理论力学-质点的振动

合集下载

理论力学 第十章振动

理论力学 第十章振动

k2
k1
δ st
r F1
k eq = k1 + k 2
δ st r
r mg
keq k1 + k 2 = m m
m
r F2
mg = k eqδ st
keq称为等效弹簧刚性系数 并联系统的固有频率为
mg k2
ωn =
当两个弹簧并联时,其等效弹簧刚度等于两个弹簧刚度的和。 这一结论也可以推广到多个弹簧并联的情形。
O
δ st
x
r F r P
则解为:
x = A sin(ω nt + θ )
表明:无阻尼自由振动是简谐振动。 其运动图线为:
x
A
x
x0
θ ωn
O
t
t+T
x
2.无阻尼自由振动的特点 无阻尼自由振动的特点
(1)固有频率 )
无阻尼自由振动是简谐振动,是一种周期振动,任何瞬时t, 无阻尼自由振动是简谐振动,是一种周期振动,任何瞬时 ,其 运动规律x(t)总可以写为: 运动规律 ( )总可以写为: x(t)= x(t+T) () ( ) T为常数,称为周期,单位符号为s。 为常数, 周期, 符号为 为常数 称为周期 单位符号 。 这种振动经过时间T后又重复原来的运动 后又重复原来的运动。 这种振动经过时间 后又重复原来的运动。 考虑无阻尼自由振动微分方程 考虑无阻尼自由振动微分方程
r F r P
x
两个根为: r1 = +iω n 方程解表示为:
r2 = −iω n
x = C1 cos ω nt + C2 sin ω nt
x = C1 cos ω nt + C2 sin ω nt

理论力学(周衍柏)第一章质点力学

理论力学(周衍柏)第一章质点力学

(1)矢量形式的运动学方程
rr(t)
理论力学:Theoretical mechanics 当质点运动时r是时间t的单值连续函数。此方程常用来 进行理论推导。它的特点是概念清晰,是矢量法分析质点 运动的基础。
(2)直角坐标形式的运动学方程
x x(t)
y
y (t)
z z ( t )
这是常用的运动学方程,尤其当质点的轨迹未知时。它是 代数方程,虽然依赖于坐标系,但是运算容易。
说明: ① 参照物不同,对同一个物体运动的描述结果可能不同;
② 观察者是站在参照系的观察点上; ③ 不特别说明都以地球为参照系。
2. 坐标系
理论力学:Theoretical mechanics 为了定量研究的空间位置,就必须在参考系上建立坐标 系。参照系确定后,在参照系上选择适宜的坐标系,便于 用教学方式描述质点在空间的相对位置(方法)。
ji
解: 确定动系和静系 静系:河岸 动系:河流 研究对象:小船
理论力学:Theoretical mechanics
:0 牵连速度, : 绝对速度, :相 对 速度
ji
由:
0
0
c2i
r d
dt
j
c1 cosi c1 sin
j
i
选取极坐标, 得
理论力学:Theoretical mechanics
0:人行走速度, : 风速(相对于地), :风 相对于人的速
度 由:
得: 理论力学:Theoretical mechanics
得: 解得:
y
2
2
理论力学:Theoretical mechanics
因此:x 4,y 4
风速: x2y2 4 2km/h

质点振动方程

质点振动方程

质点振动方程
质点振动是指质点在物理系统中运动时,其位置随时间的变化呈现周期性的变化。

质点振动的运动方程通常是二阶常微分方程,可以表示为:
F=-kx
ma+F=0
其中,k是物体的弹簧常数,x是物体的位移,m是物体的质量,a是物体的加速度。

上述方程式可以用来描述质点在单摆运动、振动梁运动等情况下的运动规律。

解决这个方程组可以得到质点的位移随时间的变化规律,从而对质点的振动进行分析和预测。

需要注意的是,上述方程式仅适用于简单的质点振动情况,在实际应用中,质点振动的运动方程可能会更复杂,需要根据具体情况进行调整。

理论力学第10章 质点动力学

理论力学第10章 质点动力学
4 4
y
ω O φ
A β
B
如滑块的质量为m,忽略摩擦及连 杆AB的质量,试求当 t 0 和 时,连杆AB所受的力。
π 2
§10.3 质点动力学的两类基本问题 例 题 10-1
运 动 演 示
§10.3 质点动力学的两类基本问题 例 题 10-1
y
解:
ω O φ
A
β B
以滑块B为研究对象,当φ=ωt 时,受力 如图。连杆应受平衡力系作用,由于不计连 杆质量,AB 为二力杆,它对滑块B的拉力F沿 AB方向。 写出滑块沿x轴的运动微分方程
§10.3 质点动力学的两类基本问题 例 题 10-3
解: 以弹簧未变形处为坐标原点O,物块
在任意坐标x处弹簧变形量为│x│ ,弹簧 力大小为 F k x ,并指向点O,如图所 示。 则此物块沿x轴的运动微分方程为
F O x
m
x
d2 x m 2 Fx kx dt
或 令
d2 x m 2 kx 0 dt
mg
绳的张力与拉力F的大小相等。
§10.3 质点动力学的两类基本问题 例 题 10-3
物块在光滑水平面上与弹簧相连,如图所示。物块
质量为 m ,弹簧刚度系数为 k 。在弹簧拉长变形量为 a 时, 释放物块。求物块的运动规律。
F
O x
m
x
§10.3 质点动力学的两类基本问题 例 题 10-3
运 动 演 示
应用质点运动微分方程,可以求解质点动力学的两类问题。
§10.3 质点动力学的两类基本问题
第一类基本问题:已知质点的运动,求作用于质点上的力。 也就是已知质点的运动方程,通过其对时间微分两次得到质 点的加速度,代入质点运动微分方程,就可得到作用在质点 上的力。

(完整word版)理论力学课后答案第五章(周衍柏)(word文档良心出品)

(完整word版)理论力学课后答案第五章(周衍柏)(word文档良心出品)

第五章思考题5.1虚功原理中的“虚功”二字作何解释?用虚功原理理解平衡问题,有何优点和缺点?5.2 为什么在拉格朗日方程中,a θ不包含约束反作用力?又广义坐标与广义力的含义如何?我们根据什么关系由一个量的量纲定出另一个量的量纲?5.3广义动量a p 和广义速度a q &是不是只相差一个乘数m ?为什么a p 比aq &更富有意义? 5.4既然aq T &∂∂是广义动量,那么根据动量定理,⎪⎪⎭⎫ ⎝⎛∂∂αq T dt d &是否应等于广义力a θ?为什么在拉格朗日方程()14.3.5式中多出了a q T ∂∂项?你能说出它的物理意义和所代表的物理量吗?5.5为什么在拉格朗日方程只适用于完整系?如为不完整系,能否由式()13.3.5得出式()14.3.5?5.6平衡位置附近的小振动的性质,由什么来决定?为什么22s 个常数只有2s 个是独立的?5.7什么叫简正坐标?怎样去找?它的数目和力学体系的自由度之间有何关系又每一简正坐标将作怎样的运动?5.8多自由度力学体系如果还有阻尼力,那么它们在平衡位置附近的运动和无阻尼时有何不同?能否列出它们的微分方程?5.9 dL 和L d 有何区别?a q L ∂∂和aq L ∂∂有何区别? 5.10哈密顿正则方程能适用于不完整系吗?为什么?能适用于非保守系吗?为什么?5.11哈密顿函数在什么情况下是整数?在什么情况下是总能量?试祥加讨论,有无是总能量而不为常数的情况?5.12何谓泊松括号与泊松定理?泊松定理在实际上的功用如何?5.13哈密顿原理是用什么方法运动规律的?为什么变分符号δ可置于积分号内也可移到积分号外?又全变分符号∆能否这样?5.14正则变换的目的及功用何在?又正则变换的关键何在?5.15哈密顿-雅可比理论的目的何在?试简述次理论解题时所应用的步骤.5.16正则方程()15.5.5与()10.10.5及()11.10.5之间关系如何?我们能否用一正则变换由前者得出后者?5.17在研究机械运动的力学中,刘维定理能否发挥作用?何故?5.18分析力学学完后,请把本章中的方程和原理与牛顿运动定律相比较,并加以评价.第五章思考题解答5.1 答:作.用于质点上的力在任意虚位移中做的功即为虚功,而虚位移是假想的、符合约束的、无限小的.即时位置变更,故虚功也是假想的、符合约束的、无限小的.且与过程无关的功,它与真实的功完全是两回事.从∑⋅=ii i r F W ρρδδ可知:虚功与选用的坐标系无关,这正是虚功与过程无关的反映;虚功对各虚位移中的功是线性迭加,虚功对应于虚位移的一次变分.在虚功的计算中应注意:在任意虚过程中假定隔离保持不变,这是虚位移无限小性的结果.虚功原理给出受约束质点系的平衡条件,比静力学给出的刚体平衡条件有更普遍的意义;再者,考虑到非惯性系中惯性力的虚功,利用虚功原理还可解决动力学问题,这是刚体力学的平衡条件无法比拟的;另外,利用虚功原理解理想约束下的质点系的平衡问题时,由于约束反力自动消去,可简便地球的平衡条件;最后又有广义坐标和广义力的引入得到广义虚位移原理,使之在非纯力学体系也能应用,增加了其普适性及使用过程中的灵活性.由于虚功方程中不含约束反力.故不能求出约束反力,这是虚功原理的缺点.但利用虚功原理并不是不能求出约束反力,一般如下两种方法:当刚体受到的主动力为已知时,解除某约束或某一方向的约束代之以约束反力;再者,利用拉格朗日方程未定乘数法,景观比较麻烦,但能同时求出平衡条件和约束反力.5.2 答 因拉格朗日方程是从虚功原理推出的,而徐公原理只适用于具有理想约束的力学体系虚功方程中不含约束反力,故拉格朗日方程也只适用于具有理想约束下的力学体系,αθ不含约束力;再者拉格朗日方程是从力学体系动能改变的观点讨论体系的运动,而约束反作用力不能改变体系的动能,故αθ不含约束反作用力,最后,几何约束下的力学体系其广义坐标数等于体系的自由度数,而几何约束限制力学体系的自由运动,使其自由度减小,这表明约束反作用力不对应有独立的广义坐标,故αθ不含约束反作用力.这里讨论的是完整系的拉格朗日方程,对受有几何约束的力学体系既非完整系,则必须借助拉格朗日未定乘数法对拉格朗日方程进行修正.广义坐标市确定质点或质点系完整的独立坐标,它不一定是长度,可以是角度或其他物理量,如面积、体积、电极化强度、磁化强度等.显然广义坐标不一定是长度的量纲.在完整约束下,广义坐标数等于力学体系的自由度数;广义力明威力实际上不一定有力的量纲可以是力也可以是力矩或其他物理量,如压强、场强等等,广义力还可以理解为;若让广义力对应的广义坐标作单位值的改变,且其余广义坐标不变,则广义力的数值等于外力的功由W q r F s i ni i δδθδααα==⋅∑∑==11ρρ知,ααδθq 有功的量纲,据此关系已知其中一个量的量纲则可得到另一个量的量纲.若αq 是长度,则αθ一定是力,若αθ是力矩,则αq 一定是角度,若αq 是体积,则αθ一定是压强等.5.3 答 αp 与αq &不一定只相差一个常数m ,这要由问题的性质、坐标系的选取形式及广义坐标的选用而定。

《理论力学》第九章质点动力学

《理论力学》第九章质点动力学
《理论力学》第九章质点动力 学

CONTENCT

• 质点动力学的基本概念 • 质点的运动分析 • 质点的动力学方程 • 刚体的动力学 • 相对论力学简介
01
质点动力学的基本概念
质点和质点系
质点
具有质量的点,没有大小和形状 ,是理论力学中最基本的理想化 模型。
质点系
由两个或多个质点组成的系统, 可以是一个物体或多个物体。
质点运动的基本参数
位移
质点在空间中的位置变化。
速度
质点在单位时间内通过的位移,表示质点的运动快 慢和方向。
加速度
质点速度的变化率,表示质点速度变化的快慢和方 向。
质点动力学的基本定律
牛顿第一定律(惯性定律)
一个不受外力作用的质点将保持静止状态或匀速直线运动状态。
牛顿第二定律
质点的加速度与作用力成正比,与质量成反比,即F=ma。
自然坐标系中的运动分析
总结词
自然坐标系是一种以质点所在位置的切线方向为基准的描述方法,常用于分析曲线运动。在自然坐标系中,质点 的运动分析需要考虑切向和法向的运动。
详细描述
在自然坐标系中,质点的位置由曲线上的弧长$s$和对应的角度$alpha$确定。切向的运动由切向速度$v_t$描述, 而法向的运动由法向加速度$a_n$描述。在自然坐标系中,质点的运动分析需要考虑切向和法向的物理量,以便 更准确地描述质点的运动状态。
描述质点角动量和角动量矩随时间变化的物理定理
详细描述
质点的角动量定理指出,质点所受合外力矩的冲量等于其角动量的变化量。公式表示为 Mt=L,其中M为合外力矩,t为时间,L为质点的角动量。角动量矩定理则描述了质点 绕定轴转动的动量矩变化规律,公式表示为L=Iω,其中L为动量矩,I为转动惯量,ω

理论力学(金尚年-XXX编著)课后习题答案详解

理论力学(金尚年-XXX编著)课后习题答案详解

理论力学(金尚年-XXX编著)课后习题答案详解高等教育出版社的《理论力学课后题答案》一书中,第一章包含了以下三个问题的解答:1.2 题目要求写出在铅直平面内的光滑摆线,并分方程。

解答中使用了微积分和力学原理,得出了运动微分方程。

最后证明了质点在平衡位置附近作振动时,振动周期与振幅无关。

1.3 题目要求证明单摆运动的振动周期与摆长无关。

解答中使用了微积分和力学原理,得出了运动微分方程。

最后通过进一步计算,得出了单摆运动的振动周期公式。

1.5 题目要求使用拉格朗日方程计算质点的运动。

解答中使用了拉格朗日方程,并通过进一步计算得出了质点的运动轨迹。

如图,在半径为R时,地球表面的重力加速度可以由万有引力公式求得:g=\frac{GM}{R^2}$$其中M为地球的质量。

根据广义相对论,地球表面的重力加速度还可以表示为:g=\frac{GM}{R^2}\left(1-\frac{2GM}{c^2R}\right)$$其中c为光速。

当半径增加到R+ΔR时,总质量仍为M,根据XXX展开,可以得到:frac{1}{(R+\Delta R)^2}=\frac{1}{R^2}-\frac{2\DeltaR}{R^3}+\mathcal{O}(\Delta R^2)$$代入上式可得:g'=\frac{GM}{R^2}\left(1-\frac{2GM}{c^2R}\right)\left(1+\frac{2\Delta R}{R}\right)$$ 化简后得:g'=g-\frac{2g\Delta R}{R}$$因此,当半径改变时,表面的重力加速度的变化为:Delta g=-\frac{2g\Delta R}{R}$$2.在平面极坐标系下,设质点的加速度的切向分量和法向分量都是常数,即$a_t=k_1$,$a_n=k_2$(其中$k_1$和$k_2$为常数)。

根据牛顿第二定律,可以得到质点的运动方程:r\ddot{\theta}+2\dot{r}\dot{\theta}=k_2$$ddot{r}-r\dot{\theta}^2=k_1$$其中$r$为极径,$\theta$为极角。

理论力学(哈工大版)第十章:质点动力学

理论力学(哈工大版)第十章:质点动力学

第六章 质点动力学6-1 惯性参考系中的质点动力学一.惯性参考系1.一般工程问题:2.人造卫星、洲际导弹问题:3.天体运动问题:二.牛顿定律1.第一定律(惯性定律):2.第二定律(力与加速度之间的关系定律):3.第三定律(作用与反作用定律):三.质点的运动微分方程 将动力学基本方程)(F a m =表示为微分形式的方程,称为质点的运动微分方程。

1.矢量形式(自:会使用微分形式)) )( ( 22方程为质点矢径形式的运动式中t r r F dtr d m == 2.直角坐标形式) )()()( ( 222222运动方程为质点直角坐标形式的式中⎪⎩⎪⎨⎧===⎪⎪⎪⎩⎪⎪⎪⎨⎧===t z z t y y t x x Z dty d m Y dt y d m X dt x d m 3.自然形式b n F F v m F dt s d m ===0222ρτ ), ,,)((轴上的投影轴和轴自然轴系在分别为力运动方程。

为质点的弧坐标形式的式中b n F F F F t s s b n ττ= 四.质点动力学的两类基本问题1.已知质点的运动规律,求作用于质点上的力;----求微分问题。

2.已知质点上所受的力,求质点的运动规律。

----按质点运动的初始条件和力的函数关系对运动微分方程进行求解,从数学角度看,是解微分方程或求积分,并确定相应的积分常数的问题。

第一类问题解题步骤和要点:①正确选择研究对象(一般选择联系已知量和待求量的质点)。

②正确进行受力分析,画出受力图(应在一般位置上进行分析)。

③正确进行运动分析(分析质点运动的特征量)。

④选择并列出适当形式的质点运动微分方程(建立坐标系)。

⑤求解未知量。

2.第二类:已知作用在质点上的力,求质点的运动(积分问题)已知的作用力可能是常力, 也可能是变力。

变力可能是时间、位置、速度或者同时是上述几种变量的函数。

如力是常量或是时间及速度函数时,可直接分离变量积分dt dv 。

理论力学10质点运动微分方程

理论力学10质点运动微分方程

= mgR 2,于是火箭在任意位置 x 处所受地球引力 F 的大
小为
m g R2 F = x2
(b)
(3)列运动方程求解,由于火箭作直线运动,
火箭的直线运动微分方程式为:m
分离变量积分式(c)
d2 dt
x
2
mg R2 x2
(c)
因 为
d d2 tx 2d dv td dv xd dx tvd dv x
其次,定律还指出,若质点的运动状态发生改 变,必定是受到其他物体的作用,这种机械作用就 是力。
第二定律(力与加速度关系定律)
质点的质量与加速度的乘积,等于作用于质点的 力的大小,加速度的方向与力的方向相同。
设质点M的质量为m,所受的力为F,由于力F的
作用所产生的加速度为a,如图10-1所示。则此定律
以上两例都是动力学的第一类基本问题,由此可
归纳出求解第一类问题的步骤如下:
(1) 取研究对象并视为质点; (2)分析质点在任一瞬时的受力,并画出受力图; (3) 分析质点的运动,求质点的加速度; (4) 列质点的运动微分方程并求解。
例10-3 以初速v0自地球表面竖直向上发射一质量 为 m 的火箭,如图10-6所示。若不计空气阻力,火箭所
解:取质量块为研究对象,并视其为质点。质
量块沿x方向作直线运动,弹性杆对质量块的作用相 当于一弹簧,图10-8(b)是该系统的计算模型。
设弹簧刚度系数
为 k ,任意位置时弹
a
在静力学中,我们研究了力系的简化和平衡问题, 但没有研究物体在不平衡力系作用下将如何运动。在 运动学中,我们仅从几何学的角度描述了物体的运动 规律及其特征,并未涉及物体的质量(Mass)及其所受 的力。因此,静力学和运动学都是从不同的侧面研究 了物体的机械运动。

理论力学(9.2)--质点动力学的基本方程

理论力学(9.2)--质点动力学的基本方程

dt
vx
v
0
e

m
t
vy

mg
(1

e

m
t
)
t 0 时x, y 0
积分
x

v0
m

(1

e

m
t
)
y dy
0
O
y
x dx
0 t
0
v0 FM
Pv
t 0
v0
e

m
t
dt
mg
(1
e

m
t

x
)dt
y

mg

t

m2g
2
(1

e

m
t
)
属于第二类基本问 题 。
其中 b l sin
F

mg cos
1.96N
v
Fl sin2 m
2.1m s
属于混合问 题 。
例 9-4 已知:粉碎机滚筒半径为 R, 绕 通过 中心的水平
轴 匀速转 动 ,筒内铁 球由筒壁上的凸棱带 着上升。为
了使小球获得粉碎矿石的能量,铁球应在 0 时
例 9-3
已知:一圆锥摆 , 如图所示。质量 m=0.1kg 的小
球系于长 l=0.3 m 的绳上 , 绳的另一端系在固定点
O, 并与铅直线 成60
角。
求:如小球在水平面内作匀速圆 周运动 ,小球的速 度与绳 的张 力。
解: 研究小球
m v2 b

F sin
F cos mg 0

精品课件-理论力学第十章 质点动力学基本方程(Y)

精品课件-理论力学第十章 质点动力学基本方程(Y)
惯性——物体具有保持其原有运动状态的特征
第三定律 (作用与反作用定律):
两个物体间的作用力与反作用力总是大小相等,方向 相反,沿着同一直线,且同时分别作用在这两个物体上。
第二定律(力与加速度关系定律):
ma F ——合力矢
在力的作用下物体所获得的加速度的大小与作用力的大 小成正比,与物体的质量成反比,方向与力的方向相同。 在外力作用下,物体所获得的加速度不仅与外力有关, 而且还决定于物体本身的特征—— m 惯性
(1 )F 不, 变 a , m
物体的运动状态容易改变——惯性小
(2)F 不, 变 a, m
物体的运动状态不易改变——惯性大
力的单位:牛[顿],
1N1kg1ms2
二、质点的运动微分方程
ma Fi
m
d2 dt
r
2
Fi
ma F
矢量形式的微分方程
1 、在直角坐标轴上的投影 aaxiayjazk
理论力学第十章 质点动力学 基本方程(Y)
动力学的力学模型
质点:质点是具有一定质量而几何形状和尺寸大小可以 忽略不计的物体。 地球绕太阳的公转——质点 刚体的平动——质点
质点系:系统内包含有限或无限个质点,这些质点都具有惯性, 并占据一定的空间;质点之间以不同的方式连接或者 附加以不同的约束。 地球的自转——质点系
kt m


y

v0
m sin k
kt m
x x0
vx 0
y0 vy v0
A1 x0 B1 0
A2 0
B2 v0
m k
解法二: mx Fx kx
my Fy ky
(1) m x kx

理论力学-质点的振动

理论力学-质点的振动

MOzmg siln
O φ0
φ
l
F
Mv
mg
第九章 质点的振动
动量矩定理 动量矩 力矩
从而可得
§9-2 质点的自由振动
例题9-1
dLOz dt
MOz
LOz
ml2
d
dt
,
MOzmg siln
d(m2ld)mg siln
dt dt
O φ0
φ
l
F
Mv
mg
化简即得单摆的运动微分方程
d2
dt2
gsin
l
0
xF
利用弹簧自由悬挂时的静伸长λs,来求出系统的固有频率,有
0
k m
g, mgk

0
g s
M xG
第九章 质点的振动
§9-2 质点的自由振动 如图所示为一弹性杆支持的圆盘,弹性杆扭转刚度为kn , 圆盘对杆轴的转动惯量为J。
第九章 质点的振动
§9-2 质点的自由振动
第九章 质点的振动
§9-2 质点的自由振动
2s
W k2
11 1 ,
k k1 k2
c2
W λ1 s+λ2 s
串联弹簧的等效刚度系数为
k 1 k1k2 1 1 k1 k2 k1 k2
弹簧串联后的刚度系数减小,柔度系数增大。
固有频率
k 1
k1k2
2π m(k1 k2)
c
λs
W
第九章 质点的振动
§9-2 质点的自由振动
例题 9-2
k1
O
将式(a)代入上式,得
J d2 kd2
dt2
例 题 9-6
l

理论力学 第7章质点动力学习题解答

理论力学   第7章质点动力学习题解答

1第七章 质点动力学 习题解答7-1 质量为40 g 的小球M 以初速度v =8 j (m/s)从点A (0, 0, 0.3m)抛出后,受到沿i 方向恒定的电磁力作用,其大小F = 0.8 kN ,如图所示。

求小球M 到达xy 平面点B 时,点B 的坐标和小球的速度。

解:取小球M 为研究对象,小球所受到的主动力为 k i F mg F R -=由质点运动微分方程R F m =r ,写出投影式F x m = ,0=ym ,mg z m -= 初始条件为000====t t y x ,3.00==t z ;000====t t z x,v y t ==0 解得质点的速度方程为t mFx= ,v y = ,gt z -= 质点的运动方程为 22t m F x =,vt y =,3.022+-=t gz 当0=z 时,小球到达xy 平面,由03.022=+-=t g z 解得s 247.01=t ,于是小球到达xy 平面时的各速度分量为m/s 7.494811===t mFxt t ,m/s 81===v y t t ,m/s 425.211-=-==gt z t t . 各坐标为m 2.6122211===t m F x t t ,m 979.111===vt y t t ,m 137.23.02211-=+-==t gz tt .7-2 图示A ,B 两物体的质量分别为m A 和m B ,二者用一细绳连接,此绳跨过一定滑轮,滑轮半径为r 。

运动开始时,两物体的高度差为h ,且m A > m B ,不计滑轮质量。

求由静止释放后,两物体达到相同高度时所需的时间。

解:分别取A 和B 物体为研究对象,受力图如图示,列出动力学方程TA A A A F W x m -= , TB B B B F W x m -= , 式中g m W A A =,g m W B B =,根据题意,有TB TA F F =,B A x x -=,B A xx -= 初始条件00==t A x ,h x t B ==0,00==t A x,00==t B x . 解以上初值问题,得题7-2图题7-2受力图2g m m m m xBA B A A +-= , ()22gt m m m m x B A BA A +-=g m m m m x B A B A B +--= , ()h gt m m m m x B A BA B ++--=22令B A x x =,即()()h gt m m m m gt m m m m B A BA B A B A ++--=+-2222解得当两物体达到相同高度时 ()()gm m h m m t B A B A -+=...7-3 质量为m 的质点M 受到引力F = -k 2m r 的作用,其中k 为常量,运动开始时,质点M在轴x 上,OM 0 = b ,初速度v 0与轴x 的夹角为β,如图所示。

动力学公式汇总

动力学公式汇总

第 1 页/共 3 页理论力学——动力学重点公式汇总张工培训:湖南陆工1、牛顿第二定律记住:哪个方向用第二定律,就考虑哪个方向的作使劲就行了。

2、动量定理平移刚体的动量:定轴转动刚体的动量: (Vc 为质心的速度) 注重:动量方向与速度方向相同,故速度方向相反的两个质点的动量会抵消部分。

常力的冲量: 动量定理:注:应用时均是某个方向的应用。

3、动量矩定理平移刚体的动量矩: (Vc 为质心的速度,逆为正)定轴转动刚体的动量矩: 刚体的转动惯量:(注:均针对质心C ) 1)等截面的均质细长杆(质量为m ,长度为l )2)厚度相等的均质薄圆板(质量为m ,半径为R )3)厚度相等的均质薄圆环(质量为m ,半径为R )转动惯量的平行移轴定理:动量矩定理:x x F ma =yy F ma =zz F ma =mvk =∑==ci i mv v m k FtS =SFt mv mv ==-12d mv L c z ±=zz wIL =2121ml I C =221mR I C =2mR I C =2md I I zC z +=)()(00F m dtmv dm =质点(系)对某固定点(轴)的动量矩对时光的一阶导数,等于作使劲对该点的力矩。

刚体绕定轴转动时的动量矩定理可写为:4、动能定理力的功:重力的功: 弹性力的功:平移刚体的动能: 定轴转动刚体的动能: 动能定理: 5、达朗贝尔原理 平移刚体的惯性力主矢: 平移刚体的惯性力主矩: 定轴转动刚体的惯性力主矢:定轴转动刚体的惯性力主矩: 6、质点的直线振动周期: 圆频率: 频率:等效刚度系数:并联(特征:弹簧的变形量总是相等)串联(特征:变形量可不一样)频率比:等于1时,发生共振,振幅最大。

zz zz M dtd I M I ==22ϕε221mv T =221ωz I T =2,121222121W mv mv =-FSW =)()(2121z z mg z z P W -=-=)(22221δδ-=kW c I Ma F -=0=C I M nC C C RI Ma Ma Ma F --=-=τεz Iz I M -=km T πωπ220==mk=0ωmk Tf ππω21210===21k k k +=21111k k k+=ωωλ=欲知注册工程师考试(公共基础)更多更专业的学习内容,请担心“张工注册工程师基础类——zhanggongjichu。

第十一章 质点运动微分方程理论力学

第十一章 质点运动微分方程理论力学

第十一章 质点运动微分方程 该定律表明:
14
1、力与加速度的关系是瞬时关系,即力在某瞬时 对质点运动状态的改变是通过该瞬时确定的加速度表 现的。作用力并不直接决定质点的速度,速度的方向 可以完全不同于作用力的方向。 2、若相等的两个力作用在质量不同的两个质点 上,则质量越大,加速度越小;质量越小,加速度越 大。 这说明:质量越大,保持其原来运动状态的能力越 强,即质量越大,惯性也越大。因此,质量是质点惯 性大小的度量。
Fmax
2 v0 = P(1 + ) gl
第十一章 质点运动微分方程
25
※ 刚才介绍的是动力学第一类问题,其要点是运动方程的 建立,基本数学方法是求导 ※ 动力学第二类问题,是已知力求运动。基本数学方法是 积分。积分的难易取决于载荷的复杂程度。通常有: F=F(c、t、v、r) ※ 目前要求掌握: F=c F=F(v) F=F(t) F=F(r) 须将积分 变量作变换 dv dv dx m = m ⋅ = F ( x) dt dx dt
第十一章 质点运动微分方程 第二定律(力与加速度关系定律)
13
质点受力作用时所获得的加速度的大小与作 用力的大小成正比,与质点的质量成反比,加速 度的方向与力的方向相同。 即:
F a= m

ma = F
由于上式是推导其它动力学方程的出发点,所以通常 称上式为动力学基本方程。 当质点同时受几个力的作用时上式中的F 应理解 为这些力的合力。
α ω α B
l
M
F F N1 N2 an FN2 α mg M
a
a
l
第十一章 质点运动微分方程
A α ω α B l M a FN 1 sin α + FN 2 sin α ρ

机械振动的原理及应用

机械振动的原理及应用

机械振动的原理及应用一、什么是机械振动机械振动是指机械系统在受到外力作用或者自身固有特性发生变化时,产生周期性的运动或者摆动。

这种周期性的运动或摆动称为振动。

机械振动是机械工程中一个重要的研究领域,并在多个应用领域中发挥着重要作用。

二、机械振动的原理1.质点的简谐振动原理: 机械振动的基础理论是简谐振动。

简谐振动是指系统在外力作用下相对平衡位置做周期性的、大小和方向都相同的振动。

质点的简谐振动受到三个基本要素的影响:质点的质量、弹性恢复力和外力。

2.刚体的振动原理:刚体的振动与质点不同,无论是平动还是转动,都涉及到刚体上不同点之间的相对位置关系。

刚体的振动可以分为平动和转动两种类型。

刚体的振动受到质心的平动和转动之间的耦合效应所影响。

三、机械振动的应用1.振动工具和设备:机械振动被广泛应用于各种振动工具和设备中,例如振动筛、振动给料机、振动输送机等。

这些设备通过振动来实现物料的分离、输送和排放等功能。

2.振动检测与诊断:机械振动可用于检测和诊断装置或系统的故障。

通过监测和分析机械系统的振动特征,可以判断设备是否存在故障、预测故障发生的可能性以及确定故障的类型和位置。

3.振动控制与消除:机械振动在诸多领域中可能会引起一些负面影响,如噪音、损坏和疲劳等。

因此,控制和消除机械振动成为许多工程项目的重点。

采用合适的设计和控制方法,可以有效地减少机械振动,提高设备的性能和使用寿命。

4.振动能量回收:机械振动能量的回收利用成为一种新型的能源开发方式。

通过将机械系统中产生的振动能量转化为电能或其他可用能源,可以提高能源利用效率,减少对传统能源的依赖。

四、机械振动的未来发展与趋势1.智能化发展:随着科技的进步,机械振动领域也逐渐向着智能化、自动化的方向发展。

智能化振动控制系统的出现,将会更加准确地进行振动监测、诊断和控制,提高设备的效率和性能。

2.节能与环保:在全球节能与环保的背景下,减少机械振动对环境和人体健康的影响成为一个重要的课题。

理论力学(金尚年-马永利编著)课后习题答案详解

理论力学(金尚年-马永利编著)课后习题答案详解

高等教育出版社,金尚年,马永利编著理论力学课后习题答案第一章1.2写出约束在铅直平面内的光滑摆线上运动的质点的微分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关.解:设s为质点沿摆线运动时的路程,取=0时,s=0XYF Nmg sinφmgmg cosφφS== 4 a (1)设为质点所在摆线位置处切线方向与x 轴的夹角,取逆时针为正,即切线斜率=受力分析得:则,此即为质点的运动微分方程。

该质点在平衡位置附近作振动时,振动周期与振幅无关,为.1.3证明:设一质量为m 的小球做任一角度0θ的单摆运动运动微分方程为θθθF r r m =+)2( θθsin mg mr = ①给①式两边同时乘以d θ θθθθd g d r sin = 对上式两边关于θ积分得 c g r +=θθcos 212 ② 利用初始条件0θθ=时0=θ 故0cos θg c -= ③ 由②③可解得 0cos cos 2-θθθ-•=lg 上式可化为dt d lg=⨯-•θθθ0cos cos 2-两边同时积分可得θθθθθθθθd g l d g l t ⎰⎰---=--=020222002sin 12sin 10012cos cos 12进一步化简可得θθθθd g l t ⎰-=0002222sin sin 121 由于上面算的过程只占整个周期的1/4故⎰-==0222sin 2sin 124T θθθθd g l t由ϕθθsin 2sin /2sin 0=两边分别对θϕ微分可得ϕϕθθθd d cos 2sin 2cos 0=ϕθθ202sin 2sin 12cos-=故ϕϕθϕθθd d 202sin 2sin 1cos 2sin2-= 由于00θθ≤≤故对应的20πϕ≤≤故ϕϕθϕθϕθθθθπθd g l d g l T ⎰⎰-=-=202022cos 2sinsin 2sin 1/cos 2sin42sin2sin 2故⎰-=2022sin 14πϕϕK d g l T 其中2sin022θ=K 通过进一步计算可得glπ2T =])2642)12(531()4231()21(1[224222 +⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯++n K n n K K1.5zp点yx解:如图,在半径是R的时候,由万有引力公式,对表面的一点的万有引力为, ①M为地球的质量;可知,地球表面的重力加速度 g , x为取地心到无限远的广义坐标,,②联立①,②可得:,M为地球的质量;③当半径增加 ,R2=R+ ,此时总质量不变,仍为M,此时表面的重力加速度可求:④e өe tөy由④得:⑤则,半径变化后的g 的变化为⑥对⑥式进行通分、整理后得:⑦对⑦式整理,略去二阶量,同时远小于R ,得⑧则当半径改变 时,表面的重力加速度的变化为:。

理论力学中的波动与振动分析

理论力学中的波动与振动分析

理论力学中的波动与振动分析波动与振动是理论力学中重要的研究方向,涉及到许多实际应用和科学理论。

本文将从经典力学和量子力学两个方面,对波动与振动进行深入分析。

一、经典力学中的波动与振动在经典力学中,波动可以用以下形式的波动方程来描述:ψ(x, t) = A * sin(kx - ωt + φ)其中,ψ是波函数,A代表振幅,k是波数,x表示位置变量,ω代表角频率,t为时间变量,φ为相位角。

振动是波动的一种特殊形式,当振动发生在一维系统中时,可以用简谐振动方程来描述:x(t) = A * cos(ωt + φ)其中,x为位移,A为最大位移量,ω为角频率,t为时间,φ为初相位角。

二、量子力学中的波动与振动在量子力学中,粒子的波动性由波函数来描述,而波函数的演化满足薛定谔方程:i * ℏ * ∂ψ/∂t = -Ĥψ其中,Ĥ为哈密顿算符,ℏ为普朗克常数除以2π。

量子力学中的波动性表现为粒子的波粒二象性,即既具有粒子性又具有波动性。

粒子的波函数通过薛定谔方程得到后,可以用波包的形式表示。

波包是一个由多个简谐波组合而成的波动形式,可以用高斯波包表达。

对于振动来说,在量子力学中,可以用谐振子模型进行描述。

谐振子模型是量子力学中的一个重要模型,它是简谐振动的量子版本。

谐振子的哈密顿算符表达式为:Ĥ = (ℏω/2) * (a^†a + aa^†)其中,a和a^†分别是谐振子的湮灭算符和产生算符,ℏ是普朗克常数除以2π,ω为角频率。

谐振子的能级由能量本征值给出。

三、波动与振动的应用波动和振动在物理学、工程学和其他学科中有广泛的应用。

以下是一些常见的应用领域:1.声学:声音是通过空气中的波动传播的,声学研究了声音的起源、传播和感知。

声波的频率和振幅可以影响我们对声音的感知。

2.光学:光是一种电磁波,光学研究了光的传播、反射、折射等现象。

波动光学理论可以解释光的干涉、衍射等现象。

3.无线通信:通过调制载波的振幅和频率,可以实现无线信号的传输。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动力学
质点的振动
西北工业大学 支希哲 朱西平 侯美丽
第九章 质点的振动
动力学

§9–1 概 述


§9–2 质点的自由振动


§9–3 质点的衰减振动



§9–4 质点的强迫振动
第九章 质点的振动
目录
§9-1 概 述
第九章 质点的振动
§9-1 概 述
● 振动是指运动在其稳定位置附近所作的周期性往复运动。
d ) d
将式(a)代入上式,得
J d2 kd 2
dt2
例 题 9-6
l
d
m
O
φ
Fk
mg
第九章 质点的振动
例题
振动
例 题 9-6
J
d2
dt 2
k d 2
上式移项,可化为标准形式的无阻尼自由 振动微分方程
l
d
m
O
φ
Fk
mg
d2 kd2 0
( b)
dt 2 J
则此摆振系统的固有频率为
0 d
x
● 周期
每重复一次运动状态所需的时间间隔,
O
称为周期,并用T 表示。
T
t
每隔一个周期T,相角应改变 ω0T=2π。因
此,周期可以表示成
T 2π 2π m
0
k
周期一般以s计。
周期仅和系统本身的固有参数(质量m与刚度)有关,而和运动 的初始条件无关。
第九章 质点的振动
§9-2 质点的自由振动
● 频率
x
x Asin 0t ,
0
k m
第九章 质点的振动
例题
k
静平衡位置
O
m
x
振动
例 题 9-3
mx 0 x 0
方程的解为
x Asin 0t ,
0
k m
利用初始条件
x(0) v(0) v
求得
A= v
0
第九章 质点的振动
例题
振动
例 题 9-6
如图为一摆振系统,杆重不计,球质量为 m ,摆对 轴O的转动惯量为J。弹簧刚度系数为k,杆于水平位置平 衡,尺寸如图。求此系统微小振动的运动微分方程及振 动频率。
例题9-1
例9-1 求单摆(数学摆)的运动规律。
O φ0
φ l
m
第九章 质点的振动
§9-2 质点的自由振动
例题9-1
解: 把单摆看成一个在圆弧上运动的质点 M, 设其质量为 m,摆线长 l 。又设在任一瞬时质点
M具有速度 v ,摆线 OM与铅垂线的夹角是 。
通过悬点 O 而垂直于运动平面的固定轴 z 作为矩轴,对此轴应用质点的动量矩定理
动量矩 力矩
dLOz dt
M Oz
LOz
mvl
m(l)l
ml2
d
dt
MOz mgl sin
O φ0
φ
l
F
Mv
mg
第九章 质点的振动
动量矩定理 动量矩 力矩
从而可得
§9-2 质点的自由振动
例题9-1
dLOz dt
M Oz
LOz
ml2
d
dt
,
MOz mgl sin
d (ml2 d ) mgl sin
(a)
M F
x x0,
v x0
O
x
x
令t=0且 x x0 和 x x0 ,就可以确定积分常数
(b)
C1 x0

C2
x0
0
这样,质点无阻尼自由振动规律和速度变化规律分别是
x
x0
cos0t
x0
0
sin
0t
x x00 sin 0t x0 cos0t
第九章 质点的振动
§9-2 质点的自由振动
F0 O
M
G
பைடு நூலகம்
xF
(a)
M xG
mx mg k(s x)
(b)
第九章 质点的振动
§9-2 质点的自由振动
mx mg k(s x)
考虑到关系式 mg ks,上式写成
mx kx 或 x 02x 0
其中02 k m,可见,M 仍在平衡位置附近作无阻尼自由振动。
O 与水平质量一弹簧系统比较,铅直悬挂质量一弹簧系统质
W ks (k1 k2 )s
上式说明并联弹簧的等效刚度系数为
k k1 k2
固有频率
0
1 2π
k1 m 2π
k1 k2 m
第九章 质点的振动
§9-2 质点的自由振动
例题 9-2
2. 串联情形。
设弹簧刚度系数分别为k1和k2 , 在W重力作用下,两弹簧的总静变
形λs等于单个弹簧的静变形之和, 有
l
d
m
O
φ
Fk
mg
第九章 质点的振动
例题
振动
例 题 9-6
第九章 质点的振动
例题
振动
解: 摆于水平位置处,弹簧已有压缩量λ0,由
平衡方程∑MO(Fi)=0,有
mgl k0d
(a)
以平衡位置为原点,摆在任一小角度处,弹 簧压缩量为λ0+ d。摆绕轴的转动微分方程为
J
d2
dt2
mgl
k(0
第九章 质点的振动
例题
静平衡位置
m
振动
例 题 9-3
解: 钢丝绳-重物系统可以简化为弹簧-物块
系统,弹簧的刚度为
k ES 2.312106 N m-1 l
设钢丝绳被卡住的瞬时t=0,这时重物的位
k
置为初始平衡位置;以重物在铅垂方向的位移x
作为广义坐标,则系统的振动方程为
mx kx 0
O
方程的解为
振动实例
第九章 质点的振动
§9-1 概 述
几个概念
● 振动 是指运动在其稳定位置附近所作的周期性往复运动。 ● 线性振动的运动微分方程都是线性的。实际系统往往要经过近似
处理才能化成线性的。 ● 在质点受到扰动而脱离其平衡位置后,会受到一个恒指向这平衡
位置而促使质点返回的力,这种力称为恢复力。 ● 当恢复力的大小和质点到平衡位置的距离成正比时,则称为线性
x
x0
cos0t
x0
0
sin
0t
x Asin( 0t )
A
x02
( x0
0
)2
,
tan
0 x0
x0
可见,质点无阻尼自由振动是简谐振动,其运动如图所示。
x
T
O
t
第九章 质点的振动
§9-2 质点的自由振动
二、自由振动的基本参数
x
T
(1)振幅和相角
O
t
由式(a)可见质点相对于振动中
心(平衡位置)的最大偏离
用λs代表当物块在重力G 和弹簧力
F0的作用下在平衡位置静止时弹簧所具
有的变形,即静变形(如图a)。
l0
显然,由平衡条件G -F0=0有
mg ks
(1)
以平衡位置O作为原点,令轴Ox铅直
向下,则当物块在任意位置x时,弹簧力F
在轴x上的投影 Fx=-k( λs+x)(如图b)。
可得物块的运动微分方程
l0 +δs
k
Fd OF
Fd cv
M
其中,c称为粘滞阻力系数(以
为kg单位), s
表示质点在单位速度时,所受的阻力值,
其大小与介质和物体的形状等因素有关,
可由实验测定。式中负号表示阻力与速度
的方向恒相反。
Mv
G
x
第九章 质点的振动
x
T
单位时间内振动的次数,称为频率,记作 f。
f 1 0
O
t
T 2π
每2π秒内振动的次数称为圆频率,表示为
0 2π f
k m
ω0 只和系统的固有的性质有关,而和运动的初始条件无关系。 因此,ω0称为系统的固有频率或自然频率。
第九章 质点的振动
§9-2 质点的自由振动
三、铅直悬挂质量一弹簧系统
k J
第九章 质点的振动
§9-3 质点的衰减振动
第九章 质点的振动
§9-3 质点的衰减振动
一、质点的衰减振动
本节将讨论质点在有阻尼时的自由振动,但只限于与速度一次方成 正比的介质阻力,这种阻力称为线性阻力(或粘滞阻力)。
如图示系统在介质里运动中,质点 M将受到介质阻力的作用。
在微振动情况下,速度不大,可以认 为阻力Fd与速度v 的一次方成正比,即有
s 1s 2s
k1 k2
W λ1 s+λ2 s
k
λs
W
选择弹簧刚度系数为k的弹簧代替串联的两弹簧 ,使它的静变形λs等于串 联的两弹簧静变形之和λ1 s+λ2 s。
由于弹簧是串连的,每个弹簧受的力W相等,于是
1s
W k1
,
2s
W k2
,
s
W k
第九章 质点的振动
§9-2 质点的自由振动
例题 9-2
其通解为
x C1 cos0t C2 sin 0t
把上式对时间求导数,得
v x C10 sin 0t C20 cos0t
第九章 质点的振动
§9-2 质点的自由振动
x C1 cos0t C2 sin 0t
l0
OM
v x C10 sin 0t C20 cos0t
当 t=0时,质点的初坐标和初速度
恢复力。 ● 质点振动时还可能受阻力作用,这里只考虑与速度一次方成正比
相关文档
最新文档