大学物理例题
大学物理试题及答案 13篇
大学物理试题及答案 1物理试题及答案1一、选择题1. 下列哪个物理量是标量?A. 加速度B. 动量C. 荷电量D. 质量答案:D2. 以下哪一项是描述物体向心加速度的?A. F = mV^2/RB. F = maC. F = GmM/R^2D. F = -kx答案:A3. 以下哪种基本力被用于原子核内?A. 弱相互作用力B. 强相互作用力C. 电磁力D. 万有引力答案:B4. 如果一个物体以匀速直线运动,哪些物理量会保持不变?A. 动量B. 加速度C. 动能D. 势能答案:A5. 加速度和质量都是矢量量,因为它们有什么共同之处?A. 它们都可以用标量表示B. 它们都受到相同的力C. 它们都有方向D. 它们都可以用向量表示答案:C二、填空题6. 一个物体从7m/s的速度以匀加速度减速到0m/s,它移动的距离为_____。
答案:(7^2)/2a7. 假设你跳下一个10米高的建筑物,你从地上跳起的速度至少要是_____。
答案:14m/s8. 当电荷增加_____倍,电场的力就增加了相同的倍数。
答案:两倍9. 加速度是速度的_____,速度是位移的_____。
答案:导数,导数10. 能量的单位是_____,它也等于1焦耳。
答案:耗三、解答题11. 题目:一个1000磅的汽车从初始速度60英里/小时匀加速度减速50英里/小时,它会相撞的距离有多远?解答:首先,将速度转换为英尺/秒,即60英里/小时=88英尺/秒,50英里/小时=73.3英尺/秒;通过减去初始速度和最终速度,可以算出减速度,即-5.1英尺/秒^2;将所得的值代入公式,S = (v_f^2 - v_i^2)/2a,算出S = 263英尺。
12. 题目:一颗飞船以7km/s的速度飞行,绕月球公转,它的圆周半径是6000公里。
求该飞船的向心加速度。
解答:首先,将速度转化为米/秒,即7 x 1000 = 7000米/秒;其次,将圆周半径转化为米,即6000 x 1000 = 6 x 10^6米;最后,应用公式a = v^2/r,将所得的值代入,得到a = 6.12 m/s^2。
大学物理经典例题(1)
解:2df BI dx=⎰=L df f dxx I I πμ2210=d Ld I I +=ln 2210πμ例1已知:I 1、I 2、d 、L ,求一无限长直载流导线的磁场对另一直载流导线ab 的作用力。
⎰+=L d d dxx I I πμ2210Lx d b a 1I 2I f d dx例2一半径为a 的无限长直载流导线,沿轴向均匀地流有电流I ,若作一个半径为R= 5 a ,高为l 的柱形曲面,已知此柱形曲面的轴与载流导线的轴平行且相距3a (如图),则在圆柱侧面S 上的磁通量=0I2a l 3a 5a0d =⎰⋅S B S ⎰⋅=s d S B Φ = 0例3如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知例4 电荷在静电场中沿着任意闭合路径移动一周,电场力做功为0;电荷在磁场中沿着任意闭合路径移动一周,磁场力做功为0。
例5 质量为m 电量为q 的粒子,以速率v 与均匀磁场B 成θ 角射入磁场,轨迹为一螺旋线,若要增大螺距则要例6 如左图,无限长直导线在某处弯成半径为R的圆形,求圆心处磁感应强度:B=μI (1-1/π)/2RqBm d π2cos θv T v //==螺距:例8 激发感生电场的场源是?变化的磁场例9(注:A中的闭合曲线不一定是感生电场线)例11 两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们的运动半径之比为1:2.解析:R=mv/qB例12真空中有一个均匀密绕的细长螺线管,匝密度为n (单位:匝/m),螺线管的横截面积为S(单位:m2).当在螺线管中通入电流强度I(单位:A)的电流时,它的横截面上的磁通量为:μ0nIS(真空中磁导率为μ0)例13半径为R的直螺线管中,有的磁场,一任意闭合导线abca,一部分在螺线管内绷直成ab弦,a,b两点与螺线管绝缘,如图所示.设ab=R,试求:闭合导线中的感应电动势.例14氢原子处在基态时,它的电子可看作是在半径r =0.52×10-8cm 的轨道上作匀速圆周运动,速率v=2.2×108cm/s,如图所示.求电子在轨道中心所产生的磁感应强度和电子磁矩的值。
大学物理例题
Ek
1mu2 2
计算粒子动能是错误的。
相对论动能公式为 E km2 cm 0c2
Ek m2cm0c2
m0 1u2
c2
c2m0c2
0m .60 c2m0c2 32m0c2 0.66m 70c2
lco s1u2c2
例 一火车以恒定速度通过隧道,火车和隧道的静 长是相等的。从地面上看,当火车的前端b到达隧 道的B端的同时,有一道闪电正击中隧道的A端。 试问此闪电能否在火车的a端留下痕迹?
u
隧
a火 车b
A
道
B
在地面参照系S中看,火车长度要缩短。
在火车参照系S´中,隧道长度缩短。但隧道的
B端与火车b端相遇这一事件与隧道A端发生闪电的 事件不是同时的,而是B端先与b端相遇,而后A处 发生闪电,当A端发生闪电时,火车的a端已进入 隧道内,所以闪电仍不能击中a端。
例:一根直杆在S系中,其静止长度为l,与x轴的
夹角为。试求:在S'系中的长度和它与x’轴的夹角。
两惯性系相对运动速度为u。
解: ll0 1u2 c2
S
u
S
xx1u2c2lcos1u2c2 o
yylsin
o
l a( rx c) t2 a( ln sy i ) n 2 l( 1 c2 o u c 2 2 s ) 1 2
例:在惯性系S中,相距x=5106m的两个地方发生 两个事件,时间间隔t=10-2s;而在相对于S系沿x轴
正向匀速运动的S'系中观测到这两事件却 是同时发生
的,试求:S'系中发生这两事件的地点间的距离x'。
解:设S'系相对于S系的速度大小为u。
ttux c2
x
大学物理试题讲解及答案
大学物理试题讲解及答案一、选择题1. 光的波长为λ,频率为f,光速为c,下列关系式正确的是()。
A. λf = cB. λf = 2cC. λf = c/2D. λf = c^2答案:A2. 一个物体在水平面上做匀加速直线运动,已知加速度a=2m/s²,初速度v₀=3m/s,那么2秒后的速度v₂为()。
A. 7m/sB. 9m/sC. 11m/sD. 13m/s答案:B二、填空题3. 根据牛顿第二定律,物体的加速度a与作用力F和物体质量m的关系是a=______。
答案:F/m4. 一个物体从静止开始下落,忽略空气阻力,其下落过程中的加速度为______。
答案:g(重力加速度)三、计算题5. 一个质量为m的物体,从高度h处自由下落,求物体落地时的速度v。
解:由能量守恒定律可知,物体的势能转化为动能,即:mgh = 1/2 * mv²解得:v = √(2gh)答案:v = √(2gh)6. 一列火车以速度v₀进入一个隧道,隧道长度为L,火车长度为l,求火车完全通过隧道所需的时间t。
解:火车完全通过隧道时,其尾部刚好离开隧道口,此时火车行驶的距离为L+l。
由速度公式v = s/t,得:t = (L+l)/v₀答案:t = (L+l)/v₀四、简答题7. 简述牛顿第三定律的内容。
答案:牛顿第三定律指出,对于两个相互作用的物体,它们之间的作用力和反作用力大小相等、方向相反。
8. 什么是电磁感应现象?答案:电磁感应现象是指当导体在磁场中运动,或者磁场发生变化时,导体中会产生感应电动势的现象。
五、论述题9. 论述相对论中时间膨胀的概念。
答案:时间膨胀是相对论中的一个重要概念,指的是当一个物体以接近光速的速度运动时,相对于静止观察者的时间会变慢。
这种现象表明,时间并不是绝对的,而是相对的,取决于观察者的运动状态。
10. 试述量子力学与经典力学的主要区别。
答案:量子力学与经典力学的主要区别在于它们描述的物理现象的尺度不同。
大学物理练习题
大学物理练习题一、力学部分1. 一物体从静止开始沿水平面加速运动,经过5秒后速度达到10m/s。
求物体的加速度。
2. 质量为2kg的物体,在水平面上受到一个6N的力作用,若摩擦系数为0.2,求物体的加速度。
3. 一物体在斜面上匀速下滑,斜面倾角为30°,物体与斜面间的摩擦系数为0.3,求物体的质量。
4. 一物体在水平面上做匀速圆周运动,半径为2m,速度为4m/s,求物体的向心加速度。
5. 一物体在竖直平面内做匀速圆周运动,半径为1m,速度为5m/s,求物体在最高点的向心力。
二、热学部分1. 某理想气体在标准大气压下,温度从27℃升高到127℃,求气体体积的膨胀倍数。
2. 一理想气体在等压过程中,温度从300K升高到600K,求气体体积的变化倍数。
3. 已知某气体的摩尔体积为22.4L/mol,求在标准大气压下,1mol该气体的体积。
4. 一密闭容器内装有理想气体,温度为T,压强为P,现将容器体积缩小到原来的一半,求气体新的温度和压强。
5. 某理想气体在等温过程中,压强从2atm变为1atm,求气体体积的变化倍数。
三、电磁学部分1. 一长直导线通有电流10A,距离导线5cm处一点的磁场强度为0.01T,求该点的磁感应强度。
2. 一矩形线圈,长为10cm,宽为5cm,通有电流5A,求线圈中心处的磁感应强度。
3. 一半径为0.5m的圆形线圈,通有电流2A,求线圈中心处的磁感应强度。
4. 一长直导线通有电流20A,求距离导线2cm处的磁场强度。
5. 一闭合线圈在均匀磁场中转动,磁通量从最大值减小到零,求线圈中感应电动势的变化。
四、光学部分1. 一束光从空气射入水中,入射角为30°,求折射角。
2. 一束光从水中射入空气,折射角为45°,求入射角。
3. 一平面镜反射一束光,入射角为60°,求反射角。
4. 一凸透镜焦距为10cm,物距为20cm,求像距。
5. 一凹透镜焦距为15cm,物距为30cm,求像距。
长度测量——大学物理实验——例题
数据处理例题例1.用钢直尺测量千分尺盒的长度了l ,选择不同的起点测量10次,用不确定度表示测量结果。
(列表法,直接测量量不确定度计算)解:(1)计算平均值:101112.535cm 10i i l l ===∑; (2)计算A 类不确定度()0.1cm A u l ==;(3)计算B 类不确定度()B u l ∆==; (4)计算合成不确定度()0.1cm u l ==;(5)测量结果表示:()(12.50.1)cm l u l =±=±;()()100%0.8%r u l u l l=⨯=例2.用螺旋测微器测量小钢球直径d ,选择不同的位置测量10次,再根据测量结果计算小钢球体积V ,用不确定度表示测量结果。
(列表法,间接测量量不确定度计算)螺旋测微器零点读数:d 初= +0.025 mm解:(1)计算d 的平均值并修正:初初修d d d d d i i -=-=∑=101101 = 12.4948mm (2)计算V 的平均值:316V d π=修= 1020.8603mm 3; (3)计算直径d 的A 类不确定度()0.0032mm A u d == ;(4)计算直径d 的B 类不确定度()0.0023mm B u d ∆===; (5)计算直径d 的合成不确定度()0.004mm u d ==;(6)计算体积V 的合成不确定度231()()1mm 2u V d u d π==修 ; (7)测量结果表示:3()(10211)mm V V u V =±=±;()()100%0.1%r u V u V V=⨯=例3.用液体静力称衡法测量一铝块的密度,计算公式01mm m ρρ=-,测得铝块质量(27.060.02)m g =±,铝块浸没水中的质量1(17.030.02)m g =±,水的密度查手册30(0.99970.0003)g/cm ρ=±,试求铝块的密度测量结果。
(完整版)大学物理习题集.doc
大学物理习题集一、选择题1.一运动质点在时刻t 位于矢径r (x ,y ) 的末端处,其速度大小为 (A )trd d (B)td d r (C)td d r(D)22)()(ty t x d d d d + 2.质点作半径为R 的匀速率圆周运动,每T 秒转一圈. 在3T 时间间隔内其平均速度与平均速率分别为(A )T R T R ππ2 , 2 (B) TRπ2 , 0 (C) 0 ,0 (D)0 , 2TRπ 3.下列运动中,a 保持不变的是(A )单摆的摆动 (B) 匀速率圆周运动 (C )行星的椭圆轨道运动 (D) 抛体运动4.质点作曲线运动,位置矢量r ,路程s ,a τ 为切向加速度,a 为加速度大小,v 为速率,则有 (A )tva d d =(B) trv d d =(C) tsv d d =(D) ta d d v=τ 5. 如图所示,两个质量相同的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,并处于静止状态. 在剪断绳子的瞬间,球1和球2的加速度分别为(A )g ,g (B )0 ,g (C )g ,0 (D )2g ,06. 如图所示,物体A 置于水平面上,滑动摩擦因数为 μ. 现有一恒力F 作用于物体A 上,欲使物体A 获得最大加速度,则力F 与水平方向的夹角θ应满足(A )μθ=sin (B )μθ=tan (C )μθ=cos (D )μθ=cot 7. 如图所示,两物体A 和B 的质量分别为m 1和m 2,相互接触放在光滑水平面上,物体受到水平推力F 的作用,则物体A 对物体B 的作用力等于(A )F m m m 211+ (B ) F (C )F m m m 212+ (D )F m m125图题6图 7图8. 质量为m 的航天器关闭发动机返回地球时,可以认为仅在地球的引力场中运动. 地球质量为M ,引力常量为G . 则当航天器从距地球中心R 1 处下降到R 2 处时,其增加的动能为(A )21R Mm G(B )2121R R R GMm- (C )2221R R R GMm- (D )2121R R R R GMm- 9. 质量为m 的航天器关闭发动机返回地球时,可以认为仅在地球的引力场中运动. 地球质量为M ,引力常量为G . 则当航天器从距地球中心R 1 处下降到R 2 处引力做功为(A )21R Mm G(B )2121R R R GMm- (C )2221R R R GMm- (D )2121R R R R GMm- 10. 如图所示,倔强系数为k 的轻质弹簧竖直放置,下端系一质量为m 的小球,开始时弹簧处于原长状态而小球恰与地接触. 今将弹簧上端缓慢拉起,直到小球刚好脱离地面为止,在此过程中外力作功为(A )kg m 22(B )kg m 222(C )k g m 322(D )kg m 42210图11图11. 如图所示,A 、B 两弹簧的倔强系数分别为k A 和k B ,其质量均不计. 当系统静止时,两弹簧的弹性势能之比E pA / E pB 为(A )BA k k(B )AB k k(C )22BA k k (D )22AB k k12. 一质点在外力作用下运动时,下列说法哪个正确?(A )质点的动量改变时,质点的动能也一定改变. (B )质点的动能不变时,质点的动量也一定不变. (C )外力的功是零,外力的冲量一定是零. (D )外力的冲量是零,外力的功也一定是零. 13. 设速度为v 的子弹打穿一木板后速度降为v 21,子弹在运动中受到木板的阻力可看成是恒定的. 那么当子弹进入木块的深度是木块厚度的一半时,此时子弹的速度是(A )v 41 (B )v 43 (C )v 83(D )v 85 14. 一轻质弹簧竖直悬挂,下端系一小球,平衡时弹簧伸长量为d . 今托住小球,使弹簧处于自然长度状态,然后将其释放,不计一切阻力,则弹簧的最大伸长量为(A )d (B )2d (C )3d (D )d 2115. 下列关于功的说法中哪一种是正确的.(A )保守力作正功时,系统内相应的势能增加.(B )质点运动经一闭合路径,保守力对质点所作的功为零.(C )作用力与反作用力大小相等,方向相反,所以两者所作功的代数和必定为零. (D )质点系所受外力的矢量和为零,则外力作功的代数和也必定为零. 16. 质量为m 的小球,速度大小为v ,其方向与光滑壁面的夹角为30°. 小球与壁面发生完全弹性碰撞,则碰撞后小球的动量增量为(A )– mv i (B )mv i (C )– mv j (D )mv jm题16图 题17图 题18图17. 如图所示,质量为m 的小球用细绳系住,以速率v 在水平面上作半径为R 的圆周运动,当小球运动半周时,重力冲量的大小为(A )mv 2 (B )vm gRπ (C )0 (D )22)π()2(vmgR mv18. 如图所示,A 、B 两木块质量分别为m A 和m B =21m A ,两者用轻质弹簧相连接后置于光滑水平面上. 先用外力将两木块缓慢压近使弹簧压缩一段距离后再撤去外力,则以后两木块运动的动能之比kAkB E E 为(A )2 (B )21 (C )2 (D )119. 如图所示,光滑平面上放置质量相同的运动物体P 和静止物体Q ,Q 与弹簧和挡板M 相连,弹簧和挡板的质量忽略不计. P 与Q 碰撞后P 停止,而Q 以碰撞前P 的速度运动.则在碰撞过程中弹簧压缩量达到最大时,此时有(A )P 的速度正好变为零 (B )P 与Q 的速度相等(C )Q 正好开始运动 (D )Q 正好达到原来P 的速度题19图 题20图20. 如图所示,质量分别为m 1和m 2的小球用一轻质弹簧相连,置于光滑水平面上. 今以等值反向的力分别作用于两小球上,则由两小球与弹簧组成的系统(A )动量守恒,机械能守恒 (B )动量守恒,机械能不守恒 (C )动量不守恒,机械能守恒 (D )动量不守恒,机械能不守恒 20.当一质点作匀速率圆周运动时,以下说法正确的是 (A )它的动量不变,对圆心的角动量也不变(B )它的动量不变,但对圆心的角动量却不断变化 (C )它的动量不断改变,但对圆心的角动量却不变(D )它的动量不断改变,对圆心的角动量也不断改变21.有一花样滑冰运动员,可绕通过自身的竖直轴转动. 开始时她的双臂伸直,此时的转动惯量为J 0,角速度为ω0 . 然后她将双臂收回,使其转动惯量变为原来的二分之一,这时她的转动角速度将变为(A )021ω(B )021ω(C )02ω (D )02ω22.有一花样滑冰运动员,可绕通过自身的竖直轴转动. 开始时她的双臂伸直,此时的转动惯量为J 0,角速度为ω0 . 然后她将双臂收回,使其转动惯量变为原来的三分之一,这时她的转动角速度将变为(A )021ω(B )021ω(C )03ω (D )03ω23.如图所示,有一个小块物体置于光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔. 该物体以角速度ω 作匀速圆周运动,运动半径为R . 今将绳从小孔缓慢往下拉,则物体 ( )(A ) 动能不变,动量、角动量改变 (B )动量、角动量不变,动能改变 (C )角动量不变,动能、动量改变 (D )动能、动量、角动量都不变24.有一均匀直棒一端固定,另一端可绕通过其固定端的光滑水平轴在竖直平面内自由摆动. 开始时棒处于水平位置,今使棒由静止状态开始自由下落. 则在棒从水平位置摆到竖直位置的过程中,角速度ω和角加速度β 将会如何变化(A )ω和β 都将逐渐增大 (B )ω和β 都将逐渐减小 (C )ω逐渐增大、β 逐渐减小 (D )ω逐渐减小、β 逐渐增大 25.如果要将一带电体看作点电荷,则该带电体的 (A )线度很小 (B )电荷呈球形分布 (C )线度远小于其它有关长度 (D )电量很小.26.以下说法中哪一种是正确的?(A )电场中某点电场强度的方向,就是试验电荷在该点所受电场力的方向(B )电场中某点电场强度的方向可由E =F /q 0确定,其中q 0为试验电荷的电量,q 0可正、可负,F 为试验电荷所受的电场力(C )在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同 (D )以上说法都不正确.27.一边长为b 的正方体,在其中心处放置一电量为q 的点电荷,则正方体顶点处电场强度的大小为(A )20π8b q ε (B )20π6b q ε (C )20π3b q ε (D )202πb q ε28. 某种球对称性静电场的场强大小E 随径向距离r 变化的关系如图所示,请指出该电场是由下列哪一种带电体产生的(A )点电荷 (B )半径为R 的均匀带电球面(C )半径为R 的均匀带电球体 (D )无限长均匀带电直线.29.由高斯定理的数学表达式⎰⋅SS E d =∑0/εi q 可知,下述各种说法中正确的是(A )高斯面内电荷的代数和为零时,高斯面上各点场强一定处处为零 (B )高斯面内的电荷代数和为零时,高斯面上各点场强不一定处处为零 (C )高斯面内的电荷代数和不为零时,高斯面上各点场强一定处处不为零 (D )高斯面内无电荷时,高斯面上各点场强一定为零.30. 如图所示,一均匀电场的电场强度为E . 另有一半径为R 的半球面,其底面与场强E 平行,则通过该半球面的电场强度通量为(A )0(B )E R 2π21(C ) E R 2π(D ) E R 2π223图题30图E题28图31.静电场中某点P 处电势的数值等于(A )试验电荷q 0置于P 点时具有的电势能 (B )单位试验电荷置于P 点时具有的电势能 (C )单位正电荷置于P 点时具有的电势能(D )把单位正电荷从P 点移到电势零点时外力所作的功. 32.在某一静电场中,任意两点P 1和P 2之间的电势差决定于 (A )P 1点的位置 (B )P 2点的位置(C )P 1和P 2两点的位置(D )P 1和P 2两点处的电场强度的大小和方向.33.半径为R 的均匀带电球面的带电量为q . 设无穷远处为电势零点,则该带电体电场的电势U 随距球心的距离r 变化的曲线为(A ) (B ) (C ) (D ) 题33图34.一半径为R 的均匀带电球面的带电量为q . 设无穷远处为电势零点,则球内(外)距离球心为r 的P 点处的电场强度的大小和电势为(A )0=E ,rq U 0π4ε= (B ) 20π4r q E ε=,rq U 0π4ε= (C )0=E ,Rq U 0π4ε=(D ) 20π4r q E ε=,Rq U 0π4ε=35. 如图所示,边长为a 的正方形线圈中通有电流I ,此线圈在A 点产生的磁感应强度B 的大小为 (A )aIπ420μ (B )aIπ320μ (C )aIπ220μ (D )aIπ20μ 36. 如图所示,四条皆垂直于纸面的无限长载流细导线,每条中的电流强度都为I . 这四条导线被纸面截得的断面及电流流向如图所示,它们组成了边长为a 的正方形的四个顶角,则在图中正方形中点O 的磁感应强度的大小B 为(A )aIπ20μ (B )aIπ220μ (C )aIπ230μ (D )II题35图 题36图 题37图 题38图37、 如图所示,一载流导线在同一平面内弯曲成图示状,O 点是半径为R 1和R 2的两个半圆弧的共同圆心,导线在无穷远处连接到电源上. 设导线中的电流强度为I ,则O 点磁感应强度的大小是______.(A )102010π444R I R I R I μμμ-+ (B )102010π444R IR I R I μμμ--(C )102010π444R IR I R I μμμ++(D )102010π444R IR I R I μμμ+-38. 如图所示,在一圆电流所在的平面内,选取一个与圆电流相套嵌的闭合回路,则由安培环路定理可知 (A )⎰=⋅Ldl B 0,且环路上任意一点0=B (B )⎰=⋅Ldl B 0,但环路上任意一点0≠B(C )0⎰≠⋅Ldl B ,且环路上任意一点0≠B (D )⎰≠⋅Ldl B 0, 但环路上任意一点=B 常量36 一通有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个单位长度匝数相等的螺线管(R=2r ),两螺线管中的磁感应强度大小B R 和B r 应满足:(A )B R =B r (B )2B R =B r (C )B R =2B r (D )B R =4B r39.如图:金属棒ab 在均匀磁场B 中绕过c 点的轴OO ’转动,ac 的长度小于bc ,则:(A )a 点与b 点等电位 (B )a 点比b 点电位高(C )a 点比b 点电位低 (D )无法确定40.将导线折成半径为R 的43圆弧,然后放在垂直纸面向里的均匀磁场里,导线沿aoe 的角平分线方向以速度v 向右运动. 导线中产生的感应电动势为:(A )0(B )BRv 23(C )BRv (D )BRv 241.金属杆aoc 以速度v 在均匀磁场B 中作切割磁力线运动. 如果oa=oc=L ,如图放置,那么杆中动生电动势为:(A )BLv =ε (B )θεsin BLv = (C )θεcos BLv = (D ))cos 1(θε+=BLva题39图 题40图 题41图二、填空题1.一物体沿直线运动,运动方程为t A y ωsin =,其中A 、ω均为常数,则(1)物体的速度与时间的函数关系式为 ;(2)物体的速度与坐标的函数关系式为 .2.一物体沿直线运动,运动方程为t A x ωcos =,其中A 、ω均为常数,则(1)物体的速度与时间的函数关系式为 ;(2)物体的速度与坐标的函数关系式为 .3.一质点的直线运动方程为x = 8t – t 2(SI ),则在t=0秒到t=5秒的时间间隔内,质点的位移为 ,在这段时间间隔内质点走过的路程为 .4.一质点以45°仰角作斜上抛运动,不计空气阻力. 若质点运动轨道最高处的曲率半径为5 m ,则抛出时质点初速度的大小v 0 = . (g=10 m·s -2)5.一质点以45°仰角作斜上抛运动,不计空气阻力. 若质点抛出时质点初速度的大小v 0 = sm 10 .(g=10 m·s -2) 则质点运动轨道最高处的曲率半径为 m ,则抛出时质点初速度的大小v 0= . (g=10 m·s -2)6.在oxy 平面内运动的一质点,其运动方程为 r =5cos5t i + 5sin5t j ,则t 时刻其速度v = ,其切向加速度τa = ,法向加速度a n = .7. 如图,质量为m 的小球用轻绳AB 、AC 连接. 在剪断AB 前后的瞬间,绳AC 中的张力比值 T / T ′=.m题7图 题8图 题9图 题10图8. 如图,一圆锥摆摆长为l ,摆锤质量为m ,在水平面上作匀速圆周运动,摆线与竖直方向的夹角为θ. 则:(1)摆线中张力T = ;(2)摆锤的速率v = .9. 一小球套在半径R 的光滑圆环上,该圆环可绕通过其中心且与圆环共面的铅直轴转动. 若在旋转中小环能离开圆环的底部而停在环上某一点,则圆环的旋转角速度ω 值应大于 .10. 如图,质量为m 的木块用平行于斜面的细线拉着放置在光滑斜面上. 若斜面向右方作减速运动,当绳中张力为零时,木块的加速度大小为 ;若斜面向右方作加速运动,当木块刚脱离斜面时,木块的加速度大小为 .11. 已知两物体的质量分别为m 1、m 2,当它们的间距由a 变为b 时,万有引力所作的功为 .12. 如图所示,一质点沿半径为R 的圆周运动. 质点所受外力中有一个是恒力F =F 1 i +F 2 j ,当质点从A 点沿逆时针方向走过43圆周到达B 点时,F 所作的功A= . 13. 如图所示,质量为m 的小球系在倔强系数为k 的轻弹簧一端,弹簧的另一端固定在O 点. 开始时小球位于水平位置A 点,此时弹簧处于自然长度l 0 状态. 当小球由位置A 自由释放,下落到O 点正下方位置B 时,弹簧的伸长量为nl 0,则小球到达B 点时的速度大小为v B = . 14. 一颗速率为800 m·s -1的子弹打穿一块木板后,速度降为600 m·s -1,若让该子弹继续穿过第二块完全相同的木板,则子弹的速率降为 .15. 一颗速率为600 m·s -1的子弹打穿一块木板后,速度降为500 m·s -1,若让该子弹继续穿过第二块完全相同的木板,则子弹的速率降为 .B题12图A题13图16. 某人拉住河中的船,使船相对于岸不动. 以地面为参照系,人对船所作的功 ;以流水为参照系,人对船所作的功 .(填 >0 ,=0,或 <0)17. 地球半径为R ,质量为M . 现有一质量为m 的物体,位于离地面高度为2R 处,以地球和物体为系统,若取地面为势能零点,则系统的引力势能为 ;若取无限远处为势能零点,则系统的引力势能为 . (万有引力常数为G )18. 质量为m 的小球自高度为h 处沿水平方向以速率u 抛出,与地面碰撞后跳起的最大高度为h 21,水平方向速度为u 21. 不计空气阻力,则碰撞过程中,(1)地面对小球的垂直冲量为 ; (2)地面对小球的水平冲量为 .题18图m题20图19. 一物体质量为20 kg ,受到外力F = 20 i +10t j (SI) 的作用,则在开始的两秒内物体受到的冲量为 ;若物体的初速度为v 0 =10i (单位为m ⋅s -1),则在2 s 末物体的速度为 .20. 如图所示,质量为m 的小球在水平面内以角速度ω 匀速转动. 在转动一周的过程中, (1)小球动量增量的大小是 ; (2)小球所受重力冲量的大小是 ; (3)小球所受绳中张力冲量的大小是 . 21. 质量为m 的质点,以不变速率v 越过一水平光滑轨道的120° 弯角时,轨道作用于质点的冲量大小I = .22.在光滑的水平面上有一质量为M =200 g 的静止木块,一质量为m =10.0 g 的子弹以速度v 0 = 400 m ⋅s -1沿水平方向射穿木块后,其动能减小为原来的1/16. 则(1)子弹射穿木块后,木块的动能为 ;(2)阻力对子弹所做的功为 ;(3)系统损失的机械能为 .23.如图所示有一匀质大圆盘,质量为M ,半径为R ,其绕过圆心O 点且垂直于盘面的转轴的转动惯量为221MR . 然后在大圆盘中挖去如图所示的一个小圆盘,小圆盘的质量为m ,半径为r ,该挖去的小圆盘对上述转轴的转动惯量为223mr ,则挖去小圆盘后大圆盘的剩余部分对原来转轴的转动惯量为 . 24、已知有一飞轮以角速度ω0绕某固定轴旋转,飞轮对该轴的转动惯量为J 1;现将另一个静止飞轮突然啮合到同一个转轴上,该飞轮对轴的转动惯量为J 2,且J 2=2 J 1. 则啮合后整个系统的转动角速度为 .25.如图所示,木块A 、B 和滑轮C 的质量分别为 m 1、m 2和m 3,滑轮C 的半径为R ,对轴的转动惯量为2321R m J =. 若桌面光滑,滑轮与轴承之间无摩擦,绳的质量不计且不易伸长,绳与滑轮之间无相对滑动,则木块B 的加速度大小为 .23图25图26.有一半径为R 的匀质圆形水平转台,可绕过中心O 且垂直于盘面的竖直固定轴旋转,转台对轴的转动惯量为J . 有一质量为m 的人站于台上,当他站在离转轴距离为r 处时(r <R ),转台和人一起以角速度ω0绕轴旋转. 若轴承处摩擦可以忽略,则当人走到转台边缘时,转台和人一起转动的角速度为 .27.如图所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其单位长度的带电量分别为1λ和2λ,则场强等于零的P 点与直线1的距离为______.28.方向如图,A 、B 为真空中两块“无限大”的均匀带电平行平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/2. 则A 、B 两平面上电荷面密度分别为=A σ________,=B σ________. 29.如图所示,两块“无限大”的带电平行平面,其电荷面密度分别为σ-(σ>0)及σ3.试写出各区域的电场强度E :Ⅰ区E 的大小______,方向______;Ⅱ区E 的大小______,方向______;Ⅲ区E 的大小______,方向______.30.真空中一半径为R 的均匀带电球面,总电量为Q (Q<0) . 今在球面上挖去一块非常小的面积S ∆(连同电荷),且假设不影响原来的电荷分布,则挖去S ∆后球心处电场强度的大小E=______,其方向为______.1λ2λ12A BⅡⅢ-σ3σⅠOR△S题27图 题28图 题29图 题30图31.在静电场中,任意作一闭合曲面,通过该闭合曲面的电通量⎰⋅SS E d 的值仅取决于______,而与______无关.32.在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合曲面S 1、S 2、S 3,则通过这些闭合曲面的电场强度通量分别为=1Φ______,=2Φ______,=3Φ______.题32图 题33图33.如图所示,半径为R 的半球面置于场强为E 的均匀电场中,若其对称轴与场强方向一致,则通过该半球面的电场强度通量为______,若其对称轴与场强方向垂直,则通过该半球面的电场强度通量为______.34.在电量为q 的点电荷的静电场中,与点电荷相距分别为r 1和r 2的A 、B 两点之间的电势差U A -U B =______.35.一个球形的橡皮膜气球,电荷q 均匀分布在其表面,在吹大此气球的过程中,半径由r 1变到r 2. 若选取无穷远处为电势零点,则半径为R (r 1<R <r 2)的高斯球面上任一点的场强大小E 由______变为______;电势U 由______变为______.36.如图所示,在电量为+Q 的点电荷产生的电场中,电量为q 的试验电荷沿半径为R 的圆弧由A 点移动3/4圆弧轨道到D 点,在此过程中,电场力作功为______;若从D 点移到无穷远处,此过程中电场力作功为______.题36图 题37图 题38图 题39图37. 如图所示,无限长直导线在P 处弯成半径为R 的圆,导线在P 点绝缘. 当通以电流I 时,则在圆心O 点的磁感应强度大小=B ________.38. 如图所示,用均匀细金属丝构成一半径为R 的圆环,电流I 由导线CA 流入圆环A 点,而后由圆环B 点流出,进入导线BD . 设导线CA 和导线BD 与圆环共面,则环心O 处的磁感应强度大小为________,方向________.39. 一同轴电缆由内圆柱体和外圆筒导体组成,其尺寸如图所示. 它的内外两导体中的电流均为I ,且在横截面上均匀分布,但二者电流的流向相反,则(1)在r <R 1处磁感应强度大小为________;(2)在r >R 3处磁感应强度大小为________.40.如图所示,在一根通有电流I 的长直导线旁,与之共面地放着一个长宽各为a 和b 的矩形线框ABCD .线框AD 边与载流长直导线平行,且二者相距为2b . 在此情形中,线框内的磁通量=Φ________.41. 如图所示,两根长直导线通有电流I ,对图示环路1L 、2L 、3L 上B 的环流有:=⋅⎰1L dl B ________;=⋅⎰2L dl B ________;=⋅⎰L dl B ________.III题40图 题41图 题44图42. 一带电粒子平行磁感应线射入匀强磁场,则它作________运动;一带电粒子垂直磁感应线射入匀强磁场,则它作________运动;一带电粒子与磁感应线成任意角度射入匀强磁场,则它作_________运动.43. 在电场强度E 和磁场强度B 方向一致的匀强电场和匀强磁场中,有一运动着的电子质量为m 、电量为e ,某一时刻其速度v 的方向如图(a )和图(b )所示,则该时刻运动电子的法向和切向加速度的大小分别为:在图(a )所示情况下,=n a ______,=t a ______;在图(b )所示情况下,=n a ______,=t a ______. 44.两无限长直导线通相同的电流I ,且方向相同,平行地放在水平面上,相距为2l . 如果使长为l 的直导线AB 以匀速率v 从图中的位置向左移动t 秒时,(导线AB 仍在两电流之间),AB 两端的动生电动势大小为______. A 、B 两端,电势高的一端是______. 45.四根辐条的金属轮子在均匀磁场B 中转动,转轴与B 平行. 轮子和辐条都是导体. 辐条长为R ,轮子转速为n ,则轮子中心a 与轮边缘b 之间的感应电动势为______,电势最高点是在______处.BE BE题45图 题43图三、计算、问答1.有一质量为m 的物体悬挂在一根轻绳的一端,绳的另一端绕在一轮轴的轴上,如图所示. 轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的水平固定轴承之上,绳子不易伸长且与轴之间无相对滑动. 当物体由静止释放后,在时间t 内下降了一段距离s ,试求整个轮轴的转动惯量J (用m 、r 、t 和s 表示).mλxO2. 如图所示,质量M=2.0 kg 的沙箱,用一根长l=2.0 m 的细绳悬挂着. 今有一质量为m=20 g 的子弹以速度v 0 = 500 m ⋅s -1水平射入并穿出沙箱,射出沙箱时子弹的速度为v= 100 m ⋅s -1,设穿透时间极短. 求:(1)子弹刚穿出沙箱时绳中张力的大小;(2)子弹在穿透过程中受到的冲量大小.3. 有一均匀带电的半径为R 的球体,体密度为ρ,试用高斯定理求解其内外电场及电势分布。
大学物理相对论例题
一、选择题1.在某地发生两件事,静止位于该地的甲测得时间间隔为4s,若相对甲作匀速直线运动的乙测得时间间隔为5s,则乙相对于甲的运动速度是(c表示真空中光速)[ ]A 、(4/5)cB 、(3/5)cC 、(1/5)cD 、(2/5)c2.一宇宙飞船相对地球以 0.8c(c表示真空中光速)的速度飞行.一光脉冲从船尾传到船头,飞船上的观察者测得飞船长为 90m,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为[ ]A 、90mB 、54mC 、270mD 、150m3.K系与K'系是坐标轴相互平行的两个惯性系,K'系相对于K系沿OX轴正方向匀速运动.一根刚性尺静止在K'系中,与O'X'轴成 30°角.今在K系中观测得该尺与OX轴成 45°角,则K'系相对于K系的速度是[ ]A 、(2/3)cB 、(1/3)cC D4.某宇宙飞船以0.8c 的速度离开地球,若地球上接收到它发出的两个信号之间的时间间隔为10s ,则宇航员测出的相应的时间间隔为[ ]A 、6sB 、8sC 、10sD 、3.33s5.一个电子的运动速度为v =0.99c ,则该电子的动能k E 等于(电子的静止能量为0.51MeV )[ ]A 、3.5MeVB 、4.0MeVC 、3.1MeVD 、2.5MeV6.宇宙飞船以速度v 相对地面作匀速直线飞行,某一时刻,飞船头部的宇航员想飞船尾部发出一光讯号,光速为c,经t ∆时间(飞船上的钟测量)后,被尾部接收器收到,由此可知飞船固有长度为[ ]A 、c t ∆B 、v t ∆C 、c t ∆ [1-(v/c)2]1/2D 、c t ∆/[1-(v/c)2]1/2二、填空题1.惯性系S 和S ',S '相对S 的速率为0.6c ,在S 系中观测,一件事情发生在43210,510t s x m -=⨯=⨯处,则在S '系中观测,该事件发生在 处。
2.惯性系S 和S ',S '相对S 的速率为0.8c ,在S '系中观测,一事件发生在110,0t s x m ''==处,第二个事件发生在722510,120t s x m -''=⨯=-处,则在S 系中测得两事件的时空坐标为 。
大学物理例题
大学物理例题
例1、一质量均匀分布的柔软细绳铅直地悬挂着,绳的下端刚好触到水平桌面上,如果把绳的上端放开,绳将落在桌面上。
证明:在绳下落的过程中,任意时刻作用于桌面的压力,等于已落到桌面上的绳重量的三倍。
解:(用质心的方法)
取如图坐标,坐标原点为t=0时刻细绳末端的位置,向下为
正方向。
设细绳总长为L , 总质量为M ,线密度为ρ = M /L 。
设 t 时
刻已有x 长的柔绳落至桌面,落到桌面上的绳的质量:m = ρx =
Mx/L 。
因为是柔软细绳,桌面对绳的支持不会影响上部绳子的运动,因此上部绳子自由下落,速度为 22gx v =或 v = d x /d t ,加速
度为 g = d 2x /d 2t 。
整条细绳的质心为
2
2202121)](21[1][11x L
L x x L xL L xdx xL M xdm M x L x M c -+=-+=+==⎰⎰ρρρρρ 质心速度:
dt
dx x L dt dx dt dx v c c 1-== 质心加速度:
222211dt
x d x L dt dx dt dx L dt x d dt dv a c c --== x L
g g xg L v L g a c 3112-=--
= 根据质心的运动定律 F = ma c , 有 x L
Mg Mg N Mg Ma N Mg c
3-=-=- 所以:
mg x L
Mg N 33==。
大学物理教材-(例题、练习)-答案
第一章例题 1D ; 2D ; 3C4答:(1)、(3)、(4)是不可能的5 3/30Ct +v 400121Ct t x ++v 6 x = (y 3)27 17m/s 2104o练习1 、16 R t 2; 4 rad /s 22解:设质点在x 处的速度为v , 62d d d d d d 2x txx t a +=⋅==v v ()x x xd 62d 02⎰⎰+=v v v()2 213xx +=v 3解:(1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2v (2) =-6 m/s(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m 4解: =a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt tv 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰=x 2= t 3/3+x 0 (SI) 5解:根据已知条件确定常量k ()222/rad 4//sRtt k ===v ω24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2 = 8 m/s2s /168/m Rt dt d a t ===v22s /32/m R a n ==v()8.352/122=+=nt a a a m/s 26解:(1) 球相对地面的初速度 =+='v v v 030 m/s 1分抛出后上升高度 9.4522='=gh v m/s 1分 离地面高度 H = (45.9+10) m =55.9 m 1分(2) 球回到电梯上时电梯上升高度=球上升高度 2021)(gt t t -+=v v v 1分 08.420==gt v s 7如图所示,取沿地面方向的轴为ox 轴。
人从路灯正下方点o 开始运动,经时间t 后其位置为vt oA x ==,而人头顶影子的位置为x 。
大学物理难题集
解、(1)这是一个RCL串联的放电电路,电路的微分方程为 d 2q R dq q dt 2 L dt LC 0
上述微分方程的特征方程为
P2 R P 1 0 L LC
PR
R
2
1
L 2L LC
当
R 2L
2
1 LC
0
时电路处于过阻尼状态;
当
R 2L
2
1 LC
0
时电路处于临阻尼状态;
应再并联的电容为 C 160 10 150F
4、在-d<x<d的空间区域内,电荷密度>0为常数,其它区 域均为真空。若在x=2d处将质量为m,电量为q(<0)的带 电质点自静止释放。试问经过多少时间它能到达x=0的位置。
d
0
d
x
x
解、由高斯定理可得电场分布
E d 0
E x 0
xd d xd
为了求上式积分,取如图所示的圆柱面。利用高斯定理有:
E1
E2
x d
xd
2r
d
d Er dz
r 2 ( E2 E1 ) 0
d d
Er dz
r 2
(E2
E1 )
e d
er
vr mv z d Erdz 2mv z ( E1 E2 )
电子通过圆孔后的偏转角,则
tg
vr vz
er 2mv 2z
Fr eEr
设电子的径向速度为Vz,则在通过轴向距离 dz期间,径向速度 的增量为
dvr
eEr m
dt
eEr m
dz vz
设电子的径向初速度为0, 通过圆孔后径向速度的增量为
d
vr d
(完整word版)大学物理大题及答案
1 已知振动曲线如教材P112图所示, 试求: ( 1) 简谐振动方程;( 2) t = 0时振子的运动状态( 如何描述) ? ( 3) t =3/2s 时的相位;( 4) 4s 内振子的位移和路程。
题11.7图??? [分析与解答] (1)由振动曲线可知:A=2cm,T=4s,则ω=2π/T=π/2rad/s, 又因t=0时,由0y =Acos φ,得cos φ=1/2,即φ= ±π/3,由于0v <0, 故取初φ=π/3,则振动方程为 y=2cos(πt/2+π/3)cm(2)当t=0时,振子位于0y =A/2处,并沿-y 方向向平衡位置运动。
(3)t=3/2s 时的相位为 ωt + φ=π/2×3/2+π/3=13π/12 (4)由于T=4s ,所以在4s 内刚好完成一次完整的振动,即回到初始位置。
因此,位移 △y=0,所经历的路程S=4A=8cm 。
2. 已知平面谐波A = 5cm ,ν= 100Hz , 波速u = 400m/ s , 沿x 正方向传播, 以位于坐标原点O 的质元过平衡位置向正方向运动时为时间起点, 试求: (1) 点O 的运动方程; (2) 波动方程;(3) t = 1s 时, 距原点100cm 处质元的相位(1) 要建立O 点的运动方程,关键在于找三个特征量。
由题设条件可知,圆频率ω=2πv=200πrad/s.振幅A=5cm;t=0时,坐标原点O 处质点过平衡位置,且向正方向运动,则O 点的初相位0ϕ =-π/2(或3π/2),于是 O 点的运动方程为 0y =5cos(200πt-π/2)cm(2) 波沿x 轴的正方向传播。
波线上任一点质元的相位较O 点质元落后ωx/u,则波动方程为y=Acos[ω(t-x/u)+0ϕ]=5cos[200π(t-x/400)-π/2]=5cos(200π.t-π.x/2-π/2)cm(3)将t=1s,x=100cm=1m 代入波动方程,得y=5cos(200π-π/2-π/2)=5cos(199π)cmt=1s 时,距原点100cm 处质点的相位为199π(若取230πϕ=,则该点相位为201π)3.将波长λ= 632.8nm 的一束水平的He-Ne 激光垂直照射一双缝, 在缝后D= 2m 处的屏上, 观察到中央明纹和第1 级明纹的间距为14mm 。
大学物理例题
例1 路灯离地面高度为H,一个身高为h 的人,在灯下水平路面上以匀速度步行。
如图3-4所示。
求当人与灯的水平距离为时,他的头顶在地面上的影子移动的速度的大小。
解:建立如右下图所示的坐标,时刻头顶影子的坐标为,设头顶影子的坐标为,则由图中看出有则有所以有;例2如右图所示,跨过滑轮C的绳子,一端挂有重物B,另一端A被人拉着沿水平方向匀速运动,其速率。
A离地高度保持为h,h=1.5m。
运动开始时,重物放在地面B0处,此时绳C在铅直位置绷紧,滑轮离地高度H = 10m,滑轮半径忽略不计,求:(1) 重物B上升的运动方程;(2) 重物B在时刻的速率和加速度;(3) 重物B到达C处所需的时间。
解:(1)物体在B0处时,滑轮左边绳长为l0 = H-h,当重物的位移为y时,右边绳长为因绳长为由上式可得重物的运动方程为(SI)(2)重物B的速度和加速度为(3)由知当时,。
此题解题思路是先求运动方程,即位移与时间的函数关系,再通过微分求质点运动的速度和加速度。
例3一质点在xy平面上运动,运动函数为x = 2t, y = 4t2-8(SI)。
(1) 求质点运动的轨道方程并画出轨道曲线;(2) 求t1=1s和t2=2s时,质点的位置、速度和加速度。
解:(1) 在运动方程中消去t,可得轨道方程为,轨道曲线为一抛物线如右图所示。
(2) 由可得: 在 t1=1s 时,在 t2=2s 时,例4质点由静止开始作直线运动,初始加速度为a0,以后加速度均匀增加,每经过τ秒增加a0,求经过t秒后质点的速度和位移。
解:本题可以通过积分法由质点运动加速度和初始条件,求解质点的速度和位移。
由题意可知,加速度和时间的关系为:根据直线运动加速度的定义因为t = 0 时,v0=0,故根据直线运动速度的定义有因为t = 0 时,x0=0 ,则位移为例5(1) 对于作匀速圆周运动的质点,试求直角坐标和单位矢量 i和 j表示其位置矢量r, 并由此导出速度v 和加速度a的矢量表达式。
大学物理-刚体例题
w A R 解:m+环:对竖直轴的角动量守恒
╳ Rωsin
J 0w mR 2 sin 2 w J 0w 0
B
v
w
mR 2 sin 2 1 J0
J J 0 mR 2 sin 2
ω
R1 R2
解:
1m 2 J= R1 2
ω
R1
2
盘对地的角速度
人对盘的角速度 人对地的角速度 由角动量守恒得:
v ω ″ =ω ´+ω = R +ω 2
2 2
ω v ω ´= R
R2
mR ω ″ + J = 0 ω 2 v 1 mR 12 = 0 mR 2 ( +ω ) + ω R2 2 2R 2 v mR 2 v ω = = 2 2 1m 2 2 R 1 + 2R 2 mR 2 + R1 2
1 J0
2 2
w
m R2 sin 2 1 J0
w0
v地 = v R sin w
2 2
2、 如图,原来它们沿同一转向分别以w10、 w20匀速转动, 然后,平移两轴,使它们的边缘相接触。
求:最后在接触处无相对滑动时,每个圆柱的角速度w1、 w2 解:无相对滑动时,二圆柱 线速度一样:
1 ( m R +J ) 2 ω = 2 J ω2 m 2 2 ( R +2J ) m R Δ E k = E k´ E k = 2J
2 2
4、 在半径为R1、质量为 m 的静止水平圆盘上,站一 质量为 m 的人。圆盘可无摩擦地绕通过圆盘中心的竖 直轴转动。当这人开始沿着与圆盘同心,半径为R2 (<R1)的圆周匀速地走动时,设他相对于圆盘的速 度为 v,问圆盘将以多大的角速度旋转?
大学物理练习题及参考答案
一、填空题 1、一质点沿y 轴作直线运动,速度j t v)43(+=,t =0时,00=y ,采用SI 单位制,则质点的运动方程为=ymt t 223+;加速度y a = 4m/s 2 。
2、一质点沿半径为R 的圆周运动,其运动方程为22t +=θ。
质点的速度大小为 2t R ,切向加速度大小为 2R 。
3、一个质量为10kg 的物体以4m/s 的速度落到砂地后经0.1s 停下来,则在这一过程中物体对砂地的平均作用力大小为 400N 。
4、在一带电量为Q 的导体空腔内部,有一带电量为-q 的带电导体,那么导体空腔的内表面所带电量为 +q ,导体空腔外表面所带电量为 Q -q 。
5、一质量为10kg 的物体,在t=0时,物体静止于原点,在作用力i x F)43(+=作用下,无摩擦地运动,则物体运动到3米处,在这段路程中力F所做的功为5J13mV 21W 2.=∆=。
6、带等量异号电荷的两个无限大平板之间的电场为0εσ,板外电场为 0 。
8、一长载流导线弯成如右图所示形状,则O 点处磁感应强度B的大小为RIR I 83400μπμ+,方向为⊗。
9、在均匀磁场B 中, 一个半径为R 的圆线圈,其匝数为N,通有电流I ,则其磁矩的大小为NIR m 2π=,它在磁场中受到的磁力矩的最大值为NIBR M 2π=。
10、一电子以v垂直射入磁感应强度B 的磁场中,则作用在该电子上的磁场力的大小为F = Bqv F 0=。
电子作圆周运动,回旋半径为qBmvR =。
11、判断填空题11图中,处于匀强磁场中载流导体所受的电磁力的方向;(a ) 向下 ;(b ) 向左 ;(c ) 向右 。
12、已知质点的运动学方程为j t i t r)1(2-+=。
试求:(1)当该质点速度的大小为15-⋅s m 时,位置矢量=r i 1;(2)任意时刻切向加速度的大小τa =1442+t t 。
16、有一球状导体A ,已知其带电量为Q 。
大学物理试题及参考答案
大学物理试题及参考答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是:A. 3×10^8 m/sB. 3×10^5 km/sC. 3×10^7 m/sD. 3×10^6 km/s2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比,其数学表达式为:A. F = maB. a = F/mC. F = ma^2D. a = F^2/m3. 以下哪种波是横波?A. 声波B. 电磁波C. 光波D. 地震波4. 根据热力学第一定律,能量守恒,其数学表达式为:A. ΔU = Q + WB. ΔU = Q - WC. U = Q + WD. U = Q - W5. 以下哪种现象不属于电磁感应?A. 法拉第电磁感应定律B. 洛伦兹力C. 自感D. 互感6. 根据麦克斯韦方程组,以下哪个方程描述了变化的磁场产生电场?A. 高斯定律B. 法拉第电磁感应定律C. 安培定律D. 麦克斯韦方程7. 以下哪种物质的热传导率最高?A. 木头B. 铜C. 玻璃D. 空气8. 根据量子力学,海森堡不确定性原理表明:A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的能量和时间可以同时精确测量D. 粒子的能量和动量可以同时精确测量9. 根据相对论,以下哪种效应描述了时间膨胀?A. 洛伦兹收缩B. 钟慢效应C. 质能等价D. 质量增加效应10. 以下哪种设备不是利用电磁波工作的?A. 微波炉B. 收音机C. 光纤通信D. 温度计二、填空题(每题2分,共20分)1. 牛顿第三定律指出,作用力和反作用力大小相等,方向相反,并且作用在不同的物体上。
2. 光的波长、频率和速度之间的关系可以用公式 c = λν 来表示。
3. 根据欧姆定律,电流 I = V/R,其中 V 代表电压,R 代表电阻。
4. 热力学第二定律表明,不可能从单一热源吸热使之完全转化为功而不产生其他效果。
大学物理考试题答案
例题1 一质点沿x 轴作简谐振动,振动方程为从0=t 时刻起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为(A)(B)(C)(D)(E解: ⇒公式;πω2=⇒题意 πω=t ⇒ ππ=t 2 ⇒)例题2 一简谐振动的振动曲线如图所示.求振动方程.解: ⇒由图 m 1.0A = ;s t 2=例题3 一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函数描述,则其初相应为(A) π/6. (B) 5π/6. (C) -5π/6. (D) -π/6. (E) -2π/3. 答案:(C) -5π/6()ϕω+=t A x cos ;()'cos ϕωυυ+=t m()SI t x )22.22cos(05.0+=π例题4 一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示),作成一复摆.已知细棒绕通过其一端的轴的转动此摆作微小振动的周期为 AB C √D练习题1. 一物体同时参与两个同方向的简谐振动:, ()SI t x )2cos(03.02π+π= 求此物体的振动方程.解:设合成运动(简谐振动)的振动方程为)cos(φω+=t A x则)cos(2122122212φφ-++=A A A A A ① 以 A 1 = 4 cm ,A 2 = 3 cm2分又②∴ 1分练习题2. 两个同方向简谐振动的振动方程分别为求合振动方程.解:依合振动的振幅及初相公式可得2分 则所求的合成振动方程为()SI )48.110cos(1081.72+⨯=-t x 1分练习题3. 两个同方向的简谐振动的振动方程分别为 x 1 = 4×10-2cos2(SI), x 2 = 3×10-2cos2π)41(+t (SI) 求合振动方程.解:由题意 x 1 = 4×10-2cos )42(ππ+t (SI) x 2 =3×10-2cos )22(ππ+t (SI)按合成振动公式代入已知量,可得合振幅及初相为合振动方程为x = 6.48×10-2 cos(2πt +1.12)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:本题可以通过积分法由质点运动加速度和初始条件,求解质点的速度和位移。
由题意可知,加速度和时间的关系为:
根据直线运动加速度的定义
因为t=0时,v0=0,故
根据直线运动速度的定义有
因为t= 0时,x0=0,则位移为
解:建立如右下图所示的坐标, 时刻头顶影子的坐标为 ,设头顶影子的坐标为 ,则
由图中看出有
则有
所以有
;
例2如右图所示,跨过滑轮C的绳子,一端挂有重物B,另一端A被人拉着沿水平方向匀速运动,其速率 。A离地高度保持为h,h=1.5m。运动开始时,重物放在地面B0处,此时绳C在铅直位置绷紧,滑轮离地高度H=10m,滑轮半径忽略不计,求:
解:如图示,由牛顿第二定律
对m1:
对m2:
对整个轮,由转动定律
又由运动学关系
联立解以上诸式,即可得
例8固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴OO′转动,设大小圆柱体的半径分别为R和r,质量分别为M和m,绕在两柱体上的细绳分别与物体m1和物体m2相连,m1和m2分别挂在圆柱体的两侧,如图5-9(a)所示。设R=0.20m,r=0.10m,m=4kg,M=10kg,m1=m2=2kg,且 开始时m1、m2离地均为h=2m,求:
代入数据后得
(2)由(1)式得
由(2)式得
(3)设m1着地时间为t,则
(4)m1着地后静止,这一侧绳子松开。柱体继续转动,因只受另一侧绳子拉力的阻力矩,柱体转速将减小,m2减速上升。
讨论:如果只求柱体转动的角加速度,可将柱体、m1、m2选做一个系统,系统受的合外力矩,则加速度
本题第二问还要求两侧细绳的张力,故采用本解法是必要的,即分别讨论柱体的转动、m1和m2的平动。
大学物理例题
————————————————————————————————作者:
————————————————————————————————日期:
ﻩ
例1路灯离地面高度为H,一个身高为h的人,在灯下水平路面上以匀速度 步行。如图3-4所示。求当人与灯的水平距离为 时,他的头顶在地面上的影子移动的速度的大小。
例5(1)对于作匀速圆周运动的质点,试求直角坐标和单位矢量i和j表示其位置矢量r,并由此导出速度v和加速度a的矢量表达式。
(2)试证明加速度a的方向指向轨道圆周的中心。
解:(1)由右图可知
式中, , ,且根据题意 是常数,所以,有
又因
所以
(2)
由上式可见,a与r方向相反,即a指向轨道圆周中心。
6一张致密光盘(CD)音轨区域的内半径R=2.2cm,外半径为R=5.6cm,如右图所示,径向音轨密度N=650条/mm。在CD唱机内,光盘每转一圈,激光头沿径向向外移动一条音轨,激光束相对光盘是以 的恒定速度运动的。这张光盘的全部放音时间是多少?激光束到达离盘心r=5.0cm处时,光盘转动的角速度和角加速度各是多少?
例9一轻绳绕过一质量可以不计且,如图5-10所示。
(1)二人是否同时达到顶点?以甲、乙二人为系统,在运动中系统的动量是否守恒?机械能是否守恒?系统对滑轮轴的角动量是否守恒?
(2)当甲相对绳的运动速度u是乙相对绳的速度2倍时,甲、乙二人的速度各是多少?
解:设两质点A、B在图示的位置,它们对O点的角动量的大小相等、方向相同(与OA和mv组成的平面垂直)。ﻫ角动量的大小为
例6如图5-7所示,两物体质量分别为m1和m2,定滑轮的质量为m,半径为r,可视作均匀圆盘。已知m2与桌面间的滑动摩擦系数为 ,求m1下落的加速度和两段绳子中的张力各是多少?设绳子和滑轮间无相对滑动,滑动轴受的摩擦力忽略不计。
解:(1)以r表示激光束打到音轨上的点对光盘中心的径矢,则在dr宽度内的音轨长度为2πrNdr。激光束划过这样长的音轨所用的时间为dt=2πrNdr/v。由此得光盘的全部放音时间为
(2)所求角速度为
所求角加速度为
例3两个质量均为m的质点,用一根长为2a、质量可忽略不计的轻杆相联,构成一个简单的质点组。如图5-4所示,两质点绕固定轴OZ以匀角速度 转动,轴线通过杆的中点O与杆的夹角为 ,求质点组对O点的角动量大小及方向。
解:
对m1,由牛顿第二定律
对m2,由牛顿第二定律
对滑轮,用转动定律
又由运动学关系,设绳在滑轮上不打滑
联立解以上诸方程,可得
例7如图5-8所示。两个圆轮的半径分别为R1和R2,质量分别为M1和M2。二者都可视为均匀圆柱体而且同轴固结在一起,可以绕一水平固定轴自由转动。今在两轮上各绕以细绳,绳端分别挂上质量是m1和m2的两个物体。求在重力作用下,m2下落时轮的角加速度。
(1)柱体转动时的角加速度;
(2)两侧细绳的张力;
(3)m1经多长时间着地?
(4)设m1与地面作完全非弹性碰撞,m1着地后柱体的转速如何变化?
解:设a1、a2分别为m1、m2的加速度, 为柱体角加速度,方向如图5-9(b)所示。
(1)m1、m2的平动方程和柱体的转动方程如下:
式中: ; ; ; ;
联立(1)、(2)、(3)式,解得角加速度为
例3一质点在xy平面上运动,运动函数为x= 2t,y= 4t2-8(SI)。
(1)求质点运动的轨道方程并画出轨道曲线;
(2)求t1=1s和t2=2s时,质点的位置、速度和加速度。
解:(1)在运动方程中消去t,可得轨道方程为 ,
轨道曲线为一抛物线如右图所示。
(2)由
可得:在t1=1s时,
在t2=2s时,
解:(1)甲、乙二人受力情况相同,皆受绳的张力T,重力mg,二人的运动相同,因为
所以二人的加速度相同,二人的速度为
因初速度v0=0,二人在任一时刻的速度相同,上升的高度相同,所以同时到达顶点。
(1)重物B上升的运动方程;
(2)重物B在时刻的速率和加速度;
(3)重物B到达C处所需的时间。
解:(1)物体在B0处时,滑轮左边绳长为l0=H-h,当重物的位移为y时,右边绳长为
因绳长为
由上式可得重物的运动方程为
(SI)
(2)重物B的速度和加速度为
(3)由 知
当 时, 。
此题解题思路是先求运动方程,即位移与时间的函数关系,再通过微分求质点运动的速度和加速度。