-3cos50°≈3×0.9+0.9-3×0.64=1.68≈1.7(m),答:座板距地面的最大高度为1.7m.4.(2023重庆A卷24题)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图:①A—D—C—B;②A—E—B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E在点A的正南方,点E在点B的南偏西60°方向.( 1.41≈1.73)(1)求AD的长度;(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?第4题图【推荐区域:安徽江西河南甘肃】【参考答案】解:(1)如解图,过点D作DF⊥AB于点F.第4题解图由题意可知,AB∥CD,BC⊥AB,∴四边形BCDF是矩形,且BC=10,CD=14.∴DF=BC=10,在Rt△ADF中,∠DAF=45°,∴AD≈14(千米),答:AD的长度约为14千米;(2)由题意可知,EA⊥AB,∠ABE=90°-60°=30°,∵AF=DF=10,BF=CD=14,∴AB=AF+BF=10+14=24,∴在Rt△ABE中,AE AB BE=2AE线路①:AD+CD+BC≈38.1(千米),线路②:AE+BE41.52(千米),∵38.1<41.52,∴小明应选择线路①.二次函数的实际应用5.(2023南充23题)某工厂计划从A ,B 两种产品中选择一种生产并销售,每日产销x 件,已知A 产品成本价m 元/件(m 为常数,且4≤m ≤6),售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B 产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y 元,y (元)与每日产销x (件)满足关系式201.080x y +=.(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润;(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.[利润=(售价一成本)×产销数量一专利费]【推荐区域:安徽河北云南江西】【参考答案】解:(1)根据题意,得30)8(1--=x m w ,0≤x ≤500.)01.080()1220(22x x w +--=80801.02-+-=x x ,0≤x ≤300;(2)∵8-m >0,∴1w 随x 的增大而增大,又0≤x ≤500,∴当x =500时,1w 的值最大,39705001+-=m w 最大.1520)400(01.080801.0222+--=-+-=x x x w .∵-0.01<0,对称轴为直线x =400,当0≤x ≤300时,2w 随x 的增大而增大,∴当x =300时,2w 最大=-0.01×(300-400)2+1 520=1 420(元).(3)①若最大1w =最大2w ,即-500m +3970=1420,解得m =5.1;②若最大1w >最大2w ,即-500m +3970>1 420,解得m <5.1;③若最大1w <最大2w ,即-500m +3 970<1420,解得m >5.1.又∵4≤m ≤6,∴综上可得,为获得最大日利润:当m =5.1时,选择A ,B 产品产销均可;当4≤m <5.1时,选择A 种产晶产销;当5.1<m ≤6时,选择B 种产品产销.二次函数性质综合题6.(2023遂宁25题)在平面直角坐标系中,O 为坐标原点,抛物线c bx x y ++=241经过点O (0,0),对称轴过点B (2,0),直线l 过点C (2,-2)且垂直于y 轴.过点B 的直线1l 交抛物线于点M ,N ,交直线l 于点Q ,其中点M ,Q 在抛物线对称轴的左侧.(1)求抛物线的解析式;(2)如图1,当BM :MQ =3:5时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接PQ ,PO ,其中PO 交1l 于点E ,设△OQE 的面积为1S ,△PQE 的面积为2S ,求12S S 的最大值.第6题图【推荐区域:安徽陕西】【参考答案】解:(1)由题意得0b 2124c =ìïïí-=ï´ïî,,解得01c b =ìí=-î,,∴抛物线的解析式为y =214x -x ;(2)如解图,过点M ,Q 作MD ⊥x 轴,QH ⊥x 轴分别于点D ,H ,第6题解图∴DM ∥HQ ,∴△BDM ∽△BHQ ,∴BM BQ =DM HQ ,∴38=2DM ,∴DM =34,∴点M 的纵坐标为-34,代入y =34x 2-x 中,解得x M =1或x M =3,∵点M 在抛物线对称轴的左侧,∴x M =1,∴点M (1,-34),设直线BM 的解析式为y =kx +b 1,将点M (1,-34)和点B (2,0)代入,得113=402k b k b ì-+ïíï=+î,,解得13=432k b ìïïíï=-ïî,,∴直线BM 的解析式为y =2343-x ,联立2143342y x x y x ì=-ïïíï=-ïî,,解得134x y =ìïí=-ïî,或63x y =ìí=î,,∵点N 在对称轴的右侧,∴点N (6,3);(3)由题意可知,点Q 的坐标为(0,-2),设点P (m ,14m 2-m ),由题意得直线y OP =(14m -1)x ,直线l 1的解析式为y BQ =x -2,联立1(1)42y m x y x ì=-ïíï=-î,,∴点E 的横坐标为x E =88m -,∴S 1=21OQ ·x E =21×2×m -88=m-88,S 2=21OQ ·(P E x x -)=21×2(m -m-88)=m m m ---8882,∴22188888S m m m S m ---=-=1812-+-m m =1)4812+--m (,∵81-<0,∴当m =4时,12S S 有最大值,最大值为1,∴12S S 的最大值为1.。

苏教版初一数学下学期期末专题《三角形格点与面积》

苏教版初一数学下学期期末专题《三角形格点与面积》

三角形格点与面积1.如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得到△A'B'C',点C的对应点是直线上的格点C'.(1)画出△A'B'C';(2)在BC上找一点P,使AP平分△ABC的面积;(3)试在直线l上画出所有的格点Q,使得由点A'、B'、C'、Q四点围成的四边形的面积为9.2.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是.(3)作直线MN,将△ABC分成两个面积相等的三角形.3.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)画出△ABC中BC边上的高AH和BC边上的中线AD.(2)画出将△ABC向右平移5格又向上平移3格后的△A′B′C′.(3)△ABC的面积为.(4)若连接AA′,CC′,则这两条线段之间的关系是.4.正方形网格中的每个小正方形的边长均为1个单位长度,△ABC各顶点的位置如图所示.将△ABC平移,使点A移到点D,点E、F分别是B、C的对应点.(1)画出平移后的△DEF;(2)在AB上找一点P,使得线段CP平分△ABC的面积;(3)利用网格画△ABC的高BH;(4)连接AD、CF,AD与CF的关系是.5.如图,三角形ABC的顶点A,B,C都在格点(正方形网格线的交点)上,将三角形ABC向左平移2格,再向上平移3格,得到三角形A'BC“(设点A、B、C分别平移到A′、B′、C′)(1)请在图中画出平移后的三角形A'B′C′;(2)若连接BB′、CC′,则这两条线段的位置关系是.数量关系是(3)若BB'与AC相交于点P,则∠A'B'P,∠B'PA与∠PAB三个角之间的数量关系为A.∠A'B'P+∠B'PA+∠PAB=180°B.∠A'B'P+∠B'PA+∠PAB=360°C.∠A'B'P+∠B'PA﹣∠PAB=180°D.∠A'B'P+∠B'PA﹣∠PAB=360°6.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点C变换为点D,点A、B的对应点分别是点E、F.(1)在图中请画出△ABC平移后得到的△EFD;(2)在图中画出△ABC的AB边上的高CH;(3)若点P在格点上,且S△PBC=S△ABC(点P与点A不重合),满足这样条件的P点有个.7.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)画出△ABC中AB边上的中线CM;(3)图中△ABC的面积是.8.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和直尺画图:(1)补全△A′B′C′;(2)作出△ABC的中线CD;(3)画出BC边上的高线AF;(4)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有个.(注:格点指网格线的交点)9.画图(只能借助于网格)并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移4格,再向上平移1格,请在图中画出平移后的△A′B′C′;(2)△A′B′C′的面积为;(3)利用网格在图中画出△ABC的中线AD,高线AE;(4)在右图中能使S△PBC=S△ABC的格点p的个数有个(点P异于A).10.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD和BC边上的高线AE;(3)线段AA′与线段BB′的关系是:;(4)求四边形ACBB′的面积.11.如图,在边长为1个单位的正方形网格中,△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题(保留画图痕迹):(1)画出△A′B′C′;(2)画出△ABC的高BD;(3)连接AA′、CC′,那么AA′与CC′的关系是,线段AC扫过的图形的面积为.12.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为.(5)点F为方格纸上的格点(异于点B),若S△ACB=S△ACF,则图中这样的格点F共有个.13.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)若连接BB′,CC′,则这两条线段的关系是;(3)△ABC在整个平移过程中线段AB扫过的面积为.14.利用直尺画图(1)利用图(1)中的网格,过P点画直线AB的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB、CD、EF首尾顺次相接组成一个三角形.(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于.15.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)分别画出△ABC中BC边上的高AH、中线AG.(2)画出先将△ABC向右平移6格,再向上平移3格后的△DEF.(3)画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积的2倍.16.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积=;(2)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP;(3)请在图中画出过点C且平行于AB的直线CM.17.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF;(2)若连接AD、CF,则这两条线段之间的关系是;(3)在图中找出所有满足S△ABC=S△QBC的格点Q(异于点A),并用Q1、Q2表示.18.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移8格,再向下平移1格.请在图中画出平移后的△A′B′C′;(2)利用网格在图中画出△ABC的中线CD,高线AE;(3)△A′B′C′的面积为.(4)在平移过程中线段BC所扫过的面积为.(5)在右图中能使S△PBC=S△ABC的格点P的个数有个(点P异于A).19.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A平移到点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF,并求△DEF的面积=;(2)在AB上找一点M,使CM平分△ABC的面积;(3)在网格中找格点P,使S△ABC=S△BCP,这样的格点P有个.20.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C;(2)画出AB边上的中线CD;(3)画出AC边上的高线BE;(4)平移过程中,线段AB扫过的面积为.21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积;(2)在图中找出格点D,使△ACD的面积与△ABC的面积相等.22.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)画出平移后的△A′B′C′的中线B′D′(3)若连接BB′,CC′,则这两条线段的关系是(4)△ABC在整个平移过程中线段AB扫过的面积为(5)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有个(注:格点指网格线的交点)23.如图所示,在8×8的网格中,△ABC是格点三角形(顶点是网格的交点),若点A坐标为(﹣1,3),按要求回答下列问题:(1)建立符合条件的平面直角坐标系,并写出点B和点C的坐标;(2)将△ABC先向下平移2个单位长度,再向右平移3个单位长度,得到△DEF,请在图中画出△DEF,并求出线段AC在平移过程中扫过的面积.24.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C′(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为.25.如图,△ABC的顶点都在方格纸的格点上,将△ABC向左平移1格,再向上平移3格,其中每个格子的边长为1个长度单位.(1)在图中画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段的关系是;(3)作直线l,将△ABC分成两个面积相等的三角形.【分析】(1)作出A、B、C的对应点A′、B′、C′即可;(2)根据平移的性质可知,线段AA′,CC′这两条线段之间的关系是相等且平行;(3)构造平行四边形ABCD,对角线BD所在的直线即为所求的直线MN.【解答】解:(1)平移后的△A′B′C′如图所示.(2)根据平移的性质可知,线段AA′,CC′这两条线段之间的关系是相等且平行,故答案为相等且平行.(3)构造平行四边形ABCD,对角线BD所在的直线即为所求的直线MN.【点评】本题考查平移变换、平移变换的性质、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)画出△ABC中BC边上的高AH和BC边上的中线AD.(2)画出将△ABC向右平移5格又向上平移3格后的△A′B′C′.(3)△ABC的面积为3.(4)若连接AA′,CC′,则这两条线段之间的关系是AA′=CC′且AA′∥CC′.【分析】(1)根据三角形的中线和高的定义作图即可得;(2)根据平移变换的定义作出变换后的对应点,再顺次连接即可得;(3)直接利用三角形的面积公式计算可得;故答案为:AD=CF,AD∥CF.【点评】本题考查平移变换,三角形的中线,高等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.如图,三角形ABC的顶点A,B,C都在格点(正方形网格线的交点)上,将三角形ABC向左平移2格,再向上平移3格,得到三角形A'BC“(设点A、B、C分别平移到A′、B′、C′)(1)请在图中画出平移后的三角形A'B′C′;(2)若连接BB′、CC′,则这两条线段的位置关系是BB′∥CC′.数量关系是BB′=CC′(3)若BB'与AC相交于点P,则∠A'B'P,∠B'PA与∠PAB三个角之间的数量关系为CA.∠A'B'P+∠B'PA+∠PAB=180°B.∠A'B'P+∠B'PA+∠PAB=360°C.∠A'B'P+∠B'PA﹣∠PAB=180°D.∠A'B'P+∠B'PA﹣∠PAB=360°【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;(2)根据平移的性质求解;(3)根据平行线的性质和三角形外角性质解答.【解答】解:(1)如图所示:△A'B'C'即为所求:(2)根据平移的性质可得:BB′∥CC′,BB′=CC′;故答案为4【点评】本题考查作图﹣平移变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)画出△ABC中AB边上的中线CM;(3)图中△ABC的面积是8.【分析】(1)根据平移的定义作出变换后的对应点,再顺次连接即可得;(2)根据中线的概念作图可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,CM即为所求;(3)△ABC的面积是×5×7﹣×2×6﹣×(2+5)×1=8,故答案为:8.【点评】本题考查了利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.8.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和直尺画图:(1)补全△A′B′C′;(2)作出△ABC的中线CD;(3)画出BC边上的高线AF;(4)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有6个.(注:格点指网格线的交点)【分析】(1)由点B及其对应点B′的位置得出平移方向和距离,据此将点A、C按照相同方式平移得到对应点,再顺次连接即可得;(2)根据中线的概念作图可得;(3)根据高线的概念求解可得;(4)根据共底等高及平行线间的距离处处相等作图可得.【解答】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,CD即为所求;(3)如图所示,AF即为所求;(4)如图所示,中满足条件且异于点C的格点E共有6个,故答案为:6.【点评】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义和性质及中线、高线的概念、平行线间的距离处处相等.9.画图(只能借助于网格)并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移4格,再向上平移1格,请在图中画出平移后的△A′B′C′;(2)△A′B′C′的面积为4;(3)利用网格在图中画出△ABC的中线AD,高线AE;(4)在右图中能使S△PBC=S△ABC的格点p的个数有7个(点P异于A).【分析】(1)根据图形平移的性质画出△A′B′C′即可;(2)取线段AB的中点D,连接CD,过点A作AE⊥BC的延长线与点E即可;(3)根据图形平移的性质可直接得出结论;(4)根据S四边形ACBB′=S梯形AFGB+S△ABC﹣S△BGB′﹣S△AFB′即可得出结论.【解答】解:(1)如图所示;(2)如图所示;(3)由图形平移的性质可知,AA′∥BB′,AA′=BB′.故答案为:平行且相等;(4)S四边形ACBB′=S梯形AFGB+S△ABC﹣S△BGB′﹣S△AFB′=(7+3)×6+×4×4﹣×1×7﹣×3×5=30+8﹣﹣=27.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.11.如图,在边长为1个单位的正方形网格中,△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题(保留画图痕迹):(1)画出△A′B′C′;(2)画出△ABC的高BD;(3)连接AA′、CC′,那么AA′与CC′的关系是平行且相等,线段AC扫过的图形的面积为10.【分析】(1)根据平移的定义和性质作出点A、C平移后的对应点,顺次连接即可得;(2)根据三角形高的定义作图即可得;(3)根据平移变换的性质可得,再利用割补法求出平行四边形的面积.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,BD即为所求;(3)如图所示,AA′与CC′的关系是平行且相等,线段AC扫过的图形的面积为10×2﹣2××4×1﹣2××6×1=10,故答案为:平行且相等、10.【点评】此题主要考查了平移变换以及平行四边形面积求法等知识,根据题意正确把握平移的性质是解题关键.12.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为8.(5)点F为方格纸上的格点(异于点B),若S△ACB=S△ACF,则图中这样的格点F共有7个.【分析】(1)利用网格特点和平移的性质分别画出点A、B、C的对应点A′、B′、C′即可得到△A′B′C′;(2)根据平移的性质求解;(3)由于线段AB扫过的部分为平行四边形,则根据平行四边形的面积公式可求解.【解答】解:(1)如图,△A′B′C′为所作;(2)BB′∥CC′,BB′=CC′;(3)线段AB扫过的面积=4×3=12.故答案为平行且相等;12.【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.14.利用直尺画图(1)利用图(1)中的网格,过P点画直线AB的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB、CD、EF首尾顺次相接组成一个三角形.(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于 3.5.【分析】(1)根据网格结构的特点,利用直线与网格的夹角的关系找出与AB平行的格点以及垂直的格点作出即可;(2)根据网格结构的特点,过点E找出与AB、CD位置相同的线段,过点F找出与AB、CD位置相同的线段,作出即可;(3)根据S△=S正方形﹣三个角上的三角形的面积即可得出结论.【解答】解:(1)、(2)如图所示;(3)S△EFH=3×3﹣×1×2﹣×2×3﹣×1×3=9﹣1﹣3﹣=3.5.故答案为:3.5.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.15.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)分别画出△ABC中BC边上的高AH、中线AG.(2)画出先将△ABC向右平移6格,再向上平移3格后的△DEF.(3)画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积的2倍.【分析】(1)根据三角形的高和中线的定义结合网格作图可得;(2)根据平移变换的定义和性质作图可得;【点评】本题考查了平移变换的作图、三角形的面积、平分三角形的面积、平行线,知道三角形的中线平分三角形的面积,并会根据一个对应点的平移规律进行作图.17.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF;(2)若连接AD、CF,则这两条线段之间的关系是AD=CF,AD∥CF;(3)在图中找出所有满足S△ABC=S△QBC的格点Q(异于点A),并用Q1、Q2表示.【分析】(1)将三角形的三顶点分别向右平移6格、向下平移1格得到三顶点,再顺次连接可得;(2)根据平移变换的性质可得答案;(3)过点A作线段BC的平行线,平行线经过的网格点即为点Q1、Q2.【解答】解:(1)如图所示,△DEF即为所求.(2)根据平移变换的性质知,AD=CF,AD∥CF,故答案为:AD=CF,AD∥CF;(3)过点A作线段BC的平行线,平行线经过的网格点即为点Q1、Q2.【点评】本题考查了利用平移变换作图,平移的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.(1)请画出平移后的△DEF,并求△DEF的面积=7;(2)在AB上找一点M,使CM平分△ABC的面积;(3)在网格中找格点P,使S△ABC=S△BCP,这样的格点P有4个.【分析】(1)根据平移的性质画出图象,再利用三角形的面积公式计算即可;(2)根据中线的定义画出中线即可平分三角形面积;(3)在过点A平行BC的直线上有4个格点,所以满足条件的△PCB有4个.【解答】解:(1)如图所示:△DEF即为所求,△DEF的面积为:4×4﹣×2×4﹣×2×3﹣×1×4=7;故答案为:7;(2)如图所示:点M即为所求;(3)使S△ABC=S△BCP,这样的格点P有4个.故答案为:4.【点评】本题考查平移变换、三角形的面积、三角形的中线等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C;(2)画出AB边上的中线CD;(3)画出AC边上的高线BE;(4)平移过程中,线段AB扫过的面积为8.S△A′B′C′=3×3﹣×2×1﹣×3×1﹣×2×3=9﹣1﹣﹣3=3.5;(2)如图,点D1,D2即为所求.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.22.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)画出平移后的△A′B′C′的中线B′D′(3)若连接BB′,CC′,则这两条线段的关系是BB′∥CC′,BB′=CC′(4)△ABC在整个平移过程中线段AB扫过的面积为12(5)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有10个(注:格点指网格线的交点)【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;(2)利用网格特点找出A′C′的中点D′,然后连接B′D′即可;(3)根据平移的性质求解;(4)利用平移的性质和平行四边形的面积公式求解;(5)过点C作AB的平行线,然后找出此平行线上的格点即可.【解答】解:(1)如图,△A′B′C′为所作;(2)如图,中线B′D′为所作;(3)BB′∥CC′,BB′=CC′;(4)△ABC在整个平移过程中线段AB扫过的面积=4×3=12;(5)满足条件且异于点C的格点E共有10个.线段AC在平移过程中扫过的面积=×2×1+2×3=7.【点评】本题主要考查作图﹣平移变换,解题的关键是熟练掌握平移变换的定义和性质及割补法求四边形的面积.24.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C′(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为8.【分析】(1)直接利用平移的性质得出各点位置即可;(2)利用中线的定义得出D点的位置;(3)利用高线的定义得出E点的位置(4)直接利用三角形面积求法得出答案.【解答】解:(1)(2)(3)题如图所示.(4)△A′B′C′的面积为:×4×4=8.故答案为:8.【点评】此题主要考查了平移变换以及三角形面积求法,正确得出平移后对应点位置是解题关键.25.如图,△ABC的顶点都在方格纸的格点上,将△ABC向左平移1格,再向上平移3格,其中每个格子的边长为1个长度单位.(1)在图中画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段的关系是AA′∥CC′,AA′=CC′;(3)作直线l,将△ABC分成两个面积相等的三角形.【分析】(1)根据图形平移不变性的性质画出△A′B′C′即可;(2)根据图形平移的性质即可得出结论;(3)过三角形的顶点与对边的中点作直线即可.【解答】解:(1)如图所示;(2)∵△A′B′C′由△ABC平移而成,∴AA′∥CC′,AA′=CC′.故答案为:AA′∥CC′,AA′=CC′;(3)如图所示.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.。

格点与面积习题讲解1

格点与面积习题讲解1

格点与面积习题讲解1如下图,在一张由一组水平线和一组垂直线组成方格纸上,如果任意相邻平行线之间的距离都相等,我们就把这样两组平行线的交点称为格点(如下图中的红点),把图中相邻两个格点的距离看着一个单位长度,把每个小正方形的面积看作一个面积单位(如图中带阴影的方格)。

一个多边形的顶点如果全是格点,这个多边形就叫做格点多边形,本讲就,学习求格点多边形的面积问题。

这种格点多边形的面积计算起来很方便,一般有三种方法:①规则的格点多边形,可以运用多边形的面积公式求出面积;②一些简单而又特殊的格点多边形,可以通过数格子求出面积;③较复杂的不规则图形,一般用皮克公式计算。

其中数格子的方法比较原始,很少用。

任意格点多边形,只要数出多边形周界上的格点的个数及图内格点的个数,就可用下面的皮克公式算出面积:格点多边形面积=图内格点个数+周界格点数÷2-1这个公式是皮克(Pick)在1899年给出的,被称为“皮克定理”,这是一个实用而有趣的定理。

皮克定理的证明:将格点图中的每个点看作以这个点为圆心、以单位面积正方形的边长的一半为半径的圆。

格点多边形图内的点对应的圆的面积都是图形面积的一部分;而在多边形边界上的点对应的圆的面积只有一半属于这个多边形,且多边形每个角上的圆属于图内的面积都不到半个圆,少了其外角对应的扇形面积,因任意多边形的外角和是360度,正好是个整圆,所以周界上圆在图内的面积为:周界格点数÷2-1所以格点多边形面积为:图内格点个数+周界格点数÷2-1。

皮克定理的证明过程比较抽象,孩子难以理解。

本讲只要求孩子初步认识格点面积公式,掌握格点面积公式的应用,到初中还会进一步学习皮克定理。

【解析】:图①是个平行四边形,周界上有10个格点,图内有4个格点,根据格点面积公式,图①的面积为:4+10÷2-1=8;图②是个梯形,周界上有8个格点,图内有2个格点,根据格点面积公式,图②的面积为:2+8÷2-1=5;图③是个三角形,周界上有6个格点,图内有4个格点,根据格点面积公式,图③的面积为:4+6÷2-1=6;以上3个图形都是规则图形,但四年级学生还没有学过这3种图形的面积计算,不能用面积公式计算。

2019中考数学《面积的计算》专题复习考点讲解(含答案)

2019中考数学《面积的计算》专题复习考点讲解(含答案)

面积的计算考点图解技法透析面积法是一种重要方法,计算图形面积是平面几何中最常见的基本问题之一,与面积相关的知识有:(1)常见图形的面积计算公式:正方形面积=边长×边长;矩形的面积=长×宽;平行四边形面积=底×高;三角形面积=底×高÷2;梯形面积=(上底+下底)×高÷2;圆的面积=×半径的平方;扇形面积=2360n r(n为圆心角,r为半径)(2)计算面积常常用到以下结论:①等底等高的两个三角形的面积相等;②等底的两个三角形的面积比等于对应高的比;③等高的两个三角形的面积比等于对应底的比;④三角形一边上的中线平分这个三角形的面积.(3)面积计算常用到以下方法:①和差法:把所求图形的面积转化为常见图形面积的和、差表示,运用常见图形的面积公式;②等积法:找出与所求图形面积相等的或者关联的特殊图形,通过代换转化来求出图形的面积;③运动法:通过平移、旋转、割补等方式,将图形中的部分图形运动起来,把图形转化为容易观察或解决的形状;④代数法:通过寻求图形面积之间的关系列方程(组);把几何问题转化为代数问题.(4)非常规图形的面积计算往往采用“等积变换”,所谓“等积变换”就是不改变几何图形的面积,而是把它的形状改变成能够直接求出面积的图形,等积变换的主要目的,是把复杂的图形变成简单的图形,把不规则的图形变成规则的图形.(5)“等积变换”的方法①公式法,即运用某些图形的面积公式及其有关推论.②分割法,即把一个图形分割成熟知的若干部分图形.③割补法,即把一个图形的某一部分分割出来,然后用与其等积图形填补到某一位置.名题精讲考点1 用面积公式计算常规图形面积例1 如图,将直角三角形BC 沿着斜边AC 的方向平移到 △DEF 的位置(A 、D 、C 、F 四点在同一条直线上).直角边DE 交BC 于点G .如果BG =4,EF =12,△BEG 的面积等于4,那 么梯形ABGD 的面积是 ( )A .16B .20C .24D .28【切题技巧】【规范解答】 B【借题发挥】 把不能直接求出面积的图形通过转化或找出与它面积相等的特殊图形,从而能够求解.【同类拓展】 1.如图所示,A 是斜边长为m 的等腰直角三角形,B ,C ,D 都是正方形,则A ,B ,C ,D 的面积的和等于 ( )A .94m 2B .52m 2C .114m 2D .3m 2考点2 用面积的和、差计算非常规图形有面积例2 如图,P 是平行四边形ABCD 内一点,且S △PAB =5, S △PAD =2,请你求出S △PAC (即阴影部分的面积).【切题技巧】 △APC 的底与高显然无法求,则应用已知三角 形的面积的和或差来计算△APC 的面积.【规范解答】【借题发挥】 对于不能直接求的图形可以把图形进行分解和组合,通过图形的面积和或差进行计算.【同类拓展】 2.如图,长方形ABCD 中,△ABP 的面积为a , △CDG 的面积为b ,则阴影四边形的面积等于 ( )A .a +bB .a -bC .2a bD .无法确定考点3 列方程(组)求面积例3 如图所示,△ABC 的面积是1cm 2.AD =DE =EC , BG =GF =FC ,求阴影四边形的面积.【切题技巧】条件中有两组等分点,易知△BCE,△ACF的面积为13,但仍然不能求阴影部分面积,因此,只要求出△BCE中另两块面积即可,【规范解答】如图,设AG与BE交于N,AF与BE交于P,连接NC,ND,PC,PD.设△NGB的面积为x,△NDE的面积为y,则有△NCG的面积为2x,△NEA的面积为2y.因为△ABC的面积是1cm2,且AD=AE=EC,BG=GF=FC.【借题发挥】求一些关系复杂的图形面积,列方程是一个重要方法,它不但可以使我们熟悉列方程和了解方程在几何中的应用,而且能清晰地表明图形面积之间的关系,从而可以化解或降低解题的难度.【同类拓展】3.如图,正方形ABCD中,E、F分别是BC、CD边上的点,AE、DE、BF、AF把正方形分成8小块,各小块的面积分别为S1、S2、…、S8,试比较S3与S2+S7+S8的大小,并说明理由.考点4 面积比与线段比的转化例4 如图所示,凸四边形ABCD中,对角线AC、BD相交于O点,若△AOD的面积是2,△COD的面积是1,△COB的面积是4,则四边形ABCD的面积是 ( )A.16 B.15 C.14 D.13【切题技巧】分析△AOD,△DOC,△AOB,△COB四个三角形的面积,只有通过线段比联系起来,相邻两个三角形的面积都存在着一种比例关系.【规范解答】【借题发挥】 两三角形的高相等时,面积比等于对应底之比,则可以将面积比与对应线段比相互转化,这是.解答面积问题、线段比等问题的常用技巧.【同类拓展】 4.如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则AGCD ABCDS S 四边形矩形等于 ( )A .56B .45C .34D .23考点5例5 如图所示,在四边形ABCD 中,AM =MN =ND , BE =EF =FC ,四边形ABEM 、MEFN 、NFCD 的面积分别记为S 1,S 2和S 3.求213?S S S =+【切题技巧】 把四边形分割成多个三角形,运用三角形等积变换定理即可求出,【规范解答】 连接A .E 、EN 、PC 和AC .【借题发挥】 等积变形的题目中,常将多边形面积转化为三角形面积,再运用等底同高来进行等积代换,因此,在转化时只要抓住题设中的等分点,就可以将多边形面积进行等积变换了.【同类拓展】 5.如图,张大爷家有一块四边形的菜地,在A 处有一口井,张大爷欲想从A 处引一条笔直的水渠,且这条笔直的水 渠将四边形菜地分成面积相等的两部分,请你为张大爷设计一种引水 渠的方案,画出图形并说明理由. 考点6 格点多边形的面积例6 如图,五边形ABCDE 的面积为多少?我们把方格纸上两组互相平行且垂直的直线的交点叫格点. 顶点在格点上的多边形叫格点多边形.可以通过图形的分割,转化为规则图形,再求面积.【规范解答】如图,标上字母F 、G 、H 、I 、J 点,使得△ABF , △BCG ,△CDH ,△DEI ,△EAJ 为直角三角形,【借题发挥】 格点多边形面积有如下计算规律:格点多边形的面积等于其所包含有格点个数,加上由其边界上的格点的个数之半,再减去1.此规律对凹多边形也适用.即:若格点多边形的面积为S ,格点多边形内部有且只有n 个格点,它各边上格点的个数和为x .则S =12x +n -1. 【同类拓展】 6.如图,在一个由4×4个小正方形组成的正方形 格中,阴影部分面积与正方形ABCD 面积的比是 ( ) A . 3:4 B .5:8 C .9:16 D .1:2 参考答案1.A 2.A 3.S 3=S 2+S 7+S 8. 4.D 5.S △ABF =S 四边形AFCD . 6.B2019-2020学年数学中考模拟试卷一、选择题1.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.ASA D.AAS2.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=32或t=72,其中正确的结论有()A.1个B.2个C.3个D.4个3.点P(﹣3,m+1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B.C. D.4.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,AB长为半径画弧,交边AD于点F;②再分别以B,F为圆心画弧,两弧交于平行四边形ABCD内部的点G处;③连接AG并延长交BC于点E,连接BF,若3BF=, 2.5AB=,则AE的长为( )A.2B.4C.8D.55.如图,点是边长为1的菱形对角线上的一个动点,点,分别是边,的中点,则的最小值是( )A. B.1 C. D.26.方程组的解是( )A.B. C. D.7.多项式4x-x 3分解因式的结果是( ) A .()2x 4x-B .()()x 2x 2x -+C .()()x x 2x 2-+D .2x(2x)-8.一几何体的三视图如图所示,这个几何体是( )A .四棱锥B .圆锥C .三棱柱D .四棱柱9.如图,水平的讲台上放置的圆柱笔筒和长方体形粉笔盒,它的俯视图是( )A.B. C.D.10.从甲,乙,丙三人中任选一名代表,甲被选中的可能性是A.12B.1C.23D.1311.分解因式3a2b﹣6ab+3b的结果是()A.3b(a2﹣2a)B.b(3a2﹣6a+1)C.3(a2b﹣2ab)D.3b(a﹣1)212.在整数范围内,有被除数=除数×商+余数,即a=bq+r(a≥b,且b≠0,0≤r<b),若被除数a和除数b确定,则商q和余数r也唯一确定,如:a=11,b=2,则11=2×5+1此时q=5,r=1.在实数范围中,也有a=bq+r(a≥b且b≠0,商q为整数,余数r满足:0≤r<b),若被除数是,除数是2,则q与r的和( )A.﹣4 B.﹣6 C.-4 D.-2二、填空题13.如图,矩形ABCD中,AB=6,AD=,点E是BC的中点,点F在AB上,FB=2,P是矩形上一动点.若点P从点F出发,沿F→A→D→C的路线运动,当∠FPE=30°时,FP的长为_____.14.计算:(﹣12)2=_____.15.如图,扇形纸扇完全打开后,∠BAC=120°,AB=AC=30厘米,则BC的长为_____厘米.(结果保留π)16.若关于x 的一元二次方程2230x x m -+-=有两个相等的实数根,则m 的值是______________.17.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是_____.18.计算:(a+b )(2a ﹣2b )=_____. 三、解答题19.已知:△ABC 的两边AB 、BC 的长是关于x 的一元二次方程x 2﹣(2k+2)x+k 2+2k =0的两个实数根,第三边长为10.问当k 为何值时,△ABC 是等腰三角形?20.如图,已知⊙O 是等边三角形ABC 的外接圆,点D 在圆上,过A 作AE ∥BC 交CD 延长线于E.(1)求证:EA 是⊙O 的切线;(2)若BD 经过圆心O ,其它条件不变,则△ADE 与圆重合部分的面积为_____.(在备用图中画图后,用阴影标出所求面积)21.小张在网上销售一种成本为20元/件的T 恤衫,销售过程中的其他各种费用(不再含T 恤衫成本)总计40(百元),若销售价格为x(元/件),销售量为y(百件),当30≤x≤50时,y 与x 之间满足一次函数关系,且当x =30时,y =5,有关销售量y(百件)与销售价格x(元/件)的相关信息如下:(1)请在表格中直接写出当30≤x≤50时,y与x的函数关系式;(2)求销售这种T恤衫的纯利润w(百元)与销售价格x(元/件)的函数关系式;(3)销售价格定为多少元/件时,获得的利润最大?最大利润是多少?22.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,点O在AB上,以点O为圆心,OB 为半径的圆经过点D,交BC于点E(1)求证:AC是⊙O的切线;(2)若OB=2,CD留π).23.为考察甲、乙两种农作物的长势,研究人员分别抽取了6株苗,测得它们的高度(单位:cm)如下:甲:98,102,100,100,101,99;乙:100,103,101,97,100,99.(1)你认为哪种农作物长得高一些?说明理由;(2)你认为哪种农作物长得更整齐一些?说明理由.24.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,过C作CF∥AB交DE延长线于点F,连接AF、DC.求证:(1)DE=FE;(2)四边形ADCF是菱形.25.已知,抛物线C1:y=- 12x2+mx+m+12(1)①当m=1时,抛物线与x轴的交点坐标为_______;②当m=2时,抛物线与x轴的交点坐标为________;(2)①无论m取何值,抛物线经过定点P________;②随着m的取值的变化,顶点M(x,y)随之变化,y是x的函数,记为函数C2,则函数C2的关系式为:________ ;(3)如图,若抛物线C1与x轴仅有一个公共点时,①直接写出此时抛物线C1的函数关系式;②请在图中画出顶点M满足的函数C2的大致图象,在x轴上任取一点C,过点C作平行于y轴的直线l分别交C1、C2于点A、B,若△PAB为等腰直角三角形,求点C的坐标;(4)二次函数的图象C2与y轴交于点N,连接PN,若二次函数的图象C1与线段PN有两个交点,直接写出m的取值范围.【参考答案】***一、选择题二、填空题14.415.20π16.417.4218.2a 2﹣2b 2三、解答题19.k =8或10【解析】【分析】因为方程有两个实根,所以△>0,从而用k 的式子表示方程的解,根据△ABC 是等腰三角形,分AB =AC ,BC =AC ,两种情况讨论,得出k 的值.【详解】∵△=[﹣(2k+2)]2﹣4(k 2+2k)=4k 2+8k+4﹣4k 2﹣8k=4>0,∴x =()222k --+⎡⎤⎣⎦,∴x 1=k+2,x 2=k ,设AB =k+2,BC =k ,显然AB≠BC,而△ABC 的第三边长AC 为10,(1)若AB =AC ,则k+2=10,得k =8,即k =8时,△ABC 为等腰三角形;(2)若BC =AC ,则k =10,即k =10时.△ABC 为等腰三角形.【点睛】本题考查了一元二次方程的根,公式法,解本题要充分利用条件,选择适当的方法求解k 的值,从而证得△ABC 为等腰三角形.20.(1)见解析;(2)23π.【解析】【分析】(1)根据等边三角形的性质可得:∠OAC=30°,∠BCA=60°,证明∠O AE=90°,可得:AE 是⊙O 的切线;(2)如备用图,根据等边三角形的性质得到BD ⊥AC ,∠ABD=∠CBD=30°,∠BAD=∠BCD=90°,根据平行线的性质得到∠AED=∠BCD=90°,解直角三角形得到AD=2,连接OA ,根据扇形和三角形的面积公式即可得到结论.(1)证明:如图1,连接OA,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)如备用图,∵△ABC是等边三角形,BD经过圆心O,∴BD⊥AC,∠ABD=∠CBD=30°,∠BAD=∠BCD=90°,∵EA是⊙O的切线,∴∠EAD=30°,∵AE∥BC,∴∠AED=∠BCD=90°,∵∴AD=2,∵OA=OB ,∴∠OAB=OBA=30°,∴∠AOD=60°,∴△ADE 与圆重合部分的面积=S 扇形AOD -S △AOD=260212236023ππ⋅⨯-⨯=故答案为:23π【点睛】本题考查了作图-复杂作图,切线的判定和性质,扇形的面积计算,正确的作出图形是解题的关键.21.(1)y =﹣110x+8;(2)见解析;(3)销售价格定为60元/件时,获得的利润最大,最大利润是60百元.【解析】【分析】(1)把x =50代入y =150x得y =3,设y 与x 的函数关系式为:y =kx+b ,把x =30,y =5;x =50,y =3,代入解方程组即可得到结论;(2)根据x 的范围分类讨论,由“总利润=单件利润×销售量”可得函数解析式;(3)结合(1)中两个函数解析式,分别依据二次函数的性质和反比例函数的性质求其最值即可.【详解】(1)把x =50代入y =150x得y =3, 设y 与x 的函数关系式为:y =kx+b ,∵当x =30时,y =5,当x =50时,y =3,∴530350k b k b =+⎧⎨=+⎩, 解得:1k 10b 8⎧=-⎪⎨⎪=⎩,∴y 与x 的函数关系式为:y =﹣1x+8;故答案为:y =﹣110x+8; (2)当30≤x≤60时,w =(x ﹣20)(﹣0.1x+8)﹣40=﹣0.1x 2+10x ﹣200;当60<x≤80时,w =(x ﹣20)• 150x ﹣40=﹣3000x+110; (3)当30≤x≤60时,w =﹣0.1x 2+10x ﹣200=﹣0.1(x ﹣50)2+50,∴当x =50时,w 取得最大值50(百元);当60<x≤80时,w =﹣3000x +110, ∵﹣3000<0,∴w 随x 的增大而增大,当x =60时,w 最大=60(百元),答:销售价格定为60元/件时,获得的利润最大,最大利润是60百元.【点睛】本题主要考查二次函数和反比例函数的应用,理解题意依据相等关系列出函数解析式,并熟练掌握二次函数和反比例函数的性质是解题的关键.22.(1)见解析;(2)23π-【解析】【分析】(1)欲证明AC 是⊙O 的切线,只要证明OD ⊥AC 即可.(2)证明△OBE 是等边三角形即可解决问题.【详解】(1)证明:连接OD ,如图,∵BD 为∠ABC 平分线,∴∠1=∠2,∵OB =OD ,∴∠1=∠3,∴∠2=∠3,∵∠C =90°,∴∠ODA =90°,∴OD ⊥AC ,∴AC 是⊙O 的切线.(2)过O 作OG ⊥BC ,连接OE ,则四边形ODCG 为矩形,∴GC =OD =OB =2,OG =CD ,在Rt △OBG 中,利用勾股定理得:BG =1,∴BE =2,则△OBE 是等边三角形,∴阴影部分面积为260?2360π⨯﹣12=23π- 【点睛】本题考查切线的判定和性质,等边三角形的判定和性质,思想的面积公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.甲组数据的平均数为100cm ;乙组数据的平均数为100cm ;(2)甲种农作物长得比较整齐.【解析】【分析】(1)根据平均数的计算公式分别把这6株农作物的高度加起来,再除以6即可;(2)先算出甲与乙的方差,再进行比较,方差越小的,农作物长势越整齐,即可得出答案.【详解】(1)甲组数据的平均数=16×(98+102+100+100+101+99)=100(cm ); 乙组数据的平均数=16×(100+103+101+97+100+99)=100(cm ); (2)s 2甲=16×[(98﹣100)2+(102﹣100)2+…+(99﹣100)2]=53; s 2乙=16×[(100﹣100)2+(103﹣100)2+…+(100﹣99)2]=103. s 2甲<s 2乙.所以甲种农作物长得比较整齐.【点睛】本题考查了平均数与方差,一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差大,波动性越大,反之也成立.24.(1)详见解析;(2)详见解析.【解析】【分析】(1)由“AAS ”可证AED CEF ∆≅∆,可得DE EF =;(2)由直角三角形的性质可得CD AD =,由对角线互相平分的四边形是平行四边形可证四边形ADCF 是平行四边形,即可证四边形ADCF 是菱形.【详解】(1)证明:∵CF AB ∥ ,∴DAC ACF ∠∠=,又∵AE EC AED CEF ∠∠=,= ,∴AED CEF AAS ≌(), ∴DE EF =.(2)∵90ACB ∠︒=,D 是AB 的中点,∴CD AD =∵DE EF AE EC =,=∴四边形ADCF 是平行边形又∵AD CD =∴四边形ADCF 是菱形.【点睛】本题考查了菱形的判定和性质,全等三角形的判定和性质,直角三角形的性质,灵活运用这些性质进行推理是本题的关键.25.(1)(﹣1,0)(3,0);(﹣1,0)(5,0);(2)(-1,0); y=12 (x+1);(3)点C 的坐标为(1,0)或(-3,0);(4)-12<m≤0 【解析】【分析】(1)①把m=1,y=0分别代入抛物线C1,得到一个一元二次方程,解方程即可求出交点横坐标。

小学数学《格点与面积》练习题(含答案)

小学数学《格点与面积》练习题(含答案)

小学数学《格点与面积》练习题(含答案)内容概述同学们,一看这个题目,你一定会有许多疑问:什么是格点?格点与面积之间又有什么关系等等.这一节我们就来探讨这些问题。

在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!正方形格点问题正方形格点问题就是它的格点都是由两组互相垂直相交的平行线的交点构成的.每一个小方格都是一个小正方形.【例1】判断下列图形哪些是格点多边形?【例2】如右图,计算各个格点多边形的面积.分析:本题所给的图形都是规则图形,它们的面积运用公式直接可求,只要判断出相应的有关数据就行了.【例3】如右图(a),计算这个格点多边形的面积.【例4】(1998年新加坡小学数学奥林匹克竞赛)右图是一个方格网,计算阴影部分的面积.【例5】分别计算右图中两个格点多边形的面积。

【例6】用N表示多边形内部格点, L表示多边形周界上的格点,S表示多边形面积,填写下表:图形图形内的格点数(N)边界上的格点数(L)面积(S)例2图4例3例4例5(1)【例7】本讲开始提到的图“乡村小屋”的面积是多少?【例8】 (保良局亚洲区城市小学数学竞赛试题)第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一个小方格的面积是1,那么7、2、1三个数字所占的面积之和是多少?【例9】右图中每个小正方形的面积都是1,那么图中这只“狗”所占的面积是多少?【例10】用9个钉子钉成相互间隔为1厘米的正方阵(如右图).如果用一根皮筋将适当的三个钉子连结起来就得到一个三角形,这样得到的三角形中,面积等于1平方厘米的三角形的个数有多少?面积等于2平方厘米的三角形有多少个?三角形格点问题所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.【例11】如右图(a),有21个点,每相邻三个点成“∵”或“∴”,所形成的三角形都是等边三角形.计算三角形ABC的面积.【例12】如右图,每相邻三个点所形成的三角形都是面积为1的等边三角形,计算△ABC的面积.【例13】把大正三角形每边八等份,组成如右图所示的三角形网.如果大三角形的面积是128,求图中粗线所围成的三角形的面积.【例14】(第五届“华杯赛”)正六边形ABCDEF的面积是6平方厘米.M是AB中点,N是CD中点,P是EF中点.问:三角形MNP的面积是多少平方厘米?练习一1.求下列各个格点多边形的面积.2. 右图是一个8 12面积单位的图形.求矩形内的箭形ABCDEFGH的面积.3.求下列格点多边形的面积(每相邻三个点“∵”或“∴”成面积为1的等边三角形).4.右图有12个点,相邻两个点之间的距离是1厘米,这些点可以连成多少个面积为2平方厘米的三角形?5.将图中的图形分割成面积相等的三块.正方形格点问题正方形格点问题就是它的格点都是由两组互相垂直相交的平行线的交点构成的.每一个小方格都是一个小正方形.【例15】判断下列图形哪些是格点多边形?分析:根据格点多边形的定义可知,图形的边必须是直线,顶点要在格点上!所以只有(1)是格点多边形。

4-2-1_格点型面积.题库学生版.doc

4-2-1_格点型面积.题库学生版.doc

板块一正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N表示多边形内部格点,L表示多边形周界上的格点,S表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N=+-.这个规律就是毕克定理.【例 1】用9个钉子钉成相互间隔为1厘米的正方阵(如右图).如果用一根皮筋将适当的三个钉子连结起来就得到一个三角形,这样得到的三角形中,面积等于1平方厘米的三角形的个数有多少?面积等于2平方厘米的三角形有多少个?毕克定理若一个格点多边形内部有N个格点,它的边界上有L个格点,则它的面积为12LS N=+-.例题精讲格点型面积【例 2】如图,44的方格纸上放了16枚棋子,以棋子为顶点的正方形有个.【例 3】判断下列图形哪些是格点多边形?⑴⑵⑶【例 4】如图,计算各个格点多边形的面积.【例 5】如图(a),计算这个格点多边形的面积.III 【例 6】(“新加坡小学数学奥林匹克”竞赛试题)右图是一个方格网,计算阴影部分的面积.【例 7】分别计算图中两个格点多边形的面积.⑴ ⑵【巩固】求下列各个格点多边形的面积.⑵⑴⑷⑶【例 8】 我们开始提到的“乡村小屋”的面积是多少?【例 9】 右图是一个812 面积单位的图形.求矩形内的箭形ABCDEFGH 的面积.H GFED C BA【例 10】右图中每个小正方形的面积都是1,那么图中这只“狗”所占的面积是多少?【巩固】如图,每一个小方格的面积都是1平方厘米,那么用粗线围成的图形的面积是多少平方厘米?【例 11】 (“小学数学奥林匹克”竞赛试题)55 的方格纸,小方格的面积是1平方厘米,小方格的顶点称为格点.请你在图上选7个格点,要求其中任意3个格点都不在一条直线上,并且使这7个点用直线连接后所围成的面积尽可能大.那么,所围图形的面积是 平方厘米.【例 12】 (“保良局亚洲区城市小学数学”竞赛试题)第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一个小方格的面积是1,那么7、2、1三个数字所占的面积之和是多少?【例 13】 (第六届“从小爱数学”邀请赛试题)两个边长相等的正方形各被分成25个大小相同的小方格.现将这两个正方形的一部分重叠起来,若左上角的阴影部分(块状)面积为25.12cm ,右下角的阴影部分(线状)面积为27.4cm ,求大正方形的面积.【例 14】 (第六届“华杯赛”试题)图中正六边形ABCDEF 的面积是54,AP =2PF ,CQ =2BQ ,求阴影四边形CEPQ 的面积.AB C DFQP板块二 三角形格点问题所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.关于三角形格点多边形的面积同样有它的计算公式:如果用S 表示面积,N 表示图形内包含的格点数,L 表示图形周界上的格点数,那么有22S N L =⨯+-,就是格点多边形面积等于图形内部所包含格点数的2倍与周界上格点数的和减去2.【例 15】 如图(a ),有21个点,每相邻三个点成“∵”或“∴”,所形成的三角形都是等边三角形.计算三角形ABC 的面积.AB(a )【巩固】如图,每相邻三个点所形成的三角形都是面积为1的等边三角形,计算ABC 的面积.【例 16】求下列格点多边形的面积(每相邻三个点“∵”或“∴”成面积为1的等边三角形).⑴⑵⑶⑷【例 17】 把大正三角形每边八等分,组成如右图所示的三角形网.如果大三角形的面积是128,求图中粗线所围成的三角形的面积.【例 18】如图,如果每一个小三角形的面积是1平方厘米,那么四边形ABCD 的面积是多少平方厘米?【例 19】把同一个三角形的三条边分别5等分、7等分(如图1,图2),然后适当连接这些等分点,便得到了若干个面积相等的小三角形.已知图1中阴影部分面积是294平方分米,那么图2中阴影部分的面积是______平方分米.【例 20】将图中的图形分割成面积相等的三块.【例 21】如图涂阴影部分的小正六角星形面积是16平方厘米,问:大正六角星形面积是多少平方厘米?【例 22】 (第五届“华杯赛”试题)正六边形ABCDEF 的面积是6平方厘米.M 是AB 中点,N 是CD 中点,P 是EF 中点.问:三角形MNP 的面积是多少平方厘米?BP M F EDCBA【例 23】如果下图中任意相邻的三个点构成的三角形面积都是2平方厘米.那么,三角形ABC的面积是_____平方厘米.。

初中数学格点与面积(B)同步练习及答案

初中数学格点与面积(B)同步练习及答案

初中数学格点与面积(B)同步练习及答案九、格点与面积(B)年级______班_____ 姓名 _____得分_____一、填空题:1.右图是用皮筋在钉板上围成的一个三角形,计算它的面积是多少.(每相邻两个小钉之间的距离都等于1个长度单位).2.右图是一根用皮筋在钉板上围成的一个四边形,计算它的面积是多少.(每相邻两个小钉之间的距离都等于1个长度单位).3.在一个9?6的长方形内,有一个凸四边形ABCD(如右图).用毕克定理先求出它的面积来,再用拼割方法计算它的面积,看两者是否一致.4.右图中每个小正方形的面积都是4平方厘米,求图中阴影部分的面积.5.右图是一个10?10的正方形,求正方形内的四边形ABCD 的面积.6.右图是一个8?12面积单位的图形.求矩形内的箭形ABCDEFGH的面积.7.右图中每个小正方形的面积都是1,那么图中这只“狗”所占的面积是多少?8.右图是一个5?5的方格纸,小方格的面积是1平方厘米,小方格的顶点为格点.请你在图上选7个格点,要求其中任意3个格点都不在一条直线上,并且使这7个点用线段连结所围成的面积尽可能大,那么,所用图形的面积1是多少平方厘米?9.右图中每个小正方形的面积为1平方分米,那么阴影部分的面积是多少平方分米?10.右图中每个小平行四边形的面积是1个面积单位,求阴影部分的面积.二、解答题:1.右图中有21个点,其中每相邻的三点“∴”或“∵”所形成的三角形都是面积为1的等边三角形,试计算ABC的面积.2.右图中有21个点,其中每相邻的三点“∴”或“∵”所形成的三角形都是面积为1的等边三角形,试计算四边形DEFG的面积.3.把等边三角形ABC每边六等分,组成如右图的三角形网.若图中每个小三角形的面积均为12cm,试求图中三角形DEF的面积.4.把大正三角形每边八等份,组成如右图所示的三角形网.如果每个小三角形的面积都是1,求图中粗线所围成的三角形的面积.———————————————答案——————————————————————一、填空题:1. 面积单位.分析:解答这类问题可直接套用毕克定理:格点面积=内部格点数+周界上格点数÷2-1.注意:一是毕克定理只对格点凸多边形适用,二是在数格点时要细心.解: 5+3÷2-1=(面积单位).2. 5+5÷2-1=(面积单位).3. 面积单位.解: ①由毕克定理得:25+7÷2-1=(面积单位).②用拼割方法得:ABCD的面积=长方形EFGH的面积-四角上的四个三角形的面积=9?6-(6?2÷2+3?3÷2+4?3÷2+4?5÷2)=54-(6++6+10)=(面积单位).4. 48平方厘米.解: ①内部格点数为: 9个;②周界上格点数为: 8个;③阴影部分的面积是: 4?(9+8÷2-1)=48(平方厘米).。

专题02 网格类作图题中考题型训练(解析版)

专题02 网格类作图题中考题型训练(解析版)

专题2 网格类作图题中考题型训练1.(2022•荆州)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【分析】(1)根据全等三角形的判定画出图形即可;(2)根据菱形的定义画出图形即可.【解答】解:(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.2.(2022•宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.【分析】(1)结合等腰三角形的性质,找出点C的位置,再连线即可.(2)结合菱形的性质,找出点D,E的位置,再连线即可.【解答】解:(1)如图所示:(答案不唯一).(2)如图所示:3.(2022•丽水)如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.【分析】(1)把点B、A向右作平移1个单位得到CD;(2)作A点关于BC的对称点D即可;(3)延长CB到D使CD=2CB,延长CA到E点使CE=2CA,则△EDC满足条件.【解答】解:(1)如图1,CD为所作;(2)如图2,(3)如图3,△EDC为所作.4.(2022•衢州)如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.【分析】(1)利用数形结合的思想作出图形即可;(2)利用矩形的对角线互相平分解决问题即可.【解答】解:(1)如图1中,线段EF即为所求(答案不唯一);(2)如图2中,线段EF即为所求(答案不唯一).5.(2022•长春)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是 直角三角形 ;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.【分析】(1)利用勾股定理的逆定理证明即可;(2)根据全等三角形的判定,作出图形即可;(3)根据相似三角形的判定作出图形即可;(4)作出AB,BC的中点P,Q即可.【解答】解:(1)∵AC==,AB==2,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∴△ABC是直角三角形;故答案为:直角三角形;(2)如图①中,点D,点D′,点D″即为所求;(3)如图②中,点E即为所求;(4)如图③,点P,点Q即为所求.6.(2022•湖北)已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.【分析】(1)如图1中,连接AC,BD交于点O,作直线OE即可;(2)如图2中,同法作出点O,连接BE交AC于点T,连接DT,延长TD交AB于点R,作直线OR即可.【解答】解:(1)如图1中,直线m即为所求;(2)如图2中,直线n即为所求;7.(2022•江西)如图是4×4的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作∠ABC的角平分线;(2)在图2中过点C作一条直线l,使点A,B到直线l的距离相等.【分析】(1)连接AC,取AC的中点P,作射线BP即可;(2)利用数形结合的射线画出图形即可.【解答】解:(1)如图1中,射线BP即为所求;(2)如图2中,直线l或直线l′即为所求.8.(2023•锡山区校级模拟)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上.(Ⅰ)线段AC的长等于 ;(Ⅱ)以AB为直径的半圆的圆心为O,在线段AB上有一点P,满足AP=AC.请用无刻度的直尺,在如图所示的网格中,画出点P.【分析】(Ⅰ)利用勾股定理求解即可;(Ⅱ)①取BC与网格线的交点D,②连接OD延长OD交⊙O于点E,③连接AE交BC于点G,④连接BE,延长AC交BE的延长线于F,⑤连接FG延长FG交AB于点P,点P即为所求.【解答】解:(Ⅰ)AC==.故答案为:;(Ⅱ)如图,①取BC与网格线的交点D,②连接OD延长OD交⊙O于点E,③连接AE交BC于点G,④连接BE,延长AC交BE的延长线于F,⑤连接FG延长FG交AB于点P,点P即为所求.9.(2023•鄞州区校级一模)如图,在6×6的方格纸中,每个小正方形的边长为1,点A,B均在格点上,在图1和图2中分别画出一个以点A,B为顶点且另两个顶点均在格点上的正方形,并分别求出其周长.【分析】分别根据“四条边相等且四个角相等的四边形是正方形”,“对角线互相垂直平分且相等的四边形是正方形“作图.【解答】解:如下图:正方形ABCD,正方形ACBD即为所求.10.(2023•衢州模拟)如图在7×7的方格中,有两个格点A、B.请用无刻度的直尺按要求画图.(1)在图1中画线段AB中点C;(2)在图2中在线段AB上找一点D,使AD:DB=1:2.【分析】(1)取格点E,F,连接EF交AB于点C,点C即为所求;(2)取格点J,K,连接JK交AB于点D,点D即为所求.【解答】解:(1)如图,点C即为所求;(2)如图,点D即为所求.理由:∵AJ∥BK,∴△ADJ∽△BDK,∴==.11.(2023•宁波模拟)作图题(1)填空:如果长方形的长为3,宽为2,那么对角线的长为 .(2)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点(端点),分别按下列要求画图(不要求写画法和证明,但要标注顶点).①在图1中,画一个面积为4的菱形,且邻边不垂直.②在图2中,画平行四边形ABCD,使∠A=45°,且面积为6.【分析】(1)根据勾股定理即可得到答案;(2)①根据正方形的性质得到MP和NQ互相平分,MP⊥NQ,则四边形MNPQ是菱形,再用勾股定理和菱形面积等于对角线乘积的一半,即可验证满足题意;②利用网格的特点构造一条边长为3,此边上的高为2,∠BAD=45°的平行四边形即可.【解答】JIE:(1)∵长方形的长为3,宽为2,∴对角线的长为=,故答案为:;(2)①如图,四边形MNPQ即为所求的菱形,由网格知,MP和NQ互相平分,∴四边形MNPQ是平行四边形,∵MP⊥NQ,∴四边形MNPQ是菱形,∵,NQ==,∴菱形MNPQ的面积是MP×NQ=×4×=4,故菱形MNPQ满足题意;②如图2,平行四边形ABCD满足题意,由图可知,AB ∥CD ,AB =CD =3,∴四边形ABCD 是平行四边形,则平行四边形ABCD 的面积=AB •DH =3×2=6,∵∠BAD =45°,∴平行四边形ABCD 满足题意.12.(2023•杨浦区一模)新定义:由边长为1的小正方形构成的网格图形中,每个小正方形的顶点称为格点.如图,已知在5×5的网格图形中,△ABC 的顶点A 、B 、C 都在格点上.请按要求完成下列问题:(1)S △ABC = 4 ;sin ∠ABC = ;(2)请仅用无刻度的直尺在线段AB 上求作一点P ,使S △ACP =S △ABC .(不要求写作法,但保留作图痕迹,写出结论)【分析】(1)由正方形面积减去三个直角三角形面积可求S △ABC ,过A 作AD ⊥BC 于D ,用面积法可求AD 的长,在Rt △ABD 中可得sin ∠ABC ;(2)取格点E ,F ,连接EF 交AB 于P ,由AE =BF 可知AP =BP ,从而AP =AB ,即可得S △ACP=S △ABC ,故P 是满足条件的点.【解答】解:(1)由图可得:S △ABC =3×3﹣×1×3﹣×3×1﹣×2×2=4,过A 作AD ⊥BC 于D ,如图:∵וAD=4,∴AD=,∴sin∠ABC===,故答案为:4,;(2)如图:点P即为所求点.13.(2023•武汉模拟)如图是由小正方形组成的7×6网格,每个小正方形的顶点叫做格点.仅用无刻度的直尺在给定网格中完成画图.(1)在图(1)中,A,B,C三点是格点,画经过这三点的圆的圆心O,并在该圆上画点D,使AD=BC;(2)在图(2)中,A,E,F三点是格点,⊙I经过点A.先过点F画AE的平行线交⊙I于M,N两点,再画弦MN的中点G.【分析】(1)根据90°的圆周角所对的弦是直径;(2)根据网格线的特征或平行线,再根据平行弦所夹的弧相等,再根据等腰梯形的性质作图.【解答】解:如下图:(1)点D,O即为所求;(2)线段MN,点G即为所求.14.(2023•乌鲁木齐一模)请仅用无刻度的直尺在网格中完成下列作图,保留作图痕迹,不写作法.(1)图①是由边长为1的小等边三角形构成的网格,△ABC为格点三角形.在图①中,画出△ABC 中AB边上的中线CM;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.【分析】(1)作出AB的中点M,连接CM即可;(2)连接AC,BD交于点O,延长BA交CD的延长线于点S,作直线SO即可.【解答】解:(1)如图1中,线段CM即为所求.(2)如图2中,直线n即为所求.15.(2023•靖江市校级模拟)如图是由小正方形组成的9×7网格,每个小正方形的顶点叫做格点,A,B,C三个格点都在圆上.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)画出该圆的圆心O,并画出劣弧的中点D;(2)画出格点E,使EA为⊙O的一条切线,并画出过点E的另一条切线EF,切点为F.【分析】(1)连接AC,AC的中点O即为所,取格点M,N,连接MN交格线于等J,连接OJ,延长OJ 交⊙O于点D,点D即为所求;(2)取格点E,作直线AE即可,取格点P,Q交格线于点K,连接AK交⊙O于点F,作直线EF,直线EF即为所求.【解答】解:(1)如图,点O,点D即为所求;(2)如图,直线AE,EF即为所求.16.(2023•九台区模拟)图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C均在格点上.只用无刻度的直尺,在给定的网格中,按照要求作图(保留作图痕迹).(1)在图①中作△ABC的中线BD.(2)在图②中作△ABC的高BE.(3)在图③中作△ABC的角平分线BF.【分析】(1)利用网格特征作出AC的中点D,连接BD即可;(2)取格点T,连接BT交AC于点E,线段BE即为所求;(3)取格点W,连接BW交AC于点F,线段BF即为所求.【解答】解:(1)如图①中,线段BD即为所求;(2)如图②中,线段BE即为所求;(3)如图③中,线段BF即为所求.17.(2023•迁安市模拟)如图是由边长为1的小正方形组成的网格,△ABC的顶点均在格点上.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示,画图结果用实线表示.(1)在图(1)中画△ABC的高CH;(2)在图(1)的线段AC上画一点D,使得S△ABD :S△CBD=2:3;(3)在图(2)中C点的右侧画一点F,使∠FCA=∠BCA且CF=2.【分析】(1)取格点P,连接CP交AB于点H,线段CH即为所求作.(2)取格点M,N,连接MN交AC于点D,点D即为所求作.(3)取格线的中点R,连接CR,取格点K,格线的中点J,连接KJ交CR于点F,线段CF即为所求作.【解答】解:(1)如图1中,线段CH即为所求作.(2)如图2中,点D即为所求作.(3)如图2中,线段CF即为所求作.18.(2022•碧江区校级一模)操作理解,解答问题.(1)如图1:已知△ABC,AB=AC,直线CD∥AB;①完成作图:以点A为圆心,AB长为半径画弧,交直线CD于点P,连接PB.②试判断①中∠ABP与∠BAC的数量关系,并证明你的结论.(2)如图2:已知△ABC是格点三角形,点C在直线n上,且n∥AB;在直线n上画出点P,连接PB,使得∠PBA=∠CAB.(不用尺规作图)【分析】(1)①根据要求作出图形即可;②结论:∠APB=∠BAC.利用平行线的性质,圆周角定理证明即可.【解答】解:(1)①图形如图所示:②结论:∠APB=∠BAC.理由:∵CP∥AB,∴∠ABP=∠BPC,∵AB=AC=AP,∴∠BPC=∠BAC,∴∠ABP=∠BAC.(2)如图2中,∠APB=∠CAB.19.(2022•丽水模拟)图1,图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出一个以AC为底边的等腰△ABC,使点B落在格点上.(2)在图2中画出一个以AC为对角线且面积为6的格点矩形ABCD(顶点均在格点上).【分析】(1)根据等腰直角三角形的判定与性质,结合网格特点作图即可得;(2)根据矩形的判定与性质,结合网格特点作图即可得.【解答】解:(1)如图所示,等腰△ABC即为所求;(2)如图所示,矩形ABCD即为所求.20.(2022•婺城区校级模拟)如图,在4×4的方格中,点A,B,C为格点,利用无刻度的直尺画出满足以下条件的图形(保留必要的辅助线).(1)在图1中画△ABC的中线BE.(2)在图2中标注△ABC的外心O并画出其外接圆的切线CP.【分析】(1)根据中线的定义作图;(2)根据三角形的外心的定义和切线的判定定理作图.【解答】解:(1)如图所示,BE即为所求的△ABC的中线;(2)如图所示,点O即为所求的△ABC的外心,PC即为所求的外接圆的切线.21.(2022•海陵区校级三模)如图(1)(2),在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均落在格点上,以AB为直径的半圆的圆心为O,请用无刻度的直尺,在如图(1)图(2)所示的网格中,在半圆O上画出点P,连接AP,使AP平分∠CAB.【分析】如图(1)中,取格点T,连接OT交⊙O于点P,连接AP,点P即为所求.如图(2)中取BC 的中点J,连接OJ,延长OJ交⊙O于点P,连接AP,点P即为所求.【解答】解:如图(1)(2)中,点P即为所求.22.(2022•吉安模拟)如图,在正方形网格中,△ABC的顶点在格点(网格线的交点)上,请仅用无刻度直尺完成以下作图.(保留作图痕迹)(1)在图1中作△ABC的重心.(2)在图2中作∠AGB=∠ACB,且G是格点.【分析】(1)根据重心是三角形的中线的交点,画出图形即可;(2)利用圆周角定理,画出图形即可.【解答】解:(1)如图1,点D即为所求作的的;(2)如图2,∠AG1B,∠AG2B,∠AG3B,∠AG4B即为所求作.23.(2022•绿园区校级模拟)如图①,②,③中每个小正方形的边长均为1.△ABC的顶点A,B均落在小正方形的顶点上,点C在小正方形的边上,以AC为直径的半圆的圆心为O.请用无刻度的直尺按要求画图.(1)如图①,在半圆上确定点D,使OD∥AB.(2)如图②,在线段AB的延长线上确定点E,使AE=AC.(3)如图③,在线段AC上确定点F,使AF=AB.【分析】(1)取B长度中点D,连接OD即可;(2)延长OD交⊙O于点J,连接CJ,延长CJ交AB的延长线于点E,点E即为所求;(3)在图②的基础上,连接AJ交BC于点K,连接EK,延长EK交AC于点F,点F即为所求.【解答】解:(1)如图①中,点D即为所求;(2)如图②中,点E 即为所求;(3)如图③中,点F 即为所求.24.(2022•南关区校级模拟)图①、图②、图③均是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,ABC 的顶点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求作图.(不写作法,保留画图痕迹)(1)在图①中,在BC 上画一点D ,使S △ABD =S △ACD .(2)在图②中,在BC 上画一点E ,使S △ABE :S △ACE =2:3.(3)在图③中,在ABC 内画一点F ,使S △ACF :S △ABF :S △BCF =2:3:3.【分析】(1)取BC 的中点D 即可;(2)取格点M ,N ,连接MN 交BC 于点E ,点E 即为所求;(3)利用数形结合的思想,判断出点F 到AC 的距离为1,到AB 的距离为,取格点P ,Q ,连接PQ 交直线m 于点F ,点F 即为所求.【解答】解:(1)在图①中,点D 即为所求;(2)在图②中,点E 即为所求;(3)在图③中,点F 即为所求.25.(2022•长春模拟)图①、图②分别是10×8的网格,网格中每个小正方形的边长均为1,A、B两点在小正方形的格点上,请在图①、图②中各取一点(点C必须在小正方形的格点上),使以A、B、C为顶点的三角形分别满足下列要求.(1)在图①中画一个△ABC,使∠ACB=90°,面积为5;(2)在图②中画一个△ABC,使BA=BC,∠ABC为钝角,并求△ABC的周长.【分析】(1)根据要求作出图形即可;(2)利用数形结合的思想作出图形,利用勾股定理求出AC,可得结论.【解答】解:(1)如图①中,△ABC即为所求;(2)如图②中,△ABC即为所求.∵AB=BC=5,AC==4,∴△ABC的周长为10+4.26.(2022•二道区校级二模)图①、图②、图③均是6×6的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB、EF、MN的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求画图.(1)在图①中,画∠ADB=45°;(2)在图②中,画∠APB=45°,且点P在线段EF上;(3)在图③中,画∠AQB=45°,且点Q在线段MN上.【分析】(1)构造等腰直角三角形,可得结论;(2)构造等腰直角三角形,可得结论;(3)取格点R,T,连接RT交MN于点Q,连接QB,QA,点Q即为所求.【解答】解:(1)如图①中,点D即为所求;(2)如图②中,点P即为所求;(3)如图③中,点Q即为所求.27.(2022•香坊区校级三模)如图1、2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出以AC为底边的等腰直角三角形ABC,点B在小正方顶点上;(2)在图2中画出以AC为腰的等腰三角形ACD,点D在小正方形的顶点上,且△ACD的面积为8,并直接写出tan A的值.【分析】(1)根据等腰直角三角形的定义画出图形即可;(2)利用数形结合的思想作出图形即可.【解答】解:(1)如图1中,△ABC即为所求;(2)如图2中,△ADC即为所求,tan A==2.28.(2022•瑞安市校级三模)如图是由边长为1的小正六边形构成的网格图,网格上的点称为格点.已知格点线段AB,利用网格图,仅用无刻度的直尺来完成下面几何作图.(1)请在图①中作一个格点等腰三角形△ABC;(2)请在图②在线段AB上求作点P,使得AP:BP=3:4.(要求:不写作法但保留作图痕迹)【分析】(1)画出如图中所示的线段AC,再连接BC即可;(2)如图②,作△ADP∽△BCP即可得出结论.【解答】解:(1)如图所示,△ABC即为所求作的等腰三角形:(2)如图②,点P即为所求作;29.(2022•江夏区模拟)用无刻度直尺作图:(1)如图1,在AB上作点E,使∠ACE=45°;(2)如图1,点F为AC与网格的交点,在AB上作点D,使∠ADF=∠ACB;(3)如图2,在AB上作点N,使=.(4)如图2,在AB上作点M,使∠ACM=∠ABC.【分析】(1)取格点Q,连接CQ交AB于点E,点E即为所求;(2)取AQ是中点P,连接FP交AB于点D,点D即为所求;(3)利用网格特征作出点N即可;(4)把∠ABC考查45°+∠CBK,∠ACE=45°,∠ECF=∠CBK,可得结论.【解答】解:(1)如图1中,点E即为所求;(2)如图1中,点D即为所求;(3)如图2中,点N即为所求;(4)如图2中,点M即为所求.30.(2022•阿城区模拟)如图,在每个小正方形的边长均为1的方格纸中,线段AB和线段DE,点A、B、D、E均在小正方形的顶点上.(1)在方格纸中画出以AB为底边的等腰三角形ABC,使△ABC的面积为10,点C在小正方形的顶点上,直接写出tan∠ABC的值;(2)在方格纸中画出钝角三角形DEF,使∠DEF=45°,点F在小正方形的顶点上.【分析】(1)利用数形结合的思想画出图形即可;(2)根据要求作出图形即可.【解答】解:(1)如图,△ABC即为所求,tan∠ABC=2;(2)如图,△DEF即为所求.31.(2022•长春模拟)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求作图,所画图形的顶点均在格点上.(1)在图①中,画等腰三角形ABC,使其面积为3.(2)在图②中,画等腰直角三角形ABD,使其面积为5.(3)在图③中,画平行四边形ABEF,使其面积为9.【分析】(1)根据等腰三角形的定义,利用数形结合的思想解决问题即可;(2)作一个腰为的等腰直角三角形即可;(3)根据平行四边形的判定,利用数形结合的思想解决问题.【解答】解:(1)如图①中,△ABC即为所求;(2)如图②中,△ABD即为所求;(3)如图③中,平行四边形ABEF即为所求.32.(2022•朝阳区校级模拟)如图在8×8的网格中,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,用无刻度的直尺在网格中完成下列画图,保留必要的作图痕迹,不要求说明理由.(1)如图1,过点A作线段AF,使AF∥DC,且AF=DC.(2)如图2,在四边形ABCD边上求作一点E,使点E与四边形ABCD某一顶点连线,能把该四边形分成的两部分恰好拼成一个无缝隙、不重叠的三角形.(画一个即可)(3)如图3,在边AB上求作一点G,使∠AGD=∠BGC.【分析】(1)根据要求作出图形即可;(2)取CD的中点E,连接AE即可;(3)取格点T,连接CT交AB于点G,连接DG,点G即为所求.【解答】解:(1)如图,线段AF即为所求;(2)如图,点E即为所求(答案不唯一);(3)如图,点G即为所求.。

格点面积教材答案解析

格点面积教材答案解析

利用格点求图形的面积通常有三种思路:一是通过剪拼(割补法)直接将图形拼成若干个面积单位,然后通过计算有多少个面积单位来求图形面积;二是用不规则图形所在外围长方形减去周边几个非所求面积的图形来求得(扩展法);
三是利用毕克定理(公式)来计算。

此讲是在三年级学习简单格点与面积的基础上进一步学习的。

例1:下图是一个方格图。

图中有长方形、三角形、平行四边形和梯形各一个。

请你利用方格网计算出它们的面积各是多少?(如图所示阴影部分的小正方形的面积是1平方厘米)
格点面积
知识概要
分析
方法一:
例2:计算下面多边形格点的面积。

(每相邻两个小钉之间的距离都等于1个长度单位)
例3:图中有21个点,其中每相邻的三点“∴”或“∵”所形成的三角形都是面积为1的等边三角形。

试计算三角形ABC的面积?
方法二:
分析
分析
★1. 求下面格点图形的面积。

★★2. 求下面格点图形的面积。

课外作业
★★★3. 下图中每相邻的三点“∴”或“∵”所形成的三角形都是面积为1的等边三角形。

试计算多边形ABCDE的面积。

★★★4. 如图,如果每一个小三角形的面积是2平方厘米,那么四边形ABCD 的面积是多少平方厘米?。

课题学习 格点多边形的面积计算-2020春浙教版八年级数学下册同步训练

课题学习 格点多边形的面积计算-2020春浙教版八年级数学下册同步训练

课题学习格点多边形的面积计算A组(第1题)1.如图,关于方格板中的两个四边形,下列叙述正确的是(C)A. 四边形Ⅰ的面积大于四边形Ⅱ的面积B. 四边形Ⅰ的面积小于四边形Ⅱ的面积C. 这两个四边形的面积相同,但Ⅰ的周长小于Ⅱ的周长D. 这两个四边形的面积相同,但Ⅰ的周长大于Ⅱ的周长2.在格点图中,横排或竖排相邻两格点间的距离都为1.若格点多边形边界上有12个格点,图形内有4个格点,则这个格点多边形的面积为__9__.3.在如图所示的5×5的方格纸中,每个小正方形的边长都为1.画出三个格点多边形,使格点多边形内的格点数为4,格点多边形边界上的格点数分别为5,6,7,并求出每一个图中的格点多边形的面积.,(第3题))【解】 如图所示(答案不唯一).图①中,格点多边形内的格点数a =4,格点多边形边界上的格点数b =5, ∴S =a +12b -1=4+12×5-1=112.图②中,格点多边形内的格点数a =4,格点多边形边界上的格点数b =6, ∴S =a +12b -1=4+12×6-1=6.图③中,格点多边形内的格点数a =4,格点多边形边界上的格点数b =7, ∴S =a +12b -1=4+12×7-1=132.4.“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S =a +b2-1,小明只记得公式中的S 表示多边形的面积,a 和b 中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a 还是b 表示多边形内部的整点个数.请你根据图①推断公式,并运用这个公式求得图②中多边形的面积.(第4题)【解】根据图①可得,-1;∵三角形内有1个格点,边上有8个格点,面积为4,即4=1+82-1,长方形内有2个格点,边上有10个格点,面积为6,即6=2+102∴公式中表示多边形内部整点个数的字母是a.∵图②中,a=15,b=7,-1=17.5.∴图②中多边形的面积S=15+725.如图,每个小正方形的面积都为1.(第5题)(1)求凹多边形的面积.(2)若记格点多边形内的格点数为a ,边界上的格点数为b ,则图中a =__11__,b =__11__,代入格点多边形的面积计算公式S =a +12b -1中,得S =15.5.(3)根据问题(1)和(2),猜想格点多边形的面积计算公式S =a +12b -1是否适合凹多边形的情形(直接写出结论).【解】 (1)由长方形的面积减去三角形的面积,得S =4×6-12×1×3-12×3×2-12×2×2-12×1×4=15.5.(3)格点多边形的面积计算公式S =a +12b -1适合凹多边形的情形.B 组6.如图,在5×4的方格纸中,每个小正方形的边长均为1,点O ,A ,B 在方格纸的交点(格点)上,在第四象限内的格点上找一点C ,使△ABC 的面积为3,则这样的点C 共有(B )A. 2个B. 3个C. 4个D. 5个,(第6题)),(第6题解)) 【解】点C的位置如解图所示,共有3个.(第7题)7.如图,在5×5的方格纸中,小正方形的面积均为1,小正方形的顶点为格点,请你在图中选7个格点,要求其中任意3个格点都不在一条直线上,并且使这7个点用直线连结后围成的图形面积尽可能大,并求出这个最大面积.(第7题解)【解】 当7个格点的位置如解图所示时,围成的面积最大,最大面积为5×5-0.5×3=23.5.(或∵a =16,b =17,∴S =a +12b -1=16+12×17-1=23.5.)8.各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何快速地计算它的面积?奥地利数学家皮克证明了格点多边形的面积公式:S =a +12b -1,其中a 表示多边形内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积.如图①,a =4,b =6,S =4+12×6-1=6.(1)请在图②中画一个格点正方形,使它内部只含有4个格点,并写出它的面积. (2)请在图③中画一个格点三角形,使它的面积为72,且每条边上除顶点外无其他格点.,(第8题))【解】 (1)画法不唯一,如解图①或②所示.,(第8题解))(2)画法不唯一,三角形内部的格点数为3即可,如解图③或④所示.9.如图,正六边形ABCDEF的面积为54 cm2,AP=2PF,CQ=2BQ.求四边形CEPQ 的面积.(第9题)(第9题解)【解】 如解图,把正六边形等分成54个小正三角形,由于正六边形ABCDEF 的面积为54 cm 2,故每一个小正三角形的面积为1 cm 2,∴S 四边形ABQG =7 cm 2,S ▱GPHQ =8 cm 2,S ▱PMEF =6 cm 2,S ▱CDEN =18 cm 2.根据平行四边形的对角线平分平行四边形的面积,得S △PQG =12S ▱GPHQ =4 cm 2,S △EFP =12S ▱PMEF =3 cm 2,S △CDE =12S ▱CDEN =9 cm 2,∴S 四边形ABQP =S 四边形ABQG +S △PQG =7+4=11(cm 2),∴S 四边形CEPQ =S 正六边形ABCDEF -S 四边形ABQP -S △CDE -S △EFP =54-11-9-3=31(cm 2).数学乐园10.如图,A 是5×5网格图形中的一个格点(小正方形的顶点),图中每个小正方形的边长为1.求以A 为其中一个顶点,面积等于52的格点等腰直角三角形(三角形的三个顶点都是格点)的个数.,(第10题))【解】 ∵面积等于52,且为格点等腰直角三角形,∴等腰直角三角形的直角边长为5,5,斜边长为10.观察图形可知,以A 为直角顶点的等腰直角三角形有8个;以A 为45°角顶点的等腰直角三角形有8个,故共有16个.。

2024年华师大版七年级数学上册阶段测试试卷988

2024年华师大版七年级数学上册阶段测试试卷988

2024年华师大版七年级数学上册阶段测试试卷988考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共8题,共16分)1、M点在数轴上表示4,N点离M的距离是3,那么N点表示()A. 1B. 7C. 1或7D. 1或12、若你是工商局的统计员,要为商家提供关于这商品的直观统计图,则应选择统计图是()A. 条形统计图B. 折线统计图C. 扇形统计图D. 前三种都可以3、甲;乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”甲说:“是乙不小心闯的祸.”乙说:“是丙闯的祸.”丙说:“乙说的不是实话.”丁说:“反正不是我闯的祸.”如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的祸( )A. 甲B. 乙C. 丙D. 丁4、若三条直线交于一点,则共有对顶角(平角除外)()B. 5对C. 4对D. 3对5、下列叙述正确的是( )A. 近似数8.96×104精确到百分位B. 近似数5.3万精确到千位C. 0.130精确到百分位D. 近似数1.8与1.80表示的意义相同6、【题文】如图所示,有下列结论①②③④其中正确的有()A. 1个B. 2个C. 3个D. 4个7、(2015•盘锦)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.8、代数式2a2+3a+1的值是6,则6a2+9a+5的值是()A. 18B. 16D. 20评卷人得分二、填空题(共9题,共18分)9、(2014春•涿州市校级月考)已知:如图;CD⊥DA,DA⊥AB,∠1=∠2.试确定射线DF 与AE的位置关系,并说明你的理由.证明:∵CD⊥DA,DA⊥AB,(____)∴∠CDA=∠DAB=____°.(垂直定义)又∠1=∠2,____∴∠CDA-∠1=____;(等式的性质)即∠3=____.∴DF____AE.(____,____)10、1的相反数是____,倒数是____.11、(2014春•扬中市校级期末)如图,在△ABC中,CE,BF是两条高,若∠A=65°,则∠BOC的度数是____.12、在-6,0,3,8这四个数中,最小的数是____.13、比较大小:﹣____﹣(填“>”或“<”)14、若代数式2a m b4与-5a2b n+1是同类项,则m n= ______ .15、某市6月份日最高气温统计如图所示,则在日最高气温这组数据中,众数是______ ℃,中位数是 ______ ℃.16、观察下面的一列数;按某种规律在横线上填上适当的数:1,-2,4,-8,16,____.17、把多项式按照字母x升幂排列:____.评卷人得分三、判断题(共9题,共18分)18、相等的角是对顶角.____.(判断对错)19、(4a2b3-2ab2)÷2ab2=2ab.____.(判断对错)4421、计算-22与(-2)2的结果相等.(____)22、(-4)-(-1)=-3____.(判断对错)23、-a8÷(-a)2=(-a)8-2=(-a)6=a6.____.(判断对错)24、同一平面内,一条直线不可能与两条相交直线都垂直.____.(判断对错)25、面积相等的两个三角形是全等三角形.()26、﹣x2(2y2﹣xy)=﹣2xy2﹣x3y.________.(判断对错)评卷人得分四、证明题(共1题,共10分)27、如图;在△ABC中,AD平分∠BAC,在AB上截取AE=AC,连接DE,已知DE=2cm,BD=3cm;(1)试说明△AED≌△ACD;(2)求线段BC的长.评卷人得分五、解答题(共3题,共6分)28、解下列不等式或不等式组。

《三角形格点与面积》专题

《三角形格点与面积》专题

1.如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得到△A'B'C',点C的对应点是直线上的格点C'.(1)画出△A'B'C';(2)在BC上找一点P,使AP平分△ABC的面积;(3)试在直线l上画出所有的格点Q,使得由点A'、B'、C'、Q四点围成的四边形的面积为9.2.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是.(3)作直线MN,将△ABC分成两个面积相等的三角形.3.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)画出△ABC中BC边上的高AH和BC边上的中线AD.(2)画出将△ABC向右平移5格又向上平移3格后的△A′B′C′.(3)△ABC的面积为.(4)若连接AA′,CC′,则这两条线段之间的关系是.4.正方形网格中的每个小正方形的边长均为1个单位长度,△ABC各顶点的位置如图所示.将△ABC平移,使点A移到点D,点E、F分别是B、C的对应点.(1)画出平移后的△DEF;(2)在AB上找一点P,使得线段CP平分△ABC的面积;(3)利用网格画△ABC的高BH;(4)连接AD、CF,AD与CF的关系是.5.如图,三角形ABC的顶点A,B,C都在格点(正方形网格线的交点)上,将三角形ABC向左平移2格,再向上平移3格,得到三角形A'BC“(设点A、B、C分别平移到A′、B′、C′)(1)请在图中画出平移后的三角形A'B′C′;(2)若连接BB′、CC′,则这两条线段的位置关系是.数量关系是(3)若BB'与AC相交于点P,则∠A'B'P,∠B'P A与∠P AB三个角之间的数量关系为A.∠A'B'P+∠B'P A+∠P AB=180°B.∠A'B'P+∠B'P A+∠P AB=360°C.∠A'B'P+∠B'P A﹣∠P AB=180°D.∠A'B'P+∠B'P A﹣∠P AB=360°6.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点C变换为点D,点A、B的对应点分别是点E、F.(1)在图中请画出△ABC平移后得到的△EFD;(2)在图中画出△ABC的AB边上的高CH;(3)若点P在格点上,且S△PBC=S△ABC(点P与点A不重合),满足这样条件的P点有个.7.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)画出△ABC中AB边上的中线CM;(3)图中△ABC的面积是.8.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和直尺画图:(1)补全△A′B′C′;(2)作出△ABC的中线CD;(3)画出BC边上的高线AF;(4)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有个.(注:格点指网格线的交点)9.画图(只能借助于网格)并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移4格,再向上平移1格,请在图中画出平移后的△A′B′C′;(2)△A′B′C′的面积为;(3)利用网格在图中画出△ABC的中线AD,高线AE;(4)在右图中能使S△PBC=S△ABC的格点p的个数有个(点P异于A).10.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD和BC边上的高线AE;(3)线段AA′与线段BB′的关系是:;(4)求四边形ACBB′的面积.11.如图,在边长为1个单位的正方形网格中,△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题(保留画图痕迹):(1)画出△A′B′C′;(2)画出△ABC的高BD;(3)连接AA′、CC′,那么AA′与CC′的关系是,线段AC扫过的图形的面积为.12.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为.(5)点F为方格纸上的格点(异于点B),若S△ACB=S△ACF,则图中这样的格点F共有个.13.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)若连接BB′,CC′,则这两条线段的关系是;(3)△ABC在整个平移过程中线段AB扫过的面积为.14.利用直尺画图(1)利用图(1)中的网格,过P点画直线AB的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB、CD、EF首尾顺次相接组成一个三角形.(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于.15.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)分别画出△ABC中BC边上的高AH、中线AG.(2)画出先将△ABC向右平移6格,再向上平移3格后的△DEF.(3)画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积的2倍.16.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积=;(2)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP;(3)请在图中画出过点C且平行于AB的直线CM.17.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF;(2)若连接AD、CF,则这两条线段之间的关系是;(3)在图中找出所有满足S△ABC=S△QBC的格点Q(异于点A),并用Q1、Q2表示.18.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移8格,再向下平移1格.请在图中画出平移后的△A′B′C′;(2)利用网格在图中画出△ABC的中线CD,高线AE;(3)△A′B′C′的面积为.(4)在平移过程中线段BC所扫过的面积为.(5)在右图中能使S△PBC=S△ABC的格点P的个数有个(点P异于A).19.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A平移到点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF,并求△DEF的面积=;(2)在AB上找一点M,使CM平分△ABC的面积;(3)在网格中找格点P,使S△ABC=S△BCP,这样的格点P有个.20.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C;(2)画出AB边上的中线CD;(3)画出AC边上的高线BE;(4)平移过程中,线段AB扫过的面积为.21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积;(2)在图中找出格点D,使△ACD的面积与△ABC的面积相等.22.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)画出平移后的△A′B′C′的中线B′D′(3)若连接BB′,CC′,则这两条线段的关系是(4)△ABC在整个平移过程中线段AB扫过的面积为(5)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有个(注:格点指网格线的交点)23.如图所示,在8×8的网格中,△ABC是格点三角形(顶点是网格的交点),若点A坐标为(﹣1,3),按要求回答下列问题:(1)建立符合条件的平面直角坐标系,并写出点B和点C的坐标;(2)将△ABC先向下平移2个单位长度,再向右平移3个单位长度,得到△DEF,请在图中画出△DEF,并求出线段AC在平移过程中扫过的面积.24.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C′(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为.25.如图,△ABC的顶点都在方格纸的格点上,将△ABC向左平移1格,再向上平移3格,其中每个格子的边长为1个长度单位.(1)在图中画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段的关系是;(3)作直线l,将△ABC分成两个面积相等的三角形.参考答案与试题解析一.解答题(共25小题)1.如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得到△A'B'C',点C的对应点是直线上的格点C'.(1)画出△A'B'C';(2)在BC上找一点P,使AP平分△ABC的面积;(3)试在直线l上画出所有的格点Q,使得由点A'、B'、C'、Q四点围成的四边形的面积为9.【分析】(1)根据平移的性质画出图形即可;(2)根据三角形中线的性质解答即可;(3)根据面积公式解答即可.【解答】解:(1)如图所示:△A'B'C'即为所求;(2)如图所示:点P即为所求;(3)如图所示:点Q即为所求.【点评】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.2.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是相等且平行.(3)作直线MN,将△ABC分成两个面积相等的三角形.【分析】(1)作出A、B、C的对应点A′、B′、C′即可;(2)根据平移的性质可知,线段AA′,CC′这两条线段之间的关系是相等且平行;(3)构造平行四边形ABCD,对角线BD所在的直线即为所求的直线MN.【解答】解:(1)平移后的△A′B′C′如图所示.(2)根据平移的性质可知,线段AA′,CC′这两条线段之间的关系是相等且平行,故答案为相等且平行.(3)构造平行四边形ABCD,对角线BD所在的直线即为所求的直线MN.【点评】本题考查平移变换、平移变换的性质、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)画出△ABC中BC边上的高AH和BC边上的中线AD.(2)画出将△ABC向右平移5格又向上平移3格后的△A′B′C′.(3)△ABC的面积为3.(4)若连接AA′,CC′,则这两条线段之间的关系是AA′=CC′且AA′∥CC′.【分析】(1)根据三角形的中线和高的定义作图即可得;(2)根据平移变换的定义作出变换后的对应点,再顺次连接即可得;(3)直接利用三角形的面积公式计算可得;(4)根据平移变换的性质可得答案.【解答】解:(1)如图所示,AH和AD即为所求;(2)如图所示,△A′B′C′即为所求;(3)△ABC的面积为×3×2=3,故答案为:3;(4)由平移的性质知AA′=CC′且AA′∥CC′,故答案为:AA′=CC′且AA′∥CC′.【点评】本题主要考查作图﹣平移变换,解题的关键是熟练掌握平移变换的定义和性质,并据此得出变换后的对应点.4.正方形网格中的每个小正方形的边长均为1个单位长度,△ABC各顶点的位置如图所示.将△ABC平移,使点A移到点D,点E、F分别是B、C的对应点.(1)画出平移后的△DEF;(2)在AB上找一点P,使得线段CP平分△ABC的面积;(3)利用网格画△ABC的高BH;(4)连接AD、CF,AD与CF的关系是AD=CF,AD∥CF.【分析】(1)作出B,C的对应点E,F即可解决问题.(2)取AB中点P,连接CP即可.(3)取格点T作射线BT交AC于H,线段BH即为所求.(4)根据平移的性质即可解决问题.【解答】解:(1)△DEF如图所示.(2)线段CP即为所求.(3)取格点T作射线BT交AC于H,线段BH即为所求.(4)AD=CF,AD∥CF.故答案为:AD=CF,AD∥CF.【点评】本题考查平移变换,三角形的中线,高等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.如图,三角形ABC的顶点A,B,C都在格点(正方形网格线的交点)上,将三角形ABC向左平移2格,再向上平移3格,得到三角形A'BC“(设点A、B、C分别平移到A′、B′、C′)(1)请在图中画出平移后的三角形A'B′C′;(2)若连接BB′、CC′,则这两条线段的位置关系是BB′∥CC′.数量关系是BB′=CC′(3)若BB'与AC相交于点P,则∠A'B'P,∠B'P A与∠P AB三个角之间的数量关系为CA.∠A'B'P+∠B'P A+∠P AB=180°B.∠A'B'P+∠B'P A+∠P AB=360°C.∠A'B'P+∠B'P A﹣∠P AB=180°D.∠A'B'P+∠B'P A﹣∠P AB=360°【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;(2)根据平移的性质求解;(3)根据平行线的性质和三角形外角性质解答.【解答】解:(1)如图所示:△A'B'C'即为所求:(2)根据平移的性质可得:BB′∥CC′,BB′=CC′;故答案为:BB′∥CC′;BB′=CC′;(3)由图可知:∠A'B'P+∠B'P A﹣∠P AB=180°故答案为:C【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.6.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点C变换为点D,点A、B的对应点分别是点E、F.(1)在图中请画出△ABC平移后得到的△EFD;(2)在图中画出△ABC的AB边上的高CH;(3)若点P在格点上,且S△PBC=S△ABC(点P与点A不重合),满足这样条件的P点有4个.【分析】(1)作出A,B的对应点,E,F即可.(2)根据高的定义画出图形即可.(3)利用等高模型解决问题即可.【解答】解:(1)△DEF如图所示.(2)线段CH如图所示.(3)如图所示满足条件的点P有4个.故答案为4【点评】本题考查作图﹣平移变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)画出△ABC中AB边上的中线CM;(3)图中△ABC的面积是8.【分析】(1)根据平移的定义作出变换后的对应点,再顺次连接即可得;(2)根据中线的概念作图可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,CM即为所求;(3)△ABC的面积是×5×7﹣×2×6﹣×(2+5)×1=8,故答案为:8.【点评】本题考查了利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.8.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和直尺画图:(1)补全△A′B′C′;(2)作出△ABC的中线CD;(3)画出BC边上的高线AF;(4)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有6个.(注:格点指网格线的交点)【分析】(1)由点B及其对应点B′的位置得出平移方向和距离,据此将点A、C按照相同方式平移得到对应点,再顺次连接即可得;(2)根据中线的概念作图可得;(3)根据高线的概念求解可得;(4)根据共底等高及平行线间的距离处处相等作图可得.【解答】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,CD即为所求;(3)如图所示,AF即为所求;(4)如图所示,中满足条件且异于点C的格点E共有6个,故答案为:6.【点评】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义和性质及中线、高线的概念、平行线间的距离处处相等.9.画图(只能借助于网格)并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移4格,再向上平移1格,请在图中画出平移后的△A′B′C′;(2)△A′B′C′的面积为4;(3)利用网格在图中画出△ABC的中线AD,高线AE;(4)在右图中能使S△PBC=S△ABC的格点p的个数有7个(点P异于A).【分析】(1)根据图形平移的性质画出平移后的△A′B′C′即可;(2)利用三角形的面积公式即可得出结论;(3)根据格点的特点△ABC的中线CD,高线AE即可;(4)过点A作直线BC的平行线,此直线与格点的交点即为P点.【解答】解:(1)如图所示:(2))△A′B′C′的面积=,故答案为:4;(3)如图所示:AD,AE即为所求;(4)能使S△PBC=S△ABC的格点p的个数有7个,故答案为:7【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.10.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD和BC边上的高线AE;(3)线段AA′与线段BB′的关系是:平行且相等;(4)求四边形ACBB′的面积.【分析】(1)根据图形平移的性质画出△A′B′C′即可;(2)取线段AB的中点D,连接CD,过点A作AE⊥BC的延长线与点E即可;(3)根据图形平移的性质可直接得出结论;(4)根据S四边形ACBB′=S梯形AFGB+S△ABC﹣S△BGB′﹣S△AFB′即可得出结论.【解答】解:(1)如图所示;(2)如图所示;(3)由图形平移的性质可知,AA′∥BB′,AA′=BB′.故答案为:平行且相等;(4)S四边形ACBB′=S梯形AFGB+S△ABC﹣S△BGB′﹣S△AFB′=(7+3)×6+×4×4﹣×1×7﹣×3×5=30+8﹣﹣=27.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.11.如图,在边长为1个单位的正方形网格中,△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题(保留画图痕迹):(1)画出△A′B′C′;(2)画出△ABC的高BD;(3)连接AA′、CC′,那么AA′与CC′的关系是平行且相等,线段AC扫过的图形的面积为10.【分析】(1)根据平移的定义和性质作出点A、C平移后的对应点,顺次连接即可得;(2)根据三角形高的定义作图即可得;(3)根据平移变换的性质可得,再利用割补法求出平行四边形的面积.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,BD即为所求;(3)如图所示,AA′与CC′的关系是平行且相等,线段AC扫过的图形的面积为10×2﹣2××4×1﹣2××6×1=10,故答案为:平行且相等、10.【点评】此题主要考查了平移变换以及平行四边形面积求法等知识,根据题意正确把握平移的性质是解题关键.12.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为8.(5)点F为方格纸上的格点(异于点B),若S△ACB=S△ACF,则图中这样的格点F共有7个.【分析】(1)根据图形平移的性质画出平移后的△A′B′C′即可;(2)画出AB边上的中线CD即可;(3)过点A向BC的延长线作垂线,垂足为点E即可;(4)利用三角形的面积公式求解即可;(5)过点B作BF∥AC,直线BF与格点的交点即为所求,还有AC下方的一个点.【解答】解:(1)如图,△A′B′C′即为所求;(2)如图,线段CD即为所求;(3)如图,线段AE即为所求;(4)S△A′B′C′=×4×4=8.故答案为:8;(5)如图,共有7个格点.故答案为:7.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.13.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)若连接BB′,CC′,则这两条线段的关系是平行且相等;(3)△ABC在整个平移过程中线段AB扫过的面积为12.【分析】(1)利用网格特点和平移的性质分别画出点A、B、C的对应点A′、B′、C′即可得到△A′B′C′;(2)根据平移的性质求解;(3)由于线段AB扫过的部分为平行四边形,则根据平行四边形的面积公式可求解.【解答】解:(1)如图,△A′B′C′为所作;(2)BB′∥CC′,BB′=CC′;(3)线段AB扫过的面积=4×3=12.故答案为平行且相等;12.【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.14.利用直尺画图(1)利用图(1)中的网格,过P点画直线AB的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB、CD、EF首尾顺次相接组成一个三角形.(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于 3.5.【分析】(1)根据网格结构的特点,利用直线与网格的夹角的关系找出与AB平行的格点以及垂直的格点作出即可;(2)根据网格结构的特点,过点E找出与AB、CD位置相同的线段,过点F找出与AB、CD位置相同的线段,作出即可;(3)根据S△=S正方形﹣三个角上的三角形的面积即可得出结论.【解答】解:(1)、(2)如图所示;(3)S△EFH=3×3﹣×1×2﹣×2×3﹣×1×3=9﹣1﹣3﹣=3.5.故答案为:3.5.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.15.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)分别画出△ABC中BC边上的高AH、中线AG.(2)画出先将△ABC向右平移6格,再向上平移3格后的△DEF.(3)画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积的2倍.【分析】(1)根据三角形的高和中线的定义结合网格作图可得;(2)根据平移变换的定义和性质作图可得;(3)由△ABC的面积为3知所作三角形的面积为6,据此结合网格作图可得.【解答】解:(1)如图所示,AH、AG即为所求;(2)如图所示,△DEF即为所求;(3)如图所示,△MNP即为所求.【点评】本题主要考查作图﹣基本作图及平移变换,解题的关键是掌握三角形的高、中线的定义和平移变换的定义与性质.16.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积=7;(2)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP;(3)请在图中画出过点C且平行于AB的直线CM.【分析】(1)根据点A到A'的平移规律:向右移6个单位,再向下平移2个单位,直接平移并利用面积差计算面积;(2)作中线AP,可平分△ABC的面积;(3)作平行线CM.【解答】解:(1)画△A'B'C',S△A'B'C'=4×4﹣×2×4﹣×2×3﹣×1×4=7;(4分)故答案为:7;(2)取AB的中点P,作线段CP;(6分)(3)画AB的平行线CM.(8分)【点评】本题考查了平移变换的作图、三角形的面积、平分三角形的面积、平行线,知道三角形的中线平分三角形的面积,并会根据一个对应点的平移规律进行作图.17.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF;(2)若连接AD、CF,则这两条线段之间的关系是AD=CF,AD∥CF;(3)在图中找出所有满足S△ABC=S△QBC的格点Q(异于点A),并用Q1、Q2表示.【分析】(1)将三角形的三顶点分别向右平移6格、向下平移1格得到三顶点,再顺次连接可得;(2)根据平移变换的性质可得答案;(3)过点A作线段BC的平行线,平行线经过的网格点即为点Q1、Q2.【解答】解:(1)如图所示,△DEF即为所求.(2)根据平移变换的性质知,AD=CF,AD∥CF,故答案为:AD=CF,AD∥CF;(3)过点A作线段BC的平行线,平行线经过的网格点即为点Q1、Q2.【点评】本题考查了利用平移变换作图,平移的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.18.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移8格,再向下平移1格.请在图中画出平移后的△A′B′C′;(2)利用网格在图中画出△ABC的中线CD,高线AE;(3)△A′B′C′的面积为8.(4)在平移过程中线段BC所扫过的面积为32.(5)在右图中能使S△PBC=S△ABC的格点P的个数有9个(点P异于A).【分析】(1)根据图形平移的性质画出平移后的△A′B′C′即可;(2)根据格点的特点△ABC的中线CD,高线AE即可;(3)利用三角形的面积公式即可得出结论;(4)利用平行四边形的面积公式即可得出结论;(5)过点A作直线BC的平行线,此直线与格点的交点即为P点.【解答】解:(1)如图,△A′B′C′即为所求;(2)如图,中线CD,高线AE即为所求;(3)S△A′B′C′=×4×4=8.故答案为:8;(4)线段BC所扫过的面积=8×4=32.故答案为:32;(5)如图,共有9个点.故答案为:9.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.19.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A平移到点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF,并求△DEF的面积=7;(2)在AB上找一点M,使CM平分△ABC的面积;(3)在网格中找格点P,使S△ABC=S△BCP,这样的格点P有4个.【分析】(1)根据平移的性质画出图象,再利用三角形的面积公式计算即可;(2)根据中线的定义画出中线即可平分三角形面积;(3)在过点A平行BC的直线上有4个格点,所以满足条件的△PCB有4个.【解答】解:(1)如图所示:△DEF即为所求,△DEF的面积为:4×4﹣×2×4﹣×2×3﹣×1×4=7;故答案为:7;(2)如图所示:点M即为所求;(3)使S△ABC=S△BCP,这样的格点P有4个.故答案为:4.【点评】本题考查平移变换、三角形的面积、三角形的中线等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C,图中标出了点B的对应点B′.根据下列条件,。

部编数学八年级下册专题33一次函数与面积结合(解析版)含答案

部编数学八年级下册专题33一次函数与面积结合(解析版)含答案

专题33 一次函数与面积结合1.已知O为坐标原点,过点A(1,2)的直线y=kx+b与x轴交于点B,且S△ABO=4,求k的值.2.已知直线y=﹣3x+6与x轴交于A点,与y轴交于B点.(1)求A,B两点的坐标;(2)求直线y=﹣3x+6与坐标轴围成的三角形的面积.【答案】(1)A(2,0),B(0,6);(2)6.【详解】试题分析:(1)分别令x=0、y=0求解即可得到与坐标轴的交点;(2)根据三角形的面积公式列式计算即可得解.解:(1)当x=0时,y=﹣3x+6=6,当y=0时,0=﹣3x+6,x=2.所以A(2,0),B(0,6);(2)直线与坐标轴围成的三角形的面积=S△ABO=×2×6=6.考点:一次函数图象上点的坐标特征.3.已知动点P以每秒2 cm的速度沿图(1)的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP 的面积S与时间t之间的关系如图(2)中的图象表示.若AB=6 cm,试回答下列问题∶(1)图(1)中的BC长是多少?(2)图(2)中的a是多少?(3)图(1)中的图形面积是多少?(4)图(2)中的b是多少?4.如图,已知一次函数y kx b=+的图象经过A(-2,-1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求△AOB的面积.5.如图,已知一次函数与正比例函数图像相交于点A ,与轴交于点B.(1)求出m、n的值;(2)求出的面积.代入可求得点的坐标代入与轴的交点即可求得的)在函数的图象上,∴)也在函数的图象上,∴解得:∵与轴交于点令,则∴6.如图,一次函数y=kx+b的图象为直线l1,经过A(0,4)和D(4,0)两点;一次函数y=x+1的图象为直线l2,与x轴交于点C;两直线l1,l2相交于点B.(1)求k、b的值;(2)求点B的坐标;(3)求△ABC的面积.7.如图,一条直线经过点A(5,0),B(1,4).(1)求直线AB 的解析式;(2)若直线2y x b =+与直线AB 相交于点C (3,a ),与x 轴相交于点D ,求a 、b 的值以及△ACD 的面积.8.在平面直角坐标系中,O 为原点,点()4,0A ,()2,0B -,()3,2C -,点D 是y 轴正半轴上的动点,连接CD 交x 轴于点E .(1)如图①,若点D 的坐标为()0,2,求ACD V 的面积;(2)如图②,若12ABD ABC S S =V V ,求点D 的坐标.(3)如图③,若BDE ACE S S =△△,请直接写出点D 的坐标.9.如图,在直角坐标系中,已知直线332y x =-+与x 轴相交于点A 与y 轴交于点B .(1)A 、B 两点坐标分别为________,________;(2)点(3,0)M 在x 轴上,若点P 是直线AB 上的一个动点,当PBM AOB S S =△△时,求点P 的坐标.12PBM PAM ABM S S S =+=△△△∴3P y =,∵点P 在x 轴下方,∴3P y =-,当=3y -时,代入32y x =-10.已知,一次函数(2)4y t x =-+与(1)2y t x =-+-的图像相交于点P ,分别与y 轴相交于点A 、B .其中t 为常数,2t ¹且1t ¹-.(1)求线段AB的长;(2)试探索ABPV的面积是否是一个定值?若是,求出ABPV的面积;若不是,请说明理由;(3)当t为何值时,ABPV周长的最小值.V的周长最小,并求出ABP【点睛】本题考查了一次函数综合,最短路径问题,勾股定理,解题的关键是注意(3)中分析出要ABP+最小.V的周长最小,则要AP BP11.在平面直角坐标系中,原点为O,点P(m,n),已知一次函数的图象过点A(0,5),点B (﹣1,4).(1)求这个一次函数的解析式;(2)当n=0时,求PA+PB距离最短时m的值.(3)当点P经过直线AB时,且△OAP的面积等于△OAB的面积的2倍时,求n的值.∵点A的坐标为(0,5),【点睛】本题考查了轴对称中最短路线问题以及待定系数法求一次函数解析式,解题的关键是:(1)利用待定系数法求出一次函数表达式;(2)找出PA +PB 取最小值时点P 的位置;(3)列出关于m 的方程.12.在平面直角坐标系中,原点为O ,已知一次函数的图象过点A (0,5),点B (-1,4)和点P (m ,n ).(1)求这个一次函数的解析式;(2)当n =2时,求直线 AB ,直线 OP 与 x 轴围成的图形的面积;(3)当OAP △的面积等于OAB V 的面积的2倍时,求n 的值.当x=-2时,y=x+5=3,此时P(-2,3);综上所述,n的值为7或3.【点睛】本题考查了待定系数法求一次函数解析式:考查了直线与坐标轴围成的图形的面积,掌握以上知识是解题的关键.13.如图,已知直线y=1x+2交x轴于点A,交y轴于点B,2(1)求A,B两点的坐标;S△AOB时,求直线OC的解析式.(2)已知点C是线段AB上的一点,当S△AOC= 1214.如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式;(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(﹣52,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.∵∠HCB+∠CBH=90°,∠CBH+∴∠ABO=∠BCH,∵∠CHB=∠BOA=90°,BC=BA ∴△CHB≌△BOA(AAS),∴BH=OA=2,CH=OB,则点∵AC=AD,AB⊥CB,∴BC=BD,∵∠CBH=∠FBD,∴△BCH≌△BDF,∴BF=BH,15.如图,在平面直角坐标系中,过点B(4,0)的直线AB与直线OA相交于点A(3,1),动点M 在线段OA和射线AC上运动.(1)求直线AB的解析式;(2)直线AB交y轴于点C,求△OAC的面积;(3)当△OAC的面积是△OMC面积的3倍时,求出这时点M的坐标.16.在平面直角坐标系中,O 为原点,已知直线132y x =+与x 轴交于点A ,与y 轴交于点B ,点C 与点A 关于y 轴对称,如图①.(1)点A 的坐标为________,点B 的坐标为________,点C 的坐标为________,直线BC 的解析式为________.(2)点M 是x 轴上的一个动点(点M 不与点O 重合),过点M 作x 轴的垂线,交直线AB 于点P .交直线BC 于点Q (图②).①如图②,当点M 在x 轴的正半轴上时,若PQB △的面积为94,求点M 的坐标;②BM P17.如图,直线1l的解析表达式为:y=-3x+3,且1l与x轴交于点D,直线2l经过点A,B,直线1l,l交于点C.2(1)求点D的坐标;(2)求直线2l的解析表达式;(3)求△ADC的面积;(4)在直线2l上存在一点P,使得△ADP的面积是△ADC面积的2倍,请直接写出点P的坐标.∵y=1.5x-6,y=6,∴1.5x-6=6,解得x=8,∴P1(8,6).∵y=1.5x-6,y=-6,∴1.5x-6=-6,解得x=0,∴P2(0,-6)综上所述,P1(8,6)或P2(0,-6).【点睛】本题考查的是一次函数的性质,与坐标轴的交点坐标,两个一次函数图象的交点,三角形面积的计算等有关知识,难度中等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九、格点与面积(B)
年级______班_____姓名_____得分_____
一、填空题:
1.右图是用皮筋在钉板上围成的一个
三角形,计算它的面积是多少.(每相邻两个
小钉之间的距离都等于1个长度单位).
2.右图是一根用皮筋在钉板上围成的一个四边形,计算它的
面积是多少.(每相邻两个小钉之间的距离都等于1个长度单
位).
3.在一个9⨯6的长方形内,有一个凸四边形
ABCD(如右图).用毕克定理先求出它的面积来,再用拼
割方法计算它的面积,看两者是否一
致.
4.右图中每个小正方形的面积都
是4平方厘米,求图中阴影部分的面
积.
5.右图是一个10⨯10的正方形,求正方形内的四边形ABCD
的面积.
6.右图是一个8⨯12面积单
位的图形.求矩形内的箭形
ABCDEFGH的面积.
7.右图中每个小正方形的面积都是1,那么图中这只
“狗”所占的面积是多少?
8.右图是一个5⨯5的方格纸,小方格的
面积是1平方厘米,小方格的顶点为格点.
请你在图上选7个格点,要求其中任意3个
格点都不在一条直线上,并且使这7个点用
线段连结所围成的面积尽可能大,那么,所用图形的面积1
是多少平方厘米?
9.右图中每个小正方形的面积为1平方分米,那么阴影
部分的面积是多少平方分米?
10.右图中每个小平行四边形
的面积是1个面积单位,求阴影部
分的面积.
二、解答题:
1.右图中有21个点,其中每相邻的
三点“∴”或“∵”所形成的三角形都是面
积为1的等边三角形,试计算∆ABC的
面积.
2.右图中有21个点,其中每相邻的三点“∴”或“∵”所
形成的三角形都是面积为1的等边三角形,试计算四边形
DEFG的面积.
3.把等边三角形ABC每边六等分,
组成如右图的三角形网.若图中每个小
三角形的面积均为1cm2,试求图中三角
形DEF的面积.
4.把大正三角形每边八等份,组成如右图所示的三角形网.如果每个小三角形的面积都是1,求图中粗线所围成的三角形的面积.
———————————————答案——————————————————————
一、填空题:
1. 5.5面积单位.
分析:解答这类问题可直接套用毕克定理:
格点面积=内部格点数+周界上格点数÷2-1.
注意:一是毕克定理只对格点凸多边形适用,二是在数格点时要细心.
解:5+3÷2-1=5.5(面积单位).
2.5+5÷2-1=6.5(面积单位).
3.27.5面积单位.
解:①由毕克定理得:
25+7÷2-1=27.5(面积单位).
②用拼割方法得:
ABCD的面积=长方形EFGH的面积-四角上的四个三角形的面积
=9⨯6-(6⨯2÷2+3⨯3÷2+4⨯3÷2+4⨯5÷2)
=54-(6+4.5+6+10)=27.5(面积单位).
4.48平方厘米.
解:①内部格点数为:9个;
②周界上格点数为:8个;
③阴影部分的面积是:4⨯(9+8÷2-1)=48(平方厘米).
5.30面积单位.
解:因为ABCD不是凸四边形,所以如在原题图上取格点E,则三角形BCE及四边形AECD都是凸的图形,故:
S ABCD=(4+6÷2-1)+(21+8÷2-1)
=6+24=30(面积单位).
6.46面积单位.
解:因为ABCDEFGH不是凸多边形,所以,连结GC、MN,则∆ABH、矩形GCNM、三角形MFE、EDN都是凸的图形.
故箭形ABCDEFGH的面积=(8+10÷2-1)+4⨯8+(4÷2-1)⨯2
=12+32+2=46(面积单位).
7.67.5面积单位.
解:图形内部格点数为59,图形周界上格点数为19.
所以图形的面积为:59+19÷2-1=67.5(面积单位).
8.23.5(平方厘米).
分析与解:这是一个5⨯5的方格纸,共有25个格点.现在要围成一个面积最大的图形,根据格点面积公式,要使图形面积最大,必须使图形包含的内部格点数和周界上格点数尽可能多.由方格纸可知,内部格点数最多为4⨯4=16,周界上格点数最多为5⨯4=20.但是,当周界上格点数为最多时,不符合题中“任意3个格点不在一条直线上”的条件,因此,适当调整图上7个格点的位置,如右上图所示,就得到了面积最大的图形.
所围成图形的最大面积为:16+17÷2-1=23.5(平方厘米).
9.8.5平方分米.
解:图形内部格点数为7,图形周界上格点数为 5.阴影部分的面积为:7+5÷2-1=8.5(平方分米).
10.18.5面积单位.
解:图形内部格点数为16,图形周界上格点数为7.
图形的面积为:16+7÷2-1=18.5(面积单位).
二、解答题:
1.10面积单位.
分析:由“∵”和“∴”重合两点可拼为平行四边形,可以推出如下计算这类格点面积的公式:
图形面积=(内部格点数+周界上格点数÷2-1)⨯2.
解:图形内部格点数为4,图形周界上格点数为4.
=(4+4÷2-1)⨯2=10(面积单位).
S
∆ABC
2.12面积单位.
=(5+4÷2-1)⨯2=12(面积单位).
解:S
四边形DEFG
3.11面积单位.
解:图形内部格点数为5,图形周界上格点数为3.
=(5+3÷2-1)⨯2=11(cm2).
S
∆DEF
4.26面积单位.
解:图形内部格点数为12,图形周界上格点数为4.
图形的面积为:(12+4÷2-1)⨯2=26(面积单位).。

相关文档
最新文档