直流数字电压表的课程设计

合集下载

数字电压表的课程设计

数字电压表的课程设计

数字电压表设计报告一、设计目的作用数字电压表的基本原理,是对直流电压进行模数转换,其结果用数字直接显示出来,按其基本工作原理可分为积分式和比较式两大类。

熟悉集成电路MC14433,MC1413,CD4511和MC1403的使用方法,并掌握其工作原理。

二、设计要求(1).设计数字电压表电路(2).测量范围:直流电压0V-1.999V,0V-19.99V,0V-199.9V,0V-1999V; (3).画出数字电压表电路原理图,写出总结报告。

三、设计的具体实现(一)、系统概述数字电压表是将被测模拟量转换为数字量,并进行实时数字显示的数字系统。

该系统(如图1所示)可由MC14433--321位A/D 转换器、MC1413七路达林顿驱动器阵列、CD4511 BCD 到七段锁存-译码-驱动器、能隙基准电源MC1403和共阴极LED 发光数码管组成。

本系统是321位数字电压表,321位是指十进制数0000~1999,所谓3位是指个位、十位、百位,其数字范围均为0~9。

而所谓半位是指千位数,它不能从0变化到9,而只能由0变到1,即二值状态,所以成为半位。

各部件的功能如下:(1)321A/D 转换器:将输入的模拟信号转换成数字信号。

(2)基准电源:提供精密电压,供A/D 转换器作参考电压。

(3)译码器:将二-十进制(BCD )码转换成七段信号。

(4)驱动器:驱动显示器的a,b,c,d,e,f,g 七个发光段,推动发光数码管(LED )进行显示。

(5)显示器:将译码器输出的七段信号进行数字显示,读出A/D 转换结果。

图 1工作过程如下:321数字电压表通过位选信号DS 1~DS 4进行动态扫描显示,由于MC14433电路的A/D 转换结果是采用BCD 码多路调制方法输出,只要配上一块译码器,就可以将转换结果以数字方式实现四位数字的LED 发光数码管动态扫描显示。

DS 1~DS 4输出多路调制选通脉冲信号,DS 选通脉冲为高电平,则表示对应的数位被选通,此时该位数据在Q 0~Q 3端输出。

52数字电压表课程设计

52数字电压表课程设计

52数字电压表课程设计一、教学目标本节课的学习目标主要包括以下三个方面:1.知识目标:学生需要掌握数字电压表的基本原理、工作方式、使用方法等,能够理解并描述数字电压表的内部结构和外部接线方式。

2.技能目标:学生能够熟练使用数字电压表进行电压测量,能够正确读取和理解测量结果,能够根据测量需求选择合适的量程和分辨率。

3.情感态度价值观目标:学生能够认识到数字电压表在工程实际和科学研究中的重要性,培养学生的实践能力和创新精神,激发学生对电子测量技术的兴趣。

二、教学内容本节课的教学内容主要包括以下几个部分:1.数字电压表的基本原理:介绍数字电压表的工作原理,包括模拟量转换为数字量的过程,以及数字电压表的显示原理。

2.数字电压表的内部结构:介绍数字电压表的内部组成部分,包括放大器、滤波器、A/D转换器、显示器等。

3.数字电压表的外部接线方式:介绍数字电压表的接线方法,包括直流电压测量和交流电压测量的接线方式。

4.数字电压表的使用方法:介绍数字电压表的使用步骤,包括开机关机、量程选择、分辨率设置、测量结果读取等。

5.数字电压表的测量误差分析:分析数字电压表的测量误差来源,包括仪器误差、环境干扰等。

三、教学方法为了达到本节课的教学目标,我们将采用以下几种教学方法:1.讲授法:通过教师的讲解,使学生掌握数字电压表的基本原理和内部结构。

2.讨论法:通过分组讨论,让学生探讨数字电压表的使用方法和测量误差分析。

3.实验法:让学生动手操作数字电压表,进行实际测量,增强学生的实践能力。

4.案例分析法:通过分析实际案例,使学生了解数字电压表在工程实际中的应用。

四、教学资源为了支持本节课的教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:选用《电子测量技术》作为主要教材,为学生提供理论知识的系统学习。

2.参考书:推荐《数字电压表设计与应用》等参考书籍,为学生提供更多的学习资料。

3.多媒体资料:制作课件和教学视频,直观展示数字电压表的内部结构和操作方法。

单片机课程设计_数字电压表

单片机课程设计_数字电压表

单片机系统课程设计成绩评定表设计课题:数字电压表学院名称:电气工程学院专业班级:学生姓名:学号:指导教师:设计地点:设计时间:单片机系统课程设计课程设计名称:数字电压表专业班级:学生姓名:学号:指导教师:课程设计地点:课程设计时间:单片机系统课程设计任务书目录一、引言 (4)二、整体方案设计 (4)2.1设计要求 (4)2.2 设计思路 (5)2.3 设计方案 (5)三、硬件电路设计 (5)3、1单片机 (5)3、3复位电路 (8)3、4 A/D转换电路 (9)3、5显示电路 (10)四、软件设计 (13)4、1初始化 (13)4、2 A/D转换子程序 (13)4、3显示子程序 (14)五、总结 (14)参考文献: (15)附录A: (16)附录B (17)一、引言随着微电子技术的不断发展,微处理器芯片的集成程度越来越高,单片机已可以在一块芯片上同时集成CPU、存储器、定时器/计数电路,这就很容易将计算机技术与测量控制技术结合,组成智能化测量控制系统。

数字电压表(DigitalV oltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表,因此AD转换是此次设计的核心元件。

该系统的数字电压表电路简单,所用的元件较少,可靠性高。

此数字电压表可以测量0-5V的模拟直流输入电压值,并通过一个四位一体的七段数码管显示出来。

本设计AT89C51单片机的一种电压测量电路,该电路采用ADC0808本文介绍一种基于A/D转换电路,测量范围直流0~5V 的4路输入电压值,并在四位LED数码管上显示或单路选择显示。

测量最小分辨率为0.019V,测量误差约为正负0.02V。

、关键词单片机;数字电压表;A/D转换;AT89C51;ADC0808二、整体方案设计2.1设计要求⑴以MCS-51系列单片机为核心器件,组成一个简单的直流数字电压表。

⑵采用1路模拟量输入,能够测量0-5V之间的直流电压值。

简易数字直流电压表的设计--单片机课程设计

简易数字直流电压表的设计--单片机课程设计

1、前言数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。

传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。

目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。

与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。

本章重点介绍单片A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原理。

2 、系统原理及基本框图如图2.1所示,模拟电压经过档位Array切换到不同的分压电路衰减后,经隔离干扰送到A/D转换器进行A/D转换,然后送到单片机中进行数据处理。

处理后的数据送到LED中显示。

图2.1系统基本方框图3、硬件设计3.1 、电源电路图 3.1 电源电路原理图3.2 、A/D 转换电路A/D 转换器的转换精度对测量电路极其重要,它的参数关系到测量电路性能。

本设计采用A/D 转换器,它的性能比较稳定,转换精度高,具有很高的抗干扰能力,电路结构简单,其缺点是工作速度较低。

在对转换精度要求较高,而对转换速度要求不高的场合如电压测量有广泛的应用。

图3.2.1 A/D 转换器图3.2.2双积A/D 转换器的波形图如图所示:对输入模拟电压和基准电压进行两次积分,先对输入模拟电压进行积分,将其变换成与输入模拟电压成正比的时间间隔 T1,再利用计数器测出此时间间隔,则计数器所计的数字量就正比于输入的模拟电压;接着对基准电压进行同样的处理。

在常用的A/D转换芯片(如ADC -0809、ICL7135、ICL7109 等)中,ICL7135与其余几种有所不同,它是一种四位半的A/D转换器,具有精度高(精度相当于14位二进制数)、价格低廉、抗干扰能力强等优点。

(最新版)简易数字直流电压表的设计毕业毕业课程设计

(最新版)简易数字直流电压表的设计毕业毕业课程设计

(最新版)简易数字直流电压表的设计毕业毕业课程设计目录第1章绪论 (3)第2章设计总体方案 (4)2.1设计要求 (4)2.2 设计思路 (4)2.3 设计方案 (4)第3章硬件电路设计 (5)3.1 AD转换模块 (5)3.1.1 逐次逼近型AD转换器原理 (5)3.1.2 ADC0808 主要特性 (6)3.1.3ADC0808的外部引脚特征 (6)3.1.4 ADC0808的内部结构及工作流程 (7)3.2 单片机系统 (9)3.2.1 AT89C51性能 (9)3.2.2 AT89C51各引脚功能 (9)3.3 复位电路和时钟电路 (10)3.3.1 复位电路设计 (10)3.3.2 时钟电路设计 (11)3.4 LED显示系统设计 (12)3.4.1 LED基本结构 (12)3.4.2 LED显示器的选择 (12)3.4.3 LED译码方式 (13)3.4.4 LED显示器与单片机接口设计 (14)3.5 总体电路设计 (14)第4章程序设计 (16)4.1 程序设计总方案 (16)4.2 系统子程序设计 (16)4.2.1 初始化程序 (16)4.2.2 AD转换子程序 (16)4.2.3 显示子程序 (17)4.2.4程序代码 (17)第5章总结 (20)参考文献 (21)致谢 (22)第1章绪论什么是数字电压表?数字电压表就是采用数字化技术,把需要测量的直流电压转换成数字形式,并显示出来。

通过单片机技术,设计出来的数字电压表具有精度高,抗干扰能力强的特点。

通过网上资料显示,目前由各种AD转换器构成的数字电压表已经广泛的应用于电工测量,工业自动化仪表等各个领域。

在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。

而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。

数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。

实验7.直流数字电压表设计

实验7.直流数字电压表设计
TH0=0x9c;//T0装入初值
TL0=0x9c;
ET0=1;//打开T0中断
TR0=1;//启动定时器0
EA=1;//打开全局中断
while(1)
{
ST=0;//发出启动脉冲信号
delay(10);
=1;
delay(10);
ST=0;
while(EOC==1);//查询结束状态
delay(100);
uchar code duanma[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};//0-9数码管段码
sbit p2_3=P2^3;//定义数码管四个位选位
sbit p2_2=P2^2;
sbit p2_1=P2^1;
sbit p2_0=P2^0;
OE=1;//OE置1信号
i=P1;//将A/D结果赋值给i
display();//输出A/D结果
delay(10);
OE=0;//OE置0信号
}
}
/*T0中断函数*/
time()interrupt 1
{
ET0=0;//关闭定时器0中断
TR0=0;//关闭定时器0
TH0=0x9c;//T0装入初值
TL0=0x9c;
(2)A/D转换查询法编程;
(3)考察延时量对动态显示效果的影响。
【实验步骤】
(1)提前阅读与实验7相关的阅读材料;
(2)参考图A.72~A.74;和表A.7,在ISIS中完成原理图的绘制;
(3)采用μVision3进行C51动态显示和A/D转换编程及调试。
【实验要求】
提交实验报告并包括如下内容:电路原理图、A/D转换原理分析、C51源程序(含注释语句)、仿真运行截图及实验小结。

实验七 直流数字电压表设计ex7

实验七  直流数字电压表设计ex7

实验七直流数字电压表设计一、实验目的:掌握LED动态显示和A/D 转换接口设计方法。

二、实验原理:实验电路原理图如图A..94所示。

图中显示器采用4位共阴极数码管,并按动态显示方式接线。

A/D转换结束标志采用查询法检查,启动信号由软件模拟产生,时钟信号由Proteus的DClock信号发生器产生,频率为5kHz。

电位器的输出电压送到A/D转换器中转换,转换结果以十进制形式显示在数码管上。

调节电位器可使数码管的显示值发生相应变化。

图A.94 实验7的电路原理图三、实验内容:(1)、学习使用Proteus软件,掌握原理图绘图方法;(2)、学习使用Keil C软件,掌握C51程序编写与调试方法;(3)、理解动态显示与A/D转换工作原理,完成单片机电压采集与显示程序的编写与调试。

四、实验步骤:(1)、在Proteus中绘制电路原理图,按照表A.9将元件添加到编辑环境中;(2)、在Keil中编写C51程序,并使之编译通过;(3)、在Proteus中加载程序,观察仿真结果。

五、实验要求:提交的实验报告中应包括电路原理图、含注释内容的源程序及实验结果分析。

表A.9 实验7的元器件清单(2)、仿真结果:图1图2图3实验结果分析:本实验是使用A/D转换器将模拟信号(电位器输出电压)转换为数字信号,A/D转换器与80C51接在一起,转换结果通过80C51以十进制形式动态显示在四个共阴极数码管上,通过改变模拟信号大小可以显示0~255之间任意数据。

其中A/D转换器启动信号由软件模拟产生,时钟信号由Proteus的DClock信号发生器产生。

如图1,显示器显示“102”,当按RW1的右键时,显示器显示“99”;当按RW1的左键时,显示器显示“105”。

六、实验小结:通过这次实验了解了A/D转换器的工作原理和工作过程,掌握了数码管动态显示程序的编写,更加熟练了Proteus软件的使用和程序的编写。

单片机直流数字电压表

单片机直流数字电压表

单片机直流数字电压表目录第一部分课程设计任务书 (2)一、课程设计题目 (2)二、课程设计时间 (2)三、课程设计提交方式 (2)四、设计要求 (2)第二部分课程设计报告 (2)一、单片机发展简史 (2)二、MCS-51单片机系统简介 (2)三、设计思路 (3)四、硬件设计电路 (4)五、软件设计流程 (5)六、程序源代码 (7)七、结束语 (7)八、参考文献 (10)第一部分课程设计任务书一、课程设计题目MCS-51单片机直流数字电压表二、课程设计时间一周三、课程设计提交方式提交打印课程设计报告以及发送电子版四、设计要求本实验要求用A T89S51单片机和ADC0808组成一个数字电压表,要求能够测量0~10V 的直流电压值,让数码管显示器上的数字自动切换量程。

第二部分课程设计报告一、单片机发展概况单片机是在一片半导体硅片集成中央处理单元(CPU)、存储器(RAM、ROM)、并行I/O、串行I/O、定时器/计数器、中断系统、系统时钟电路及系统总线的微型计算机。

主要应用于测控领域。

单片机使用时,通常是处于测控系统的核心地位并嵌入其中,所以国际上通常把单片机称为嵌入式控制器(EMCU,Embedded MicroController Unit),或微控制器(MCU,MicroController Unit)。

我国习惯于使用“单片机”这一名称。

单片机是计算机技术发展史上的一个重要里程碑,标志着计算机正式形成了通用计算机系统和嵌入式计算机系统两大分支。

其发展大致分为4个阶段。

第一阶段(1974年~1976年):单片机初级阶段。

因工艺限制,单片机采用双片的形式而且功能比较简单。

1974年12月,仙童公司推出了8位的F8单片机,实际上只包括了8位CPU、64B RAM和2个并行口。

第二阶段(1976年~1978年):低性能单片机阶段。

1976年Intel的MCS-48单片机(8位)极大地促进了单片机的变革和发展,1977年GI公司推出了PIC1650,但这个阶段仍处于低性能阶段。

数字直流电压表方案

数字直流电压表方案

目录前言 (1)1.总体设计方案 (2)1.1数字直流电压表方案 (2)1.1.1运用单片机制作直流电压表方案 (2)1.1.2 运用数模转换数字直流电压表方案 (2)2.单元模块设计 (4)2.1直流电压表电路模块设计 (4)2.1.1 基准电源MC1403 (4)2.1.2 A/D转换器MC14433 (5)2.1.3 显示电路 (8)2.1.4读数保持电路 (9)2.2 系统整体硬件电路 (10)2.2.1 整体硬件电路 (10)3.系统功能 (11)3.1 仿真软件介绍 (11)3.1.1 仿真电路图 (12)3.2 调试现象及结论 (13)3.3 安装总调 (13)4.设计总结 (14)5.参考文献 (15)前言随着电子技术的发展,电子行业经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。

何况在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。

数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流或交流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。

由于数字式仪器具有读数准确方便、精度高、误差小、灵敏度高和分辨率高、测量速度快等特点而倍受青睐。

本次我们所做的课程设计就是基于数字电子技术和模拟电子技术的一个电子产品。

本人对自己的设计作品从各个角度分析了由A/D转换器组成的数字电压表的设计过程及各部分电路的组成及其原理,并且分析了数模转换进而使系统运行起来的原理及方法。

通过自身实践提高了动手能力,也只有亲历亲为才能收获掌握到已经学过的知识。

其实也为建立节约成本的意识有些帮助,本人并没有采用单片机模块,而是直接采用A/D转换,在MC1433系列找块带显示译码并带A/D转换的片子并不难,相对于单片机有成本上的优势,但这里同时也牵涉几个问题:精度、位数、速度、还有功耗等不足之处,这些都要慎重考虑。

课程设计报告 直流数字电压表设计.

课程设计报告 直流数字电压表设计.

电子技术基础课程设计题目名称:直流数字电压表指导教师:唐治德学生班级:学号:学生姓名:评语:成绩:重庆大学电气工程学院2015年7月3日目录一、内容摘要二.课程设计任务与要求2.1设计目的2.2设计求三.设计思路和方案选择3.1 设计思路3.2 方案选择四.工作原理4.1 基本原理框图4.2 ICL7107的工作原理4.3原理图五.电路设计与仿真六、系统调试与结果分析6.1调试方法6.2测试结果分析六.元器件清单八、总结及心得体会九、参考文献内容摘要伴随着电子技术科学的发展,电子测量技术已成为广大电子技术工作者必须掌握的一门科学技术,同时对测量的精度和功能的有着更高的要求。

电压是电子测量的一个主要参数,由于电压测量在电子测量中的普遍性与重要性,因此对电压测量的研究与设计有着非常重要的意义。

本次设计的主要设计内容为三档直流电压表。

在设计过程中由于第一次接触这种芯片,对该芯片不是很熟悉,我们参阅了大量前人的设计,在此基础上,运用A / D转换器ICL7107构建了一个直流数字电压表。

本设计首先简要介绍了设计电压表的主要方式,然后详细介绍了直流数字电压表的设计流程和芯片的工作原理,本设计中我们展示了两种方案,手动换挡的自动换挡,在各方案中也给出了两种方案的优缺点。

同时也给出了硬件电路的设计细节,包括各部分电路的走向、芯片的选择以及方案的可行性分析等。

关键字:ICL7107芯片,数字电压表,A\D转换,比较器,CC4006双向模拟开关。

课程设计任务及要求2.1设计目的1、掌握双积分A/D转换的工作原理和集成双积分A/D转换器件的设计方法2、掌握常用数字集成电路的功能和使用2.2设计要求1.设计直流数字电压表2.直流电压测量范围:0V~1.999V,0V~19.99V,0V~199.9V。

3.直流输入电阻大于100kΩ。

4.画出完整的设计电路图,写出总结报告。

5.选做内容:自动量程转换。

设计思路和方案选择3.1设计思路根据设计要求和功能,我们考虑了多种可行性方案。

数字电压表课程设计

数字电压表课程设计

数字电压表课程设计一、前言数字电压表是电工实验室常用的仪器之一,广泛应用于电子测量和控制系统中。

通过数字电压表的实验,可以学习到许多电路基础知识,并掌握数字电压表的使用方法和测量技巧。

本文旨在介绍数字电压表课程设计的目的、要求、内容以及实验步骤。

二、课程设计目的数字电压表课程设计的主要目的有两点:1.培养学生熟悉电路基础知识和数字电压表的使用方法,掌握数字电压表的测量技巧。

2.提高学生的实验能力和创新能力,培养学生的实际动手操作能力,增强学生的实验意识和实际操作能力。

三、课程设计要求数字电压表课程设计的要求主要包括以下几个方面:1.学生应具备一定的电路基础知识和数字电压表的使用方法。

2.学生应通过课程设计,掌握数字电压表的实际应用技巧,积累实验操作经验。

3.课程设计应突出实验的实际应用意义,注意实验结果的可行性和实用性。

4.学生应具备较强的设计能力和创新意识,具备一定的实际动手操作能力。

5.学生应通过实验,培养实验室安全意识和安全操作能力。

四、课程设计内容数字电压表课程设计的实验内容主要包括以下三个方面:1.数字电压表的基本操作及测量技巧的掌握。

2.数字电压表在稳压电源中的应用。

3.数字电压表在直流电源和交流电源测量中的应用。

五、实验步骤以下是数字电压表课程设计的实验步骤:实验材料1.数字电压表2.稳压电源3.直流电源4.交流电源实验步骤实验一:数字电压表的基本操作及测量技巧的掌握1.将数字电压表接入测试电路,掌握数字电压表的基本操作。

2.通过实验测量不同电压值并记录数据。

3.分析实验数据,掌握数字电压表的测量技巧。

实验二:数字电压表在稳压电源中的应用1.将数字电压表接入稳压电源测试电路,调节稳压电源输出电压值。

2.通过实验测量不同电压值并记录数据。

3.分析实验数据,了解数字电压表在稳压电源中的应用。

实验三:数字电压表在直流电源和交流电源测量中的应用1.将数字电压表接入直流电源和交流电源测试电路,分别测量不同电压值并记录数据。

单片机课程设计(直流数字电压表)

单片机课程设计(直流数字电压表)

课程设计总结与展 望
课程设计目标:掌握单片机基础知识,学会设计直流数字电压表 课程设计内容:包括硬件设计、软件设计、调试和测试等 课程设计成果:成功设计并制作出直流数字电压表 课程设计收获:提高了单片机应用能力,增强了团队合作和沟通能力
课程设计展望:未来将继续深入学习单片机技术,提高实践能力,为未来就业做好准备
实际应用:可用于测量直流电压,广泛应用于电子、电力等领域 市场前景:随着电子技术的发展,市场需求不断增长 技术更新:需要不断更新技术,提高测量精度和稳定性 市场竞争:面临国内外竞争对手的压力,需要提高产品质量和降低成本
智能化:单片机技术在智能设备中的应用越来越广泛,未来发展方向将更加智能化。
物联网:单片机技术在物联网中的应用越来越广泛,未来发展方向将更加注重物联网技术的应用。
单片机课程设计(直 流数字电压表)
汇报人:
目录
添加目录标题
单片机课程设计概 述
硬件电路设计
软件程序设计
系统调试与测试
课程设计总结与展 望
添加章节标题
单片机课程设计概 述
掌握单片机的基本原理和编程方法 提高动手实践能力和创新能力 培养团队合作精神和解决问题的能力 为未来的学习和工作打下坚实的基础
电源测试:检查电源电压是 否稳定,是否符合要求
信号测试:检查信号输入、 输出是否正常,是否符合要 求
功能测试:检查系统功能是 否正常,是否符合设计要求
性能测试:检查系统性能是 否满足设计要求,如响应时 间、精度等
稳定性测试:检查系统在 长时间运行下的稳定性, 如温度、湿度等环境因素 对系统的影响
软件调试:通过运行程序,发现并修复程序中的错误 软件测试:通过测试程序,验证程序的功能和性能是否符合预期 测试方法:包括单元测试、集成测试、系统测试等 测试工具:可以使用自动化测试工具,如JUnit、Selenium等

数字电压表课程设计报告

数字电压表课程设计报告

数字电压表课程设计报告一、实验目的本实验旨在使学生掌握数字电压表的基本原理、构成和使用方法,通过实践锻炼学生的动手操作能力和实际问题解决能力。

二、实验器材数字电压表、直流稳压电源、电阻箱、待测电路板等。

三、实验内容1.数字电压表的基本原理、构成和使用方法的介绍;2.根据实验要求搭建待测电路;3.调节直流稳压电源输出电压为所需值;4.连接数字电压表到待测电路上并测量电压值;5.对测得的电压值进行分析、处理和讨论。

四、实验流程及步骤1.实验器材准备:数字电压表、直流稳压电源、电阻箱、待测电路板等器材;2.理解数字电压表的基本原理与构成,并熟练掌握使用方法;3.根据实验所需,找到相应的电路板,搭建待测电路,并连接好直流稳压电源;4.调节直流稳压电源的输出电压为所需值,并连接数字电压表到待测电路上;5.测量待测电路的电压值,并在数字电压表上进行记录;6.对测得的电压值进行分析、处理和讨论,并得出实验结论。

五、实验注意事项1.在操作实验器材时,务必严格按照使用说明书和教师的要求进行操作;2.实验器材保持完好无损,任何破损的器材均不能使用;3.实验前需仔细了解实验内容,规划实验流程;4.在操作实验时,要认真记录实验数据,并进行及时分析处理;5.实验结束后,将实验器材妥善归位,保持实验室整洁干净。

六、实验结果及结论通过实验,我们得到了待测电路的电压值,并对其进行了分析、处理和讨论。

根据实验结果和所给数据,我们得出了结论:数字电压表可准确测量待测电路的电压值,为后续研究和实践提供重要依据。

七、实验心得体会通过本次实验,我对数字电压表的原理及其使用方法有了更深入的了解,并通过实践掌握了一定的动手操作能力和实际问题解决能力。

同时,我认识到在实验中必须注重细节和注意安全,仔细完成每一个实验步骤,及时记录和分析实验数据,才能使实验结果更加准确和可靠。

直流数字电压表

直流数字电压表

电子技术课程设计报告题目名称:直流数字电压表的设计姓名:学号:班级:指导教师:重庆大学电气工程学院2010 年6 月直流数字电压表摘要:传统的模拟指针式电压表功能单一,精度低,读数的时候也非常不方便,很容易出错。

而采用单片机的数字电压表由于测量精度高,速度快,读数时也非常的方便,抗干扰能力强等优点而被广泛应用。

本设计给出基于MC14433双积分模数转换器的一种电压测量电路。

数字电压表是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。

该系统由MC144333位半A\D转换器、MC1413七路达林顿驱动器阵列、MC4543BCD七段锁存-译码-驱动器、基准电源MC1403和共阳极LED发光数码管组成。

本次设计的简单直流数字电压表的具体功能是:最高量程为1999V,分四个档位量程,即0~1.999V,0~19.99V0~199.9V,0~1999V,可以通过调档开关来实现各个档位。

一、设计内容及要求:1)设计直流数字电压表;2)直流电压测量范围:0V~1.999V,0V~19.99V,0V~199.9V,0V~1999V。

3)直流输入电阻大于100kΩ。

4)画出完整的设计电路图,写出总结报告。

5) 选做内容:自动量程转换。

二、比较和选定设计的系统方案,画出系统框图:方案:本次设计的直流数字电压表由测量电路、双积分模数转换电路电路、数码显示电路和量程转换电路组成,原理框图如图1 所示。

测量电路和量程转换将宽范围的输入直流电压变换为模数转换电路输入电压范围的直流电压,模数转换电路将其转换为数字量,送数码显示电路显示测量值。

三、单元电路设计、参数计算和器件选择:1)量程转换电路:R1、R2、R3、R4对输入电压进行分压,使x V 直流输入电压的范围是0V~2V 。

由于直流输入电阻要求大于100k Ω,设定总电阻为1000K Ω。

列出方程计算各电阻阻值:41234431234432123412340.0010.010.11000R R R R R R R R R R R R R R R R R R R R R R K ⎧=⎪+++⎪+⎪=⎪+++⎨⎪++⎪=+++⎪⎪+++=Ω⎩ 得:1234900;90;9;1R K R K R K R K =Ω=Ω=Ω=Ω 图2 量程转换电路图1直流数字电压表原理框图图3 小数点控制仿真电路(如图所示,当被测电压为6V时,百位上的小数点亮)2)双积分模数转换电路:集成双积分模数转换器MC14433原理电路和引脚图如图4所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 元器件的介绍· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5
3.1 课程设计器材和供参考选择的元器件· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 3.2 3 A/D 转换器 MC14433· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·5 2 3.3 MC14433 引脚功能说明· 8 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3.4 七段锁存—译码—驱动器 MC4511· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10 3.5 七路达林顿驱动器阵列 MC1413· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 12 3.6 高精度低漂移能隙基准电源 MC1403· 12 · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
5 课程设计报告结论· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·13
6.1 按设计内容要求整理实验数据及调试中的波形· · · · · · · · · · · · · · · · · · · · · · · 14 6.2 画出设计内容中的电路图、 接线图· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·15 6.3 ICL7106 A/D 转换电路组成的数字电压表电路特点· · · · · · · · · · · · · · · · ·51 6.3 总结设计数字电压表的体会· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15 6.4 参考文献· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 14
1 设计目的和要求
数字电压表的基本原理, 是对直流电压进行模数转换,其结果用数字直接显 示出来,按其基本工作原理可以分为积分式和比较式两大类。 1.1 设计目的 (1)掌握数字电压表的设计、组装与调试方法。
4
MC1413、 MC4511 和 MC1403 的使用方法, (2) 熟悉集成电路 MC14433、 并掌握其工作原理。 1.2 设计内容及要求 (1)设计数字电压表电路。 0V~19.99V, 0V~199.9V, 0V~1999V。 (2) 测量范围: 直流电压 0V~1.999V, 1 (3)组装调试 3 位数字电压表。 2 (4)画出数字电压表电路原理图,写出总结报告。
DS3 和 DS 4 。其中 DS1 对应最高位(MSD) , DS 4 则对应最高位(LSD) 。在对应 DS 2 ,DS3 和 DS 4 选通期间,Q0 ~ Q3 输出 BCD 全位数据,即以 8421 码方式输出
对应的数字 0~9。在 DS1 选通期间, Q0 ~ Q3 输出千位的半位数 0 或 1 及过量程、
直流数字电压表的基本方框图
工作过程:
1 3 数字电压表通过位选信号 DS1 ~ DS 4 进行动态扫描显示,由于 MC14433 2 电路的 A/D 转换结果是采用 BCD 码多路调制方法输出,只要配上一块译码器, 就可以将转换的结果以数字方式实现四位数字的 LED 发光数码管动态扫描显
示。 DS1 ~ DS 4 输出多路调制选通脉冲信号,DS 选通脉冲为高电平,则表示对应 的数位被选通,此时该位数据在 Q0 ~ Q3 端输出。每个 DS 选通脉冲高电平宽度为 18 个时钟脉冲周期, DS 和 EOC 两个相邻选通脉冲之间间隔 2 个时钟脉冲周期。 的时序关系是在 EOC 脉冲结束后,紧接着是 DS1 输出正脉冲,以下依次为 DS 2 ,
3


引言· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1
系统概述· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2
图 1-2 2.2 系统功能
1 3 位数字电压表图 2
1 1 本系统是 3 位数字电压表, 3 位是指十进制数 0000~1999,所谓 3 位是 2 2
5
指个位、十位、百位,其数字范围均为 0~9。而所谓半位是指千位数,它不能从 0 变化到 9,而只能由 0 变到 1,即二值状态,所以称为半位。 各部分的功能如下: 1 (1) 3 A/D 转换器:将输入的模拟量信号转换成数字信号 2 (2)基准电源:提供精密电压,供 A/D 转换器作参考电压。 (3)译码器:将二-十进制(BCD)码转换成七段信号。 (4)驱动器:驱动显示的 a,b,c,d,e,f,g 七个发光段,推动发光数 码器(LED)进行显示。 (5) 显示器:将译码器输出的七段信号进行数字显示,读出 A/D 转换结 果。
共阴极 LED 发光数码管组成。 1 1 本系统是 3 位数字电压表,3 位是指十进制数 0000~1999,所谓 3 位是 2 2 指个位、十位、百位,其数字范围均为 0~9。而所谓半位是指千位数,它不能 从 0 变化到 9,而只能由 0 变到 1,即二值状态,所以成为半位。 各部件的功能如下: 1 (1)3 A/D 转换器:将输入的模拟信号转换成数字信号。 2 1. 基准电源:提供精密电压,供 A/D 转换器作参考电压。 2. 译码器:将二-十进制(BCD)码转换成七段信号。 驱动器:驱动显示器的 a,b,c,d,e,f,g 七个发光段,推动发光数码管
2
打印机记录,也可以送入计算机进行数据处理。
系统概述
数字电压表是将被测模拟量转换为数字量,并进行实时数字显示的数字系 统。
1 位 A/D 转换器、MC1413 七路达林 2 顿驱动器阵列、CD4511 BCD 到七段锁存-译码-驱动器、能隙基准电源 MC1403 和
该系统(如图 1 所示)可由 MC14433--3
1 设计目的和要求· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·2
1.1 设计目的· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3 1.2 设计内容及要求· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3 3 2 数字电压表的基本原理· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2.1 数字电压表组成电路· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3 2.2 系统功能· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2.3 工作过程· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·4
直流数字电压表数字化电路测量的电压仪表。它以其高准确 度、高可靠性、高分辨率、高性价比、读数清晰方便、测量速度快、 输入阻抗高等优良特性而倍受人们的青睐。 数字电压表是诸多数字化 仪表的核心与基础。以数字电压表为核心,可以扩展成各种通用数字 仪表、专用数字仪表及各种非电量的数字化仪表(如:温度计、湿度 计、酸度计、重量、厚度仪等),几乎覆盖了电子电工测量、工业测 量、自动化仪表等各个领域。因此对数字电压表作全面深入的了解是 很有必要的。传统的模拟式(即指针式)电压表已有 100 多年的发 展史,虽然不断改进与完善,仍无法满足现代电子测量的需要,数字 电压表自 1952 年问世以来,显示强大的生命力,现已成为在电子测 量领域中应用最广泛的一种仪表。 数字电压表简称 DVM(Digital Voltmeter) ,它是采用数字化测 量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数 字形式并加以显示的仪表。目前,由各种单片 A/D 转换器构成的数 字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测 试系统等领域,显示出强大的生命力。与此同时,由 DVM 扩展而成 的各种通用及专用数字仪器仪表, 也把电量及非电量测量技术提高到 崭新水平。智能化数字电压表则是最大规模集成电路(LSI) 、数显技 术、计算机技术、自动测试技术(ATE)的结晶。一台典型的直流数 字电压表主要由输入电路、A/D 转换器、控制逻辑电路、计数器(或 寄存器) 、显示器,以及电源电路等级部分组成。它的数字输出可由
相关文档
最新文档