第四章弯曲内力习题及答案

合集下载

弯曲内力习题与答案

弯曲内力习题与答案

弯曲力1. 长l的梁用绳向上吊起,如图所示。

钢绳绑扎处离梁端部的距离为x。

梁由自重引起的最大弯矩|M|max为最小时的x值为:(A) /2l;(B) /6l;(C…) 1)/2l。

l;(D) 1)/22. 多跨静定梁的两种受载情况如图(a)、(b)所示。

下列结论中哪个是正确的?(A) 两者的剪力图相同,弯矩图也相同;(B) 两者的剪力图相同,弯矩图不同;(C) 两者的剪力图不同,弯矩图相同;(D….) 两者的剪力图不同,弯矩图也不同。

3. 图示(a)、(b)两根梁,它们的(A) 剪力图、弯矩图都相同;(B…) 剪力图相同,弯矩图不同;(C) 剪力图不同,弯矩图相同;(D) 剪力图、弯矩图都不同。

4. 图示梁,当力偶M e的位置改变时,有下列结论:(A) 剪力图、弯矩图都改变;(B…) 剪力图不变,只弯矩图改变;(C) 弯矩图不变,只剪力图改变;(D) 剪力图、弯矩图都不变。

5. 图示梁C截面弯矩M C = ;为使M C =0,则M e= ;为使全梁不出现正弯矩,则M e≥。

6. 图示梁,已知F、l、a。

使梁的最大弯矩为最小时,梁端重量P= 。

7. 图示梁受分布力偶作用,其值沿轴线按线性规律分布,则B端支反力为,弯矩图为 次曲线,|M |max 发生在 处。

8. 图示梁,m (x )为沿梁长每单位长度上的力偶矩值,m (x )、q (x )、F S (x )和M (x )之间的微分关系为:S d ();d F x x = d ()d M x x = 。

9. 外伸梁受载如图,欲使AB 中点的弯矩等于零时,需在B 端加多大的集中力偶矩(将大小和方向标在图上)。

10. 简支梁受载如图,欲使A 截面弯矩等于零时,则=e21e /M M 。

1-10题答案:1. C 2. D 3. B 4. B 5. 28e2M ql -;42ql ;22ql 6. ⎪⎭⎫⎝⎛-a l a F 24 7. m 0/2;二;l /28. q (x );F S (x )+ m (x ) 9. 10. 1/211-60题. 作图示梁的剪力图和弯矩图。

《材料力学》第四章 弯曲内力

《材料力学》第四章 弯曲内力
ql FS = R A-qx= -qx 2 x qlx qx 2 M = R A x-qx ⋅ = - 2 2 2
M FS
F S
(3)画出FS图与M图。 画出F 图与M 剪力图为一斜直线, 剪力图为一斜直线, x=0,FS=ql/2;x=l,FS=-ql/2; ; 弯矩图为一抛物线, 弯矩图为一抛物线, 由三点来确定: 由三点来确定: x=0及x=l时,M=0; x=l/2, M=ql2/8。 。
M x = a, M = O a AC段 x=0, AC段:x=0,M=0 ; l
CB段 CB段:x=a, x=l, M= x= , M=0
MO M =- b l
试作轴的简力图和弯矩图
补例1 补例1

(1)求支反力。 求支反力。
1 ql 2
R A = RB =
(2)用截面法求剪力和弯矩方程。 用截面法求剪力和弯矩方程。
∑ mA = 0 ∑m
B
=0
l -m-P ⋅ + YB ⋅ l = 0 2 l -YA ⋅ l-m+P ⋅ = 0 2
YA-FSC=0 , 3 FSC=- P 2
5 P B 2 3 Y A =- P 2 Y =
m
(2)计算C截面的内力。 计算C截面的内力。
∑Y = 0 ,
P
l 13 mC=0 , YA ⋅ -m+M C=0 , M C= Pl ∑ 4 8
求反力: 解 (1)求反力:
∑ X = 0, X = 0 ∑ Y = 0, P - Y =0 ∑ m =0, m - Pa =0
C C C C
YC= P m C= Pa
(2)列弯矩和轴力方程。 列弯矩和轴力方程。 AB段 AB段:M(x)= Px, N(x)=0 , BC段 BC段:M(y)=mC=Pa, N(y)=P ,

习题解答4(弯曲内力)

习题解答4(弯曲内力)
FS2 = F = 10 kN 相邻截面
M2 FS2
M3 FS3
M2 = - F×1 = - 10 kN· m
F C
FS3 = F = 10 kN M3 = 0
P73 40-1(d) a = l
12 3 O(3Fa) F M
A
F A
B
12
C
3
FS1 M1
D FD
Fy = 0
FD = 10 kN
FS1 = - F = - 10 kN
3 qa2 2
FS 图
1 qa2 2
1 M(x) = - qa×(2a- a-x) 2 3 2 = qax - qa 2 BC段: FS(x) = q ×(2a-x) = 2qa - qx 1 M(x) = q×(2a-x)× (2a-x) 2 1 2 = - qx + 2qax - 2qa2 2 1 = - q× ( 2a- x) 2 2
A 1 ql 4 C B A C
B A
C
B
l/ 2
l/ 2
1 ql 2 1 ql FS 图(q) 2
FS 图(M0)
1 ql 4 1 ql2 8 1 ql2 8
FS 图
3 ql 4
1 ql2 32 5 ql2 1 ql2 32 4
1 ql2 8
M图
M 图 ( q)
M 图(M0)
P78 42-2-1 叠加法 (过程)
F M0(Fa) C B A F
A B C A
M0(Fa) C B
a
a
F
F
3Fa
FS 图
2Fa Fa
FS 图(F)
2Fa
FS 图(M0)
Fa

材料力学弯曲变形答案

材料力学弯曲变形答案

第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。

( ) 1.2 内力只作用在杆件截面的形心处。

( ) 1.3 杆件某截面上的内力是该截面上应力的代数和。

( ) 1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。

( ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。

( ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。

( ) 1.7 同一截面上正应力ζ与切应力η必相互垂直。

( ) 1.8 同一截面上各点的正应力ζ必定大小相等,方向相同。

( ) 1.9 同一截面上各点的切应力η必相互平行。

( ) 1.10 应变分为正应变ε和切应变γ。

( ) 1.11 应变为无量纲量。

( ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。

( ) 1.13 若物体内各点的应变均为零,则物体无位移。

( ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。

( )1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。

( )1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。

( )二、填空题1.1 材料力学主要研究 受力后发生的 ,以及由此产生的 。

1.2 拉伸或压缩的受力特征是 ,变形特征是 。

1.3 剪切的受力特征是 ,变形特征是 。

1.4 扭转的受力特征是 ,变形特征是 。

B题1.15图题1.16图1.5 弯曲的受力特征是 ,变形特征是 。

1.6 组合受力与变形是指 。

1.7 构件的承载能力包括 , 和 三个方面。

1.8 所谓 ,是指材料或构件抵抗破坏的能力。

所谓 ,是指构件抵抗变形的能力。

所谓 ,是指材料或构件保持其原有平衡形式的能力。

1.9 根据固体材料的性能作如下三个基本假设 , , 。

材料力学习题册答案-第4章 弯曲内力

材料力学习题册答案-第4章 弯曲内力

第四章 梁的弯曲内力一、 判断题1. 若两梁的跨度、承受载荷及支承相同,但材料和横截面面积不同,则两梁的剪力图和弯矩图不一定相同。

( × )2. 最大弯矩必然发生在剪力为零的横截面上。

( × )3. 若在结构对称的梁上作用有反对称载荷,则该梁具有对称的剪力图和反对称的弯矩图。

图 4-1 二、 填空题1.图 4-2 所示为水平梁左段的受力图,则截面 C 上的剪力 SC F =F ,弯矩C M =2Fa 。

2.图 4-3 所示外伸梁 ABC ,承受一可移动载荷 F ,若 F 、l 均为已知,为减小梁的最大弯矩值,则外伸段的合理长度 a= l/3 。

图 4-2 图4-33. 梁段上作用有均布载荷时,剪力图是一条 斜直 线,而弯矩图是一条 抛物 线。

4. 当简支梁只受集中力和集中力偶作用时,则最大剪力必发生在 集中力作用处 。

三、 选择题1. 梁在集中力偶作用的截面处,它的内力图为( C )。

A Fs 图有突变, M 图无变化 ;B Fs 图有突变,M 图有转折 ;C M 图有突变,Fs 图无变化 ;D M 图有突变, Fs 图有转折 。

2. 梁在集中力作用的截面处,它的内力图为( B )。

A Fs 有突变, M 图光滑连续 ;B Fs 有突变, M 图有转折 ;C M 图有突变,凡图光滑连续 ;D M 图有突变, Fs 图有转折 。

3. 在图4-4 所示四种情况中,截面上弯矩 M 为正,剪力 Fs 为负的是( B )。

图 4-44.梁在某一段内作用有向下的分布力时,则在该段内, M 图是一条( A )。

A 上凸曲线; B下凸曲线;C 带有拐点的曲线;D 斜直线。

5.多跨静定梁的两种受载情况分别如图4-5 ( a )、( b )所示,以下结论中( A )是正确的。

力F 靠近铰链。

图4-5A 两者的 Fs 图和 M 图完全相同;B 两者的 Fs 相同对图不同;C 两者的 Fs 图不同, M 图相同;D 两者的Fs图和 M 图均不相同。

《材料力学》第4章弯曲内力 课后答案

《材料力学》第4章弯曲内力 课后答案

0 ; FS−C
= b F, a+b
M
− C
=
ba a+b
F
FS+C
=
−a a+b
F

M
+ C
=
ba a+b
F ; FSB
=
−A a+b
F
,MB
=
0
d解
图(d1), ∑ Fy
=
0,F
=
1 2
ql


M
A
= 0,M A
=
− 3 ql 2 8
仿题 a 截面法得
FSA
=
1 2
ql
,MA
=

3 8
ql
2

FS−C
FS (x) = −F
⎜⎛ 0 < x < l ⎟⎞

2⎠
M (x) = −Fx ⎜⎛0 ≤ x ≤ l ⎟⎞

2⎠
FS (x) = F
⎜⎛ l < x < l ⎟⎞
⎝2

45
M (x) =
FA x +
FB
⎜⎛ ⎝
x

l 2
⎟⎞ ⎠

FB
= 2F
M (x) = Fx − Fl ⎜⎛ l ≤ x ≤ l ⎟⎞
( ) 解
∑MB
=
0 , FA
⋅l
+
ql 2
×
3l 4
− ql 2
=
0
, FA
=
5 ql 8

( ) ∑ Fy
= 0 , FB

测试题-弯曲内力(答案)

测试题-弯曲内力(答案)

班级:学号:姓名:《工程力学》弯曲内力测试题一、判断题(每小题2分,共20分)1、根据剪力图和弯矩图,可以初步判断梁的危险截面位置。

(√)2、梁的内力图通常与横截面面积有关。

(×)3、将梁上的集中力平移,不会改变梁的内力分布。

(×)4、梁端铰支座处无集中力偶作用,该端铰支座处的弯矩必为零。

(√)5、分布载荷q(x)向上为负,向下为正。

(×)6、简支梁的支座上作用集中力偶M,当跨长l改变时,梁内最大剪力发生改变,而最大弯矩不改变。

(√)7、剪力图上斜直线部分一定有分布载荷作用。

(√)8、在集中力作用的截面处,剪力图有突变,弯矩图连续但不光滑。

(√)9、梁在集中力偶作用截面处,弯矩图有突变,剪力图无变化。

(√)10、在梁的某一段上,若无载荷q作用,则该段梁上的剪力为常数。

(√)二、单项选择题(每小题2分,共20分)1、如图所示,火车轮轴产生的是(D )。

A.拉伸或压缩变形B.剪切变形C.扭转变形D.弯曲变形2、梁在集中力偶作用的截面处,它的内力图为(C )。

A. 剪力图有突变,弯矩图无变化B. 剪力图有突变,弯矩图有转折C. 弯矩图有突变,剪力图无变化D. 弯矩图有突变,剪力图有转折3、在下图四种情况中,截面上弯矩为正,剪力为负的是(B )。

4、梁在某一段内作用有向下的分布力时,则在该段内,弯矩图是一条(A )。

A. 上凸曲线B. 下凸曲线C. 带有拐点的曲线;D. 斜直线5、梁受力如图,在B截面处(D )A. 剪力图有突变,弯矩图连续光滑B. 剪力图有尖角,弯矩图连续光滑C. 剪力图、弯矩图都有尖角D. 剪力图有突变,弯矩图有尖角6、图示梁,当力偶M e的位置改变时,有(B )A. 剪力图、弯矩图都改变B. 剪力图不变,只弯矩图改变C. 弯矩图不变,只剪力图改变D. 剪力图、弯矩图都不变F qCBAFM eaqa a7、若梁的受力情况对于梁的中央截面为反对称(如图),则下列结论中正确的是(D )A. 剪力图和弯矩图均为反对称,中央截面上剪力为零B. 剪力图和弯矩图均为对称,中央截面上弯矩为零C. 剪力图反对称,弯矩图对称,中央截面上剪力为零D. 剪力图对称,弯矩图反对称,中央截面上弯矩为零8、多跨静定梁的两种受载情况分别如图所示,力F靠近铰链,以下结论正确的是(C )A. 两者的剪力图和弯矩图完全相同B. 两者的剪力图相同,弯矩图不同C. 两者的剪力图不同,弯矩图相同D. 两者的剪力图和弯矩图均不相同9、多跨静定梁的两种受载情况如图所示,下列结论中正确的是(D )A. 两者的剪力图和弯矩图完全相同B. 两者的剪力图相同,弯矩图不同C. 两者的剪力图不同,弯矩图相同D. 两者的剪力图和弯矩图均不相同10、若梁的剪力图和弯矩图分别如图所示,则该图表明(C )A. AB段有均布载荷,BC段无载荷;B. AB 段无载荷,B截面处有向上的集中力,BC段有向下的均布载荷;C. AB 段无载荷,B截面处有向下的集中力,BC段有向下的均布载荷;D. AB 段无载荷,B截面处有顺时针的集中力偶,BC段有向下的均布载荷。

刘鸿文材料力学 I 第6版_4_弯取内力

刘鸿文材料力学 I 第6版_4_弯取内力
43
(3) 在剪力Q为零处, 弯矩M取极值。
注意: 以上结论只在该 段梁上无集中力 或集中力偶作用 时才成立。
44
(4) 在集中力作用点: 剪力图有突变,突变值 即为集中力的数值,突 变的方向沿着集中力的 方向(从左向右观察); 弯矩图在该处为折点。
(5) 在集中力偶作用点: 对剪力图形状无影响; 弯矩图有突变,突变值 即为集中力偶的数值。
2
AC段: N 1 qa Q qa qy 2
M qa y 1 qy2
2
(3) 轴力图
(4) 剪力图
35
(4) 剪力图
(5) 弯矩图
BC段:
M 1 qa x
2
qa
AC段:
M qa y 1 qy2
特点: 2
在刚节点处,弯矩值连续 ;
Q
1 qa 2
36
特点: 在刚节点处,弯矩值连续; 可以利用刚节点的平衡, 对内力图进行校核。
(2) 求剪力方程和弯矩方程
需分段求解。
分为两段:AC和CB段。 AC段 取x截面,左段受力如图。
由平衡方程,可得:
Q(x) Pb l
(0 x a)
M (x) Pb x
(0 x a)
l
CB段 取x截面,
x
Q
M
17
CB段 取x截面, 左段受力如图。 由平衡方程,可得:
外侧均可,但需标出正 负号; (3) 弯矩画在受压侧。
32
例 5 刚架
已知:q,a。
求:内力图。
解:(1) 求支反力 结果如图。
(2) 求内力 BC段:
X 0
MQ
N Dx
N 0

材料力学答案4弯曲内力

材料力学答案4弯曲内力

A
C
B 出剪力图和弯矩图。
x1
x2
解:1.确定约束力
FAy
l
FBy
M /l
M A=0, MB=0
Fs:

Ma / l
M:

FAy=M / l FBy= -M / l
2.写出剪力和弯矩方程
AC FS x1=M / l 0 x1 a
M x1=Mx1 / l 0 x1 a
剪力图和弯矩图
例1
1kN.m
A
C D B 解法2:1.确定约束力
FAY
Fs( kN) 0.89
1.5m
1.5m
2kN
1.5m
FBY
1.11
(+)
FAy=0.89 kN FFy=1.11 kN
(-)
2.确定控制面为A、C 、D、B两侧截面。
3.从A截面左侧开始画
剪力图。
19
剪力图和弯矩图
例1
x 5.确定控制面上的 弯矩值,并将其标在
M-x中。
22
剪力图和弯矩图
例2
q
D 解法2:1.确定约束力
A
B
FAy
9qa/4
4a
a qa FBy
FAy=
9 4
qa
,
FBy=
3 4
qa
Fs (+)
(-) qa
7qa/4
2.确定控制面,即A 、B、D两侧截面。
3.从A截面左测开始画
剪力图。
23
剪力图和弯矩图

Mb / l
CB FS x2 =M / l 0 x2 b
M x2 = Mx2 / l 0 x2 b

弯曲的内力与强度计算 习题

弯曲的内力与强度计算 习题

弯曲的内力与强度计算一、判断题1.如图1示截面上,弯矩M和剪力Q的符号是:M为正,Q为负。

()图12.取不同的坐标系时,弯曲内力的符号情况是M不同,Q相同。

()3、在集中力作用的截面处,Q图有突变,M连续但不光滑。

()4、梁在集中力偶作用截面处,M图有突变,Q图无变化。

()5.梁在某截面处,若剪力Q=0,则该截面的M值一定为零值。

()6.在梁的某一段上,若无荷载作用,则该梁段上的剪力为常数。

()7.梁的内力图通常与横截面面积有关。

()8.应用理论力学中的外力定理,将梁的横向集中力左右平移时,梁的Q图,M图都不变。

()9.将梁上集中力偶左右平移时,梁的Q图不变,M图变化。

()10.图2所示简支梁跨中截面上的内力为M≠0,Q=0。

()图 2 图 311.梁的剪力图如图3所示,则梁的BC段有均布荷载,AB段没有。

()12.上题中,作用于B处的集中力大小为6KN,方向向上。

()13.右端固定的悬臂梁,长为4m,M图如图示,则在x=2m处,既有集中力又有集中力偶。

()图 4 图 514.上题中,作用在x=2m处的集中力偶大小为6KN·m,转向为顺时针。

()15.图5所示梁中,AB跨间剪力为零。

()16.中性轴是中性层与横截面的交线。

()17.梁任意截面上的剪力,在数值上等于截面一侧所有外力的代数和。

()18.弯矩图表示梁的各横截面上弯矩沿轴线变化的情况,是分析梁的危险截面的依据之一。

()19.梁上某段无荷载作用,即q=0,此段剪力图为平行x的直线;弯矩图也为平行x轴的直线。

()20.梁上某段有均布荷载作用,即q=常数,故剪力图为斜直线;弯矩图为二次抛物线。

()21.极值弯矩一定是梁上最大的弯矩。

()22.最大弯矩Mmax只可能发生在集中力F作用处,因此只需校核此截面强度是否满足梁的强度条件。

()23.截面积相等,抗弯截面模量必相等,截面积不等,抗弯截面模量必不相等。

()24.大多数梁都只进行弯曲正应力强度核算,而不作弯曲剪应力核算,这是因为它们横截面上只有正应力存在。

弯曲力学考试题目及答案

弯曲力学考试题目及答案

弯曲力学考试题目及答案一、选择题(每题2分,共10分)1. 在弹性范围内,材料的应力与应变的关系是:A. 线性关系B. 非线性关系C. 无关系D. 无法确定答案:A2. 弯曲矩的单位是:A. NB. N·mC. N/mD. m答案:B3. 梁的弯曲刚度EI的单位是:A. NB. N·mC. N·m²D. N/m答案:C4. 梁在纯弯曲时,其横截面上的应力分布规律是:A. 线性分布B. 抛物线分布C. 线性递减D. 线性递增答案:B5. 梁的挠度与载荷的关系是:A. 线性关系B. 非线性关系C. 无关系D. 无法确定答案:B二、填空题(每题2分,共10分)1. 当梁的截面形状不变时,其弯曲刚度EI与截面的______成正比。

答案:惯性矩2. 梁的弯曲应力最大值出现在截面的______处。

答案:最外层3. 梁的弯曲变形量称为______。

答案:挠度4. 梁的弯曲变形曲线称为______。

答案:挠曲线5. 梁在受力后,其轴线形状的变化称为______。

答案:弯曲变形三、简答题(每题5分,共20分)1. 简述梁的弯曲变形与哪些因素有关?答案:梁的弯曲变形与载荷大小、截面形状、材料性质、支撑条件等因素有关。

2. 什么是梁的中性轴?答案:梁的中性轴是指在纯弯曲情况下,梁的横截面上不发生弯曲应力的直线。

3. 梁的弯曲应力如何计算?答案:梁的弯曲应力可以通过公式σ=M/(I/y)计算,其中σ为应力,M为弯曲矩,I为截面惯性矩,y为距离中性轴的距离。

4. 梁的弯曲刚度EI与哪些因素有关?答案:梁的弯曲刚度EI与材料的弹性模量E和截面的惯性矩I有关。

四、计算题(每题10分,共20分)1. 已知一根悬臂梁,长度为2m,截面惯性矩为1000cm⁴,材料的弹性模量为200GPa。

在自由端施加一个500N的向下载荷。

求梁的端部挠度。

答案:首先计算弯曲矩M=500N×2m=1000N·m。

材料力学习题及答案4-6

材料力学习题及答案4-6

第四章弯曲应力判断图弯矩的值等于梁截面一侧所有外力的代数和。

()负弯矩说明该截面弯矩值很小,在设计时可以忽略不计。

()简支梁上向下的集中力对任意横截面均产生负弯矩。

()横截面两侧所有外力对该截面形心力矩的代数和就是该截面的弯矩值。

()梁的任一横截面上的弯矩在数值上等于该截面任一侧所有外力对该截面形心的力矩代数和。

()在计算指定截面的剪力时,左段梁向下的荷载产生负剪力。

()在计算指定截面的剪力时,右段梁向下的荷载产生正剪力。

()梁纯弯曲时中性轴一定通过截面的形心。

()简支梁上受一集中力偶作用,当集中力偶在不改变转向的条件下,在梁上任意移动时,弯矩图发生变化,剪力图不发生变化。

()图示梁弯矩图的B点是二次抛物线的顶点。

()图示梁段上集中力偶作用点两侧的弯矩直线一定平行。

()(M图)下列三种斜梁A截面的剪力均相同。

()l/2l/2l/2l/2l/2l/2下列三种斜梁B截面的剪力均相同。

()l/2l/2l/2l/2l/2l/2下列三种斜梁C截面的弯矩均相同。

()l/2l/2l/2l/2l/2l/2梁弯曲时的内力有剪力和弯矩,剪力的方向总是和横截面相切,而弯矩的作用面总是垂直于横截面。

()一端(或两端)向支座外伸出的简支梁叫做外伸梁。

()##√悬臂梁的一端固定,另一端为自由端。

()##√弯矩的作用面与梁的横截面垂直,它们的大小及正负由截面一侧的外力确定。

()##√弯曲时剪力对细长梁的强度影响很小,所以在一般工程计算中可忽略。

()##√图示,外伸梁BC段受力F作用而发生弯曲变形,AB段无外力而不产生弯曲变形()##×由于弯矩是垂直于横截面的内力的合力偶矩,所以弯矩必然在横截面上形成正应力。

()##√抗弯截面系数是反映梁横截面抵抗弯曲变形的一个几何量,它的大小与梁的材料有关。

()##×无论梁的截面形状如何,只要截面面积相等,则抗弯截面系数就相等。

()##×梁弯曲变形时,弯矩最大的截面一定是危险截面。

材料力学中国建筑工业出版社第四章弯曲内力答案

材料力学中国建筑工业出版社第四章弯曲内力答案

解:分别先后用1-1、2-2、3-3截面将杆切开,取右边部分研究,整个构件是平衡的,则脱离体也应该平衡。

受力如图(b)、(c)、(d)所示。

内力一定要表标成正方向,剪力绕脱离体内任一点有顺时转动趋势;而表弯矩时,可视杆内任点为固定,使下侧纤维受拉的变矩为正。

如图(b ):如图(c ):如图(d ):4-1c 求指定截面的剪力和弯矩。

4-2cfh 写出下列各梁的剪力方程、弯矩方程,并作剪力图和弯矩图。

题4-2cV MkN ·题4-2f·题4-2h230q l 27(a )(b )M P 111110000()0O Y V qa V qa M qa M M F ⎧=-==⎧⎧⎪→→⎨⎨⎨-⋅∆===⎩⎩⎪⎩∑∑2(e )M (d )a(c )a333233000()0O Y V qa V qa M qa a M qa M F ⎧==-=⎧⎧⎪⎪→→⎨⎨⎨+⋅==-=⎪⎩⎩⎪⎩∑∑222220000()0O Y V qa V qa M M qa a M M F ⎧=-==⎧⎧⎪→→⎨⎨⎨--⋅===⎩⎩⎪⎩∑∑4-3dfgh 用微分关系作下列各梁的剪力图和弯矩图4kN ·m+题4-3d10.25MkN ·m)VkN)--1243.5-10.25-+322+-题4-3fM 图85Pl 83Pl 16Pl P/4-43.5--12MkN ·m)V kN)24++-26.257.57.5题4-3g5P/4+P=15kN+-24313.875313.875qaM 图V 图2qa +-2+-2+-qa2qa题4-3hMkN ·V kN)3.1254-6 起吊一根自重为q (N/m )的等截面钢筋混凝土梁,问起吊点的合理位置x 应为多少(令梁在吊点处和中点处的最大正负弯矩的绝对值相等)MkN ·m)V kN)题4-6+2ql(l-2x)/4-q l /8qx/22qx/2qx ql/2-qx ql/2-qxqx--+--+q22qx/8qx/82题4-74-7天车梁上小车轮距为c ,起重量为P ,问小车走到什么位置时,梁弯矩最大?并求出最大弯矩。

第四章弯曲应力习题解

第四章弯曲应力习题解

[习题4-1] 试求图示各梁中指定截面上的剪力和弯矩.(a)解: 011=-Qm kN M ⋅-=-211。

kN Q 522-=-)(1225222m kN M ⋅-=⨯--=-(b)解:(1)求支座反力)(2552kN R A =⨯=(↑) )(3553kN R B =⨯=(↑) (2)求指定截面上的内力kN R Q A 211==-)(632311m kN R M A ⋅=⨯=⨯=-)(35222kN Q -=-=-)(623222m kN R M B ⋅=⨯=⨯=-(c)解:(1)求支座反力由力偶只能由偶平衡的原理可知:A 、B 支座的反力构成一约束反力偶,与主动力偶等值、共面、反向,故:)(45.210kN R A ==(↑) )(4kN R R A B ==(↓)(2)求指定截面上的内力kN R Q A 411==-; )(414111m kN R M A ⋅=⨯=⨯=-。

kN R Q A 422==-; )(66.145.122m kN R M B ⋅-=⨯-=⨯-=-(d)解:(1)求支座反力因为AB 平衡,所以:① 0=∑A M032)20221(2=⨯⨯⨯-⋅B R )(667.6320kN R B ==(↑) ② 0=∑Y020221=⨯⨯-+B A R R 020667.6=-+A R)(333.13kN R A =(↑)(2)求指定截面上的内力kN R Q A 667.121)2010(333.1311-=⨯+-==-)(531)10121(1667.611m kN M ⋅=⨯⨯⨯-⨯=-。

(e )解:(1)求支座反力由力偶只能由偶平衡的原理可知:A (左)、C (右)支座的反力构成一约束反力偶,与主动力偶等值、共面、反向,故:a M R e A 4=(↓);aM R R e A C 4==(↑) (2)求指定截面上的内力a M R Q e A 411-=-=-; 4411e e A M a a M a R M -=⋅-=⨯-=-。

材料力学 第四章 弯曲内力

材料力学  第四章  弯曲内力
M 2 10kN.m
3-3截面
Fy 0; FA Fs 3 P 0
Fs3 7kN
M3 0; M 3 FA 2 0
M 3 10kN.m
F=12kN
1 A1
23 2D 3
2m
2m
q=2kN/m 4
B C4 2m
2
A FA
2 Fs2 M2
P=12kN
A
3 3
M3
FA
Fs3
F=12kN
建立剪力与弯矩方程,画剪力与弯矩图
解:1. 支反力计算
FCy qa,
MC
qa2 2
2. 建立剪力与弯矩方程
AB 段
BC 段
FS1 qx1
M1
qx12 2
(0 x1 a) (0 x1 a)
FS2 qa (0 x2 a)
M2
qax2
qa2 2
(0 x2 a)
§4–4 剪力、弯矩与分布荷载集度间的关系
AB 段
BC 段
FS1 qx1
M1
qx12 2
(0 x1 a) (0 x1 a)
FS2 qa (0 x2 a)
M2
qax2
qa2 2
(0 x2 a)
3. 画剪力与弯矩图
剪力图:
FS1 qx1
FS2 qa
弯矩图:
M1
qx12 2
M2
qax2
qa2 2
剪力弯矩最大值:
FS max qa
简单静定梁:
悬臂梁
简支梁
外伸梁
§4-2 剪力和弯矩
FS-剪力
M-弯矩
剪力-作用线位于所切横截面的内力。 弯矩-矢量位于所切横截面的内力偶矩。

第四章弯曲内力习题及答案

第四章弯曲内力习题及答案

q 2qa a a a
A C
D
B
第四章 弯曲内力习题
一、填空题
1、如果一段梁内各横截面上的剪力Q 为零,而弯矩M 为常量,则该段梁的弯曲称为 ;如果该梁各横截面上同时存在剪力Q 和弯矩M ,则这种弯曲为 。

二、计算题
1、作下列两梁的弯矩图。

求出支座处的约束反力、弯矩的最大绝对值,并把该值标注在弯矩图上。

2、作下列梁的弯矩图。

求出支座处的约束反力、弯矩的最大绝对值,并把该值标注在弯矩图上。

3、下列梁的弯矩图。

第四章 弯曲内力习题答案
一、填空题
1 纯弯曲 横力弯曲(或剪切弯曲)
二、计算题
1、 图4.2.2 图4.2.4.1 图4.2.4.2
图4.2.4.3 Pa
25
6q a 22
3q a
2、
3、
22m ax 22B B ql R ql M ql M === 15.75kN 20.25kN 41kN.m
A D m ax R =R =M =m ax A
B R R P M P a
===⨯2m ax 716656A B R qa R qa M qa ==-
= 22q l。

材料力学第四章 弯曲内力及练习2013

材料力学第四章 弯曲内力及练习2013

L
F
0.5F +

x
0.5F
L
L
FL
0.5F Fs2
0.5F
x

0.5F L L 0.5F 0.5F
(Internal Forces in Beams) F FL x 0 L F L F M FL x 0.5F L L 0.5F M1 0.5FL 0.5FL x
FL
0.5F
L
L
0.5F M2
0.5FL
1kN
+
3kN
20.5
16
+
6
6
(Internal Forces in Beams) 例题13 用简易法作组合梁的剪力图和弯矩图. 解 支座反力为 RA = 81 kN RB = 29 kN F=50kN
mA
q=20kN/m M=5kN.m
D K B
mA = 96.5 kN.m
RA
A
E C
RB
1
1

F
O R
(Internal Forces in Beams)
一、平面曲杆( Plane curved bars)
1、平面曲杆( Plane curved bars) 轴线为一平面曲线的杆件。内力: 剪力、弯矩、轴力 。 2、内力符号的确定(Sign convention for internal force) 轴力 :引起拉伸的轴力为正; 剪力:对所考虑的一端曲杆内一点取矩 产生顺时针转动 趋势的剪力为正; 弯矩:使曲杆的曲率增加(即外侧受拉)的弯矩为正。 画在受压侧
C x
a
F1
C
FS(x)
M ( x) FN(x) FN(x) = F1 BA 段
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

q 2qa a a a
A C
D
B
第四章 弯曲内力习题
一、填空题
1、如果一段梁内各横截面上的剪力Q 为零,而弯矩M 为常量,则该段梁的弯曲称为 ;如果该梁各横截面上同时存在剪力Q 和弯矩M ,则这种弯曲为 。

二、计算题
1、作下列两梁的弯矩图。

求出支座处的约束反力、弯矩的最大绝对值,并把该值标注在弯矩图上。

2、作下列梁的弯矩图。

求出支座处的约束反力、弯矩的最大绝对值,并把该值标注在弯矩图上。

3、下列梁的弯矩图。

第四章 弯曲内力习题答案
一、填空题
1 纯弯曲 横力弯曲(或剪切弯曲)
二、计算题
1、 图4.2.2 图4.2.4.1 图4.2.4.2
图4.2.4.3 Pa
25
6q a 22
3q a
2、
3、
22m ax 22B B ql R ql M ql M === 15.75kN 20.25kN 41kN.m
A D m ax R =R =M =m ax A
B R R P M P a
===⨯2m ax 716656A B R qa R qa M qa ==-
= 22q l。

相关文档
最新文档