大学物理习题11
大学物理习题答案第十一章
![大学物理习题答案第十一章](https://img.taocdn.com/s3/m/0d8e2d29cfc789eb172dc897.png)
[习题解答]11-7 在磁感应强度大小为B = 0.50 T 的匀强磁场中,有一长度为l = 1.5 m 的导体棒垂直于磁场方向放置,如图11-11所示。
如果让此导体棒以既垂直于自身的长度又垂直于磁场的速度v 向右运动,则在导体棒中将产生动生电动势。
若棒的运动速率v = 4.0 m ⋅s -1 ,试求:(1)导体棒内的非静电性电场K ;(2)导体棒内的静电场E ;(3)导体棒内的动生电动势ε的大小和方向;(4)导体棒两端的电势差。
解(1)根据动生电动势的表达式,由于()的方向沿棒向上,所以上式的积分可取沿棒向上的方向,也就是d l 的方向取沿棒向上的方向。
于是可得.另外,动生电动势可以用非静电性电场表示为.以上两式联立可解得导体棒内的非静电性电场,为,方向沿棒由下向上。
图11-11(2)在不形成电流的情况下,导体棒内的静电场与非静电性电场相平衡,即,所以,E 的方向沿棒由上向下,大小为.(3)上面已经得到,方向沿棒由下向上。
(4)上述导体棒就相当一个外电路不通的电源,所以导体棒两端的电势差就等于棒的动生电动势,即,棒的上端为正,下端为负。
11-8 如图11-12所表示,处于匀强磁场中的导体回路ABCD ,其边AB 可以滑动。
若磁感应强度的大小为B = 0.5 T ,电阻为R = 0.2 Ω,AB 边长为 l = 0.5 m ,AB 边向右平移的速率为v = 4 m ⋅s -1 ,求:(1)作用于AB 边上的外力;(2)外力所消耗的功率;(3)感应电流消耗在电阻R 上的功率。
解(1)当将AB 向右拉动时,AB 中会有电流通过,流向为从B 到A 。
AB 中一旦出现电流,就将受到安培力F 的作用,安培力的方向为由右向左。
所以,要使AB 向右移动,必须对AB施加由左向右图11-12的力的作用,这就是外力F外。
在被拉动时,AB中产生的动生电动势为,电流为.AB所受安培力的大小为,安培力的方向为由右向左。
外力的大小为,外力的方向为由左向右。
大学物理第十一章气体动理论习题详细答案
![大学物理第十一章气体动理论习题详细答案](https://img.taocdn.com/s3/m/291cd27e49d7c1c708a1284ac850ad02de8007c1.png)
第十一章 气体动理论习题详细答案一、选择题1、答案:B解:根据速率分布函数()f v 的统计意义即可得出。
()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。
2、答案:A解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,后面三个选项的说法都是对的,而只有而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。
正确。
3、答案: A 解:2rms 1.73RT v v M ==,据题意得222222221,16H O H H H O O O T T T M M M T M ===,所以答案A 正确。
正确。
4、 由理想气体分子的压强公式23k p n e =可得压强之比为:可得压强之比为:A p ∶B p ∶C p =n A kA e ∶n B kB e ∶n C kC e =1∶1∶1 5、 氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RT n =代入内能公式2iE RT n =可得2iE pV =,所以氧气和氦气的内能之比为5 : 6,故答案选C 。
6、 解:理想气体状态方程PV RTn =,内能2iU RT n =(0m M n =)。
由两式得2UiP V =,A 、B 两种容积两种气体的压强相同,A 中,3i =;B 中,5i =,所以答案A 正确。
正确。
7、 由理想气体物态方程'm pV RT M=可知正确答案选D 。
8、 由理想气体物态方程pV NkT =可得气体的分子总数可以表示为PV N kT =,故答案选C 。
9、理想气体温度公式21322k m kT e u ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。
大学物理第11章习题答案(供参考)
![大学物理第11章习题答案(供参考)](https://img.taocdn.com/s3/m/aa8155b6172ded630b1cb6a1.png)
因此
即
又
表明 中电动势方向为 .
所以半圆环内电动势 方向沿 方向,
大小为
点电势高于 点电势,即
例2如图所示,长直导线通以电流 =5A,在其右方放一长方形线圈,两者共面.线圈长 =0.06m,宽 =0.04m,线圈以速度 =0.03m·s-1垂直于直线平移远离.求: =0.05m时线圈中感应电动势的大小和方向.
.
解: 设给两导线中通一电流 ,左侧导线中电流向上,右侧导线中电流向下.
在两导线所在的平面内取垂直于导线的坐标轴 ,并设其原点在左导线的中心,如图所示,由此可以计算通过两导线间长度为 的面积的磁通量.
两导线间的磁感强度大小为
取面积元 ,通过面积元的磁通量为
则穿过两导线间长度为 的矩形面积的磁通量为
故
2动生电动势:仅由导体或导体回路在磁场中的运动而产生的感应电动势。
3感生电场 :变化的磁场在其周围所激发的电场。与静电场不同,感生电场的电
场线是闭合的,所以感生电场也称有旋电场。
4感生电动势:仅由磁场变化而产生的感应电动势。
5自感:有使回路保持原有电流不变的性质,是回路本身的“电磁惯性”的量度。
自感系数 :
第11章 电磁感应
11.1 基本要求
1理解电动势的概念。
2掌握法拉第电磁感应定律和楞次定律,能熟练地应用它们来计算感应电动势的大小,判别感应电动势的方向。
3理解动生电动势的概念及规律,会计算一些简单问题中的动生电动势。
4理解感生电场、感生电动势的概念及规律,会计算一些简单问题中的感生电动势。
5理解自感现象和自感系数的定义及物理意义,会计算简单回路中的自感系数。
大学物理第十一章 气体动理论习题
![大学物理第十一章 气体动理论习题](https://img.taocdn.com/s3/m/f87fce2f650e52ea55189874.png)
第十一章气体动理论一、基本要求1.理解平衡态、物态参量、温度等概念,掌握理想气体物态方程的物理意义及应用。
2.了解气体分子热运动的统计规律性,理解理想气体的压强公式和温度公式的统计意义及微观本质,并能熟练应用。
3.理解自由度和内能的概念,掌握能量按自由度均分定理。
掌握理想气体的内能公式并能熟练应用。
4.理解麦克斯韦气体分子速率分布律、速率分布函数及分子速率分布曲线的物理意义,掌握气体分子热运动的平均速率、方均根速率和最概然速率的求法和意义。
5.了解气体分子平均碰撞频率及平均自由程的物理意义和计算公式。
二、基本概念1 平衡态系统在不受外界的影响下,宏观性质不随时间变化的状态。
2 物态参量描述一定质量的理想气体在平衡态时的宏观性质的物理量,包括压强、体积和温度3 温度宏观上反映物体的冷热程度,微观上反映气体分子无规则热运动的剧烈程度。
4 自由度确定一个物体在空间的位置所需要的独立坐标数目,用字母表示。
5 内能理想气体的内能就是气体内所有分子的动能之和,即6 最概然速率速率分布函数取极大值时所对应的速率,用表示,,其物理意义为在一定温度下,分布在速率附近的单位速率区间内的分子在总分子数中所占的百分比最大。
7 平均速率各个分子速率的统计平均值,用表示,8 方均根速率各个分子速率的平方平均值的算术平方根,用表示,9 平均碰撞频率和平均自由程平均碰撞频率是指单位时间内一个分子和其他分子平均碰撞的次数;平均自由程是每两次碰撞之间一个分子自由运动的平均路程,两者的关系式为:或三、基本规律1 理想气体的物态方程pV RT ν=或'm pV RT M= pV NkT =或p nkT =2 理想气体的压强公式3 理想气体的温度公式4 能量按自由度均分定理在温度为T 的平衡态下,气体分子任何一个自由度的平均动能都相等,均为12kT 5 麦克斯韦气体分子速率分布律(1)速率分布函数 ()dN f Nd υυ= 表示在速率υ附近单位速率区间内的分子数占总分子数的百分比或任一单个分子在速率υ附近单位速率区间内出现的概率,又称为概率密度。
大学物理第十一章波动光学习题答案
![大学物理第十一章波动光学习题答案](https://img.taocdn.com/s3/m/edf463ea6f1aff00bfd51e12.png)
第十一章 波动光学习题11-1 在杨氏双缝实验中,双缝间距d =0.20 mm ,缝屏间距D =1.0 m ,若第2级明条纹离屏中心的距离为6.0 mm ,试求:(1)入射光的波长;(2)相邻两明条纹间的距离。
解:(1)由λk d D x =明知, λ22.01010.63⨯⨯= 30.610m m 600n m λ-=⨯= (2)3106.02.010133=⨯⨯⨯==∆-λd D x mm 11-2 在双缝装置中,用一很薄的云母片(n =1.58)覆盖其中的一条缝,结果使屏幕上的第7级明条纹恰好移到屏幕中央原零级明纹的位置。
若入射光的波长为550 nm ,求此云母片的厚度。
解:设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ 按题意 λδ7= ∴610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ 11-3 在折射率n 1=1.52的镜头表面涂有一层折射率n 2=1.38的MgF 2增透膜,如果此膜适用于波长λ=550 nm 的光,问膜的最小厚度应取何值?解:设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k 222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k o A令0=k ,得膜的最薄厚度为996o A 。
11-4 白光垂直照射在空气中厚度为0.4μm 的玻璃片上,玻璃的折射率为1.50。
试问在可见光范围内(λ= 400~700nm ),哪些波长的光在反射中增强?哪些波长的光在透射中增强?解:(1)222n d j λδλ=+= 24 3,480n m 21n d j j λλ===- (2)22(21) 22n d j λλδ=+=+ 22n d j λ= 2,600n m j λ==;3,400nm j λ== 11-5 白光垂直照射到空气中一厚度为380 nm 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解:由反射干涉相长公式有42221ne ne k k λδλλ=+==-, ),2,1(⋅⋅⋅=k 得4 1.3338002674nm 2214 1.3338003404nm 231k k λλ⨯⨯===⨯-⨯⨯===⨯-,红色,紫色所以肥皂膜正面呈现紫红色。
大学物理热学习题附答案11
![大学物理热学习题附答案11](https://img.taocdn.com/s3/m/1a569da91a37f111f1855b4f.png)
一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B)m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v 2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值(A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 0 [ ]3.4014:温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等 (B) ε相等,而w 不相等 (C) w 相等,而ε不相等(D) ε和w 都不相等4.4022:在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.4023:水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 06.4058:两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同7.4013:一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强8.4012:关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。
大学物理习题册答案第11单元 气体动理论
![大学物理习题册答案第11单元 气体动理论](https://img.taocdn.com/s3/m/4d848547aaea998fcc220eb8.png)
第11单元 气体动理论一、选择题【C 】1.在标准状态下, 若氧气(视为刚性双原子分子的理想气体)和氦气的体积比2121=V V ,则其内能之比21/E E 为: (A) 1/2 (B) 5/3 (C) 5/6 (D) 3/10【B 】2.若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为(A) pV/m (B) pV/(kT) (C) pV/(RT) (D) pV/(mT)【D 】3.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT v x 32= (B)m kT v x 3312= (C) m kT v x 32= (D)mkT v x =2 【解析】m kT v 32=,222231v v v v z y x ===,故mkT v x =2。
【变式】一定量的理想气体贮于某一容器内,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向分量的平均值为( ) 0 D. π38 . C π831 B. π8 A.==⋅==x x x x mkT m kT m kT v v v v 解:在热平衡时,分子在x 正反两个方向上的运动是等概率的,故分子速度在x 方向分量的平均值为零。
所以答案选D 。
【D 】4.若)(v f 为气体分子速率分布函数,N 为分子总数,m 为分子质量,则)(21221v Nf mv v v ⎰ d v 的物理意义是(A) 速率为v 2的各分子的总平均动能与速率为v 1的各分子的总平均动能之差(B) 速率为v 2的各分子的总平动动能与速率为v 1的各分子的总平动动能之和(C) 速率处在速率间隔v 1~ v 2之内的分子的平均平动动能(D) 速率处在速率间隔v 1~ v 2之内的分子平动动能之和 【D 】5.在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态,A 种气体的分子数密度为1n ,它产生的压强为1p ,B 种气体的分子数密度为12n ,C 种气体的分子数密度为3n 1,则混合气体的压强p 为(A)31p (B)41p 1p (D)61p【A 】6.两种不同的理想气体,若它们的最概然速率相等,则它们的(A) 平均速率相等,方均根速率相等 (B) 平均速率相等,方均根速率不相等.(C) 平均速率不相等,方均根速率相等 (D) 平均速率不相等,方均根速率不相等.【解析】根据nkT p =,321n n n n ++=,得到1132166)(p kT n kT n n n p ==++=。
大学物理练习题答案 11
![大学物理练习题答案 11](https://img.taocdn.com/s3/m/31d52c9b71fe910ef12df8d2.png)
11-1一物体作简谐运动的曲线如图11-1所示,试求其运动方程。
解:设振动方程为)cos(ϕω+=t A x ,m 1042-⨯=A由旋转矢量法知πϕ43-=,25.04/ππω==, )432cos(1042ππ-⨯=∴-t x11-2一质量为0.02kg 的弹簧振子沿x 轴作谐振动,振幅为0.12m ,周期为2s 。
当t =0时,振子位于0.06m 处,并向x 轴正方向运动,试求:(1)试用旋转矢量法确定初位相并写出运动方程;(2)t =0.5s 时的位置,速度和加速度;(3)从x =-0.06m 处向x 轴负方向运动再回到平衡位置所需时间。
解:(1)由旋转矢量法知3πϕ-=,πππω===222T , )3cos(12.0ππ-=∴t x(2))3sin(12.0dt d πππ--==t x v ,)3cos(12.0dt d 2πππ--==t v as 5.0=t ,m 1039.0=x ,m/s 1885.0-=v ,2m/s 03.1=a (3)s 656/52/3/==+=ππωππt11-3如图11-3所示,水平轻质弹簧一端固定,另一端所系轻绳绕过一滑轮垂挂一质量为m 的物体。
若弹簧劲度系数为k ,滑轮半径为R ,转动量为J 。
(1)证明物体作简谐振动;(2)求振动周期;(3)设t =0时弹簧无伸缩,物体由静止下落,写出物体的运动方程。
解:(1)取系统的静平衡位置为坐标原点,向下为正。
弹簧的初始变形量 kmgx =0。
分别取重物、滑轮和弹簧为研究对象,则有221d d t x m T mg =-,R t x J R T T 2221d /d ,)(==-ββ,(02x x k T -= 由上述方程可解得:0/d d 222=++x RJ m kt x 所以物体作简谐振动。
(2)2/R J m k +=ω,kR J m T 2/22+==πωπ (3)0=t ,00=v ,kmgx A ==0,πϕ=。
大学应用物理第十一章习题答案
![大学应用物理第十一章习题答案](https://img.taocdn.com/s3/m/a94728d4b9f3f90f76c61b4d.png)
第11章 光的干涉、衍射和偏振11-10 如图11-57所示,由S 点发出的λ=600nm 的单色光,自空气射人折射率n =1.23的透明物质,再射入空气.若透明物质的厚度e =1.0cm ,入射角030θ=,且SA=BC=5cm ,求:(1)折射角1θ为多少? (2)此单色光在这层透明物质里的频率、速度和波长各为多少? (3)S 到C 的几何路程为多少?光程又为多少?解:(1)由折射定律1sin sin θθ=n 可得 0124)23.130sin arcsin()sin arcsin(===nθθ(2)单色光在透明介质中的速度nυ,波长n λ和频率ν分别为).(1044.218-⨯==sm nc n υ,)(4881088.47nm m nn =⨯==-λλ)(100.514z H c⨯==λν(3)S 到C 的几何路程为:)(111.0cos 1m BC e SA BC AB SA SC =++=++=θS 到C 的光程为:)(114.011m BC n AB SA r n i i =⨯+⨯+⨯=∑。
11-11 在双缝干涉实验中,两缝间距为0.30mm ,用单色光垂直照射双缝,在离缝1.20m 的屏上测得中央明纹两侧第五条暗纹间的距离为22.78mm ,问所用光波长多少,是什么颜色的光?分析:在双缝干涉中,屏上暗纹位置由x 决定。
所谓第5条暗纹是指对应4=k 的那一级暗纹。
由于条纹对称,该暗纹到中央明纹中心的距mmx 278.22=,那么由暗纹公式即可求得波长λ。
此外,因双缝干涉是等间距的,故也可用条纹间距公式λdD x =∆求人射光波长。
应注意两个第5条暗纹之间所包含的相邻条纹间隔数为9(不是10,因每边只有4.5条),故mmx 278.22=∆。
解法一:屏上暗纹的位置2)12(λ+=k dD x ,把4=k ,mx 310278.22-⨯=以及d 、D值代人,可得nm 8.632=λ,为红光。
大学普通物理学习题答案-第十一章-恒定电流与恒定磁场
![大学普通物理学习题答案-第十一章-恒定电流与恒定磁场](https://img.taocdn.com/s3/m/e9d7c28e0b4c2e3f56276385.png)
第十一章恒定电流与恒定磁场一、选择题1.如图11-1所示,有两根载有相同电流的无限长直导线,分别通过x1=1m、x2=3m的点,且平行于y轴,则磁感应强度B等于零的地方是()。
A.x=2m的直线上B.在x>2m的区域C.在x<1m的区域D.不在x、y平面上图11-11.【答案】A。
解析:根据对称性可得,两条载流导线在x=2m的直线上产生的磁感应强度大小相等;用右手螺旋定则可判断两磁感应强度的方向相反,相互抵消,合磁感应强度为零,故选A。
2.图11-2中6根无限长导线互相绝缘,通过电流均为I,区域Ⅰ、Ⅰ、Ⅰ、Ⅰ均为全等的正方形,哪一个区域指向纸内的磁通量最大()。
A. Ⅰ区域B. Ⅰ区域C. Ⅰ区域D. Ⅰ区域2.【答案】B。
解析:通过Ⅰ区域的磁通量为0,通过Ⅰ区城的磁通量最大且指向纸内,通过Ⅰ区域的磁通量最大但指向纸外,通过IV区域的磁通量为0。
故选B。
3.如图11-3所示,在一圆形电流I所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知()。
A.d 0LB l ⋅=⎰,且环路上任意一点B =0 B.d 0LB l ⋅=⎰,且环路上任意一点B ≠0 C.d 0LB l ⋅≠⎰,且环路上任意一点B ≠0 D.d 0LB l ⋅≠⎰,且环路上任意一点B =常量3.【答案】B 。
解析:根据安培环路定理,闭合回路内没有电流穿过,所以环路积分等于0.但是由于圆形电流的存在,环路上任意一点的磁感应强度都不等于0。
故选B 。
4.无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(r <R )的磁感应强度为B i ,圆柱体外(r>R )的磁感应强度为B e ,则有:()。
A.B i 、B e 均与r 成正比B.B i 、B e 均与r 成反比C.B i 与r 成反比,B e 与r 成正比D.B i 与r 成正比,B e 与r 成反比4.【答案】B 。
解析:导体横截面上的电流密度2πR I J =,以圆柱体轴线为圆心,半径为r 的同心圆作为安培环路,当r <R ,20ππ2r J r B i ⋅=⋅μ,20π2R IrB i μ=;当r <R ,I r B e ⋅=⋅0π2μ,rIB e π20μ=;所以选D 。
《大学物理学》第十一、十二、十三章练习题(解答)
![《大学物理学》第十一、十二、十三章练习题(解答)](https://img.taocdn.com/s3/m/2fdca2bb7c1cfad6195fa784.png)
《大学物理学》第十一、十二、十三章练习题解答可能用到的物理量:122208.8510/C m N ε-=⨯⋅,922019.010/4m N C πε=⨯⋅一、选择题:1. 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( D )(A) (B) (C) (D)2. 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 ( D )(A) 穿过S 面的电通量改变,O 点的场强大小不变;(B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变; (D) 穿过S 面的电通量不变,O 点的场强大小不变。
3.如图所示,在点电荷q +的电场中,若选取图中P 为电势零点,则M 点的电势为:( D ) (A)04q aπε;(B)08q aπε ;(C) 04q aπε-;(D) 08q aπε-。
4.在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电通量为 ( D ) (A)qε; (B)02q ε ; (C) 04q ε; (D) 06q ε。
5. 如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( C ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。
6. 关于高斯定理的理解有下面几种说法,其中正确的是 ( C )(A) 如果高斯面内没有自由电荷,则高斯面上E ϖ处处为零; (B) 如果高斯面上电位移矢量D v为零,则该面内必无电荷;(C) 如果高斯面内有净电荷,则通过该面的电通量必不为零; (D) 如果高斯面上电通量为零,则该面内必无电荷。
大学物理习题11
![大学物理习题11](https://img.taocdn.com/s3/m/550a46380b4c2e3f57276321.png)
(1)此螺线环的自感系数;
(2)若导线内通有电流 I ,环内磁能为多少?
解:如题 11.18 图示
(1)通过横截面的磁通为
∫ Φ =
b a
µ0 NI 2rπ
hdr
=
µ0 NIh 2π
ln
b a
磁链
Ψ
=
NΦ
=
µ0 N 2 Ih ln b 2π a
∴ (2)∵ ∴
L =Ψ I
=
µ0N 2h 2π
ln
=
l 3
磁感应强度
B
平行于转
轴,如图11.11所示.试求:
(1) ab 两端的电势差;
(2) a,b 两端哪一点电势高?
解: (1)在 Ob 上取 r → r + dr 一小段
则
∫ ε Ob =
2l
3 ω rBdr
0
=
2Bω 9
l2
同理
∴ (2)∵
∴b 点电势高.
∫ ε Oa
=
l
3 ωrBdr
0
=
1 18
时线圈中感应电动势的大小和方向.
题 11.8 图
解: AB 、 CD 运动速度 vv 方向与磁力线平行,不产生感应电动势.
DA 产生电动势
∫ ε1 =
A(vv
D
×
Bv)
⋅
dlv
=
vBb
=
vb
µ0I 2πd
BC 产生电动势
∫ ε2 =
C(vv
B
×
Bv)
⋅
dlv
=
−vb
2π
µ0I (a +
d
)
∴回路中总感应电动势
河北科技大学大学物理答案11章
![河北科技大学大学物理答案11章](https://img.taocdn.com/s3/m/d7aae3eb910ef12d2af9e73b.png)
习 题11-1 面积很大的导体平板A 与均匀带电平面B 平行放置,如习题11-1图所示。
已知A 与B 相距d ,两者相对的部分的面积为S 。
(1)设B 面带电量为q ,A 板的面电荷密度为1s 及2s ,求A 板与B 面之电势差。
(2)若A 板带电量为Q ,求1s 及2s 。
(1)d S q U 0212/εσσ-+=;(2)S q Q 21+=σ,SqQ 22-=σ习题11-1图习题11-2图习题11-3图11-2 如习题11-2图所示,有三块互相平行的导体板,外面的两块用导线连接,原来不带电。
中间一块上所带总面电荷密度为521310.C m --醋。
求每块板的两个表面的面电荷密度各是多少? (忽略边缘效应。
)解:从上到下6个面一次为面1、2、3、4、5、6.261σσσ==,8323σσσ=-=,8554σσσ=-= 11-3 如习题11-3图所示,半径为1R 的导体球带有电荷q ,球外有一个内、外半径为2R 、3R 的同心导体球壳,壳上带有电荷Q 。
求:(1)两球的电势1j 及2j ;(2)两球的电势差j D ;(3)用导线把球和壳连接在一起后,1j ,2j 及j D 分别为多少? (4)在情形(1)、(2)中,若外球接地,1j ,2j 和j D 为多少?(5)设外球离地面很远,若内球接地,情况如何? 解:(1)3024R Q q πεϕ+=,2010301444R qR q R Q q πεπεπεϕ-++=;(2)两球的电势差201044R q R q U πεπε-=;(3) 30214R Qq πεϕϕ+==,0=U ;(4) 02=ϕ,2010144R q R q πεπεϕ-=(5)内球带电量为3213111/R R R R Q q +--=',01=ϕ,1020244R q R q πεπεϕ'-'=11-4 如习题11-4图所示,一半径为a 的非导体球,放于内半径为b ,外半径为c 的导体球壳的中心。
大学物理章节习题 11 热力学第一定律
![大学物理章节习题 11 热力学第一定律](https://img.taocdn.com/s3/m/4ee03f55e518964bcf847c1f.png)
©物理系_2015_09《大学物理AII 》作业 No.11 热力学第一定律班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、判断题:(用“T ”表示正确和“F ”表示错误) [ F ] 1.平衡过程就是无摩擦力作用的过程。
解:平衡过程就是准静态过程,准静态过程是指每一个中间态都可视为平衡态,是个理想过程,与是否存在摩擦无关。
一般说来,只要过程进行得无限缓慢,我们就可将该过程看成是准静态过程。
[ T ] 2.在p -V 图上任意一线段表示系统经历的准静态过程,而p -V 图上任意一线段下的面积,表示系统在经历相应过程所作的功。
解:相图上一个点表示一个平衡态,一条线表示一个准静态过程。
p -V 图上任意一线段下的面积,表示系统在经历相应过程所作的功。
[ T ] 3.理想气体经历绝热自由膨胀过程,初态和末态温度相等。
解:绝热自由膨胀过程中Q = 0,A = 0,由热力学第一定律,有 0=∆E ,膨胀前后T不变。
[ F ] 4.热力学第一定律只适用于热力学系统的准静态过程。
解:P284我们把涉及热运动和机械运动范围的能量守恒定律称为热力学第一定律。
无论是准静态过程还是非静态过程均是适用的,只是不同过程的定量化的具体形式不同 [ F ] 5.热力学第一定律表明:对于一个循环过程,外界对系统作的功一定等于系统从外界的吸热。
解:P294.二、选择题:1.理想气体的下列过程,遵从热力学定律,可能发生的是:[ D ] (A) 等体加热时,内能减少,压强升高。
(B) 等温压缩时,压强升高,同时吸热。
(C) 等压压缩时,内能增加,同时吸热。
(D) 绝热压缩时,压强升高,内能增加。
解:根据热力学第一定律和理想气体的几个特殊过程分析,知D 描述正确。
2.一定量的理想气体,经历某过程后温度升高。
根据热力学定律可断定: [ C ] (A) 系统经历了吸热过程。
(B) 在此过程中外界对该理想气体系统作了正功。
大学物理习题11
![大学物理习题11](https://img.taocdn.com/s3/m/e3200644453610661ed9f468.png)
习题1111-1.直角三角形ABC的A点上,有电荷C108.191-⨯=q,B点上有电荷C108.492-⨯-=q,试求C点的电场强度(设0.04mBC=,0.03mAC=)。
解:1q在C点产生的场强:1124ACqE irπε=,2q在C点产生的场强:2224BCqE jr=,∴C点的电场强度:44122.710 1.810E E E i j=+=⨯+⨯;C点的合场强:43.2410VE m==⨯,方向如图:1.8arctan33.73342'2.7α===。
11-2.用细的塑料棒弯成半径为cm50的圆环,两端间空隙为cm2,电量为C1012.39-⨯的正电荷均匀分布在棒上,求圆心处电场强度的大小和方向。
解:∵棒长为2 3.12l r d mπ=-=,∴电荷线密度:911.010q C mlλ--==⨯⋅心处场强等于闭合线圈产生电场再减去md02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O点产生的场强。
解法1:利用微元积分:21cos4O xRddERλθθπε=⋅,∴2000cos2sin2444OdE dR R Rααλλλθθααπεπεπε-==⋅≈⋅=⎰10.72V m-=⋅;解法2:直接利用点电荷场强公式:由于d r<<,该小段可看成点电荷:112.010q d Cλ-'==⨯,则圆心处场强:1191222.0109.0100.724(0.5)OqE V mRπε--'⨯==⨯⨯=⋅。
方向由圆心指向缝隙处。
11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB的半径为R,试求圆心O点的场强。
解:以O为坐标原点建立xOy坐标,如图所示。
①对于半无限长导线A∞在O点的场强:ix有:00(cos cos )42(sin sin )42Ax A y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩ ②对于半无限长导线B ∞在O 点的场强: 有:00(sin sin )42(cos cos )42B x B y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩③对于AB 圆弧在O 点的场强:有:20002000cos (sin sin )442sin (cos cos )442AB x AB y E d R R E d R R ππλλπθθππεπελλπθθππεπε==-=⎧⎪⎪⎨⎪⎪=--⎩⎰⎰∴总场强:04O x E R λπε=,04O y E R λπε=,得:0()4O E i j R λπε=+。
大学物理(肖剑荣主编)-习题答案-第11章
![大学物理(肖剑荣主编)-习题答案-第11章](https://img.taocdn.com/s3/m/1255d4d0700abb68a982fb81.png)
个劈尖空气膜,用波长为 564 纳米的单色光垂直照射板面,板上显示出完整的
明暗条纹各 74 条。求金属丝的直径。
解 金属丝与两板之间形成一个劈尖空气膜,其上下表面的反射光相遇而发生干 涉。光程差为 Δ = 2e + λ / 2
由于板上显示出完整的明暗条纹各 74 条,所以该处应为第 74 条明条纹。 由明条纹的条件 2d + λ / 2 = kλ k=74,则 N = d / Δe
能看到第几级明条纹?
解: a + b = 1 mm = 2.0 ´10-3 mm = 2.0 ´10-4 Å 500
由 (a
+
b) sinj
=
kl
知,最多见到的条纹级数 kmax 对应的 j
=
p 2
,
所以有 kmax
=
a+b l
=
2.0 ´104 5900
» 3.39 ,即实际见到的最高级次为 kmax
解得
a = a + b k′ = 1.5 × 10−6 k′ 4
取 k′ = 1 得光栅上狭缝的的最小宽度为1.5 × 10−6 m
(3)由
(a + b)sinϕ = kλ
得
k
=
(
a
+
b) sinϕ λ
当 ϕ=π 2
时,对应 k = k max
k max
=
a+b λ
=
6.0 × 10−6 6000 × 10−10
解 在杨氏双缝干涉实验中,条纹间距 Δx = D λ d
屏幕上 20 条明条纹之间的距离 ΔX = 19Δx = D λ d
ΔX
= 19
第1章质点的运动与牛顿定律练习题(大学物理11)
![第1章质点的运动与牛顿定律练习题(大学物理11)](https://img.taocdn.com/s3/m/795eddf96bd97f192379e93f.png)
第1章质点的运动与牛顿定律一、选择题易1、对于匀速圆周运动下面说法不正确的是()(A)速率不变;(B)速度不变;(C)角速度不变;(D)周期不变。
易:2、对一质点施以恒力,则;()(A)质点沿着力的方向运动;( B)质点的速率变得越来越大;(C)质点一定做匀变速直线运动;(D)质点速度变化的方向与力的方向相同。
易:3、对于一个运动的质点,下面哪种情形是不可能的()(A)具有恒定速率,但有变化的速度;(B)加速度为零,而速度不为零;(C)加速度不为零,而速度为零。
(D) 加速度恒定(不为零)而速度不变。
中:4、试指出当曲率半径≠0时,下列说法中哪一种是正确的()(A) 在圆周运动中,加速度的方向一定指向圆心;(B) 匀速率圆周运动的速度和加速度都恒定不变;(C) 物体作曲线运动时,速度方向一定在运动轨道的切线方向,法线分速度恒等于零,因此法问加速度也一定等于零;(D) 物体作曲线运动时,一定有加速度,加速度的法向分量一定不等于零。
难:5、质点沿x方向运动,其加速度随位置的变化关系为:.如在x = 0处,速度,那么x=3m处的速度大小为(A);(B);(C);(D)。
易:6、一作直线运动的物体的运动规律是,从时刻到间的平均速度是(A);(B);(C);(D)。
中7、一质量为m的物体沿X轴运动,其运动方程为,式中、均为正的常量,t为时间变量,则该物体所受到的合力为:()(A)、;(B)、;(C)、;(D)、。
中:8、质点由静止开始以匀角加速度沿半径为R的圆周运动.如果在某一时刻此质点的总加速度与切向加速度成角,则此时刻质点已转过的角度为(A);(B); (C);(D)。
难9、一质量为本10kg的物体在力f=(120t+40)i(SI)作用下沿一直线运动,在t=0时,其速度v=6i,则t=3s时,它的速度为:(A)10i;(B)66i;(C)72i;(D)4i。
难:10、一个在XY平面内运动的质点的速度为,已知t = 0时,它通过(3,-7) 位置处,这质点任意时刻的位矢为(A);(B);(C);(D)。
《大学物理教程》下册 第三版 (贾瑞皋 著)课后习题答案 科学出版社11
![《大学物理教程》下册 第三版 (贾瑞皋 著)课后习题答案 科学出版社11](https://img.taocdn.com/s3/m/f2f70e28aaea998fcc220e30.png)
两层均匀电介质,它们的相对电容率 ε r1 = 6 和 ε r2 = 3。两层电介质的分界面半径 R=0.04m。 设内球壳带电量 Q= − 6 × 10 −8 C ,求: (1)D 和 E 的分布,并画出 D-r、E-r 曲线; (2)两球壳之间的电势差; (3)贴近内金属壳的电介质表面上的束缚面电荷密度。 [解] 以与球壳同心的球面为高斯面
在上板内任意点场强均为零,它是 6 个无限大均匀带电平面在该点产生的场强叠加的 结果。故有
11-2
1 (σ 1 − σ 2 − σ 3 − σ 4 − σ 5 − σ 6 ) = 0 2ε 0
考虑到(1)、(2)两式,则得到
σ1 =σ 6
(5)
上下两块导体板原来是不带电的,根据电荷守恒定律,二导体板表面出现感应电荷后, 总量仍为零。因此有
C1 = 4πε 0
R1 R2 R2 − R1
C1 C2
C3
C 2 = 4πε 0 R2
11-5
C 3 = 4πε 0 r
设小球 C 3 上电量为 q, 则 C1 上电量 Q1 -q, C 2 上电量为 Q2 + (Q1 − q ) 设三个电容上的电 压各为 U 1 、 U 2 、 U 3
U 3 = q C3
qB ⎞ ⎛ QA q B ⎜ ⎜ R + R + R ⎟ ⎟ 2 3 ⎠ ⎝ 1
⎞ ⎟V = 5.63 × 10 3 V ⎟ ⎠
⎛ 3 × 10 −8 5 × 10 −8 − 3 × 10 −8 = 9 × 10 9 × ⎜ + + ⎜ 6.0 × 10 − 2 8.0 × 10 − 2 10.0 × 10 − 2 ⎝
ε 0ε r S d
得
U=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业 1 1
1.载流长直螺线管内充满相对磁导率为r μ的均匀抗磁质,则螺线管内中部的磁感应强度B 和磁场强度H 的关系是[ ]。
A. 0B H μ>
B. r B H μ=
C. 0B H μ=
D. 0B H μ< 答案:【D 】
解:对于非铁磁质,电磁感应强度与磁场强度成正比关系
抗磁质:1≤r μ,所以,0B H μ<
2.在稳恒磁场中,关于磁场强度H →的下列几种说法中正确的是[ ]。
A. H →仅与传导电流有关。
B.若闭合曲线内没有包围传导电流,则曲线上各点的H →必为零。
C.若闭合曲线上各点H →均为零,则该曲线所包围传导电流的代数和为零。
D.以闭合曲线L 为边界的任意曲面的H →通量相等。
答案:【C 】
解:安培环路定理∑⎰=⋅0I l d H L ρρ,是说:磁场强度H ρ的闭合回路的线积分只与传导电流有关,并不是说:磁场强度H ρ本身只与传导电流有关。
A 错。
闭合曲线内没有包围传导电流,只能得到:磁场强度H ρ的闭合回路的线积分为零。
并不能说:磁场强度H ρ本身在曲线上各点必为零。
B 错。
高斯定理0=⋅⎰⎰S
S d B ρρ,是说:穿过闭合曲面,场感应强度B ρ的通量为零,或者说,.以
闭合曲线L 为边界的任意曲面的B ρ通量相等。
对于磁场强度H ρ,没有这样的高斯定理。
不能说,穿过闭合曲面,场感应强度H ρ的通量为零。
D 错。
安培环路定理∑⎰=⋅0I l d H L
ρρ,是说:磁场强度H ρ的闭合回路的线积分等于闭合回路包
围的电流的代数和。
C 正确。
3.图11-1种三条曲线分别为顺磁质、抗磁质和铁磁质的B H -曲线,则Oa 表示 ;Ob 表示 ;Oc 表示 。
答案:铁磁质;顺磁质; 抗磁质。
4.某铁磁质的磁滞回线如图11-2 所示,则图中Ob (或'Ob )表示 ;Oc (或'
Oc )表示 。
答案:剩磁;矫顽力。
5.螺线环中心周长cm ,环上线圈匝数300N =,线圈中通有电流100I mA =。
(1) 求管内的磁场强度H 和磁感应强度B ;(2)若管内充满相对磁导率4000r μ=的磁介质,则管内的H 和B 是多少?(3)磁介质内由导线中电流产生的0B 和磁化电流产生的'B 各是多少? 解:(1) 做一圆形的环路,由H ρ 的安培环路定理:
NI r 2H =⋅π , 对管内,此时无磁介质,则:
(2) 管内充满磁介质时,T 58.1H B 2004r 0r ==
∴=μμμ
(3) 磁介质内由导线中电流产生的磁场T 1077.3H B -400⨯==μ
由磁化电流产生的磁场T B B B 58.10=-='
6.一无限长圆柱形直导线,外包一层相对磁导率
为r μ的圆筒形磁介质,导线半径为1R ,磁介质
外半径为2R ,导线内有电流I 通过(见图
11-3)。
求:(1)介质内、外的磁感应强度的
分布,画出B r -图线;(2)介质内、外的磁
场强度的分布,画出H r -曲线。
解:在以圆柱轴线为对称轴的圆周上,各处磁场强度大小相等且沿圆周切线方向。
应用H 的安培环路定理,
在导体内,1R r <:2122120 R r I R r I I ==∑ππ, ),( rH 2121
2
R r R r I <=π 在导体外,1R r >:I I =∑0, ),( rH 21R r I >=π
因此 7.介质中安培环路定理为∑⎰=⋅i L
I l d H ρρ,i I ∑为正向穿过闭合回路L 的传导电流的代数和,这是否可以说:H →只与传导电流有关,与分子电流无关?
答案:不能。
解:介质中的安培环路定理说明定理的左端,即H ρ的环流只也传导电流有关,与分子电流无关;并不可以说H ρ只与传导电流有关,与分子电流无关。
这里H ρ的环流和H ρ是两个不同的概念。