2004年高考试题全国卷2文科数学及答案(必修+选修Ⅰ四川吉林黑龙江云南等地区)

合集下载

2004年高考试题全国卷2理科数学和答案(必修 选修Ⅱ四川吉林黑龙江云南等地区)

2004年高考试题全国卷2理科数学和答案(必修 选修Ⅱ四川吉林黑龙江云南等地区)

2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有 一个选项是符合题目要求的.(1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω (4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36(8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条(9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 . (15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . (16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)当前第3 页共10页三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高.(18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率.(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC-A1B1C1中,∠ACB=90o,AC=1,CB=2,侧棱AA1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.(Ⅰ)求证:CD⊥平面BDM;(Ⅱ)求面B1BD与面CBD所成二面角的大小.(21)(本小题满分12分)给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.(Ⅰ)设l的斜率为1,求与夹角的大小;(Ⅱ)设=AFλ,若λ∈[4,9],求l在y轴上截距的变化范围.(22)(本小题满分14分)已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(1)求函数f(x)的最大值;(2)设0<a<b,证明:0<g(a)+g(b)-2g(2ba+)<(b-a)ln2.2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)当前第5 页共10页2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan =设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为18.(I) 解:有一组恰有两支弱队的概率72482523=C C C(II)解:A 组中至少有两支弱队的概率2481533482523=+C C C C C C 19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{n S n }是首项为1,公比为2的等比数列 (II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B ,∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3,又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM ,因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=2123223)21()23(222121221=∙∙-+=∙-+FGG B F B FG G B 即所求二面角的大小为π解法二:如图以C 为原点建立坐标系(I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=G B 1),41,43,42(--∴01=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,A'C'2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)当前第7 页共10页∴与G B 1的夹角θ等于所求二面角的平面角, cos .33||||11-=∙=G B CD θ 所以所求二面角的大小为π21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1. 将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OB OA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,.41413-= 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1……………………………………(3) 联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1)当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21ln(2ln -->-+-=+,bb a b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2lnln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。

2004年高考试题全国卷2理科数学及答案(必修+选修Ⅱ四川吉林黑龙江云南等地区)

2004年高考试题全国卷2理科数学及答案(必修+选修Ⅱ四川吉林黑龙江云南等地区)

2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2(C )ω1-(D )21ω (4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1(C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条(9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe,其中λ=(A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . (16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高.(18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率.(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B的两条对角线交点为D,B1C1的中点为M.(Ⅰ)求证:CD⊥平面BDM;(Ⅱ)求面B1BD与面CBD所成二面角的大小.(21)(本小题满分12分)给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.(Ⅰ)设l的斜率为1,求OA与OB夹角的大小;(Ⅱ)设FB=AFλ,若λ∈[4,9],求l在y轴上截距的变化范围.(22)(本小题满分14分)已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(1)求函数f(x)的最大值;(2)设0<a<b,证明:0<g(a)+g(b)-2g(2ba+)<(b-a)ln2.2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan =设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为18.(I) 解:有一组恰有两支弱队的概率72482523=C C C (II)解:A 组中至少有两支弱队的概率2481533482523=+C C C C C C19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n ,211=++nS n S n n (n=1,2,3,…).故数列{n S n }是首项为1,公比为2的等比数列 (II )解:由(I )知,)2(14111≥-•=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B ,∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3,又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM ,因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM (II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=2123223)21()23(222121221=••-+=•-+FGG B F B FG G B 即所求二面角的大小为π33 解法二:如图以C 为原点建立坐标系(I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1),=DM (0,21,-21),,0,01=•=•DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=G B 1),41,43,42(--∴01=•G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与G B 1的夹角θ等于所求二面角的平面角,A'C'cos .33||||11-=•=G B CD G B CD θ所以所求二面角的大小为π21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1.将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OB OA •=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+•+=•x x x x x x y x y x OB OAcos<OB OA ,.41413||||-=•OB OA 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1……………………………………(3) 联立(1)(3)解得x 2=λ.依题意有λ>0.∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1)当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ4≤ 直线l 在y 轴上截距的变化范围是34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21ln(2ln -->-+-=+,bb a b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2lnln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。

2004年高考.全国卷Ⅰ.文科数学试题及答案(河南、河北、山东、山西、安徽、江西等地区)

2004年高考.全国卷Ⅰ.文科数学试题及答案(河南、河北、山东、山西、安徽、江西等地区)

2004年普通高等学校招生全国统一考试(全国卷Ⅰ)(河南、河北、山东、山西、安徽、江西等地区)文科数学(必修+选修I )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分.1.设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A ∩( U B )= ( )A .{2}B .{2,3}C .{3}D . {1,3}2.已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若 ( )A .21B .-21 C .2D .-2 3.已知a +b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .)1(222<+-=x x x y B .)1(222≥+-=x x x yC .)1(22<-=x x x yD .)1(22≥-=x x x y 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设)2,0(πα∈若,53sin =α则)4cos(2πα+= ( )A .57B .51C .27D .4球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF = ( )A .23 B .3C .27 D .48.设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .]21,21[- B .[-2,2] C .[-1,1] D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则ST等于 ( )A .91 B .94 C .41 D .31 11.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是 ( )A .95B .94 C .2111 D .2110 12.已知ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式x +x 3≥0的解集是 .14.已知等比数列{,384,3,}103==a a a n 中则该数列的通项n a = .15.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)等差数列{n a }的前n 项和记为S n .已知.50,302010==a a (Ⅰ)求通项n a ; (Ⅱ)若S n =242,求n.18.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.19.(本小题满分12分)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围. 20.(本小题满分12分)从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为54,每位男同学能通过测验的概率均为53.试求: (I )选出的3位同学中,至少有一位男同学的概率;(II )10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.21.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD ,侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离;(II )求面APB 与面CPB 所成二面角的大小. 22.(本小题满分14分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值.2004年普通高等学校招生全国统一考试文科数学(必修+选修I )参考答案一、选择题DBCBABCCBACB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥0} 14.3·2n -3 15.422=+y x 16.①②④三、解答题17.本小题主要考查等差数列的通项公式、求和公式,考查运算能力.满分12分.解:(Ⅰ)由,50,30,)1(20101==-+=a a d n a a n 得方程组⎩⎨⎧=+=+.5019,30911d a d a ……4分 解得.2,121==d a 所以 .102+=n a n ……7分(Ⅱ)由242,2)1(1=-+=n n S d n n na S 得方程 .24222)1(12=⨯-+n n n ……10分 解得).(2211舍去或-==n n ………12分18.本小题主要考查三角函数基本公式和简单的变形,以及三角函数的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=.212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数)(x f 的最小正周期是π,最大值是,43最小值是.41…………12分 19.本小题主要考查导数的概念和计算,应用导数研究函数单调性的基本方法,考查综合运用数学知识解决问题的能力.满分12分.解:函数f (x )的导数:.163)(2-+='x ax x f ………………3分(Ⅰ)当0)(<'x f (R x ∈)时,)(x f 是减函数.)(01632R x x ax ∈<-+ .3012360-<⇔<+=∆<⇔a a a 且所以,当))((,0)(,3R x x f x f a ∈<'-<知由时是减函数;………………9分(II )当3-=a 时,133)(23+-+-=x x x x f =,98)31(33+--x ………………6分由函数3x y =在R 上的单调性,可知 当3-=a 时,R x x f ∈)(()是减函数;(Ⅲ)当3->a 时,在R 上存在一个区间,其上有,0)(>'x f所以,当3->a 时,函数))((R x x f ∈不是减函数. 综上,所求a 的取值范围是(].3,-∞-………………12分20.本小题主要考查组合,概率等基本概念,独立事件和互斥事件的概率以及运用概率知识 解决实际问题的能力,满分12分. 解:(Ⅰ)随机选出的3位同学中,至少有一位男同学的概率为1-6531036=C C ;………………6分(Ⅱ)甲、乙被选中且能通过测验的概率为.1254535431018=⨯⨯C C ;………………12分21.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD. 由此知∠PEB 为面PAD 与面ABCD所成二面角的平面角,………………4分 ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23.………………6分 (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到:,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=PB BC PB GA 于是有所以θ,.⊥⋅⊥等于所求二面角的平面角,…………10分 于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π.…………12分 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB ,∴∠AGF 是所求二面角的平面角.……9分 ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1. 于是tan ∠GAE=AE EG=23, 又∠AGF=π-∠GAE. 所以所求二面角的大小为π-arctan23.…………12分 22.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分14分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ① ……2分.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率分的取值范围为即离心率且且6).,2()2,26(226,120.11122+∞≠>∴≠<<+=+=e e e a a aa a e(II )设)1,0(),,(),,(12211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得 ……8分 由于x 1,x 2都是方程①的根,且1-a 2≠0,分所以由得消去所以14.1317,06028912,,.12125,1212172222222222 =>=----=--=a a a a x a a x a a x。

02---2004年高考数学试题(全国文科)

02---2004年高考数学试题(全国文科)

2004年普通高等学校招生全国统一考试数学试题(全国文)一、选择题(每小题5分,共60分)1.设集合M ={(x,y)|x 2+y 2=1,x ∈R,y ∈R},N ={(x,y)|x 2-y =0,x ∈R,y ∈R},则集合M ∩N 中元素的个数为A1 B2 C3 D42.函数y =|sin 2x |的最小正周期是 A 2π B π C2π D4π 3.记函数y =1+3-x 的反函数为y =g(x),则g(10)=A2 B -2 C3 D -14.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为A81 B120 C168 D1925.圆x 2+y 2-4x =0在点P(1,3)处的切线方程为Ax +3y -2=0 Bx +3y -4=0Cx -3y +4=0 Dx -3y +2=0 6.6)x1x (-的展开式中的常数项为 A15 B -15 C20 D -207.设复数z 的辐角主值为32π,虚部为3,则z 2= A -2-23i B -23-2i C2+23i D23+2i8.设双曲线的焦点在x 轴上,两条渐近线为y =21±x ,则该双曲线的离心率为e =A5 B 5 C 25 D 45 9.不等式1<|x +1|<3的解集为A(0,2) B(-2,0)∪(2,4) C(-4,0) D(-4,-2)∪(0,2)10.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为 A 322 B 2 C 32 D 324 11.在三角形ABC 中,AB =3,BC =13,AC =4,则边AC 上的高为 A 223 B 233 C 23 D33 12.将4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有A12种 B24种 C36种 D48种二、填空题(每小题4分,共16分)13.函数y =)1x (log 21 的定义域是____。

2004年数二真题及解析

2004年数二真题及解析

2004年数学(二)真题评注一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = 0 .【分析】本题属于确定由极限定义的函数的连续性与间断点.对不同的x ,先用求极限的方法得出()f x 的表达式, 再讨论()f x 的间断点.【详解】显然当0x =时,()0f x =;当0x ≠时, 2221(1)(1)1()lim lim 11n n xn x x n f x nx x x x n →∞→∞--====++, 所以 ()f x 0,01,0x x x=⎧⎪=⎨≠⎪⎩,因为 001lim ()lim(0)x x f x f x→→==∞≠ 故 0x =为()f x 的间断点.(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x取值范围为1-∞∞(,)(或(-,1]).【分析】判别由参数方程定义的曲线的凹凸性,先用由 ()()x x t y y t =⎧⎨=⎩定义的 223()()()()(())d y y t x t x t y t dx x t ''''''-=' 求出二阶导数,再由 220d ydx< 确定x 的取值范围.【详解】 22222331213311dydy t t dt dx dx t t t dt--====-+++,222223214113(1)3(1)d y d dy dt tdt dx dx dxt t t '⎛⎫⎛⎫==-⋅= ⎪ ⎪+++⎝⎭⎝⎭,令 220d ydx< ⇒ 0t <.又 331x t t =++ 单调增, 在 0t <时, (,1)x ∈-∞.(0t =时,1x =⇒x ∈(,1]-∞时,曲线凸.) 【评注】本题属新题型.已考过的题型有求参数方程所确定的函数的二阶导数, 如1989、1991、1994、2003数二考题,也考过函数的凹凸性.(3)1+∞=⎰2π.【分析】利用变量代换法和形式上的牛顿莱布尼兹公式可得所求的广义积分值. 【详解1】22100sec tan sec tan 2t t dt dt t t πππ+∞⋅==⋅⎰⎰.【详解2】11201101)arcsin 2dt dt tt π+∞-===⎰⎰⎰.【评注】本题为混合广义积分的基本计算题,主要考查广义积分(或定积分)的换元积分法.(4)设函数(,)z z x y =由方程232x zz ey -=+确定, 则3z zx y∂∂+=∂∂2.【分析】此题可利用复合函数求偏导法、公式法或全微分公式求解. 【详解1】在 232x zz e y -=+ 的两边分别对x ,y 求偏导,z 为,x y 的函数.23(23)x z z z e x x-∂∂=-∂∂,23(3)2x z z ze y y-∂∂=-+∂∂, 从而 2323213x zx z z e x e--∂=∂+,23213x z z y e-∂=∂+所以 2323132213x zx zz z e x y e--∂∂++=⋅=∂∂+ 【详解2】令 23(,,)20x zF x y z e y z -=+-=则232x z F e x -∂=⋅∂, 2F y ∂=∂, 23(3)1x z Fe z-∂=--∂ 2323232322(13)13x z x zx z x z Fz e e x F x e ez----∂∂⋅∂∴=-=-=∂∂-++∂, 232322(13)13x z x z F z y F y e ez--∂∂∂=-=-=∂∂-++∂, 从而 232323313221313x z x zx z z z e x y ee ---⎛⎫∂∂+=+= ⎪∂∂++⎝⎭【详解3】利用全微分公式,得23(23)2x z dz e dx dz dy -=-+2323223x zx z e dx dy e dz --=+-2323(13)22x zx z edz e dx dy --+=+232323221313x z x z x ze dz dx dy e e ---∴=+++ 即 2323213x z x z z e x e--∂=∂+, 23213x z z y e -∂=∂+ 从而 32z zx y∂∂+=∂∂ 【评注】此题属于典型的隐函数求偏导.(5)微分方程3()20y x dx xdy +-=满足165x y ==的特解为315y x =.【分析】此题为一阶线性方程的初值问题.可以利用常数变易法或公式法求出方程的通解,再利用初值条件确定通解中的任意常数而得特解.【详解1】原方程变形为 21122dy y x dx x -=, 先求齐次方程102dy y dx x-= 的通解:12dy dx y x=积分得 1ln ln ln 2y x c =+ y ⇒=设(y c x =为非齐次方程的通解,代入方程得211(((22c x c x c x x x '-= 从而 321()2c x x '=,积分得 352211()25c x x dx C x C =+=+⎰,于是非齐次方程的通解为53211()55y x C x =+=1615x yC ==⇒=,故所求通解为 315y x =.【详解2】原方程变形为 21122dy y x dx x -=,由一阶线性方程通解公式得1122212dx x xy e x edx C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ 11ln ln 22212x x ex e dx C -⎡⎤=+⎢⎥⎣⎦⎰35221125x dx C x C ⎤⎤=+=+⎥⎢⎥⎦⎦⎰6(1)15y C =⇒=,从而所求的解为315y x =.【评注】此题为求解一阶线性方程的常规题.(6)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A *为A 的伴随矩阵, E 是单位矩阵, 则B =19.【分析】利用伴随矩阵的性质及矩阵乘积的行列式性质求行列式的值. 【详解1】 2ABA BA E **=+ 2ABA BA E **⇔-=,(2)A E BA E *⇔-=,21A E B A E *∴-==, 221111010(1)(1)392100001B A E AA *====-⋅---. 【详解2】由1A A A *-=,得 11122ABA BA E AB A A B A A AA **---=+⇒=+2A AB A B A ⇒=+ (2)A A E B A ⇒-= 32A A E B A ⇒-=21192B A A E∴==- 【评注】此题是由矩阵方程及矩阵的运算法则求行列式值的一般题型,考点是伴随矩阵的性质和矩阵乘积的行列式.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量2cos xt dt α=⎰, 2x β=⎰,30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα []B【分析】对与变限积分有关的极限问题,一般可利用洛必塔法则实现对变限积分的求导并结合无穷小代换求解.【详解】302lim lim cos x x x t dtt dt γα++→→=⎰⎰32lim x +→= 320lim lim 02x x x x++→→===, 即o ()γα=.又 2000lim lim xx x βγ++→→=23002tan 22lim lim 01sin 2x x x x x x x ++→→⋅===, 即 o ()βγ=.从而按要求排列的顺序为αγβ、、, 故选(B ). 【评注】此题为比较由变限积分定义的无穷小阶的常规题. (8)设()(1)f x x x =-, 则(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点.(D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点. []C【分析】求分段函数的极值点与拐点, 按要求只需讨论0x =两方()f x ', ()f x ''的符号.【详解】 ()f x =(1),10(1),01x x x x x x ---<≤⎧⎨-<<⎩,()f x '=12,1012,01x x x x -+-<<⎧⎨-<<⎩,()f x ''=2,102,01x x -<<⎧⎨-<<⎩,从而10x -<<时, ()f x 凹, 10x >>时, ()f x 凸, 于是(0,0)为拐点. 又(0)0f =, 01x ≠、时, ()0f x >, 从而0x =为极小值点. 所以, 0x =是极值点, (0,0)是曲线()y f x =的拐点, 故选(C ).【评注】此题是判定分段函数的极值点与拐点的常规题目 (9)lim (1)n n→∞+等于(A )221lnxdx ⎰. (B )212ln xdx ⎰. (C )212ln(1)x dx +⎰. (D )221ln (1)x dx +⎰[]B【分析】将原极限变型,使其对应一函数在一区间上的积分和式.作变换后,从四个选项中选出正确的.【详解】 lim ln (1)n n→∞+ 212lim ln (1)(1(1)nn nn nn →∞⎡⎤=+++⎢⎥⎣⎦212limln(1ln(1(1)n n n n n n →∞⎡⎤=++++++⎢⎥⎣⎦11lim 2ln(1nn i i n n →∞==+∑ 102ln(1)x dx =+⎰2112ln x t tdt +=⎰212ln xdx =⎰故选(B ).【评注】此题是将无穷和式的极限化为定积分的题型,值得注意的是化为定积分后还必须作一变换,才能化为四选项之一.(10)设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得(A )()f x 在(0,)δ内单调增加. (B )()f x 在(,0)δ-内单调减小. (C )对任意的(0,)x δ∈有()(0)f x f >. (D)对任意的(,0)x δ∈-有()(0)f x f >.[]C【分析】可借助于导数的定义及极限的性质讨论函数()f x 在0x =附近的局部性质.【详解】由导数的定义知 0()(0)(0)lim00x f x f f x →-'=>-,由极限的性质, 0δ∃>, 使x δ<时, 有()(0)0f x f x->即0x δ>>时, ()(0)f x f >, 0x δ-<<时, ()(0)f x f <, 故选(C ).【评注】此题是利用导数的定义和极限的性质讨论抽象函数在某一点附近的性质.(11)微分方程21sin y y x x ''+=++的特解形式可设为(A )2(sin cos )y ax bx c x A x B x *=++++. (B )2(sin cos )y x ax bx c A x B x *=++++. (C )2sin y ax bx c A x *=+++.y(D )2cos y ax bx c A x *=+++[]A【分析】利用待定系数法确定二阶常系数线性非齐次方程特解的形式. 【详解】对应齐次方程 0y y ''+= 的特征方程为 210λ+=,特征根为 i λ=±,对 2021(1)y y x e x ''+=+=+ 而言, 因0不是特征根, 从而其特解形式可设为21y ax bx c *=++对 sin ()ix m y y x I e ''+==, 因i 为特征根, 从而其特解形式可设为2(sin cos )y x A x B x *=+从而 21sin y y x x ''+=++ 的特解形式可设为2(sin cos )y ax bx c x A x B x *=++++【评注】这是一道求二阶常系数线性非齐次方程特解的典型题,此题的考点是二阶常系数线性方程解的结构及非齐次方程特解的形式.(12)设函数()f u 连续, 区域{}22(,)2D x y x y y =+≤, 则()Df xy dxdy ⎰⎰等于(A )11()dx f xy dy -⎰⎰. (B )2002()dy f xy dx ⎰⎰.(C )2sin 200(sin cos )d f r dr πθθθθ⎰⎰.(D)2sin 20(sin cos )d f r rdr πθθθθ⎰⎰[]D在直角坐标系下,20()()Df xy dxdy dy f xy dx =⎰⎰⎰⎰1111()dx f xy dy -=⎰⎰故应排除(A )、(B ). 在极坐标系下, cos sin x r y r θθ=⎧⎨=⎩ ,2sin 20()(sin cos )Df xy dxdy d f r rdr πθθθθ=⎰⎰⎰⎰,故应选(D ).【评注】此题是将二重积分化为累次积分的常规题,关键在于确定累次积分的积分限.(13)设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为(A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭.(C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫⎪⎪ ⎪⎝⎭.[]D【分析】根据矩阵的初等变换与初等矩阵之间的关系,对题中给出的行(列)变换通过左(右)乘一相应的初等矩阵来实现.【详解】由题意 010100001B A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 100011001C B ⎛⎫⎪= ⎪ ⎪⎝⎭,010100100011001001C A ⎛⎫⎛⎫ ⎪⎪∴= ⎪⎪ ⎪⎪⎝⎭⎝⎭011100001A AQ ⎛⎫ ⎪== ⎪ ⎪⎝⎭,从而 011100001Q ⎛⎫ ⎪= ⎪ ⎪⎝⎭,故选(D ).【评注】此题的考点是初等变换与初等矩阵的关系,抽象矩阵的行列初等变换可通过左、右乘相应的初等矩阵来实现.(14)设A ,B 为满足0AB =的任意两个非零矩阵, 则必有(A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关.(D )A 的行向量组线性相关,B 的列向量组线性相关. []A【分析】将A 写成行矩阵, 可讨论A 列向量组的线性相关性.将B 写成列矩阵, 可讨论B 行向量组的线性相关性.【详解】设 (),i j l m A a ⨯=()i j m n B b ⨯=, 记 ()12m A A A A = 0AB = ⇒()11121212221212n n m m m mn b b b b b b A A A bb b ⎛⎫ ⎪ ⎪⎪⋅⋅⋅ ⎪ ⎪⎝⎭()1111110m m n mn m b A b A b A b A =++++= (1)由于0B ≠, 所以至少有一 0i j b ≠(1,1i m j n ≤≤≤≤), 从而由(1)知, 112210j j i j i m m b A b A b A b A +++++=,于是 12,,,m A A A 线性相关.又记 12m B B B B ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,则0AB = ⇒11121121222212m m l l l m m a a a B a a a B a a a B ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1111221211222211220m m m m l l l m m a B a B a B a B a B a B a B a B a B +++⎛⎫⎪+++ ⎪== ⎪ ⎪⎪+++⎝⎭由于0A ≠,则至少存在一 0i j a ≠(1,1i l j m ≤≤≤≤),使 11220i i i j j im m a B a B a B a B ++++=,从而 12,,,m B B B 线性相关,故应选(A ).【评注】此题的考点是分块矩阵和向量组的线性相关性,此题也可以利用齐次线性方程组的理论求解.三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【分析】此极限属于型未定式.可利用罗必塔法则,并结合无穷小代换求解. 【详解1】 原式2cos ln 331limx x x ex+⎛⎫ ⎪⎝⎭→-=202cos ln 3lim x x x→+⎛⎫ ⎪⎝⎭=20ln 2cos ln 3lim x x x→+-=() 01sin 2cos lim 2x x x x →⋅-+=()011sin 1lim22cos 6x x x x →=-⋅=-+ 【详解2】 原式2cos ln 331limx x x ex+⎛⎫⎪⎝⎭→-=202cos ln 3lim x x x→+⎛⎫ ⎪⎝⎭=20cos 1ln 3lim x x x→-+=(1) 20cos 11lim 36x x x →-==- 【评注】此题为求未定式极限的常见题型.在求极限时,要注意将罗必塔法则和无穷小代换结合,以简化运算.(16)(本题满分10分)设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导.【分析】分段函数在分段点的可导性只能用导数定义讨论. 【详解】(Ⅰ)当20x -≤<,即022x ≤+<时,()(2)f x k f x =+2(2)[(2)4](2)(4)k x x kx x x =++-=++.(Ⅱ)由题设知 (0)0f =.200()(0)(4)(0)lim lim 40x x f x f x x f x x+++→→--'===-- 00()(0)(2)(4)(0)lim lim 80x x f x f kx x x f k x x---→→-++'===-. 令(0)(0)f f -+''=, 得12k =-. 即当12k =-时, ()f x 在0x =处可导. 【评注】此题的考点是用定义讨论分段函数的可导性. (17)(本题满分11分) 设2()sin x xf x t dt π+=⎰,(Ⅰ)证明()f x 是以π为周期的周期函数; (Ⅱ)求()f x 的值域.【分析】利用变量代换讨论变限积分定义的函数的周期性,利用求函数最值的方法讨论函数的值域.【详解】 (Ⅰ) 32()sin x x f x t dt πππ+++=⎰,设t u π=+, 则有22()sin()sin ()x x xxf x u du u du f x ππππ+++=+==⎰⎰,故()f x 是以π为周期的周期函数.(Ⅱ)因为sin x 在(,)-∞+∞上连续且周期为π, 故只需在[0,]π上讨论其值域. 因为()sin()sin cos sin 2f x x x x x π'=+-=-,令()0f x '=, 得14x π=, 234x π=, 且344()sin 4f t dt πππ==⎰,554433443(sin sin sin 24f t dt t dt t dt πππππππ==-=⎰⎰⎰, 又 20(0)sin 1f t dt π==⎰, 32()(sin )1f t dt πππ=-=⎰,∴()f x的最小值是2, 故()f x的值域是[2.【评注】此题的讨论分两部分:(1)证明定积分等式,常用的方法是变量代换.(2)求变上限积分的最值, 其方法与一般函数的最值相同.(18)(本题满分12分)曲线2x x e e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值;(Ⅱ)计算极限()lim()t S t F t →+∞.【分析】用定积分表示旋转体的体积和侧面积,二者及截面积都是t 的函数,然后计算它们之间的关系.【详解】 (Ⅰ)0()2tS t π=⎰022x x te e π-⎛+= ⎝⎰ 2022x x te e dx π-⎛⎫+= ⎪⎝⎭⎰, 2200()2x x tte e V t y dx dx ππ-⎛⎫+== ⎪⎝⎭⎰⎰, ()2()S t V t ∴=. (Ⅱ)22()2t t x te e F t yππ-=⎛⎫+== ⎪⎝⎭,20222()lim lim ()2x x tt t t t e e dx S t F t e e ππ-→+∞→+∞-⎛⎫+ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭⎰222lim 222t t tt t t t e e e e e e ---→+∞⎛⎫+ ⎪⎝⎭=⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭lim 1t tttt e e e e --→+∞+==- 【评注】在 t 固定时,此题属于利用定积分表示旋转体的体积和侧面积的题型,考点是定积分几何应用的公式和罗必塔求与变限积分有关的极限问题.(19)(本题满分12分)设2e a b e <<<, 证明2224ln ln ()b a b a e->-. 【分析】文字不等式可以借助于函数不等式的证明方法来证明,常用函数不等式的证明方法主要有单调性、极值和最值法等.【详证1】设224()ln x x x e ϕ=-, 则 2ln 4()2x x x e ϕ'=-21ln ()2xx x ϕ-''=,所以当x e >时, ()0x ϕ''<, 故()x ϕ'单调减小, 从而当2e x e <<时, 22244()()0x e e eϕϕ''>=-=, 即当2e x e <<时, ()x ϕ单调增加.因此, 当2e a b e <<<时, ()()b a ϕϕ>, 即 222244ln ln b b a a e e->- 故 2224ln ln ()b a b a e ->-.【详证2】设2224()ln ln ()x x a x a eϕ=---, 则2ln 4()2x x x e ϕ'=-21ln ()2xx xϕ-''=, ∴x e >时, ()0x ϕ''<()x ϕ'⇒, 从而当2e x e <<时,22244()()0x e e e ϕϕ''>=-=, 2e x e ⇒<<时, ()x ϕ单调增加.2e a b e ⇒<<<时, ()()0x a ϕϕ>=.令x b =有()0b ϕ>即 2224ln ln ()b a b a e ->-.【详证3】证 对函数2ln x 在[,]a b 上应用拉格朗日定理, 得 222ln ln ln ()b a b a ξξ->-, a b ξ<<.设ln ()t t t ϕ=, 则21ln ()t t tϕ-'=,当t e >时, ()0t ϕ'<, 所以()t ϕ单调减小, 从而2()()e ϕξϕ>, 即222ln ln 2e e eξξ>=, 故 2224ln ln ()b a b a e ->- 【评注】此题是文字不等式的证明题型.由于不能直接利用中值定理证明,所以常用的方法是将文字不等式化为函数不等式,然后借助函数不等式的证明方法加以证明.(20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为9000kg 的飞机,着陆时的水平速度为700/km h .经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为66.010k =⨯).问从着陆点算起,飞机滑行的最长距离是多少?注 kg 表示千克,/km h 表示千米/小时.【分析】本题属物理应用.已知加速度或力求运动方程是质点运动学中一类重要的计算,可利用牛顿第二定律,建立微分方程,再求解.【详解1】由题设,飞机的质量9000m kg =,着陆时的水平速度0700/v km h =.从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为()x t ,速度为()v t .根据牛顿第二定律,得dvm kv dt=-. 又 dv dv dx dvv dt dx dt dx=⋅=,mdx dv k ∴=-,积分得 ()mx t v C k=-+,由于0(0)v v =,(0)0x =, 故得0mC v k=, 从而0()(())mx t v v t k=-.当()0v t →时,069000700() 1.05()6.010mv x t km k ⨯→==⨯. 所以,飞机滑行的最长距离为1.05km .【详解2】根据牛顿第二定律,得dvm kv dt =-. 所以 dv kdt v m=-,两边积分得 kt mv Ce -=,代入初始条件 00t vv ==, 得0C v =,0()k mv t v e -∴=,故飞机滑行的最长距离为 00() 1.05()k t mmv mv x v t dt ekm kk+∞-+∞==-==⎰.【详解3】根据牛顿第二定律,得22d x dxm k dt dt=-,220d x k dx dt m dt+=, 其特征方程为 20kr r m+=, 解得10r =, 2k r m=-, 故 12k mx C C e-=+,由(0)0x =, 200(0)k mt t kC dxv ev dtm-====-=,得012mv C C k=-=, 0()(1)k t m mv x t e k-∴=-.当t →+∞时,069000700() 1.05()6.010mv x t km k ⨯→==⨯. 所以,飞机滑行的最长距离为1.05km .【评注】此题的考点是由物理问题建立微分方程,并进一步求解. (21)(本题满分10分)设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z zx y x y∂∂∂∂∂∂∂. 【分析】利用复合函数求偏导和混合偏导的方法直接计算. 【详解】122xy zx f ye f x∂''=+∂, 122xy zy f xe f y∂''=-+∂,21112222[(2)]xy xy xy zx f y f xe e f xye f x y∂''''''=⋅-+⋅++∂∂2122[(2)]xy xy ye f y f xe ''''+⋅-+⋅ 222111222242()(1)xy xy xy xyf x y e f xye f e xy f '''''''=-+-++++. 【评注】此题属求抽象复合函数高阶偏导数的常规题型. (22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩ 试问a 取何值时, 该方程组有非零解, 并求出其通解.【分析】此题为求含参数齐次线性方程组的解.由系数行列式为0确定参数的取值,进而求方程组的非零解.【详解1】对方程组的系数矩阵A 作初等行变换, 有11111111222220033333004444400a aa a a B a a a a a a ++⎛⎫⎛⎫⎪ ⎪+- ⎪ ⎪→= ⎪ ⎪+- ⎪ ⎪⎪ ⎪+-⎝⎭⎝⎭当0a =时, ()14r A =<, 故方程组有非零解, 其同解方程组为 12340x x x x +++=. 由此得基础解系为1(1,1,0,0)T η=-, 2(1,0,1,0)T η=-, 3(1,0,0,1)Tη=-,于是所求方程组的通解为112233x k k k ηηη=++, 其中123,,k k k 为任意常数. 当0a ≠时,111110000210021003010301040014001a a B ++⎛⎫⎛⎫⎪⎪--⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭当10a =-时, ()34r A =<, 故方程组也有非零解, 其同解方程组为12131420,30,40,x x x x x x -+=⎧⎪-+=⎨⎪-+=⎩由此得基础解系为(1,2,3,4)Tη=, 所以所求方程组的通解为x k η=, 其中k 为任意常数.【详解2】方程组的系数行列式311112222(10)33334444aa A a a a a +⎛⎫ ⎪+ ⎪==+ ⎪+ ⎪ ⎪+⎝⎭. 当0A =, 即0a =或10a =-时, 方程组有非零解. 当0a =时, 对系数矩阵A 作初等行变换, 有11111111222200003333000044440000A ⎛⎫⎛⎫⎪⎪⎪⎪=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故方程组的同解方程组为12340x x x x +++=. 其基础解系为1(1,1,0,0)T η=-, 2(1,0,1,0)T η=-, 3(1,0,0,1)Tη=-,于是所求方程组的通解为112233x k k k ηηη=++, 其中123,,k k k 为任意常数. 当10a =-时, 对A 作初等行变换, 有91119111282220100033733001004446400010A --⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪=→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ 91110000210021003010301040014001-⎛⎫⎛⎫⎪⎪--⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭故方程组的同解方程组为2131412,3,4,x x x x x x =⎧⎪=⎨⎪=⎩其基础解系为(1,2,3,4)Tη=,所以所求方程组的通解为x k η=, 其中k 为任意常数【评注】解此题的方法是先根据齐次方程有非零解的条件确定方程组中的参数,再对求得的参数对应的方程组求解.(23)(本题满分9分)设矩阵12314315a -⎛⎫ ⎪-- ⎪ ⎪⎝⎭的特征方程有一个二重根, 求a 的值, 并讨论A 是否可相似对角化.【分析】由矩阵特征根的定义确定a 的值,由线性无关特征向量的个数与E A λ-秩之间的关系确定A 是否可对角化.【详解】A 的特征多项式为1232201431431515aaλλλλλλλ-----=-------110100(2)143(2)13315115aa λλλλλλ-=--=---------2(2)(8183)a λλλ=--++.若2λ=是特征方程的二重根, 则有22161830a -++=, 解得2a =-.当2a =-时, A 的特征值为2, 2, 6, 矩阵1232123123E A -⎛⎫ ⎪-=- ⎪ ⎪--⎝⎭的秩为1,故2λ=对应的线性无关的特征向量有两个, 从而A 可相似对角化.若2λ=不是特征方程的二重根, 则28183a λλ-++为完全平方, 从而18316a +=, 解得23a =-. 当23a =-时, A 的特征值为2, 4, 4, 矩阵32321032113E A ⎛⎫ ⎪- ⎪-= ⎪ ⎪-- ⎪⎝⎭的秩为2,故4λ=对应的线性无关的特征向量只有一个, 从而A 不可相似对角化.【评注】此题的考点是由特征根及重数的定义确定a 的值, 对a 的取值讨论对应矩阵的特征根及对应E A λ-的秩, 进而由E A λ-的秩与线性无关特征向量的个数关系确定A 是否可相似对角化.。

高考_2004年云南高考文科数学真题及答案

高考_2004年云南高考文科数学真题及答案

2004年云南高考文科数学真题及答案本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部。

第一卷1至2页,第二卷3至10页。

考试完毕后,将本试卷和答题卡一并交回。

第I 卷参考公式:三角函数的和差化积公式)]sin()[sin(21cos sin βαβαβα-++= )]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++= )]cos()[cos(21sin sin βαβαβα--+-=一、选择题〔1〕设集合(){}22,1,,M x y x y x R y R =+=∈∈,(){}2,0,,N x y x y x R y R =-=∈∈, 那么集合M N 中元素的个数为〔 〕 A .1B .2C .3D .4 〔2〕函数sin 2x y =的最小正周期是〔 〕 A .2π B .πC .2πD .4π (3) 记函数13x y -=+的反函数为()y g x =,那么(10)g =〔 〕A . 2B . 2-C . 3D . 1-(4) 等比数列{}n a 中,29,a = 5243a =,那么{}n a 的前4项和为〔 〕A . 81B . 120C .168D . 192 (5) 圆2240x y x +-=在点(P 处的切线方程是〔 〕A .20x +-=B .40x +-= C .40x -+= D .20x += 正棱台、圆台的侧面积公式 l c c S )(21+'=台侧 其中c ′、c 分别表示上、下底面周长,l 表示 斜高或母线长 台体的体积公式 334R V π=球其中R 表示球的半径(6) 61x ⎫⎪⎭展开式中的常数项为〔 〕 A . 15 B . 15- C . 20 D . 20-(7) 设复数z 的幅角的主值为23π,那么2z =〔 〕A . 2--B . 2i --C . 2+D . 2i (8) 设双曲线的焦点在x 轴上,两条渐近线为12y x =±,那么双曲线的离心率e =〔 〕A . 5B .C .D . 54 (9) 不等式113x <+<的解集为〔 〕A . ()0,2B . ()()2,02,4-C . ()4,0-D . ()()4,20,2--(10) 正三棱锥的底面边长为2,侧面均为直角三角形,那么此三棱锥的体积为〔 〕A .B .C .D .(11) 在ABC 中,3,4AB BC AC ===,那么边AC 上的高为〔 〕A .B .C . 32D .(12) 4名教师分配到3所中学任教,每所中学至少1名教师,那么不同的分配方案共有〔 〕A . 12 种B . 24 种C 36 种D . 48 种第二卷二、填空题:本大题共4小题,每题4分,共16分. 把答案填在题中横线上.(13) 函数)1(log 21-=x y 的定义域是 .(14) 用平面α截半径为R 的球,如果球心到平面α的距离为2R ,那么截得小圆的面积与球 的外表积的比值为 .(15) 函数)(cos 21sin R x x x y ∈-=的最大值为 . (16) 设P 为圆122=+y x 上的动点,那么点P 到直线01043=--y x 的距离的最小值为 .三、解答题:本大题共6小题,共74分. 解容许写出文字说明,证明过程或演算步骤.(17)〔本小题总分值12分〕解方程.012242=--+x x(18) 〔本小题总分值12分〕 α为锐角,且αααααα2cos 2sin sin cos 2sin ,21tan -=求的值.(19) 〔本上题总分值12分〕设数列}{n a 是公差不为零的等差数列,S n 是数列}{n a 的前n 项和,且,9221S S = 244S S =,求数列}{n a 的通项公式.20.〔本小题总分值12分〕某村方案建造一个室内面积为800m2的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保存1m宽的通道,沿前侧内墙保存3m宽的空地。

2004年普通高等学校招生全国统一考试数学试卷(全国卷Ⅱ.文)

2004年普通高等学校招生全国统一考试数学试卷(全国卷Ⅱ.文)

读一切好书,就是和许多高尚的人谈话。

——笛卡尔web试卷生成系统谢谢使用一、填空题(每空?分,共?分)1、从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为_______2、设满足约束条件:则的最大值是 .3、设中心在原点的椭圆与双曲线=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是4、下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是(写出所有正确结论的编号)5、已知a为实数,展开式中的系数是-15,则.6、设满足约束条件:则的最大值是 .7、下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是(写出所有正确结论的编号)二、计算题(每空?分,共?分)8、已知锐角三角形ABC中,(Ⅰ)求证:;(Ⅱ)设AB=3,求AB边上的高.9、已知等差数列{},(Ⅰ)求{}的通项公式;(Ⅱ)令,求数列的前n项和S n.10、已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支.求:(Ⅰ)A、B两组中有一组恰有两支弱队的概率;(Ⅱ)A组中至少有两支弱队的概率11、已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(Ⅰ)求函数f(x)的最大值;(Ⅱ)设0<a<b,证明0<g(a )+g(b)-2g()<(b-a)ln2.参考答案一、填空题1、0.1,0.6,0.32、53、4、②④5、6、57、②④二、计算题8、(Ⅰ)证明:所以(Ⅱ)解:,即,将代入上式并整理得解得,舍去负值得,设AB边上的高为CD.则AB=AD+DB=由AB=3,得CD=2+. 所以AB边上的高等于2+.9、解:(Ⅰ)设数列的公差为d,依题意得方程组解得所以的通项公式为(Ⅱ)由所以是首项,公式的等比数列.于是得的前n项和10、解;(Ⅰ)解法一:三支弱队在同一组的概率为故有一组恰有两支弱队的概率为解法二:有一组恰有两支弱队的概率(Ⅱ)解法一:A组中至少有两支弱队的概率解法二:A、B两组有一组至少有两支弱队的概率为1,由于对A组和B组来说,至少有两支弱队的概率是相同的,所以A 组中至少有两支弱队的概率为11、(Ⅰ)解:函数的定义域为.令当当又故当且仅当x=0时,取得最大值,最大值为0.(Ⅱ)证法一:由(Ⅰ)结论知由题设因此所以又综上证法二:设则当在此内为减函数. 当上为增函数.从而,当有极小值因此即设则当因此上为减函数.因为即读一切好书,就是和许多高尚的人谈话。

2004年全国高考数学文科试卷含答案

2004年全国高考数学文科试卷含答案

2004年普通高等学校招生全国统一考试数学(文史类)(老课程)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至10页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷参考公式:三角函数的和差化积公式)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++= )]cos()[cos(21sin sin βαβαβα--+-=一、选择题 (1)设集合(){}22,1,,M x y xy x R y R =+=∈∈,(){}2,0,,N x y xy x R y R =-=∈∈,则集合MN 中元素的个数为( )A .1B .2C .3D .4(2)函数sin2xy =的最小正周期是( ) A .2πB .πC .2πD .4π(3) 记函数13xy -=+的反函数为()y g x =,则(10)g =( ) A . 2B . 2-C . 3D . 1-(4) 等比数列{}n a 中,29,a = 5243a =,则{}n a 的前4项和为( )A . 81B . 120C .168D . 192正棱台、圆台的侧面积公式l c c S )(21+'=台侧其中c ′、c 分别表示上、下底面周长,l 表示 斜高或母线长 台体的体积公式334R V π=球 其中R 表示球的半径(5) 圆2240x y x +-=在点(P 处的切线方程是( )A . 20x +-=B . 40x +-=C . 40x -+=D . 20x +=(6) 61x ⎫⎪⎭展开式中的常数项为( )A . 15B . 15-C .20D . 20-(7) 设复数z 的幅角的主值为23π2z =( )A . 2--B . 2i -C . 2+D . 2i(8) 设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( )A . 5B .C .2 D . 54(9) 不等式113x <+<的解集为( )A . ()0,2B . ()()2,02,4-C . ()4,0-D . ()()4,20,2--(10) 正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A .B .C .3D .(11) 在ABC 中,3,4AB BC AC ===,则边AC 上的高为( )A .B .C .32D .(12) 4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( )A . 12 种B . 24 种C 36 种D . 48 种第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在题中横线上. (13) 函数)1(log 21-=x y 的定义域是 .(14) 用平面α截半径为R 的球,如果球心到平面α的距离为2R,那么截得小圆的面积与球 的表面积的比值为 . (15) 函数)(cos 21sin R x x x y ∈-=的最大值为 . (16) 设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最小值为 .三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)解方程.012242=--+x x(18) (本小题满分12分)已知α为锐角,且αααααα2cos 2sin sin cos 2sin ,21tan -=求的值.(19) (本上题满分12分)设数列}{n a 是公差不为零的等差数列,S n 是数列}{n a 的前n 项和,且,9221S S =244S S =,求数列}{n a 的通项公式.20.(本小题满分12分)某村计划建造一个室内面积为800m 2的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留1m宽的通道,沿前侧内墙保留3m宽的空地。

2004年高考试题全国卷2理科数学及答案(必修+选修Ⅱ四川吉林黑龙江云南等地区)

2004年高考试题全国卷2理科数学及答案(必修+选修Ⅱ四川吉林黑龙江云南等地区)

2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω (4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条(9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 . (15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . (16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高.(18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率.(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.(Ⅰ)求证:CD⊥平面BDM;(Ⅱ)求面B1BD与面CBD所成二面角的大小.(21)(本小题满分12分)给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.(Ⅰ)设l的斜率为1,求与夹角的大小;(Ⅱ)设=AFλ,若λ∈[4,9],求l在y轴上截距的变化范围.(22)(本小题满分14分)已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(1)求函数f(x)的最大值;(2)设0<a<b,证明:0<g(a)+g(b)-2g(2ba+)<(b-a)ln2.2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan =设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为18.(I) 解:有一组恰有两支弱队的概率72482523=C C C (II)解:A 组中至少有两支弱队的概率2481533482523=+C C C C C C19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n ,211=++nS n S n n (n=1,2,3,…).故数列{n S n }是首项为1,公比为2的等比数列 (II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B ,∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3,又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM ,因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=2123223)21()23(222121221=∙∙-+=∙-+FGG B F B FG G B 即所求二面角的大小为π解法二:如图以C 为原点建立坐标系(I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =(0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=B 1),41,43,42(--∴01=∙B ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与G B 1的夹角θ等于所求二面角的平面角,A'C'cos .33||||11-=∙=G B CD θ所以所求二面角的大小为π21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1. 将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OB OA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,.41413-= 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1……………………………………(3) 联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1)当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21ln (2ln -->-+-=+,bb a b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2lnln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。

2004年高考数学试题——全国卷II.理科

2004年高考数学试题——全国卷II.理科

2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.(1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2}(B ){x |x >3} (C ){x |-1<x <2}(D ){x |2<x <3}(2)2212lim 45n x x x x →+-+-=(A )12(B )1(C )25(D )14(3)设复数ω=-12+2i ,则1+ω=(A )–ω(B )ω2(C )1ω-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1(5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是(A )-6π(B )6π(C )-12π(D )12π(6)函数y =-e x 的图象(A )与y =e x的图象关于y 轴对称 (B )与y =e x的图象关于坐标原点对称 (C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称(7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为(A )13(B )3(C )23(D )3(8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条(B )2条(C )3条(D )4条(9)已知平面上直线l 的方向向量43(,)55e =-,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11O A =λe,其中λ=(A )115(B )-115(C )2 (D )-2(10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,32π) (B )(π,2π) (C )(32π,52π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π(B )2π(C )π (D )2π(12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . (16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高.(18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率;(Ⅱ)A 组中至少有两个弱队的概率.(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2 S n (n =1,2,3,…).证明:(Ⅰ)数列{nS n }是等比数列;(Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o,AC =1,CB =2,侧棱AA 1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.(Ⅰ)求证:CD⊥平面BDM;(Ⅱ)求面B1BD与面CBD所成二面角的大小.(21)(本小题满分12分)给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.(Ⅰ)设l的斜率为1,求OA与OB夹角的大小;(Ⅱ)设FB=AFλ,若λ∈[4,9],求l在y轴上截距的变化范围.(22)(本小题满分14分)已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(1)求函数f(x)的最大值;(2)设0<a<b,证明:0<g(a)+g(b)-2g(2ba+)<(b-a)ln2.2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan =设AB 上的高为CD ,则AB =AD +DB =623tan tan +=+CD BCD ACD ,由AB =3得CD =2+6故AB 边上的高为18.(I) 解:有一组恰有两支弱队的概率2482523=CC C (II)解:A 组中至少有两支弱队的概率21481533482523=+CC C CC C19.(I )证: 由a 1=1,a n +1=nn 2+S n (n =1,2,3,…),知a 2=112+S 1=3a 1,224212==a S ,111=S ,∴21212=S S又a n +1=S n +1-S n (n =1,2,3,…),则S n +1-S n =nn 2+S n (n =1,2,3,…),∴nS n +1=2(n +1)S n ,112n n S n S n++=(n =1,2,3,…).故数列{n S n}是首项为1,公比为2的等比数列 (II )解:由(I )知,114(2)11n n S S n n n +-=⋅≥+-,于是S n +1=4(n +1)·11n Sn --=4a n (n 2≥) 又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n +1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1∵CB =CA 1CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1A 1B 1又BB 1=1,∴A 1B =2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD =12A 1B =1,CD =CC 1又DM =12AC 1=2,DM =C 1M ,∴△CDN ≌△CC 1M ,∠CDM =∠CC 1M =90°,即CD ⊥DM ,因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II )设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG ∥CD ,FG =12CD ∴FG =12,FG ⊥BD .由侧面矩形BB 1A 1A 的对角线的交点为D ,知BD =B 1D =12A 1B =1,所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G2,∴∠B 1GF 是所求二面角的平面角又B 1F 2=B 1B 2+BF 2=1+(2)2=32.∴cos ∠B 1GF=2222211113(()222B G FG B FBG FG+-+-==-⋅即所求二面角的大小为π解法二:如图以C 为原点建立坐标系(I):B B 1A 1(0,1,1),D (2,12,12),M (2,1,0),CD = (2,12,12),1A B =(DM = (0,12,-12),10,0,C D A B C D D M ⋅=⋅=∴CD ⊥A 1B ,CD ⊥DM .因为A 1B 、DM 为平面BDM 内两条相交直线,A'C'所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G 11(,,),444BD =(-2,12,12),1B G =31(,),444--∴10BD B G ⋅= ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与1B G 的夹角θ等于所求二面角的平面角,cos 113||||C D B G C D B G θ⋅==-⋅所以所求二面角的大小为π21.解:(I )C 的焦点为F (1,0),直线l 的斜率为1,所以l 的方程为y =x -1.将y =x -1代入方程y 2=4x ,并整理得x 2-6x +1=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=6,x 1x 2=1, OA OB ⋅=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x2)+1=-3. ||||OA OB ⋅===cos<,O A O B>=41||||O A O B O A O B ⋅=-⋅所以O A 与OB 夹角的大小为π-arccos 41.解:(II)由题设知FB AF λ= 得:(x 2-1,y 2)=λ(1-x 1,-y 1),即21211(1)(1)(2)x x y y λλ-=-⎧⎨=-⎩由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1……………………………………(3) 联立(1)(3)解得x 2=λ.依题意有λ>0.∴B (λ或B (λ,又F (1,0),得直线l 的方程为(λ-1)y x -1)或(λ-1)y x -1)当λ∈[4,9]时,l 在y1λ-或由1λ-21λ+-1λ-在[4,9]上是递减的,∴34≤1λ-43≤,-43≤1λ-≤-直线l 在y 轴上截距的变化范围是4334[,][,3443--22.(I)解:函数f (x )的定义域是(-1,∞),'f (x )=111x-+.令'f (x )=0,解得x =0,当-1<x <0时, 'f (x )>0,当x >0时,'f (x )<0,又f (0)=0,故当且仅当x =0时,f (x )取得最大值,最大值是0(II)证法一:g (a )+g (b )-2g (2a b +)=a ln a +b ln b -(a +b )ln2a b +=a 22lnlna bb a ba b+++.由(I )的结论知ln(1+x )-x <0(x >-1,且x ≠0),由题设0<a <b ,得0,1022b a a ba b-->-<<,因此2l nl n (1)22a b a b a a baa--=-+>-+,2lnln(1)22b a b a b a bbb--=-+>-+.所以a 22lnlnabb a b a b +++>-022b a a b ---=.又2,2a a b a b b+<+ a 22lnlna b b a ba b+++<a 22lnln()ln()ln 2.2a b b b b b a b a ba ba b++=-<-++综上0<g (a )+g (b )-2g (2a b +)<(b -a )ln2.(II)证法二:g (x )=x ln x ,'()ln 1g x x =+,设F (x )= g (a )+g (x )-2g (2a x +),则'()'()2[()]'ln ln.22a x a xF x g x g x ++=-==当0<x <a 时'()0,F x <因此F (x )在(0,a )内为减函数当x >a 时'()0,F x >因此F (x )在(a ,+∞)上为增函数x =a 时,F (x )有极小值F (a )因为F (a )=0,b >a ,所以F (b )>0,即0<g (a )+g (b )-2g (2a b +).设G (x )=F (x )-(x -a )ln2,则'()ln lnln 2ln ln().2a x G x x x a x +=--=-+当x >0时,'()0G x <,因此G (x )在(0,+∞)上为减函数,因为G (a )=0,b >a ,所以G (b )<0.即g (a )+g (b )-2g (2a b +)<(b -a )ln2.。

全国卷2(四川、吉林、黑龙江、云南等地区)(附答案)

全国卷2(四川、吉林、黑龙江、云南等地区)(附答案)

2004年普通高等学校招生全国统一考试文科数学(必修+选修Ⅱ)一、选择题(每小题5分,共60分)1.已知集合M ={x|x 2<4},N ={x|x 2-2x -3<0},则集合M ∩N =A.{x|x <-2}B.{x|x >3}C.{x|-1<x <2}D.{x|2<x <3} 2.函数y =5x 1+(x ≠-5)的反函数是 A.y =x 1-5(x≠0) B.y =x +5(x ∈R) C.y =x1+5(x≠0) D.y =x -5(x ∈R) 3.曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为A.y =3x -4B.y =-3x +2C.y =-4x +3D.y =4x -5 4.已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为A.(x +1)2+y 2=1B.x 2+y 2=1C.x 2+(y +1)2=1D.x 2+(y -1)2=1 5.已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 A.-6π B.6πC.-12πD.12π 6.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为A.75°B.60°C.45°D.30°7.函数y =-e x的图象A.与y =e x 的图象关于y 轴对称B.与y =e x 的图象关于坐标原点对称C.与y =e -x的图象关于y 轴对称 D.与y =e -x的图象关于坐标原点对称 8.已知点A(1,2),B(3,1),则线段AB 的垂直平分线的方程为A.4x +2y =5B.4x -2y =5C.x +2y =5D.x -2y =5 9.已知向量a 、b 满足:|a |=1,|b |=2,|a -b|=2,则|a +b|= A.1 B.2 C.5 D.610.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为A.31B.33C.32 D.3611.函数y =sin 4x +cos 2x 的最小正周期为A.4π B.2πC.πD.2π 12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有 A.56个 B.57个 C.58个 D.60个二、填空题(每小题4分,共16分)13.已知a 为实数,(x +a)10展开式中x 7的系数是-15,则a =____。

2004-2012年高考全国卷1(2012全国卷)文科数学试题及答案

2004-2012年高考全国卷1(2012全国卷)文科数学试题及答案

2004年高考试题全国卷1 文科数学(必修+选修I )(河南、河北、山东、山西)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分 .1.设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A ∩(U C B )= ( )A .{2}B .{2,3}C .{3}D . {1,3} 2.已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若 ( )A .21 B .-21 C .2D .-23.已知,a b 均为单位向量,它们的夹角为60°,那么|3a b +|= ( )A .7B .10C .13D .4 4.函数1(1)y x =≥的反函数是( )A .)1(222<+-=x x x y B .)1(222≥+-=x x x yC .)1(22<-=x x x yD .)1(22≥-=x x x y球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式 V=334R π, 其中R 表示球的半径5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设)2,0(πα∈若,53sin =α则)4cos(2πα+= ( )A .57B .51C .27D .47.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF = ( )A .23 B .3C .27 D .48.设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线 l 的斜率的取值范围是( )A .]21,21[- B .[-2,2] C .[-1,1] D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH的表面积为T ,则ST等于 ( )A .91 B .94C .41 D .31 11.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是 ( )A .95B .94 C .2111 D .2110 12.已知ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为( )A .3-21 B .21-3 C .-21-3 D .21+3 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式x +x 3≥0的解集是 .14.已知等比数列{,384,3,}103==a a a n 中则该数列的通项n a = . 15.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P的轨迹方程为 .16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)等差数列{n a }的前n 项和记为S n .已知.50,302010==a a (Ⅰ)求通项n a ; (Ⅱ)若S n =242,求n.18.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.19.(本小题满分12分)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围.20.(本小题满分12分)从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为54,每位男同学能通过测验的概率均为53.试求: (I )选出的3位同学中,至少有一位男同学的概率;(II )10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.21.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD ,侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离;(II )求面APB 与面CPB 所成二面角的大小.22.(本小题满分14分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值.2004年高考试题全国卷1 文科数学(必修+选修I ) (河南、河北、山东、山西)参考答案一、选择题DBCBABCCBACB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥0} 14.3·2n -3 15.422=+y x 16.①②④三、解答题17.本小题主要考查等差数列的通项公式、求和公式,考查运算能力.满分12分.解:(Ⅰ)由,50,30,)1(20101==-+=a a d n a a n 得方程组⎩⎨⎧=+=+.5019,30911d a d a ……4分 解得.2,121==d a 所以 .102+=n a n ……7分(Ⅱ)由242,2)1(1=-+=n n S d n n na S 得方程 .24222)1(12=⨯-+n n n ……10分 解得).(2211舍去或-==n n ………12分18.本小题主要考查三角函数基本公式和简单的变形,以及三角函数的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=.212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数)(x f 的最小正周期是π,最大值是,43最小值是.41…………12分 19.本小题主要考查导数的概念和计算,应用导数研究函数单调性的基本方法,考查综合运用数学知识解决问题的能力.满分12分.………………6分解:函数f (x )的导数:.163)(2-+='x ax x f ………………3分(Ⅰ)当0)(<'x f (R x ∈)时,)(x f 是减函数.)(01632R x x ax ∈<-+ .3012360-<⇔<+=∆<⇔a a a 且所以,当))((,0)(,3R x x f x f a ∈<'-<知由时是减函数;………………9分(II )当3-=a 时,133)(23+-+-=x x x x f =,98)31(33+--x 由函数3x y =在R 上的单调性,可知 当3-=a 时,R x x f ∈)(()是减函数;(Ⅲ)当3->a 时,在R 上存在一个区间,其上有,0)(>'x f所以,当3->a 时,函数))((R x x f ∈不是减函数. 综上,所求a 的取值范围是(].3,-∞-………………12分20.本小题主要考查组合,概率等基本概念,独立事件和互斥事件的概率以及运用概率知识 解决实际问题的能力,满分12分. 解:(Ⅰ)随机选出的3位同学中,至少有一位男同学的概率为1-6531036=C C ;………………6分(Ⅱ)甲、乙被选中且能通过测验的概率为.1254535431018=⨯⨯C C ;………………12分21.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD. 由此知∠PEB 为面PAD 与面ABCD所成二面角的平面角,………………4分∴∠PEB=120°,∠PEO=60° 由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23.………………6分 (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=PB BC PB GA BC PB GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥等于所求二面角的平面角,…………10分 于是,772||||cos -=⋅=BC GA BC GA θ 所以所求二面角的大小为772arccos-π.…………12分 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB ,∴∠AGF 是所求二面角的平面角.……9分 ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°.在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1. 于是tan ∠GAE=AE EG=23, 又∠AGF=π-∠GAE. 所以所求二面角的大小为π-arctan23.…………12分 22.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分14分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ① ……2分.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率分的取值范围为即离心率且且6).,2()2,26(226,120.11122+∞≠>∴≠<<+=+=e e e a a a a a e(II )设)1,0(),,(),,(12211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 ……8分 由于x 1,x 2都是方程①的根,且1-a 2≠0,分所以由得消去所以14.1317,06028912,,.12125,1212172222222222 =>=----=--=a a a a x a a x a a x2005年普通高考全国数学卷(一)考区(河北文科卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3到10页.考试结束后,将本试卷和答题卡一并交回. 参考公式:如果事件A B 、互斥,那么 球的表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A B 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(第Ⅰ卷一、选择题: 本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设I 为全集,321S S S 、、是I 的三个非空子集,且123S S S I =,则下面论断正确的是 A.123I C S S S =∅()B.122I I S C S C S ⊆()C.123I I I C S C S C S =∅)D.122I I S C S C S ⊆()2.一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为A.π28B.π8C.π24D.π43.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =A.2B.3C.4D.54.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,//EF AB ,2EF =,则该多面体的体积为A.32 B.33 C.34D.235.已知双曲线)0( 1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为A.23B.23 C.26 D.332 6.当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为A.2B.32C.4D.347.)21( 22≤≤-=x x x y 反函数是A.)11( 112≤≤--+=x x yB.)10( 112≤≤-+=x x yC.)11( 112≤≤---=x x yD.)10( 112≤≤--=x x y8.设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是A.)0,(-∞B.),0(+∞C.)3log ,(a -∞D.),3(log +∞a9.在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为A.2B.23C.223 D.210.在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+其中正确的是A.①③B.②④C.①④D.②③11.点O 是三角形ABC 所在平面内的一点,满足OA OC OC OB OB OA ⋅=⋅=⋅.则点O 是ABC ∆的A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点12.设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是A.1±B.21±C.33±D.3±第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.若正整数m 满足m m 102105121<<-,则m = .)3010.02(lg ≈14.8)1(xx -的展开式中,常数项为 .(用数字作答)15.从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法有 种. 16.在正方形ABCD A B C D ''''-中,过对角线BD '的一个平面交AA '于E ,交CC '于F ,则① 四边形BFD E '一定是平行四边形 ② 四边形BFD E '有可能是正方形③ 四边形BFD E '在底面ABCD 内的投影一定是正方形 ④ 四边形BFD E '有可能垂直于平面BB D '以上结论正确的为 .(写出所有正确结论的编号)三、解答题:本大题共6小题,74分.解答应写出文字说明、证明过程或演算步骤. 17.(本大题满分12分)设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x .⑴求ϕ;⑵求函数)(x f y =的单调递增区间; ⑶画出函数)(x f y =在区间],0[π上的图像. 18.(本大题满分12分)已知四棱锥P ABCD -的底面为直角梯形,//AB DC ,⊥=∠PA DAB ,90底面ABCD ,且112PA AD DC AB ====,M 是PB 的中点. ⑴证明:PAD PCD ⊥平面平面;⑵求AC 与PB 所成的角;⑶求平面AMC 与平面BMC 所成二面角的大小. 19.(本大题满分12分)已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为)3,1(. ⑴若方程06)(=+a x f 有两个相等的根,求)(x f 的解析式; ⑵若)(x f 的最大值为正数,求a 的取值范围.20.(本大题满分12分)9粒种子分别种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种. ⑴求甲坑不需要补种的概率;⑵求3个坑中恰有1个坑不需要补种的概率; ⑶求有坑需要补种的概率. (精确到01.0)21.(本大题满分12分) 设正项等比数列{}n a 的首项211=a ,前n 项和为n S ,且0)12(21020103010=++-S S S . ⑴求{}n a 的通项; ⑵求{}n nS 的前n 项和n T .22.(本大题满分14分)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A B 、两点,OB OA +与)1,3(-=a 共线.⑴求椭圆的离心率;⑵设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值.2005年普通高等学校招生全国统一考试文科数学(必修+选修I )参考答案一、选择题(本题考查基本知识和基本运算,每小题5分,满分60分)1.C 2.C 3.B 4.D 5.A 6.D 7.C 8.B 9.C 10.B 11.B 12.D 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.155 14.70 15.100 16.①③④ 三、解答题17.本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分12分.解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ-=<<- (Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此 由题意得.,2243222Z k k x k ∈+≤-≤-πππππ所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为(Ⅲ)由知)432sin(π-=x yx 08π83π 85π 87π πy22--1 0 1 022- 故函数上图像是在区间],0[)(πx f y =18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力.满分12分. 方案一:(Ⅰ)证明:∵PA ⊥面ABCD ,CD ⊥AD , ∴由三垂线定理得:CD ⊥PD.因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥面PCD.(Ⅱ)解:过点B 作BE//CA ,且BE=CA ,则∠PBE 是AC 与PB 所成的角.连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD 得∠PEB=90° 在Rt △PEB 中BE=2,PB=5, .510cos ==∠∴PB BE PBE .510arccos所成的角为与PB AC ∴ (Ⅲ)解:作AN ⊥CM ,垂足为N ,连结BN. 在Rt △PAB 中,AM=MB ,又AC=CB , ∴△AMC ≌△BMC,∴BN ⊥CM ,故∠ANB 为所求二面角的平面角. ∵CB ⊥AC ,由三垂线定理,得CB ⊥PC , 在Rt △PCB 中,CM=MB ,所以CM=AM. 在等腰三角形AMC 中,AN ·MC=AC AC CM⋅-22)2(, 5625223=⨯=∴AN . ∴AB=2,322cos 222-=⨯⨯-+=∠∴BN AN AB BN AN ANB 故所求的二面角为).32arccos(-方法二:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0)B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,)21. (Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故又由题设知AD ⊥DC ,且AP 与与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD. (Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC.510||||,cos ,2,5||,2||=⋅⋅>=<=⋅==PB AC PBAC PB AC PB AC PB AC 所以故由此得AC 与PB 所成的角为.510arccos(Ⅲ)解:在MC 上取一点N (x ,y ,z ),则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC要使.54,0210,==-=⋅⊥λ解得即只需z x MC AN MC AN),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角.).32arccos(.32||||),cos(.54,530||,530||--=⋅=∴-=⋅==故所求的二面角为BN AN BNAN BN AN BN AN BN AN19.本小题主要考查二次函数、方程的根与系数关系,考查运用数学知识解决问题的能力.满分12分.解:(Ⅰ)).3,1(02)(的解集为>+x x f 因而且.0),3)(1(2)(<--=+a x x a x x f.3)42(2)3)(1()(2a x a ax x x x a x f ++-=---=①由方程.09)42(06)(2=++-=+a x a ax a x f 得 ②因为方程②有两个相等的根,所以094)]42([2=⋅-+-=∆a a a ,即 .511.01452-===--a a a a 或解得由于51.1,0-==<a a a 将舍去代入①得)(x f 的解析式.535651)(2---=x x x f(Ⅱ)由aa a a a x a a x a ax x f 14)21(3)21(2)(222++-+-=++-= 及.14)(,02aa a x f a ++-<的最大值为可得 由⎪⎩⎪⎨⎧<>++-,0,0142a a a a 解得 .03232<<+---<a a 或 故当)(x f 的最大值为正数时,实数a 的取值范围是).0,32()32,(+----∞ 20.本小题主要考查相互独立事件和互斥事件有一个发生的概率的计算方法,考查运用概率知识解决实际问题的能力. 满分12分.(Ⅰ)解:因为甲坑内的3粒种子都不发芽的概率为81)5.01(3=-,所以甲坑不需要补 种的概率为 .875.087811==-(Ⅱ)解:3个坑恰有一个坑不需要补种的概率为 .041.0)81(87213=⨯⨯C (Ⅲ)解法一:因为3个坑都不需要补种的概率为3)87(, 所以有坑需要补种的概率为 .330.0)87(13=-解法二:3个坑中恰有1个坑需要补种的概率为,287.0)87(81213=⨯⨯C 恰有2个坑需要补种的概率为 ,041.087)81(223=⨯⨯C 3个坑都需要补种的概率为 .002.0)87()81(0333=⨯⨯C所以有坑需要补种的概率为 .330.0002.0041.0287.0=++21.本小题主要考查等比数列的基本知识,考查分析问题能力和推理能力,满分12分.解:(Ⅰ)由 0)12(21020103010=++-S S S 得 ,)(21020203010S S S S -=- 即,)(220121*********a a a a a a +++=+++可得.)(220121*********10a a a a a a q +++=+++⋅因为0>n a ,所以 ,121010=q解得21=q ,因而 .,2,1,2111 ===-n q a a n n n (Ⅱ)因为}{n a 是首项211=a 、公比21=q 的等比数列,故.2,211211)211(21n n n n n n n nS S -=-=--= 则数列}{n nS 的前n 项和 ),22221()21(2n n nn T +++-+++=).2212221()21(212132++-+++-+++=n n n nn n T 前两式相减,得122)212121()21(212+++++-+++=n n n nn T 12211)211(214)1(++---+=n n n n n 即 .22212)1(1-+++=-n n nn n n T 22.本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分14分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与a 共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴即232222c ba c a =+,所以36.32222ab ac b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ .0329233)(34))((33832222212121212121222222221=+-=++-=--+=+=+-=c c c c c x x x x c x c x x x y y x x c ba b a c a x x 又222222212133,33b y x b y x =+=+,代入①得.122=+μλ 故22μλ+为定值,定值为1.2006年普通高等学校招生全国统一考试文科数学本试卷分第I 卷(选择题)第II 卷(非选择题)两部分。

2004年高考试题全国卷1文科数学及答案(必修+选修Ⅰ河南河北山东山西安徽江西)

2004年高考试题全国卷1文科数学及答案(必修+选修Ⅰ河南河北山东山西安徽江西)

2004年高考试题全国卷1 文科数学(必修+选修I )(河南、河北、山东、山西等地区)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分 .1.设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A ∩(U C B )= ( )A .{2}B .{2,3}C .{3}D . {1,3} 2.已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若( )A .21 B .-21 C .2D .-2 3.已知,a b均为单位向量,它们的夹角为60°,那么|3a b + |=( )A .7B .10C .13D .4 4.函数1(1)y x =≥的反函数是( )A .)1(222<+-=x x x y B .)1(222≥+-=x x x yC .)1(22<-=x x x yD .)1(22≥-=x x x y球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式 V=334R π, 其中R 表示球的半径5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设)2,0(πα∈若,53sin =α则)4cos(2πα+= ( )A .57B .51C .27D .47.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( )A .23 B .3C .27 D .48.设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线 l 的斜率的取值范围是( )A .]21,21[- B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则ST等于( )A .91B .94C .41 D .31 11.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是 ( )A .95B .94 C .2111 D .2110 12.已知ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式x +x 3≥0的解集是 .14.已知等比数列{,384,3,}103==a a a n 中则该数列的通项n a = . 15.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P的轨迹方程为 .16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 . ①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)等差数列{n a }的前n 项和记为S n .已知.50,302010==a a (Ⅰ)求通项n a ; (Ⅱ)若S n =242,求n.18.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.19.(本小题满分12分)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围.20.(本小题满分12分)从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为54,每位男同学能通过测验的概率均为53.试求: (I )选出的3位同学中,至少有一位男同学的概率;(II )10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.21.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD ,侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离;(II )求面APB 与面CPB 所成二面角的大小.22.(本小题满分14分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.2004年高考试题全国卷1 文科数学(必修+选修I ) (河南、河北、山东、山西)参考答案一、选择题DBCBABCCBACB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥0} 14.3·2n -3 15.422=+y x 16.①②④三、解答题17.本小题主要考查等差数列的通项公式、求和公式,考查运算能力.满分12分.解:(Ⅰ)由,50,30,)1(20101==-+=a a d n a a n 得方程组⎩⎨⎧=+=+.5019,30911d a d a ……4分 解得.2,121==d a 所以 .102+=n a n ……7分(Ⅱ)由242,2)1(1=-+=n n S d n n na S 得方程 .24222)1(12=⨯-+n n n ……10分 解得).(2211舍去或-==n n ………12分 18.本小题主要考查三角函数基本公式和简单的变形,以及三角函数的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=.212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数)(x f 的最小正周期是π,最大值是,43最小值是.41…………12分19.本小题主要考查导数的概念和计算,应用导数研究函数单调性的基本方法,考查综合运用数学知识解决问题的能力.满分12分.解:函数f (x )的导数:.163)(2-+='x ax x f ………………3分 (Ⅰ)当0)(<'x f (R x ∈)时,)(x f 是减函数.)(01632R x x ax ∈<-+ .3012360-<⇔<+=∆<⇔a a a 且所以,当))((,0)(,3R x x f x f a ∈<'-<知由时是减函数;………………9分………………6分(II )当3-=a 时,133)(23+-+-=x x x x f =,98)31(33+--x 由函数3x y =在R 上的单调性,可知 当3-=a 时,R x x f ∈)(()是减函数;(Ⅲ)当3->a 时,在R 上存在一个区间,其上有,0)(>'x f所以,当3->a 时,函数))((R x x f ∈不是减函数. 综上,所求a 的取值范围是(].3,-∞-………………12分20.本小题主要考查组合,概率等基本概念,独立事件和互斥事件的概率以及运用概率知识 解决实际问题的能力,满分12分. 解:(Ⅰ)随机选出的3位同学中,至少有一位男同学的概率为1-6531036=C C ;………………6分(Ⅱ)甲、乙被选中且能通过测验的概率为.1254535431018=⨯⨯C C ;………………12分21.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD. 由此知∠PEB 为面PAD 与面ABCD所成二面角的平面角,………………4分 ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23.………………6分 (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥等于所求二面角的平面角,…………10分 于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π.…………12分 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB ,∴∠AGF 是所求二面角的平面角.……9分 ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1. 于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE. 所以所求二面角的大小为π-arctan23.…………12分 22.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分14分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ① ……2分.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率分的取值范围为即离心率且且6).,2()2,26(226,120.11122+∞≠>∴≠<<+=+=e e e a a a a a e(II )设)1,0(),,(),,(12211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 ……8分 由于x 1,x 2都是方程①的根,且1-a 2≠0,分所以由得消去所以14.1317,06028912,,.12125,1212172222222222 =>=----=--=a a a a x a a x a a x。

2004年高考试题全国卷2文科数学及答案(必修+选修Ⅰ四川吉林黑龙江云南等地区)

2004年高考试题全国卷2文科数学及答案(必修+选修Ⅰ四川吉林黑龙江云南等地区)

实用文档2004年高考试题全国卷2文科数学(必修+选修Ⅰ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.(1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3}(C ){x |-1<x <2} (D ){x |2<x <3}(2)函数y =51 x (x ≠-5)的反函数是 (A )y =x1-5(x ≠0) (B )y =x +5(x ∈R ) (C )y =x 1+5(x ≠0) (D )y =x -5(x ∈R ) (3)曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为(A )y =3x -4 (B )y =-3x +2(C )y =-4x +3 (D )y =4x -5(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1实用文档 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1(5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π (6)正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为(A )75° (B )60° (C )45° (D )30°(7)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称(B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称(D )与y =e -x 的图象关于坐标原点对称(8)已知点A (1,2),B(3,1),则线段AB 的垂直平分线的方程为(A )4x +2y =5 (B )4x -2y =5(C )x +2y =5 (D )x -2y =5(9)已知向量a 、b 满足:|a |=1,|b |=2,|a -b |=2,则|a +b |=(A )1 (B )2 (C )5 (D )6(10)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,实用文档则球心O 到平面ABC 的距离为(A )31 (B )33 (C )32 (D )36 (11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π (C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)已知a 为实数,(x +a )10展开式中x 7的系数是-15,则a = 。

2004年普通高等学校招生全国统一考试数学试卷(全国卷Ⅱ.文)

2004年普通高等学校招生全国统一考试数学试卷(全国卷Ⅱ.文)

web 试卷生成系统谢谢使用一、填空题(每空? 分,共? 分)1、从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为_______2、设满足约束条件:则的最大值是 .3、设中心在原点的椭圆与双曲线=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是4、下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱③若四个侧面两两全等,则该四棱柱为直四棱柱 ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号)5、已知a 为实数,展开式中的系数是-15,则.6、设满足约束条件:则的最大值是 .7、下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱 ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号)二、计算题(每空? 分,共? 分)8、已知锐角三角形ABC 中,(Ⅰ)求证:;(Ⅱ)设AB=3,求AB 边上的高.9、已知等差数列{},(Ⅰ)求{}的通项公式;(Ⅱ)令,求数列的前n 项和S n .10、已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A、B两组中有一组恰有两支弱队的概率;(Ⅱ)A组中至少有两支弱队的概率11、已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(Ⅰ)求函数f(x)的最大值;(Ⅱ)设0<a<b,证明0<g(a )+g(b)-2g()<(b-a)ln2.参考答案一、填空题1、0.1,0.6,0.32、53、4、②④5、6、57、②④二、计算题8、(Ⅰ)证明:所以(Ⅱ)解:,即,将代入上式并整理得解得,舍去负值得,设AB边上的高为CD.则AB=AD+DB=由AB=3,得CD=2+. 所以AB边上的高等于2+.9、解:(Ⅰ)设数列的公差为d,依题意得方程组解得所以的通项公式为(Ⅱ)由所以是首项,公式的等比数列.于是得的前n项和10、解;(Ⅰ)解法一:三支弱队在同一组的概率为故有一组恰有两支弱队的概率为解法二:有一组恰有两支弱队的概率(Ⅱ)解法一:A组中至少有两支弱队的概率解法二:A、B两组有一组至少有两支弱队的概率为1,由于对A组和B组来说,至少有两支弱队的概率是相同的,所以A 组中至少有两支弱队的概率为11、(Ⅰ)解:函数的定义域为.令当当又故当且仅当x=0时,取得最大值,最大值为0.(Ⅱ)证法一:由(Ⅰ)结论知由题设因此所以又综上证法二:设则当在此内为减函数. 当上为增函数.从而,当有极小值因此即设则当因此上为减函数.因为即。

2004年高考试题全国卷1文科数学及答案(必修+选修Ⅰ河南河北山东山西安徽江西)

2004年高考试题全国卷1文科数学及答案(必修+选修Ⅰ河南河北山东山西安徽江西)

2004年高考试题全国卷1 文科数学(必修+选修I )(河南、河北、山东、山西等地区)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k(1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分 .1.设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A ∩(U C B )= ( )A .{2}B .{2,3}C .{3}D . {1,3} 2.已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若 ( )A .21 B .-21 C .2D .-23.已知,a b 均为单位向量,它们的夹角为60°,那么|3a b +|= ( )A .7B .10C .13D .4 4.函数1(1)y x =≥的反函数是( )A .)1(222<+-=x x x y B .)1(222≥+-=x x x yC .)1(22<-=x x x yD .)1(22≥-=x x x y球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式 V=334R π, 其中R 表示球的半径5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设)2,0(πα∈若,53sin =α则)4cos(2πα+= ( )A .57B .51C .27D .47.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF = ( )A .23 B .3C .27 D .48.设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( ) A .]21,21[- B .[-2,2] C .[-1,1] D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象 ( )A .向右平移6π个单位长度B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则ST等于 ( )A .91 B .94C .41 D .31 11.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是 ( )A .95B .94 C .2111 D .2110 12.已知ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式x +x 3≥0的解集是 .14.已知等比数列{,384,3,}103==a a a n 中则该数列的通项n a = . 15.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)等差数列{n a }的前n 项和记为S n .已知.50,302010==a a (Ⅰ)求通项n a ; (Ⅱ)若S n =242,求n.18.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.19.(本小题满分12分)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围.20.(本小题满分12分)从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为54,每位男同学能通过测验的概率均为53.试求:(I )选出的3位同学中,至少有一位男同学的概率;(II )10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.21.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD ,侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离;(II )求面APB 与面CPB 所成二面角的大小.22.(本小题满分14分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值.2004年高考试题全国卷1 文科数学(必修+选修I ) (河南、河北、山东、山西)参考答案一、选择题DBCBABCCBACB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥0} 14.3·2n -315.422=+y x 16.①②④三、解答题17.本小题主要考查等差数列的通项公式、求和公式,考查运算能力.满分12分.解:(Ⅰ)由,50,30,)1(20101==-+=a a d n a a n 得方程组⎩⎨⎧=+=+.5019,30911d a d a ……4分 解得.2,121==d a 所以 .102+=n a n ……7分(Ⅱ)由242,2)1(1=-+=n n S d n n na S 得方程 .24222)1(12=⨯-+n n n ……10分 解得).(2211舍去或-==n n ………12分18.本小题主要考查三角函数基本公式和简单的变形,以及三角函数的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=.212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数)(x f 的最小正周期是π,最大值是,43最小值是.41…………12分19.本小题主要考查导数的概念和计算,应用导数研究函数单调性的基本方法,考查综合运用数学知识解决问题的能力.满分12分.解:函数f (x )的导数:.163)(2-+='x ax x f ………………3分 (Ⅰ)当0)(<'x f (R x ∈)时,)(x f 是减函数.)(01632R x x ax ∈<-+ .3012360-<⇔<+=∆<⇔a a a 且所以,当))((,0)(,3R x x f x f a ∈<'-<知由时是减函数;………………9分………………6分(II )当3-=a 时,133)(23+-+-=x x x x f =,98)31(33+--x 由函数3x y =在R 上的单调性,可知 当3-=a 时,R x x f ∈)(()是减函数;(Ⅲ)当3->a 时,在R 上存在一个区间,其上有,0)(>'x f所以,当3->a 时,函数))((R x x f ∈不是减函数. 综上,所求a 的取值范围是(].3,-∞-………………12分20.本小题主要考查组合,概率等基本概念,独立事件和互斥事件的概率以及运用概率知识 解决实际问题的能力,满分12分. 解:(Ⅰ)随机选出的3位同学中,至少有一位男同学的概率为1-6531036=C C ;………………6分(Ⅱ)甲、乙被选中且能通过测验的概率为.1254535431018=⨯⨯C C ;………………12分21.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD. 由此知∠PEB 为面PAD 与面ABCD所成二面角的平面角,………………4分 ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23.………………6分 (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=PB BC PB GA BC PB GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥等于所求二面角的平面角,…………10分 于是,772||||cos -=⋅=BC GA BC GA θ 所以所求二面角的大小为772arccos-π.…………12分 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB ,∴∠AGF 是所求二面角的平面角.……9分 ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1. 于是tan ∠GAE=AE EG =23,又∠AGF=π-∠GAE. 所以所求二面角的大小为π-arctan23.…………12分 22.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分14分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ① ……2分.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率分的取值范围为即离心率且且6).,2()2,26(226,120.11122+∞≠>∴≠<<+=+=e e e a a a a a e(II )设)1,0(),,(),,(12211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 ……8分 由于x 1,x 2都是方程①的根,且1-a 2≠0,分所以由得消去所以14.1317,06028912,,.12125,1212172222222222 =>=----=--=a a a a x a a x a a x。

2004年高考试题全国卷2理科数学及答案(必修+选修Ⅱ四川吉林黑龙江云南等地区)

2004年高考试题全国卷2理科数学及答案(必修+选修Ⅱ四川吉林黑龙江云南等地区)

2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.(1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21(B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2(C )ω1-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为 (A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1(5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是(A )-6π(B )6π(C )-12π(D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称 (C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称(7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31(B )33 (C )32 (D )36(8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条(9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π(B )2π(C )π (D )2π(12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. (13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . (16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高.(18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率.(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2 S n (n =1,2,3,…).证明:(Ⅰ)数列{nS n }是等比数列;(Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.(Ⅰ)求证:CD⊥平面BDM;(Ⅱ)求面B1BD与面CBD所成二面角的大小.(21)(本小题满分12分)给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.(Ⅰ)设l的斜率为1,求OA与OB夹角的大小;(Ⅱ)设FB=AFλ,若λ∈[4,9],求l在y轴上截距的变化范围.(22)(本小题满分14分)已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(1)求函数f(x)的最大值;(2)设0<a<b,证明:0<g(a)+g(b)-2g(2ba+)<(b-a)ln2.2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan =设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CD BCDACD ,由AB=3得CD=2+6故AB 边上的高为2+18.(I) 解:有一组恰有两支弱队的概率2482523=CC C(II)解:A 组中至少有两支弱队的概率21481533482523=+CC C CC C19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…),知a 2=112+S 1=3a 1,224212==a S ,111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n ,211=++nS n S n n (n=1,2,3,…).故数列{n S n }是首项为1,公比为2的等比数列(II )解:由(I )知,)2(14111≥-∙=+-+n n S n S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3,又BB 1=1,∴A 1B=2, ∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM ,因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM (II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1,所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23,∴∠B 1GF又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=32123223)21()23(222121221=∙∙-+=∙-+FGG B FB FG G B即所求二面角的大小为π解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21),M(22,1,0),=CD(22,21,21),=BA 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=GB 1),41,43,42(--∴01=∙GB BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与G B 1的夹角θ等于所求二面角的平面角,A'C'cos .3311-==θ所以所求二面角的大小为π21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1.将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OBOA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,.41413-=所以OA 与OB 夹角的大小为π-arccos41413.解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1……………………………………(3) 联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0), 得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1)当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ-≤直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时,'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln2b a +=a ba b b ba a +++2ln2ln.由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得21,02<-<->-bb a aab ,因此a ab aa b ba a 2)21l n (2ln-->-+-=+,bb a bb a b a b 2)21ln(2ln-->-+-=+.所以a b a b b b a a +++2ln 2ln >-22=---b a ab .又,22bba ba a +<+a ba b b ba a +++2ln2ln<a .2ln )(2ln)(2ln2lna b ba b a b ba b b bba -<+-=+++综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2x a +),则.2lnln )]'2([2)(')('x a x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数x>a 时,0)('>x F 因此F(x)在(a,+∞)从而,当x=a 时,F(x)有极小值F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2b a +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2lnln )('x a x x a x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2b a +)<(b-a)ln2.。

2004年普通高等学校招生全国统一考试数学试卷(全国卷Ⅱ.文)

2004年普通高等学校招生全国统一考试数学试卷(全国卷Ⅱ.文)

web 试卷生成系统谢谢使用一、填空题(每空? 分,共? 分)1、从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为_______2、设满足约束条件:则的最大值是 .3、设中心在原点的椭圆与双曲线=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是4、下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号) 5、已知a 为实数,展开式中的系数是-15,则.6、设满足约束条件:则的最大值是 .7、下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱 ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号)二、计算题(每空? 分,共? 分)8、已知锐角三角形ABC 中,(Ⅰ)求证:;(Ⅱ)设AB=3,求AB 边上的高. 9、已知等差数列{},(Ⅰ)求{}的通项公式;(Ⅱ)令,求数列的前n 项和S n .10、已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A、B两组中有一组恰有两支弱队的概率;(Ⅱ)A组中至少有两支弱队的概率11、已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(Ⅰ)求函数f(x)的最大值;(Ⅱ)设0<a<b,证明0<g(a )+g(b)-2g()<(b-a)ln2.参考答案一、填空题1、0.1,0.6,0.32、53、4、②④5、6、57、②④二、计算题8、(Ⅰ)证明:所以(Ⅱ)解:,即,将代入上式并整理得解得,舍去负值得,设AB边上的高为CD.则AB=AD+DB=由AB=3,得CD=2+. 所以AB边上的高等于2+.9、解:(Ⅰ)设数列的公差为d,依题意得方程组解得所以的通项公式为(Ⅱ)由所以是首项,公式的等比数列.于是得的前n项和10、解;(Ⅰ)解法一:三支弱队在同一组的概率为故有一组恰有两支弱队的概率为解法二:有一组恰有两支弱队的概率(Ⅱ)解法一:A组中至少有两支弱队的概率解法二:A、B两组有一组至少有两支弱队的概率为1,由于对A组和B组来说,至少有两支弱队的概率是相同的,所以A 组中至少有两支弱队的概率为11、(Ⅰ)解:函数的定义域为.令当当又故当且仅当x=0时,取得最大值,最大值为0.(Ⅱ)证法一:由(Ⅰ)结论知由题设因此所以又综上证法二:设则当在此内为减函数. 当上为增函数.从而,当有极小值因此即设则当因此上为减函数.因为即。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2004年高考试题全国卷2文科数学(必修+选修Ⅰ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的(1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)函数y =51+x (x ≠-5)的反函数是(A )y =x 1-5(x ≠0) (B )y =x +5(x ∈R )(C )y =x1+5(x ≠0) (D )y =x -5(x ∈R )(3)曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为(A )y =3x -4 (B )y =-3x +2 (C )y =-4x +3 (D )y =4x -5(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是(A )-6π(B )6π(C )-12π(D )12π(6)正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为(A )75° (B )60° (C )45° (D )30°(7)函数y =-e x的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称(D )与y =e -x 的图象关于坐标原点对称(8)已知点A (1,2),B(3,1),则线段AB 的垂直平分线的方程为(A )4x +2y =5 (B )4x -2y =5 (C )x +2y =5 (D )x -2y =5 (9)已知向量a、b满足:|a|=1,|b|=2,|a-b|=2,则|a+b|=(A )1 (B )2 (C )5 (D )6 (10)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为(A )31(B )33 (C )32 (D )36(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π(B )2π(C )π (D )2π(12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)已知a 为实数,(x +a )10展开式中x 7的系数是-15,则a = (14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17)(本题满分12分)已知等差数列{a n },a 2=9,a 5 =21(Ⅰ)求{a n }的通项公式;(Ⅱ)令b n =n a 2,求数列{b n }的前n 项和S n (18) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高.(19)(本小题满分12分)已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求 (Ⅰ)A 、B 两组中有一组恰有两支弱队的概率;(Ⅱ)A 组中至少有两支弱队的概率. (20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小. (21)(本题满分12分)若函数f (x )=31x 3-21ax 2+(a -1)x +1在区间(1,4) 内为减函数,在区间(6,+∞)上为增函数,试求实数a 的取值范围(22)(本小题满分14分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求OA 与OB 夹角的大小;(Ⅱ)设FB =AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围.2004年高考试题全国卷2文科数学(必修+选修Ⅰ)(四川、吉林、黑龙江、云南等地区)参考答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)B (4)C (5)A (6)C (7)D (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分. (13)-21 (14)5 (15)21x 2+y 2=1 (16)②④17.解:a 5-a 2=3d,d=4,a n =a 2+(n-2)d=9+4(n-2)=4n+1 {b n }是首项为32公比为16的等比数列,Sn=)12(15324-n.18.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan =设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CD BCDACD ,由AB=3得CD=2+6故AB 边上的高为19.(I) 解:有一组恰有两支弱队的概率2482523=CC C(II)解:A 组中至少有两支弱队的概率481533482523=+CC C CC C20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2,∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3,又BB 1=1,∴A 1B=2, ∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM ,因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG ∥CD ,FG=21∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1,所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23,∴∠B 1GF又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=2123223)21()23(222121221=∙∙-+=∙-+FGG B FB FG G B 即所求二面角的大小为π解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21),M(22,1,0),=CD(22,21,21),=BA 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=GB 1),41,43,42(--∴1=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与G B 1的夹角θ等于所求二面角的平面角,cos .331-==θA'C'所以所求二面角的大小为π21.解:=)('x f x 2-ax+a-1, 函数f(x)在区间(1,4)内为减函数,在区间(6,+∞)上为增函数. 设=)('x f x 2-ax+a-1=0的两根为1,a-1,则614≤-≤a ,75≤≤a . 22.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1.将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OBOA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,>=.41413-=所以OA 与OB 夹角的大小为π-arccos41413.解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1(3) 联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1)当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ≤直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --解:(II)由定比分点公式求解。

相关文档
最新文档