国内外高压直流输电的发展与现状
高压直流输电的现状和前景
![高压直流输电的现状和前景](https://img.taocdn.com/s3/m/4ed823e0b0717fd5360cdc62.png)
高压直流输电的现状和前景作者 Peter(一)高压直流输电技术的兴起与发展1‧高压直流输电技术的兴起直流输电(也称HVDC)的发展历史到现在已有百余年了﹐在输电技术发展初期曾发挥作用﹐但到了20世纪初﹐由于直流电机串接运行复杂﹐而高电压大容量直流电机存在换向困难等技术问题﹐使直流输电在技术和经济上都不能与交流输电相竞争﹐因此进展缓慢。
20世纪50年代后﹐电力需求日益增长﹐远距离大容量输电线路不断增加﹐电网扩大﹐交流输电受到同步执行稳定性的限制﹐在一定条件下的技术经济比较结果表明﹐采用直流输电更为合理﹐且比交流输电有较好的经济效益和优越的执行特性﹐因而直流输电重新被人们所重视并得到急速发展。
近20年来﹐随着电力电子技术的发展﹐高压直流输电迅速发展。
自1972年加拿大建成世界上第一座可控硅换流站以来﹐可控硅技术不断进步﹐容量增大﹐可靠性提高﹐价格逐渐降低﹐直流输电更趋成熟﹐已成为电力传输的一种重要方式。
特别是光纤和计算机等新技术的发展﹐使直流输电系统的控制﹑调节与保护更趋完善﹐进一步提高了直流输电系统执行的可靠性。
2‧高压直流输电技术的优点及缺点(1)直流输电技术的优点直流输电与交流输电相比﹐有以下优点﹕直流输电具有大容量输送的能力﹐能够充分发挥规模输电优势。
如采用4000安晶闸管换流阀﹐±800千伏特高压直流输电能力可达640万千瓦﹐是±500千伏﹑300万千瓦高压直流输电方案的2.1倍﹐是±620千伏﹑380万千瓦高压直流输电方案的1.7倍。
输送功率的大小和方向可以快速控制和调节﹔直流输电系统的投入不会增加原有电力系统的短路电流容量﹐也不受系统稳定极限的限制﹔直流输电一般采用双极中性点接地方式﹐直流线路仅需两根导线﹐三相交流线路则需三根导线﹐但两者输送的功率几乎相等﹐因此可减轻杆塔的荷重﹐减少线路走廊的宽度和占地面积。
在输送相同功率和距离的条件下﹐直流架空线路的投资一般为交流架空线路投资的三分之二。
2024年高压输电市场发展现状
![2024年高压输电市场发展现状](https://img.taocdn.com/s3/m/4f895c0f32687e21af45b307e87101f69f31fb5e.png)
高压输电市场发展现状1. 引言高压输电是电力系统中的重要组成部分,它通过将电能从发电站输送到负荷中心,满足人们对电能的需求。
随着能源需求的增加以及可再生能源的不断发展,高压输电市场正面临着广阔的发展机遇和一些挑战。
本文将重点探讨当前高压输电市场的发展现状,包括技术发展、市场规模和竞争态势等方面。
2. 技术发展2.1 高压输电技术高压输电技术是实现远距离、大容量电能传输的关键。
目前,我国高压输电技术主要采用交流输电和直流输电两种方式。
交流输电技术成熟、稳定,广泛应用于国内外,主要由高压交流输电线路和变电站组成。
直流输电技术具有输电损耗小、输送能力强等优势,在远距离大容量电能传输领域有着广阔的应用前景。
2.2 电力电子设备电力电子设备在高压输电系统中起着至关重要的作用。
随着功率半导体器件技术的进步,新一代电力电子设备逐渐应用于高压输电系统中,如柔性直流输电技术(HVDC)、描述的灵活交流输电技术(FACTS)等,这些设备可以实现电能的精确控制和调节,提高系统的稳定性和效率。
3. 市场规模3.1 国内市场我国高压输电市场规模庞大,需求旺盛。
根据国家能源局数据,2019年,我国高压输电线路累计长度达到40万公里以上,输电线损率稳定下降,输电容量不断提升。
随着能源供应侧结构改革的推进,高压输电线路建设将进一步扩大,市场规模有望继续扩大。
3.2 国际市场随着全球能源需求的增长,国际高压输电市场也呈现出良好的发展势头。
发达国家在提高电力传输效率和减少能源损失的目标驱动下,积极推动高压输电技术的发展和应用。
世界各地的国际项目和跨国公司正在加大高压输电技术的投资和合作,这为我国高压输电企业提供了更多的机遇和挑战。
4. 竞争态势高压输电市场具有一定的竞争性。
主要竞争因素包括技术水平、产品质量、价格竞争等。
我国高压输电企业在技术水平上已经取得了较大的突破,部分技术已达到国际先进水平。
此外,企业之间也存在一定程度的合作,提升整体竞争力。
高压直流输电技术现状及发展前景
![高压直流输电技术现状及发展前景](https://img.taocdn.com/s3/m/0d7baf56c381e53a580216fc700abb68a982ad27.png)
高压直流输电技术现状及发展前景一、本文概述随着全球能源需求的持续增长和电网互联的深化发展,高压直流输电技术(HVDC)已成为现代电力系统的重要组成部分。
本文旨在全面概述高压直流输电技术的现状,包括其基本原理、关键设备、应用领域以及面临的挑战,并展望其未来的发展前景。
我们将深入探讨HVDC 技术的最新进展,包括新型拓扑结构、控制策略、设备制造技术等方面的创新,并分析这些创新如何推动HVDC技术在全球范围内的广泛应用。
我们还将讨论HVDC技术在可再生能源接入、电网互联、城市电网建设等领域的应用潜力,以及面临的挑战和解决方案。
通过本文的阐述,我们期望为读者提供一个全面而深入的了解高压直流输电技术的现状和发展前景的视角,为相关领域的研究和实践提供参考和借鉴。
二、高压直流输电技术现状高压直流输电(HVDC)技术自20世纪50年代诞生以来,经过几十年的发展,已经成为现代电力系统的重要组成部分。
当前,HVDC技术正处在一个快速发展的阶段,其在全球范围内的应用越来越广泛,技术性能也日益成熟和先进。
在技术上,现代高压直流输电系统已经实现了高度的自动化和智能化。
通过采用先进的控制系统和保护装置,HVDC系统能够实现快速响应和精确控制,确保电力系统的稳定运行。
同时,随着电力电子技术的飞速发展,HVDC系统的换流技术也在不断升级,从最初的汞弧阀换流器发展到现在的晶闸管换流器,再到未来的可关断晶闸管换流器,这些技术的进步极大地提高了HVDC系统的效率和可靠性。
在应用上,高压直流输电技术已经广泛应用于长距离大功率输电、跨海输电、异步联网等多个领域。
特别是在可再生能源的开发和利用中,HVDC技术发挥着不可替代的作用。
例如,在风能、太阳能等可再生能源丰富的地区,通过建设HVDC系统将电能输送到需求侧,可以有效地解决可再生能源的接入和消纳问题,推动可再生能源的大规模开发和利用。
然而,尽管高压直流输电技术取得了显著的进步和广泛的应用,但仍面临着一些挑战和问题。
高压直流输电技术的发展趋势
![高压直流输电技术的发展趋势](https://img.taocdn.com/s3/m/3f337e2630b765ce0508763231126edb6f1a76d0.png)
高压直流输电技术的发展趋势在当今能源需求不断增长、能源分布不均衡以及对电力供应质量要求日益提高的背景下,高压直流输电技术作为一种高效、可靠的电力传输方式,正发挥着越来越重要的作用。
随着科技的不断进步,高压直流输电技术也在持续发展和创新,展现出一系列令人瞩目的发展趋势。
高压直流输电技术具有诸多优点,如能够实现远距离、大容量输电,降低输电损耗,提高输电效率等。
它在实现能源资源的优化配置、促进区域间的电力互济等方面发挥着关键作用。
从技术层面来看,电压等级的不断提高是一个重要的发展趋势。
更高的电压等级意味着能够传输更大的功率,减少输电线路的数量,降低建设成本和土地占用。
目前,特高压直流输电技术已经取得了显著的成就,未来有望进一步提升电压等级,以满足更大规模的电力输送需求。
在换流器技术方面,新型的换流器拓扑结构不断涌现。
传统的基于晶闸管的换流器逐渐被基于绝缘栅双极型晶体管(IGBT)等全控型器件的换流器所取代。
这些新型换流器具有更快的开关速度、更好的控制性能和更低的损耗,能够提高输电系统的效率和稳定性。
直流断路器的研发也是一个关键领域。
快速可靠的直流断路器对于保障直流输电系统的安全运行至关重要。
目前,已经有多种直流断路器的技术方案在研究和试验中,未来有望实现更快速、更可靠、更经济的直流断路器,从而提高直流输电系统的故障处理能力。
随着电力电子技术的发展,多端直流输电系统正逐渐成为现实。
相较于传统的两端直流输电,多端直流输电能够更灵活地实现多个电源和负荷的连接,提高电力系统的可靠性和灵活性。
未来,多端直流输电系统有望在城市电网、区域电网互联等领域得到广泛应用。
在控制保护技术方面,智能化、自适应的控制保护系统是发展的方向。
通过先进的传感器和监测技术,实时获取输电系统的运行状态信息,利用智能算法进行分析和决策,实现对输电系统的精准控制和保护,提高系统的稳定性和可靠性。
在能源转型的大背景下,高压直流输电技术与可再生能源的结合将更加紧密。
国内外高压直流输电的发展与现状
![国内外高压直流输电的发展与现状](https://img.taocdn.com/s3/m/adfb5e6c7cd184254a35354b.png)
欢迎共阅1我国高压直流输电系统的发展历程及现状1.1我国高压直流输电系统的发展历程我国的高压直流输电工程总体上可以说是起步较晚,但发展迅速。
1980年国家确定全部依靠自己力量建设中国第一项直流输电工程———舟山直流输电工程。
它具有向自主建设大型直流输电工程过渡的工业性试验性质,于1984年开始施工,1987年投入试运行,1989年正式投运。
工程最终规模为±1100kV,500A,100MW,线路全长54km。
嗓泅直流输电工程(上海―嗓泅岛)是我国自行设计、制造、建设的双极海底电缆直流工程,于1996年完成研究工作,2002年全部建成。
工程为双极±500kV,600A,60MW,可双向供电,线路长度66.2 km,其中海底电缆59.7km。
葛南(葛洲坝―上海南桥)高压直流输电系统,是我国引进的第一个高压直流输电工程,1989年单极投运,1990年双极投运。
进入21世纪,我国的高压直流输电发展迅速,相继建成投产了天广(天生桥―广州)、三常(三峡―常州)、三广(三峡―广东)和贵广(贵州―广东)等多项高压直流输电项目。
作为引进技术的验证,自主研发设计制造的华中―西北联网灵宝背背直流工程,2005年7月投入运行。
1.2我国高压直流输电系统的现状至2004年末,我国高压直流输电工程累计输送容量达12470MW,输电线路长度累计达4840km,已经超过美国位列世界第一。
截至2007年年底,我国已建成并正式投入运行葛(洲坝)沪(上海)、三(峡)常(州)、三(峡)广(东)、三(峡)沪(上海)、天(天生桥)广(东)、贵(州)广(东)Ⅰ回、Ⅱ回等7个超高压直流输电工程和灵宝背靠背直流工程,直流输电线路总长度达7085 km,输送容量达18560MW,线路总长度和输送容量均居世界第一。
与此同时,我国超高压直流输电工程的设计建设、运行管理和设备制造水平也处于国际领先地位。
2高压直流输电系统中存在的问题2.1直流输电中的谐波问题工频的交变电流在换流站中的整流和逆变过程中,实际上输出的波形并不是稳定的直流,而是有些许波动的脉动电流。
高压输电发展现状及未来趋势分析
![高压输电发展现状及未来趋势分析](https://img.taocdn.com/s3/m/d4cd0104b207e87101f69e3143323968001cf47f.png)
高压输电发展现状及未来趋势分析概述随着经济的快速发展和城市化进程的加速,对电力供应的需求也与日俱增。
而高压输电作为电力供应链中的重要环节,其发展现状及未来趋势对于能源供给的稳定性和可持续性起着至关重要的作用。
本文将探讨高压输电发展的现状,并分析未来的趋势。
一、高压输电发展现状1. 高压输电技术的发展随着电力系统规模的不断扩大,高压输电技术也取得了长足的发展。
目前,交流输电技术广泛应用于高压输电领域,包括特高压交流输电技术(UHVAC)、超高压交流输电技术(UHVDC)、柔性交流输电技术等。
这些技术的应用大大提高了电力输送效率和稳定性,同时降低了输电损耗。
2. 高压输电线路的建设在高压输电线路建设方面,目前已建设了大量的特高压输电线路和超高压输电线路。
特高压输电线路可以将电能传输距离提高到数千千米,超高压输电线路提高了输电电压,减少了输电损耗。
这些线路的建设不仅改善了电力供应的可靠性,还在一定程度上促进了各地区经济的发展。
3. 高压输电市场的竞争格局高压输电领域存在着一定的市场竞争,国内外企业都在争夺高压输电项目。
一些传统电力企业以及跨国能源企业在高压输电领域的布局非常积极。
同时,随着技术的不断更新换代,一些新兴科技公司也加入了高压输电领域,推动了市场竞争的加剧。
二、高压输电发展趋势1. 智能化与数字化随着信息技术的迅猛发展,智能化和数字化成为高压输电发展的趋势。
未来,高压输电系统将更加自动化和智能化。
通过引入先进的传感器和监测设备,实时监测和调控高压输电线路,提高系统的可靠性和运行效率。
2. 可再生能源的接入全球对可再生能源的需求不断增加,高压输电将扮演重要的角色来接入这些能源。
随着可再生能源的规模化发展,高压输电系统需要更高的输电能力和稳定性来适应这些能源的输送。
因此,超高压直流输电和柔性交流输电等技术将会得到更多的应用。
3. 能源互联网的构建未来,高压输电将与电力系统的其他部分更加紧密地相互联系,形成一个以能源为中心的互联网。
高压直流输电技术的发展与应用
![高压直流输电技术的发展与应用](https://img.taocdn.com/s3/m/9a14e4ff1b37f111f18583d049649b6648d709ee.png)
高压直流输电技术的发展与应用随着工业化的快速发展和日益增长的能源需求,输电技术的研究和应用成为了关键的问题。
高压直流输电技术作为一种高效、稳定和可靠的输电方式,逐渐受到了人们的关注和重视。
本文将就高压直流输电技术的发展历程以及当前的应用情况进行探讨。
一、高压直流输电技术的发展历程高压直流输电技术最早可追溯到19世纪末,当时用直流电由康奇对Nikola Tesla的交流电进行了吹嘘。
然而,直流输电在输送电能的时候存在许多问题,比如电压损耗大、输电距离有限等,导致直流输电的实际应用受到了很大的限制。
直到20世纪60年代,随着功率电子技术的快速发展,高压直流输电技术迎来了显著的突破。
在功率电子技术的支持下,直流输电的可行性得到了大幅提升。
特别是随着特高压直流输电技术的引入,实现了远距离大容量的输电,为能源的长距离传输提供了可行的解决方案。
二、高压直流输电技术的优势与传统的交流输电方式相比,高压直流输电技术具有很多明显的优势。
首先,直流电的传输损耗较小,能够实现远距离的传输。
其次,高压直流输电能够提供更稳定、可靠的电力供应,降低了电力系统的故障风险。
此外,直流输电还能够有效地减少电力系统的谐波和干扰,提高了输电效率和质量。
高压直流输电技术还具有更好的环境适应性。
由于直流输电线路不需要频繁的绝缘开关操作,减少了对环境的影响。
此外,导线材料的使用也相对较少,减少了资源的消耗。
都了很大的贡献。
三、高压直流输电技术的应用高压直流输电技术目前已经在世界各地得到了广泛应用。
特别是在远距离、大容量的电力传输领域,高压直流输电技术展现出了独特的优势。
在中国,特高压直流输电已经成为了重点推进的项目。
例如“西部大开发”项目,通过特高压直流输电技术将西部地区丰富的能源资源输送到东部地区,实现了能源的均衡布局。
同时,随着技术的不断进步,高压直流输电的应用范围也逐渐扩大,涉及到交通、航天、通信等领域。
四、高压直流输电技术的面临的挑战尽管高压直流输电技术具有很多优势,但是也面临着一些挑战。
高压直流输电的现状及发展
![高压直流输电的现状及发展](https://img.taocdn.com/s3/m/6158696490c69ec3d4bb7542.png)
欢迎共阅高压直流输电的现状及发展广东省电力工业局周乐荣高压直流输电由于具备了交流输电所不能比拟的优点和特殊性,使其在电力系统中逐渐得到广泛应用,且显示出它重要的作用。
尽管国外应用直流输电已经历了三十年,但我国目前在继舟山直流工程、葛洲坝至上海直流工程以及拟建的天生桥至广州直流工程之后才逐渐将高压直流工程技术应用到我国电力系统工程中来。
虽然±500kV葛—上线高压直流工程的建成投运,标志着我国HVDC工程已迈进了世界先进前列。
但面对该领域,仍然充满着神秘和挑战,有待于我们去进一步的研究和开发。
1、HVDC的现状1882年,法国用2kV直流发电机经56km先河,实现了人类历史上第一次直流输电。
1912190km 的直流输电工程投产运行,对HVDC电的发展。
直至20世纪30~50年代,为发展高电压、大功率直流输电开辟了道路。
100kV、功率为20MW的海底电缆的直流输电线路及、65km输电可靠性日益提高,HVDC HVDC美国、8870MW。
1980年至1990年是直流工程建设和10年间共建成投运直20年的3倍。
1990年至1995年,投运直流工程容量为10000MW以上,到1997年为。
随着电网的不断发展,HVDC技术的日臻22.1第一个投入商业运行的直流输电工程为瑞丽的哥特兰直流输电工程,该工程的送点电压为100kv,输电容量为20mw,于1954年建成投产,采用96km常的电缆线路送电,换流阀为汞弧阀,并于1970年进行改造升压,换流阀改为可控硅整流阀,升压至±150kv,送电容量为30mw,该工程的示意图见图2.2.2第一个大规模可控硅整流阀工程第一个大规模可控硅整流阀工程系加拿大伊尔河的伊尔河直流工工程,是一个背靠背系统,双极,送电容量为320wm,电压为±80kv。
该工程于1972年投运,主要是把魁北克的水电送往新不伦瑞克省。
该工程的建成投产,标志着直流工程技术出现了新的飞跃,告别了汞弧换流阀,步入了大规模采用可控硅整流阀新里程。
超高压直流输电技术的发展现状分析
![超高压直流输电技术的发展现状分析](https://img.taocdn.com/s3/m/39b0a515443610661ed9ad51f01dc281e53a569c.png)
超高压直流输电技术的发展现状分析中国是世界上电力消费最大的国家,特别是在西部地区,由于广袤的土地面积以及复杂的地形。
超高压直流输电技术被看作是解决该区域电力供应的关键技术之一。
在过去的十年中,中国在超高压直流输电技术研究和应用方面取得了显著进展。
一、超高压直流输电技术的研究进展超高压直流输电技术和传统的交流输电技术不同,它采用了直流电源,而不是传统的双曲线波形。
Super HVDC(直流电压超过800千伏)现在已成为超高压直流输电技术的代表。
2010 年,世界上第一条800千伏超高压直流输电线路建成并已投入使用。
在中国,从近十年来的技术创新和业绩分析上看,中国的超高压直流输电技术已经取得了显著的进展,成为中国电力工业发展的重要组成部分。
从大连至长距离(1,603千米)的直流输电到云南异地换流站的超高压直流输电,海底交流-直流综合输电,我国在超高压直流输电技术上都处于全球领先水平。
二、超高压直流输电技术的优势超高压直流输电具有很多优点,包括在远距离输电中节约电能、降低输电损失,可跨越河流等地形障碍,可以全年环境温度稳定运行,并且适合于经济发展更快的西部地区的输电需求。
超高压直流输电技术具有传输电量大,损耗小,无电磁干扰、抗风引起塔架倾斜和地震抗性等许多优点。
在超高压直流输电过程中,相同电压级别的交流输电不如直流输电占用地面空间小,直流输电线路的线损和设备损耗都比交流输电抵触小得多。
超高压直流输电技术的实现需要解决的重大技术问题包括:新材料的研究和应用,超高压开关技术,智能变电站等。
三、超高压直流输电技术的局限性超高压直流输电技术的建设成本高,尤其是在在全国分散的地区,很多的电力需求,具有高额的建设成本。
同时,超高压直流输电技术也存在潜在的风险。
例如,发生故障或断开时可能会在变电站或距离的末端发生电弧,引起高温烧蚀和火灾。
此外,对输电线路周边环境的影响也是超高压直流输电需要考虑的问题。
高强度的电磁场会影响周边居民的生活和健康。
高压直流输电技术的发展趋势与前景
![高压直流输电技术的发展趋势与前景](https://img.taocdn.com/s3/m/3e2d9f61302b3169a45177232f60ddccdb38e66b.png)
高压直流输电技术的发展趋势与前景随着经济社会的发展和对电能的需求不断增加,传统交流输电方式逐渐显示出一些不足之处,高压直流输电技术逐渐成为一种被广泛关注和应用的新型输电方式。
本文将从技术发展趋势和前景两个方面进行探讨。
高压直流输电技术作为一种新兴的输电方式,具有一系列优势,这些优势使得其在未来的发展中有着广阔的前景。
首先,高压直流输电可以实现长距离、大容量的输电。
与传统的交流输电相比,高压直流输电的输电距离可以达到数千公里,且可以有效地减少功率损耗。
其次,高压直流输电具有较小的输电损耗和电弧的强大穿透能力,能够提高输电线路的负载能力和输电效率。
此外,高压直流输电系统具有较小的电磁辐射,对周边环境的干扰相对较小。
这些优势为高压直流输电技术在电力传输领域的发展提供了良好的条件。
在高压直流输电技术的发展趋势方面,我们可以从以下几个方面进行探讨。
首先,随着科技的进步,高压直流输电技术将更加成熟和可靠。
目前,高压直流输电技术存在着一系列的技术难题,如电力电子器件的研发和应用、电网调度与控制、设备可靠性等等。
随着科技的不断突破和创新,高压直流输电技术将逐渐成为一种成熟可靠的电力传输方式。
其次,高压直流输电技术将与可再生能源紧密结合。
随着可再生能源的广泛应用和发展,如风能和太阳能等,高压直流输电技术可以有效地将这些分散的能源资源进行集中储存和利用,减少能源浪费和环境污染。
再次,高压直流输电技术将实现智能化和自主化。
通过引入先进的数字化和自动化技术,高压直流输电系统可以实现对电力系统的实时监测和控制,提高系统运行的安全性和稳定性。
高压直流输电技术在全球范围内的前景也是十分广阔的。
目前,世界上许多国家和地区已经开始建设和应用高压直流输电项目,如中国、欧洲、北美等地。
由于高压直流输电技术的优势和应用前景,预计未来将会有更多的国家和地区加入到高压直流输电技术的发展队伍中来。
在发展中,高压直流输电技术还将与其他新能源技术相结合,形成一个更加完善和高效的能源网络。
2024年高压直流电源市场分析现状
![2024年高压直流电源市场分析现状](https://img.taocdn.com/s3/m/9557129251e2524de518964bcf84b9d528ea2cc3.png)
2024年高压直流电源市场分析现状1. 引言高压直流(High Voltage Direct Current,HVDC)电源是一种能够进行高电压直流输出的电力设备。
随着能源需求增长和可再生能源的推广,高压直流电源市场正在经历快速发展。
本文将对高压直流电源市场的现状进行分析,包括市场规模、主要参与者、发展趋势等。
2. 市场规模目前,全球高压直流电源市场规模不断扩大,预计在未来几年内将持续增长。
根据市场研究公司的数据,2019年全球高压直流电源市场规模已经超过XX亿美元,并预计到2025年将达到XX亿美元。
这表明高压直流电源市场具有巨大的潜力和增长空间。
3. 主要参与者在高压直流电源市场中,存在着多个主要参与者,包括制造商、供应商和服务提供商。
以下是其中一些重要的参与者:•A公司:作为市场领导者之一,A公司在高压直流电源领域积累了丰富的经验和技术。
该公司的产品具有高品质和可靠性,并且在市场上有着较高的市场份额。
•B公司:B公司是一家新兴的高压直流电源制造商,其产品创新和竞争力逐渐得到市场的认可。
该公司注重研发和设计,不断推出新的产品来满足市场需求。
•C公司:C公司是一家专注于高压直流电源的供应商,提供优质的产品和配套服务。
该公司与多家制造商合作,为客户提供全方位的解决方案。
4. 市场驱动因素高压直流电源市场的增长得益于多个市场驱动因素。
其中一些重要因素包括:•可再生能源发展:随着可再生能源如风能和太阳能的快速发展,高压直流电源在能源输送和分配中的重要性日益凸显。
•能源互联网需求:能源互联网的构建需要高效、可靠的能源输送系统,高压直流电源作为关键技术之一,受到了广泛的关注和采用。
•电气化进程加快:随着工业化和城市化进程的不断加快,对电力的需求日益增长。
高压直流电源在远距离输电和电力质量调节方面具有独特的优势,因而受到追捧。
5. 市场发展趋势高压直流电源市场的发展呈现出一些明显的趋势:•技术创新:随着科技进步和市场需求的变化,高压直流电源技术将不断创新和演进。
特高压直流输电技术现状及在我国的应用前景
![特高压直流输电技术现状及在我国的应用前景](https://img.taocdn.com/s3/m/03faeec185868762caaedd3383c4bb4cf7ecb79c.png)
近年来,特高压直流输电技术取得了丰硕的研究成果。在理论成果方面,研 究者们针对特高压直流输电系统的运行特性、稳定性分析、优化控制等方面进行 了深入探讨,提出了一系列新的理论和方法。在应用实践方面,特高压直流输电 技术已经在国内外多条电力工程中得到了广泛应用,如中国的三峡工程、巴西的 美丽山二期工程等,取得了良好的运行效果和社会效益。
特高压直流输电技术现状及在我国 的应用前景
目录
01 一、特高压直流输电 技术现状
02
二、特高压直流输电 技术特点
03
三、特高压直流输电 技术应用前景
04 四、特高压直流输电 技术在我国的应用
05 五、结论
06 参考内容
随着全球能源结构的调整和电力市场的不断发展,特高压直流输电技术成为 了电力行业的重要研究方向。特高压直流输电具有输电距离远、容量大、损耗低 等特点,对于实现能源资源的优化配置和能源供应的安全性、可靠性具有重要意 义。本次演示将介绍特高压直流输电技术的现状及在我国的应用前景。
二、特高压直流输电技术特点
特高压直流输电技术具有以下特点:
1、输电距离远:特高压直流输电的电压等级较高,一般为1000kV及以上, 使得电能能够远距离传输,大大扩展了电力系统的覆盖范围。
2、容量大:特高压直流输电工程的输送容量较大,一般在1000万至2000万 千瓦之间,甚至更高,使得大规模能源资源的优化配置成为可能。
1、能源传输:特高压直流输电技术的远距离输送特点使得不同地区的能源 资源能够得到优化配置。例如,可将中西部地区的丰富能源通过特高压直流输电 线路输送到东部地区,满足东部地区经济社会发展的紧急救援:在自然灾害或其他紧急情况下,特高压直流输电技术可以迅 速恢复受灾地区的电力供应。例如,通过特高压直流输电线路向受灾地区输送电 力资源,保障灾区人民的基本生活需求和应急救援工作的正常进行。
国内外特高压输电技术发展研究报告
![国内外特高压输电技术发展研究报告](https://img.taocdn.com/s3/m/05230e8d8ad63186bceb19e8b8f67c1cfbd6ee7f.png)
国内外特高压输电技术发展研究报告特高压输电技术是指输电线路使用电压达到800千伏及以上的一种输电技术。
特高压输电技术具有输电损耗小、环境影响小、输电容量大等优点,被广泛应用于国内外的输电线路建设中。
本文将重点研究特高压输电技术的发展情况,并对其现状和未来的发展趋势进行分析。
首先,特高压输电技术在国内的发展情况。
作为人口和经济实力世界第一的国家,中国需要大量的电能来满足其发展需求。
特高压输电技术的应用能够有效提高输电效率,降低输电损耗。
自2024年开始,中国电力公司陆续建设了一系列特高压输电线路,包括了国内首条800千伏特高压直流输电线路和首条1000千伏特高压交流输电线路。
这些特高压输电线路的建设为中国的电力供应提供了强大的支持,同时也带来了一系列的技术创新和标准制定。
其次,特高压输电技术在国外的发展情况。
国外一些发达国家也开始使用特高压输电技术来提高电力供应的可靠性和稳定性。
例如,欧洲国家在跨国输电方面已经建设了一些特高压输电线路,通过这些线路可以实现电力互联互通,提高整个欧洲地区的供电能力。
另外,巴西、印度等发展中国家也开始考虑使用特高压输电技术来满足其日益增长的电力需求。
最后,对特高压输电技术的未来发展进行展望。
随着社会对电力需求的不断增长,特高压输电技术将继续得到广泛应用并不断发展壮大。
未来,特高压输电线路的建设将更加规模化和系统化,技术上也将更加成熟和稳定。
另外,特高压输电技术还将与其他新兴技术相结合,例如可再生能源发电和电力储能技术,以进一步提高电力供应的可持续性和可靠性。
总之,特高压输电技术的发展对于满足国内外的电力需求具有重要意义。
通过对其发展情况的分析,我们可以清楚地认识到特高压输电技术在电力输送方面的优势,并对其未来的发展趋势进行合理预测。
希望本文能够为特高压输电技术的研究和应用提供一定的参考。
特高压直流输电技术现状及在我国的应用前景
![特高压直流输电技术现状及在我国的应用前景](https://img.taocdn.com/s3/m/7cc234ca8662caaedd3383c4bb4cf7ec4afeb6c6.png)
特高压直流输电技术现状及在我国的应用前景一、本文概述随着全球能源互联网的构建和我国能源结构的转型,特高压直流输电技术作为一种高效、远距离的电力传输方式,在我国能源战略中扮演着越来越重要的角色。
本文旨在全面概述特高压直流输电技术的现状,包括其技术原理、发展历程、主要优势及存在的问题,并深入分析该技术在我国的应用前景。
我们将探讨特高压直流输电在解决能源分布不均、优化能源结构、提高能源利用效率以及推动新能源发展等方面的应用潜力,以期为我国能源互联网的建设和可持续发展提供有益的参考。
二、特高压直流输电技术的现状特高压直流输电技术是目前全球范围内最为先进的输电技术之一,其在全球范围内的研究和应用日益广泛。
在我国,特高压直流输电技术的发展更是取得了举世瞩目的成就。
目前,我国已经建成了多条特高压直流输电线路,包括±800千伏、±1100千伏等多个电压等级,总输电容量和输电距离均处于世界领先地位。
技术成熟度高:经过多年的研究和实践,特高压直流输电技术已经形成了完整的技术体系和成熟的技术路线,为我国电力工业的发展提供了强大的技术支持。
设备国产化率高:我国在特高压直流输电设备的研发和生产方面已经取得了重要突破,国产化率不断提升,有效降低了建设和运维成本,提高了电网的安全性和稳定性。
运行经验丰富:我国特高压直流输电线路已经稳定运行多年,积累了丰富的运行经验。
通过对运行过程中出现的各种问题和故障进行及时的分析和处理,不断完善和优化输电系统的运行策略,确保了电网的安全稳定运行。
应用范围广泛:特高压直流输电技术的应用范围涵盖了远距离大容量输电、跨区电网互联、新能源接入等多个领域,为我国能源结构的优化和电力市场的开放提供了有力支撑。
特高压直流输电技术在我国已经取得了显著的进展和成果,为我国电力工业的发展注入了强大的动力。
未来,随着新能源的快速发展和电力市场的逐步开放,特高压直流输电技术将在我国发挥更加重要的作用。
高压直流输电的发展现状及趋势
![高压直流输电的发展现状及趋势](https://img.taocdn.com/s3/m/ff04eb4af02d2af90242a8956bec0975f565a46e.png)
高压直流输电的发展现状及趋势
高压直流输电(High Voltage Direct Current Transmission, HVDC)是一种将电能以直流形式传输的技术,相对于传统的
交流输电,具有较低的电能损耗和较远的传输距离等优势。
近年来,高压直流输电技术在发展和应用方面取得了显著进展。
在发展方面,高压直流输电技术的可靠性和效率得到了不断提升。
通过改进电子器件、提高直流转换效率以及优化系统控制技术等手段,高压直流输电系统的能耗和故障率得到了降低。
目前,高压直流输电技术已经广泛应用于大型跨国跨区域的电力传输项目,如我国的长江三峡-上海±800千伏特高压直流输
电工程。
另外,高压直流输电技术还在与其他新兴技术的融合中不断发展。
例如,将高压直流输电技术与可再生能源(如风能、太阳能)相结合,可以实现远程大规模可再生能源的传输和利用。
同时,高压直流输电技术还可以与电能存储技术(如蓄电池、超级电容器)相结合,构建灵活的电力系统,提高能源利用效率。
未来,高压直流输电技术将继续发展并趋向成熟。
一方面,随着可再生能源的快速发展和普及,对于长距离大容量电力传输的需求将不断增加,高压直流输电将成为主要的电力传输方式。
另一方面,随着电动汽车、数据中心等领域对电力质量和电能传输稳定性要求的提高,高压直流输电技术将得到更广泛的应用。
高压直流输电技术在发展中不断突破和成熟,在跨区域大容量电力传输、可再生能源利用等方面具有潜力和广阔的应用前景。
随着技术的不断创新和完善,高压直流输电技术将在未来发展中发挥更大的作用。
2023年高压直流输电系统(HVDC系统)行业市场分析现状
![2023年高压直流输电系统(HVDC系统)行业市场分析现状](https://img.taocdn.com/s3/m/cb239db982d049649b6648d7c1c708a1284a0a3f.png)
2023年高压直流输电系统(HVDC系统)行业市场分析现状高压直流输电系统(HVDC系统)是一种在长距离输电中具有重要优势的电力传输技术。
相比传统的交流输电系统,HVDC系统具有更低的输电损耗、更高的传输效率和更大的输电距离等优点。
目前,全球范围内的HVDC系统市场呈现出良好的增长势头。
据市场研究机构的数据,HVDC系统市场规模预计将以每年约10%的复合增长率增长。
这主要受到了以下几个因素的影响:首先,电力需求的增长是推动HVDC系统市场增长的主要因素之一。
随着经济的发展和人口的增加,对电力的需求持续增长,尤其是在人口稠密的城市地区。
HVDC系统具有较高的输电能力和稳定性,被广泛用于满足城市和大型工业区域的电力需求。
其次,可再生能源的快速发展对HVDC系统市场产生了积极影响。
随着可再生能源的不断发展,如太阳能和风能等,HVDC系统成为将可再生能源从生产地输送到消费地的重要工具。
HVDC系统可以实现远距离的可再生能源输送,并将其接入主电网,为可再生能源的发展提供了便利。
此外,区域间电力交互的需求也推动了HVDC系统市场的增长。
相邻国家和地区之间的电力交互可以实现资源共享和能源互补,提高能源利用效率。
HVDC系统具有高电压、大容量和长距离输电的能力,成为实现区域间电力交互的最佳选择。
然而,HVDC系统市场也面临着一些挑战和限制。
首先,HVDC系统的建设成本相对较高。
由于HVDC系统的技术复杂性和运营要求较高,其建设和运维成本较高,这可能限制了一些发展中国家和地区的采用。
此外,与传统交流输电系统相比,HVDC系统在目前的应用中还相对较少。
传统交流输电系统已经在全球范围内建立了庞大的基础设施和运行经验,而HVDC系统的应用还相对较新,需要更多的技术和管理创新来推动其进一步发展。
尽管面临一些挑战,HVDC系统市场的前景仍然非常广阔。
随着能源需求的增长和可再生能源的快速发展,HVDC系统将成为实现电力供应的重要技术手段。
国内外高压直流输电的发展与现状
![国内外高压直流输电的发展与现状](https://img.taocdn.com/s3/m/522a68d0551810a6f524865b.png)
1 我国高压直流输电系统的发展历程及现状1.1 我国高压直流输电系统的发展历程我国的高压直流输电工程总体上可以说是起步较晚, 但发展迅速。
1980 年国家确定全部依靠自己力量建设中国第一项直流输电工程———舟山直流输电工程。
它具有向自主建设大型直流输电工程过渡的工业性试验性质,于1984 年开始施工, 1987 年投入试运行, 1989 年正式投运。
工程最终规模为±1 100 kV, 500 A, 100 MW, 线路全长54 km。
嗓泅直流输电工程( 上海―嗓泅岛) 是我国自行设计、制造、建设的双极海底电缆直流工程, 于1996 年完成研究工作, 2002 年全部建成。
工程为双极±500 kV,600 A, 60 MW, 可双向供电, 线路长度66.2 km, 其中海底电缆59.7 km。
葛南( 葛洲坝―上海南桥) 高压直流输电系统, 是我国引进的第一个高压直流输电工程, 1989 年单极投运, 1990 年双极投运。
进入21 世纪, 我国的高压直流输电发展迅速, 相继建成投产了天广( 天生桥―广州) 、三常( 三峡―常州) 、三广( 三峡―广东) 和贵广( 贵州―广东) 等多项高压直流输电项目。
作为引进技术的验证, 自主研发设计制造的华中―西北联网灵宝背背直流工程, 2005 年7 月投入运行。
1.2 我国高压直流输电系统的现状至2004 年末, 我国高压直流输电工程累计输送容量达12 470 MW, 输电线路长度累计达4 840 km, 已经超过美国位列世界第一。
截至2007 年年底, 我国已建成并正式投入运行葛( 洲坝) 沪( 上海) 、三( 峡) 常( 州) 、三( 峡) 广( 东) 、三( 峡) 沪( 上海) 、天( 天生桥) 广( 东) 、贵( 州) 广( 东) Ⅰ回、Ⅱ回等7 个超高压直流输电工程和灵宝背靠背直流工程, 直流输电线路总长度达7 085 km, 输送容量达18 560 MW, 线路总长度和输送容量均居世界第一。
高压直流输电技术的研究现状
![高压直流输电技术的研究现状](https://img.taocdn.com/s3/m/beba275077c66137ee06eff9aef8941ea76e4bf9.png)
高压直流输电技术的研究现状在当今全球能源格局和电力需求不断变化的背景下,高压直流输电技术作为一种高效、可靠的电力传输方式,正经历着快速的发展和广泛的应用。
高压直流输电技术能够实现远距离、大容量的电力输送,对于优化能源资源配置、促进区域经济协调发展具有重要意义。
高压直流输电技术的基本原理是通过换流器将交流电转换为直流电进行传输,在接收端再通过换流器将直流电转换为交流电。
与传统的交流输电技术相比,高压直流输电具有许多显著的优势。
首先,在远距离输电方面,高压直流输电的线路损耗相对较低。
由于直流电没有电感和电容的影响,电流在导线中的分布更加均匀,从而减少了能量的损失。
这使得高压直流输电在跨越数千公里的输电距离时,仍然能够保持较高的输电效率。
其次,高压直流输电能够实现不同频率交流电网的互联。
在一些地区,由于历史原因或特殊需求,存在着不同频率的交流电网。
通过高压直流输电技术,可以将这些电网有效地连接起来,实现电力的互补和优化调配。
再者,高压直流输电对于提高电网的稳定性和可靠性也发挥着重要作用。
在交流电网中,故障容易迅速传播和扩散,而直流输电系统可以通过控制策略快速隔离故障,减少对整个电网的影响。
在高压直流输电技术的发展过程中,换流器技术的不断进步是关键之一。
早期的汞弧阀换流器由于存在诸多缺点,已经被淘汰。
目前,主流的换流器技术包括基于晶闸管的相控换流器(LCC)和基于全控型电力电子器件的电压源换流器(VSC)。
LCC 技术相对成熟,具有大容量、高效率的特点,但存在换相失败的风险,且对无功功率的需求较大。
VSC 技术则具有能够独立控制有功和无功功率、不存在换相失败问题、能够向无源网络供电等优点。
然而,VSC 技术在容量和成本方面目前还存在一定的局限性。
为了提高高压直流输电系统的性能,直流输电线路的设计和绝缘技术也在不断改进。
新型的架空输电线路和电缆技术能够降低线路的电阻和电晕损耗,提高输电容量和可靠性。
同时,对于直流线路的绝缘配合和防雷保护等方面的研究也在不断深入,以确保输电线路在复杂环境下的安全稳定运行。
高压直流输电技术的现状与发展
![高压直流输电技术的现状与发展](https://img.taocdn.com/s3/m/05fdb31d580102020740be1e650e52ea5518ce2f.png)
高压直流输电技术的现状与发展近年来,随着社会的不断发展,电气化水平越来越高,能源的需求量也不断增加。
而高压直流输电技术在能源传输领域中扮演着至关重要的角色。
本文将探讨高压直流输电技术的现状与发展,以期为大家带来更全面的了解。
一、高压直流输电技术的现状高压直流输电技术是指利用变流器将交流电转换为直流电,通过特殊的高压直流输电线路进行输电的技术。
相比较于传统的交流输电技术,它具有传输距离远、电能损失小、线路占地面积小等优点。
因此,在碳减排和能源保障等方面具有重要而广阔的应用前景。
目前,世界上已经有多个国家和地区采用了高压直流输电技术。
欧洲、北美、亚洲及澳大利亚等地区都拥有大型的高压直流输电工程。
比如,韩国的“KSGC”工程、英国的“Nemo Link”工程、中国的“西电东送”工程以及巴西的“北环亚地区国际直流输电工程”等。
众所周知,电力输送距离越远,损耗也就越大。
因此,通过高压直流输电技术,可以解决远距离输电时的问题,在能源传输领域中具有不可替代的作用。
二、高压直流输电技术的发展趋势高压直流输电技术目前面临的挑战包括电压水平的提高、设备效率的提升、输电距离的增加以及设备占地面积的压缩等方面。
因此,近年来,高压直流输电技术的发展趋势主要集中在以下几个方面:1. 提高电压水平电压水平的提高可以在保持输电容量不变的前提下,降低输电线路的损耗。
近年来,不断有新的材料和技术的应用,使高压直流输电的电压水平不断提高。
在全球范围内,已经有1100kV、1200kV级别的高压直流输电线路运行,未来将有更高压级的线路投入使用,打破电压水平的瓶颈。
2. 提高设备效率不断提高高压直流输电变流器的转换效率是发展的必然趋势。
目前,高压直流输电变流器效率已经超过了98%,而且还有望进一步提高。
效率的提高可以更好地降低设备运行成本,使高压直流输电技术更加具有可持续的发展前景。
3. 增加输电距离高压直流输电技术面临的最大困难之一是输电距离的限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国内外高压直流输电的发展与现状1.1 我国高压直流输电系统的进展历程我国的高压直流输电工程总体上能够讲是起步较晚, 但进展迅速。
198 0 年国家确定全部依靠自己力量建设中国第一项直流输电工程———舟山直流输电工程。
它具有向自主建设大型直流输电工程过渡的工业性试验性质,于1984 年开始施工, 1987 年投入试运行, 1989 年正式投运。
工程最终规模为±1 100 kV, 500 A, 100 MW, 线路全长54 km。
嗓泅直流输电工程( 上海―嗓泅岛) 是我国自行设计、制造、建设的双极海底电缆直流工程, 于1996 年完成研究工作, 2002 年全部建成。
工程为双极±500 kV,600 A, 60 MW, 可双向供电, 线路长度66.2 km, 其中海底电缆59.7 km。
葛南( 葛洲坝―上海南桥) 高压直流输电系统, 是我国引进的第一个高压直流输电工程, 1989 年单极投运, 1990 年双极投运。
进入21 世纪, 我国的高压直流输电进展迅速, 相继建成投产了天广( 天生桥―广州) 、三常( 三峡―常州) 、三广( 三峡―广东)和贵广( 贵州―广东) 等多项高压直流输电项目。
作为引进技术的验证, 自主研发设计制造的华中―西北联网灵宝背背直流工程, 2005 年7 月投入运行。
1.2 我国高压直流输电系统的现状至2004 年末, 我国高压直流输电工程累计输送容量达12 470 MW, 输电线路长度累计达4 840 km, 差不多超过美国位列世界第一。
截至2007年年底, 我国已建成并正式投入运行葛( 洲坝) 沪( 上海) 、三( 峡) 常( 州) 、三( 峡) 广( 东) 、三( 峡) 沪( 上海) 、天( 天生桥) 广( 东) 、贵( 州) 广( 东) Ⅰ回、Ⅱ回等7 个超高压直流输电工程和灵宝背靠背直流工程,直流输电线路总长度达7 085 km, 输送容量达18 560 MW, 线路总长度和输送容量均居世界第一。
与此同时, 我国超高压直流输电工程的设计建设、运行治理和设备制造水平也处于国际领先地位。
2 高压直流输电系统中存在的咨询题2.1 直流输电中的谐波咨询题工频的交变电流在换流站中的整流和逆变过程中, 实际上输出的波形并不是稳固的直流, 而是有些许波动的脉动电流。
再加上换相的非理想性, 使得输出电流进一步畸变。
这些缘故促成了直流输电系统中谐波的存在。
随着高压直流输电的进展, 有关的谐波咨询题也日益突出。
输电系统中的换流器在交流侧为谐波电流源,在直流侧为谐波电压源。
严峻的情形下, 可能还会引起谐波放大甚至谐波不稳固, 即交直流侧电压、电流通过换流站非线性环节时互相调制, 构成了一个AC/DC 之间的正反馈调剂环。
受到扰动时, 就会造成谐波振荡的放大, 其结果确实是换流站交流母线电压严峻畸变。
现在要紧通过小信号分析法、谐波特点值分析法、频域分析和传递函数法、时域仿真―频率扫描法等来进行研究。
一样通过加装非特点滤波器、使用有源滤波器、附加谐波阻尼电路或者是采纳轻型直流输电技术来抑制谐波。
2.2 高压直流断路器的制造目前我国的直流输电系统中, 高压直流断路器的制造技术还不成熟,多数需要进口。
研制高压断路器的难点在于: ( 1) 直流电没有像交流电那样的过零点, 因此灭弧的技术专门困难; ( 2) 直流回路的电感专门大, 因此需要的平波电抗器专门大, 约1H,这在工艺上做起来不容易; ( 3) 由于灭弧时的直流电流专门大, 故要求断路器能够吸取专门大的能量。
在实际的生产当中, 利用大容量金属氧化物这种新型材料能够较好地解决后2 个咨询题。
但灭弧仍旧不是专门理想, 一样采纳叠加振荡电流和耗能限流2 种方式来实现。
后者较为普及, 一样采纳分段串入电阻、拉长电弧和采纳金属氧化物耗能。
2.3 大地回流造成的接地体腐蚀及对交流系统的阻碍直流输电过程是以大地作为回流电路的。
回流流经大地时, 会与邻近的金属接地体发生化学反应, 腐蚀掉金属。
例如关于铁而言, 就会发生如下的化学反应:阳极: Fe2++2OH-=Fe(OH) 2阴极: 2e-+2H+=H2经研究表明: ( 1) 接地体深埋并可不能明显地减小腐蚀, 同时这种做法在经济上是不合适的; ( 2) 金属接地体与直流接地极之间的距离会明显阻碍腐蚀的程度,当两者相距10 km 以外时, 腐蚀阻碍即可忽略不计;( 3) 在相同的距离条件下, 金属接地体的走向会阻碍腐蚀的程度, 一样垂直走向的接地体受腐蚀阻碍比平行走向的接地体大。
同时, 强大的直流电流将经接地极注入大地, 在极址土壤中形成一个恒定的直流电流场。
现在如果极址邻近有变压器中性点接地的变电站、地下金属管道或铠装电缆等金属设施, 若这些设施可能给地电流提供比大地土壤更为良好的导电通道, 则一部分电流将沿着并通过这些设施流向远方, 从而给这些设施带来不良阻碍。
其中, 中性点直截了当接地变压器是受阻碍最大的设备。
我国110 kV 及以上系统的变压器中性点, 一样都采纳直截了当接地点式。
如变电站位于接地极电流场范畴内, 那么在场内变压器间会产生电位差, 接地极入地电流将有部分直流电流会通过大地、交流输电线路, 由一个变电站变压器中性点流入, 在另一个变电站变压器中性点流出, 由此在变压器三相绕组中产生直流重量,产生直流偏磁电流。
流过变压器绕组的直流电流大小不仅与接地极的距离有关, 同时与极址土壤导电性能、电网接线和参数等有关。
如果流过变压器绕组的直流电流较大, 可能引起变压器铁心磁饱和, 导致变压器噪音增加、损耗增大、温升增高, 对变压器的安全运行构成威逼。
变压器发生直流偏磁后, 使磁化曲线的运行部分变得不对称, 加大铁心的饱和程度, 导致噪音增大和变压器铁心、金属紧固件等的发热增加。
2.4 直流输电系统电磁环境对通信系统的阻碍由于直流线路强大的直流电流, 在其周围也就存在着专门强的干扰磁场。
如此的磁场将阻碍到邻近通信线路的正常运行。
一样可把直流电磁阻碍分为危险阻碍和干扰阻碍。
危险阻碍即指当直流输电线路发生故障时, 有可能在邻近的通信线路上感应出专门高的电压,危及人员生命安全和通信设备安全; 干扰阻碍即指在直流输电线路正常运行的情形下对通信产生阻碍, 使其通信质量下降, 误码率提升。
因此, 在建设直流输电线路时要注意以下几点: 第一是和通信线路保持合适的距离; 其次是在线路上安装陶瓷放电管或是加挂屏蔽线路; 最后是关于市话电路来讲, 可在分线箱、配电箱处加装放电器。
3 对我国高压直流输电工程的几点方法3.1 换流站站址选择及接地极极址选择换流站可谓是高压直流输电工程的核心建设项目, 合理选择换流站站址是确保高压直流输电系统稳固运行的基础。
选址原则一样为: ( 1) 是否适合大规模设备运输; ( 2) 是否靠近水源或者易获得充足的水源供应; ( 3) 是否会破坏生态环境, 其电磁阻碍会可不能对周边通信线路产生较大的干扰阻碍。
而关于接地极来讲, 选址原则一样为: ( 1) 要求极址场地的可用面积大、土壤导电性能好、导热性能好、热容率高、表层土壤厚和深层大地电阻率低; ( 2) 若2个或多个接地极处于同一地区内, 应对2 个甚至多个接地极共用极址方案进行论证。
3.2 线路路径的选择走廊宽度: 要紧是合理选择与通信线路以及交流输电线路之间的距离,尽可能地减小干扰, 使得线路中心线与其他设备有良好的隔离。
一样关于±500 kV 直流输电系统, 要求走廊宽度不小于50 m。
对地距离及交叉跨过间距: 确定导线对地最小距离的决定因素是合成场强和离子流密度。
一样为了安全起见, 对地距离保持在17~20 m。
当高压直流线路与铁路、公路、弱电线路、电力线路、建筑物及河流等交叉时, 交叉跨过间距均有较大增加。
由于对地距离及交叉跨过间距的增大, 在路径选择时, 应充分利用地势条件, 以缩短交叉跨过档距, 减小交叉跨过塔高度, 尽量幸免大档距、大高差及大跨过的显现。
3.3 如何应对突发性大雪灾等恶劣气象条件2008 年春节期间, 全国大范畴的雪灾天气使我国电网经受了一次较大的考查。
电网在冰雪天气下停运会造成庞大的经济缺失。
鉴于这场大雪的教训, 我们在设计高压直流输电工程时, 也应考虑到这种极端气象条件下电网的稳固运行咨询题。
其中一点确实是导线的选择。
导线选择是解决特高压输电关键技术的重要课题, 对线路输送容量、传输特性、环境咨询题( 静电感应,电晕引发的电场效应、离子流、无线电干扰、电视干扰、可听噪声等) 、技术经济指标等都专门有阻碍。
一样选线原则应为: ( 1) 不能制约整条线路的传输能力; ( 2) 要有较高的机械强度和过载能力; ( 3) 铝导线在冰荷载下的安全系数要高, 以防止重冰区线路过荷载时断股; ( 4)弧垂特性要好, 以降低杆塔高度; ( 5) 满足环境参数要求。
4 终止语目前世界上已投入运行的直流输电工程有70 多个。
在远距离大容量输电、海底电缆和地下电缆输电以及电力系统非同步联网工程中, 直流输电差不多得到了广泛应用。
2007 年10 月, 在湖北省宜昌市召开的第八届国际高压直流输电用户会议上, 国家电网公司副总经理舒印彪介绍, 按照规划, 到2012 年, ±800 kV 向家坝—上海、锦屏—苏南直流工程将建成投运; 到2020 年前后, 溪洛渡—株洲、溪洛渡—浙西等特高压直流工程也将建成。
届时, 我国将建成特高压直流工程15 个, 包括特高压直流换流站约30 座, 线路约26 000 km, 输送容量达到94 400 MW, 并成为世界上拥有直流输电工程最多、输送线路最长、容量最大的国家。