高中数学函数专题复习题
高中数学《函数定义域值域》专题复习
求函数定义域和值域专题1 知识点拨一、函数的定义域及求法1、分式的分母≠0;偶次方根的被开方数≥0;2、对数函数的真数>0;对数函数的底数>0且≠1;3、正切函数:x ≠kπ+ π/2 ,k∈Z;4、一次函数、二次函数、指数函数的定义域为R;5、复合函数定义域的求法:取交集及分类讨论;6、抽象函数定义域的求法;二、含分式的函数在求含分式的函数的定义域时,要注意两点:(1)分式的分母一定不能为0;(2)绝对不能先化简后求函数定义域。
例1:求函数f(x)=211xx-+的定义域.三、含偶次根式的函数注意(1)求含偶次根式的函数的定义域时,注意偶次根式的被开方数不小于0,通过求不等式来求其定义域;(2)在研究函数时,常常用到区间的概念,它是数学中常用的术语和符号,注意区间的开闭情况.例2 :求函数y =3-ax (a 为不等于0的常数)的定义域.四、复合型函数注意 函数是由一些基本初等函数通过四则运算而得到的,则它的定义域是各基本函数定义域的交集,通过列不等式组来实现.例3:求函数y =23-x +30323-+x x )(的定义域.练习1、求下列函数的定义域。
⑴y=xx -||1 ⑵y=3102++x x (3)y=||11x - (4)y=2121---x x (5)2143)(2-+--=x x x x f五、抽象函数1.已知)(x f 的定义域,求复合函数()][x g f 的定义域由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。
2.已知复合函数()][x g f 的定义域,求)(x f 的定义域方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。
【高中数学】函数的奇偶性专题复习(绝对原创!)
【函数的奇偶性】专题复习一、关于函数的奇偶性的定义定义说明:对于函数)(x f 的定义域内任意一个x :⑴)()(x f x f =- ⇔)(x f 是偶函数; ⑵)()(x f x f -=-⇔)(x f 奇函数;二、函数的奇偶性的几个性质①对称性:奇(偶)函数的定义域关于原点对称;②整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; ③可逆性:)()(x f x f =-⇔)(x f 是偶函数; )()(x f x f -=-⇔)(x f 是奇函数; ④等价性:)()(x f x f =-⇔0)()(=--x f x f ; )()(x f x f -=-⇔0)()(=+-x f x f⑤奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;⑥可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。
三、函数的奇偶性的判断判断函数的奇偶性大致有下列两种方法:第一种方法:利用奇、偶函数的定义,考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下: ①定义域是否关于原点对称;②数量关系)()(x f x f ±=-哪个成立; 例1:判断下列各函数是否具有奇偶性(1)x x x f 2)(3+= (2)2432)(x x x f += (3)1)(23--=x x x x f(4)2)(x x f = []2,1-∈x (5)x x x f -+-=22)( (6)2|2|1)(2-+-=x x x f ;(7)2211)(x x x f -+-= (8)221()lg lgf x x x =+; (9)xx x x f -+-=11)1()(例2:判断函数⎩⎨⎧<≥-=)0()0()(22x x xx x f 的奇偶性。
)(0)0(:2x f f -==解 )()()(,0,022x f x x x f x x -=-=--=-<->有时即当)()()()(,0,022x f x x x f x x -=--=-=->-<有时即当.)(),()(为奇函数故总有x f x f x f =-∴第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数; 两个奇函数的积为偶函数; 两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。
高中数学高考总复习函数的奇偶性习题及详解
高中数学高考总复习函数的奇偶性习题及详解一、选择题1.(文)以下函数,在其定义域内既是奇函数又是增函数的是( ) A .y =x +x 3(x ∈R) B .y =3x (x ∈R)C .y =-log 2x (x >0,x ∈R)D .y =-1x (x ∈R ,x ≠0)[答案] A[解析] 首先函数为奇函数、定义域应关于原点对称,排除C ,假设x =0在定义域内,那么应有f (0)=0,排除B ;又函数在定义域内单调递增,排除D ,应选A.(理)以下函数中既是奇函数,又在区间[-1,1]上单调递减的是( ) A .f (x )=sin xB .f (x )=-|x +1|C .f (x )=12(a x +a -x )D .f (x )=ln 2-x2+x[答案] D[解析] y =sin x 与y =ln 2-x 2+x 为奇函数,而y =12(a x +a -x )为偶函数,y =-|x +1|是非奇非偶函数.y =sin x 在[-1,1]上为增函数.应选D.2.(2021·安徽理,4)假设f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,那么f (3)-f (4)=( )A .-1B .1C .-2D .2[答案] A[解析] f (3)-f (4)=f (-2)-f (-1)=-f (2)+f (1)=-2+1=-1,应选A.3.(2021·河北唐山)f (x )与g (x )分别是定义在R 上奇函数与偶函数,假设f (x )+g (x )=log 2(x 2+x +2),那么f (1)等于( )A .-12B.12 C .1D.32[答案] B[解析] 由条件知,⎩⎪⎨⎪⎧f (1)+g (1)=2f (-1)+g (-1)=1,∵f (x )为奇函数,g (x )为偶函数.∴⎩⎪⎨⎪⎧f (1)+g (1)=2g (1)-f (1)=1,∴f (1)=12.4.(文)(2021·北京崇文区)f (x )是定义在R 上的偶函数,并满足f (x +2)=-1f (x ),当1≤x ≤2时,f (x )=x -2,那么f (6.5)=( )A .4.5B .-4.5C .0.5D .-0.5[答案] D[解析] ∵f (x +2)=-1f (x ),∴f (x +4)=f [(x +2)+2]=-1f (x +2)=f (x ),∴f (x )周期为4,∴f (6.5)=f (6.5-8)=f (-1.5)=f (1.5)=1.5-2=-0.5.(理)(2021·山东日照)函数f (x )是定义域为R 的偶函数,且f (x +2)=f (x ),假设f (x )在[-1,0]上是减函数,那么f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数[答案] A[解析] 由f (x +2)=f (x )得出周期T =2, ∵f (x )在[-1,0]上为减函数,又f (x )为偶函数,∴f (x )在[0,1]上为增函数,从而f (x )在[2,3]上为增函数.5.(2021·辽宁锦州)函数f (x )是定义在区间[-a ,a ](a >0)上的奇函数,且存在最大值与最小值.假设g (x )=f (x )+2,那么g (x )的最大值与最小值之和为( )A .0B .2C .4D .不能确定[答案] C[解析] ∵f (x )是定义在[-a ,a ]上的奇函数,∴f (x )的最大值与最小值之和为0,又g (x )=f (x )+2是将f (x )的图象向上平移2个单位得到的,故g (x )的最大值与最小值比f (x )的最大值与最小值都大2,故其和为4.6.定义两种运算:a ⊗b =a 2-b 2,a ⊕b =|a -b |,那么函数f (x )=2⊗x(x ⊕2)-2( )A .是偶函数B .是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数[答案] B[解析] f (x )=4-x 2|x -2|-2,∵x 2≤4,∴-2≤x ≤2, 又∵x ≠0,∴x ∈[-2,0)∪(0,2]. 那么f (x )=4-x 2-x ,f (x )+f (-x )=0,应选B.7.f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c =f (0.20.6),那么a 、b 、c 的大小关系是( )A .c <b <aB .b <c <aC .b <a <cD .a <b <c[答案] C[解析] 由题意知f (x )=f (|x |).∵log 47=log 27>1,|log 123|=log 23>log 27,0<0.20.6<1,∴|log 123|>|log 47|>|0.20.6|.又∵f (x )在(-∞,0]上是增函数,且f (x )为偶函数, ∴f (x )在[0,+∞)上是减函数. ∴b <a <c .应选C.8.函数f (x )满足:f (1)=2,f (x +1)=1+f (x )1-f (x ),那么f (2021)等于( )A .2B .-3C .-12D.13[答案] C[解析] 由条件知,f (2)=-3,f (3)=-12,f (4)=13,f (5)=f (1)=2,故f (x +4)=f (x ) (x∈N *).∴f (x )的周期为4, 故f (2021)=f (3)=-12.[点评] 严格推证如下: f (x +2)=1+f (x +1)1-f (x +1)=-1f (x ),∴f (x +4)=f [(x +2)+2]=f (x ).即f (x )周期为4.故f (4k +x )=f (x ),(x ∈N *,k ∈N *),9.设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,那么使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)[答案] A[解析] ∵f (x )为奇函数,∴f (0)=0,∴a =-1. ∴f (x )=lg x +11-x ,由f (x )<0得0<x +11-x<1,∴-1<x <0,应选A. 10.(文)(09·全国Ⅱ)函数y =log 22-x2+x 的图象( )A .关于原点对称B .关于直线y =-x 对称C .关于y 轴对称D .关于直线y =x 对称 [答案] A[解析] 首先由2-x 2+x >0得,-2<x <2,其次令f (x )=log 22-x 2+x ,那么f (x )+f (-x )=log 22-x2+x +log 22+x2-x=log 21=0.故f (x )为奇函数,其图象关于原点对称,应选A.(理)函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是以下图象中的( )[答案] C [解析] ∵y =xsin x是偶函数,排除A ,当x =2时,y =2sin2>2,排除D , 当x =π6时,y =π6sin π6=π3>1,排除B ,应选C.二、填空题11.(文)f (x )=⎩⎪⎨⎪⎧sinπx (x <0)f (x -1)-1 (x >0),那么f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116的值为________. [答案] -2[解析] f ⎝⎛⎭⎫116=f ⎝⎛⎭⎫56-1=f ⎝⎛⎭⎫-16-2 =sin ⎝⎛⎭⎫-π6-2=-52, f ⎝⎛⎭⎫-116=sin ⎝⎛⎭⎫-11π6=sin π6=12,∴原式=-2. (理)设f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线x =12对称,那么f (1)+f (2)+f (3)+f (4)+f (5)=________.[答案] 0[解析] ∵f (x )的图象关于直线x =12对称,∴f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x ,对任意x ∈R 都成立, ∴f (x )=f (1-x ),又f (x )为奇函数, ∴f (x )=-f (-x )=-f (1+x ) =f (-1-x )=f (2+x ),∴周期T =2 ∴f (0)=f (2)=f (4)=0 又f (1)与f (0)关于x =12对称∴f (1)=0 ∴f (3)=f (5)=0 填0.12.(2021·深圳中学)函数y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-π,π],且它们在x ∈[0,π]上的图象如下图,那么不等式f (x )g (x )<0的解集是________.[答案] ⎝⎛⎭⎫-π3,0∪⎝⎛⎭⎫π3,π [解析] 依据偶函数的图象关于y 轴对称,奇函数的图象关于原点对称,先补全f (x )、g (x )的图象,∵f (x )g (x )<0,∴⎩⎪⎨⎪⎧ f (x )<0g (x )>0,或⎩⎪⎨⎪⎧f (x )>0g (x )<0,观察两函数的图象,其中一个在x 轴上方,一个在x 轴下方的,即满足要求,∴-π3<x <0或π3<x <π.13.(文)假设f (x )是定义在R 上的偶函数,其图象关于直线x =2对称,且当x ∈(-2,2)时,f (x )=-x 2+1.那么f (-5)=________.[答案] 0[解析] 由题意知f (-5)=f (5)=f (2+3)=f (2-3)=f (-1)=-(-1)2+1=0.(理)函数f (x )是定义域为R 的奇函数,当-1≤x ≤1时,f (x )=a ,当x ≥1时,f (x )=(x +b )2,那么f (-3)+f (5)=________.[答案] 12[解析] ∵f (x )是R 上的奇函数,∴f (0)=0, ∵-1≤x ≤1时,f (x )=a ,∴a =0. ∴f (1)=(1+b )2=0,∴b =-1.∴当x ≤-1时,-x ≥1,f (-x )=(-x -1)2=(x +1)2, ∵f (x )为奇函数,∴f (x )=-(x +1)2, ∴f (x )=⎩⎪⎨⎪⎧-(x +1)2 x ≤-10 -1≤x ≤1(x -1)2 x ≥1∴f (-3)+f (5)=-(-3+1)2+(5-1)2=12.[点评] 求得b =-1后,可直接由奇函数的性质得f (-3)+f (5)=-f (3)+f (5)=-(3-1)2+(5-1)2=12.14.(文)(2021·山东枣庄模拟)假设f (x )=lg ⎝⎛⎭⎫2x1+x +a (a ∈R)是奇函数,那么a =________.[答案] -1[解析] ∵f (x )=lg ⎝⎛⎭⎫2x1+x +a 是奇函数,∴f (-x )+f (x )=0恒成立, 即lg ⎝⎛⎭⎫2x 1+x +a +lg ⎝ ⎛⎭⎪⎫-2x 1-x +a =lg ⎝⎛⎭⎫2x 1+x +a ⎝⎛⎭⎫2xx -1+a =0.∴⎝⎛⎭⎫2x 1+x +a ⎝⎛⎭⎫2xx -1+a =1,∴(a 2+4a +3)x 2-(a 2-1)=0, ∵上式对定义内的任意x 都成立,∴⎩⎪⎨⎪⎧a 2+4a +3=0a 2-1=0,∴a =-1. [点评] ①可以先将真数通分,再利用f (-x )=-f (x )恒成立求解,运算过程稍简单些. ②如果利用奇函数定义域的特点考虑,那么问题变得比拟简单.f (x )=lg (a +2)x +a 1+x 为奇函数,显然x =-1不在f (x )的定义域内,故x =1也不在f (x )的定义域内,令x =-aa +2=1,得a =-1.故平时解题中要多思少算,培养观察、分析、捕捉信息的能力.(理)(2021·吉林长春质检)函数f (x )=lg ⎝⎛⎭⎫-1+a 2+x 为奇函数,那么使不等式f (x )<-1成立的x 的取值范围是________.[答案]1811<x <2 [解析] ∵f (x )为奇函数,∴f (-x )+f (x )=0恒成立,∴lg ⎝⎛⎭⎫-1+a 2-x +lg ⎝⎛⎭⎫-1+a2+x=lg ⎝⎛⎭⎫-1+a 2-x ⎝⎛⎭⎫-1+a2+x =0,∴⎝⎛⎭⎫-1+a 2-x ⎝⎛⎭⎫-1+a2+x =1,∵a ≠0,∴4-ax 2-4=0,∴a =4,∴f (x )=lg ⎝⎛⎭⎫-1+42+x =lg 2-xx +2,由f (x )<-1得,lg 2-x2+x<-1,∴0<2-x 2+x <110,由2-x 2+x >0得,-2<x <2,由2-x 2+x <110得,x <-2或x >1811,∴1811<x <2.三、解答题15.(2021·杭州外国语学校)f (x )=x 2+bx +c 为偶函数,曲线y =f (x )过点(2,5),g (x )=(x +a )f (x ).(1)假设曲线y =g (x )有斜率为0的切线,求实数a 的取值范围;(2)假设当x =-1时函数y =g (x )取得极值,且方程g (x )+b =0有三个不同的实数解,求实数b 的取值范围.[解析] (1)由f (x )为偶函数知b =0, 又f (2)=5,得c =1,∴f (x )=x 2+1. ∴g (x )=(x +a )(x 2+1)=x 3+ax 2+x +a , 因为曲线y =g (x )有斜率为0的切线, 所以g ′(x )=3x 2+2ax +1=0有实数解. ∴Δ=4a 2-12≥0,解得a ≥3或a ≤- 3. (2)由题意得g ′(-1)=0,得a =2. ∴g (x )=x 3+2x 2+x +2,g ′(x )=3x 2+4x +1=(3x +1)(x +1). 令g ′(x )=0,得x 1=-1,x 2=-13.∵当x ∈(-∞,-1)时,g ′(x )>0,当x ∈(-1,-13)时,g ′(x )<0,当x ∈(-13,+∞)时,g ′(x )>0,∴g (x )在x =-1处取得极大值,在x =-13处取得极小值.又∵g (-1)=2,g (-13)=5027,且方程g (x )+b =0即g (x )=-b 有三个不同的实数解,∴5027<-b <2,解得-2<b <-5027.16.(2021·揭阳模拟)设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2021).[分析] 由f (x +2)=-f (x )可得f (x +4)与f (x )关系,由f (x )为奇函数及在(0,2]上解析式可求f (x )在[-2,0]上的解析式,进而可得f (x )在[2,4]上的解析式.[解析] (1)∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数. (2)当x ∈[-2,0]时,-x ∈[0,2],由得 f (-x )=2(-x )-(-x )2=-2x -x 2,又f (x )是奇函数,∴f (-x )=-f (x )=-2x -x 2, ∴f (x )=x 2+2x .又当x ∈[2,4]时,x -4∈[-2,0], ∴f (x -4)=(x -4)2+2(x -4)=x 2-6x +8. 又f (x )是周期为4的周期函数, ∴f (x )=f (x -4) =x 2-6x +8.从而求得x ∈[2,4]时, f (x )=x 2-6x +8.(3)f (0)=0,f (2)=0,f (1)=1,f (3)=-1. 又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2021)+f (2021)+f (2021)+f (2021)=0.∴f (0)+f (1)+f (2)+…+f (2021)=0.17.(文)函数f (x )=1-42a x +a (a >0且a ≠1)是定义在(-∞,+∞)上的奇函数.(1)求a 的值; (2)求函数f (x )的值域;(3)当x ∈(0,1]时,tf (x )≥2x -2恒成立,求实数t 的取值范围.[解析] (1)∵f (x )是定义在(-∞,+∞)上的奇函数,即f (-x )=-f (x )恒成立,∴f (0)=0.即1-42×a 0+a=0,解得a =2.(2)∵y =2x -12x +1,∴2x =1+y1-y ,由2x >0知1+y1-y>0,∴-1<y <1,即f (x )的值域为(-1,1). (3)不等式tf (x )≥2x-2即为t ·2x -t 2x +1≥2x-2.即:(2x )2-(t +1)·2x +t -2≤0.设2x =u , ∵x ∈(0,1],∴u ∈(1,2].∵u ∈(1,2]时u 2-(t +1)·u +t -2≤0恒成立.∴⎩⎪⎨⎪⎧12-(t +1)×1+t -2≤022-(t +1)×2+t -2≤0,解得t ≥0. (理)设函数f (x )=ax 2+bx +c (a 、b 、c 为实数,且a ≠0),F (x )=⎩⎪⎨⎪⎧f (x ) x >0-f (x ) x <0.(1)假设f (-1)=0,曲线y =f (x )通过点(0,2a +3),且在点(-1,f (-1))处的切线垂直于y 轴,求F (x )的表达式;(2)在(1)的条件下,当x ∈[-1,1]时,g (x )=kx -f (x )是单调函数,求实数k 的取值范围; (3)设mn <0,m +n >0,a >0,且f (x )为偶函数,证明F (m )+F (n )>0. [解析] (1)因为f (x )=ax 2+bx +c ,所以f ′(x )=2ax +b .又曲线y =f (x )在点(-1,f (-1))处的切线垂直于y 轴,故f ′(-1)=0, 即-2a +b =0,因此b =2a .① 因为f (-1)=0,所以b =a +c .② 又因为曲线y =f (x )通过点(0,2a +3), 所以c =2a +3.③解由①,②,③组成的方程组得,a =-3,b =-6,c =-3. 从而f (x )=-3x 2-6x -3.所以F (x )=⎩⎪⎨⎪⎧-3(x +1)2 x >03(x +1)2 x <0.(2)由(1)知f (x )=-3x 2-6x -3, 所以g (x )=kx -f (x )=3x 2+(k +6)x +3. 由g (x )在[-1,1]上是单调函数知: -k +66≤-1或-k +66≥1,得k ≤-12或k ≥0. (3)因为f (x )是偶函数,可知b =0. 因此f (x )=ax 2+c . 又因为mn <0,m +n >0, 可知m ,n 异号. 假设m >0,那么n <0.那么F (m )+F (n )=f (m )-f (n )=am 2+c -an 2-c =a (m +n )(m -n )>0. 假设m <0,那么n >0. 同理可得F (m )+F (n )>0. 综上可知F (m )+F (n )>0.。
高中数学函数专题复习
高中数学函数专题复习2.1 映射与函数、函数的解析式一、选择题:1.设集合}21|{≤≤=x x A ,}41|{≤≤=y y B ,则下述对应法则f 中,不能构成A 到B 的映射的是( ) A .2:x y x f =→ B .23:-=→x y x fC .4:+-=→x y x fD .24:x y x f -=→2.若函数)23(x f -的定义域为[-1,2],则函数)(x f 的定义域是( ) A .]1,25[--B .[-1,2]C .[-1,5]D .]2,21[3,设函数⎩⎨⎧<≥-=)1(1)1(1)(x x x x f ,则)))2(((f f f =() A .0B .1C .2D .24.下面各组函数中为相同函数的是( ) A .1)(,)1()(2-=-=x x g x x fB .11)(,1)(2-+=-=x x x g x x fC .22)1()(,)1()(-=-=x x g x x f D .21)(,21)(22+-=+-=x x x g x x x f5. 已知映射f :B A →,其中,集合{},4,3,2,1,1,2,3---=A 集合B 中的元素都是A 中元素在映射f 下的象,且对任意的,A a ∈在B 中和它对应的元素是a ,则集合B 中元素的个数是( ) (A) 4 (B) 5 (C) 6 (D) 77.已知定义在),0[+∞的函数⎩⎨⎧<≤≥+=)20()2( 2)(2x xx x x f若425)))(((=k f f f ,则实数=k2.2函数的定义域和值域1.已知函数xxx f -+=11)(的定义域为M ,f[f(x)]的定义域为N ,则M ∩N= .2.如果f(x)的定义域为(0,1),021<<-a ,那么函数g(x)=f(x+a)+f(x-a)的定义域为 . 3. 函数y=x 2-2x+a 在[0,3]上的最小值是4,则a= ;若最大值是4,则a= . 4.已知函数f(x)=3-4x-2x 2,则下列结论不正确的是( )A .在(-∞,+∞)内有最大值5,无最小值,B .在[-3,2]内的最大值是5,最小值是-13C .在[1,2)内有最大值-3,最小值-13,D .在[0,+∞)内有最大值3,无最小值5.已知函数1279,4322+--=-+=x x x y x x y 的值域分别是集合P 、Q ,则( )A .p ⊂QB .P=QC .P ⊃QD .以上答案都不对6.若函数3412++-=mx mx mx y 的定义域为R ,则实数m 的取值范围是( )A .]43,0(B .)43,0( C .]43,0[ D .)43,0[ 7.函数])4,0[(422∈+--=x x x y 的值域是( )A .[0,2]B .[1,2]C .[-2,2]D .[-2,2]8.若函数)(},4|{}0|{113)(x f y y y y x x x f 则的值域是≥⋃≤--=的定义域是( )A .]3,31[ B .]3,1()1,31[⋃ C .),3[]31,(+∞-∞或 D .[3,+∞)9.求下列函数的定义域:①12122---=x x x y10.求下列函数的值域: ①)1(3553>-+=x x x y ②y=|x+5|+|x-6|③242++--=x x y④x x y 21-+= ⑤422+-=x x xy 11.设函数41)(2-+=x x x f .(Ⅰ)若定义域限制为[0,3],求)(x f 的值域; (Ⅱ)若定义域限制为]1,[+a a 时,)(x f 的值域为]161,21[-,求a 的值.2.3函数的单调性1.下述函数中,在)0,(-∞上为增函数的是( )A .y=x 2-2B .y=x3C .y=x --21D .2)2(+-=x y2.下述函数中,单调递增区间是]0,(-∞的是( )A .y=-x1B .y=-(x -1)C .y=x 2-2D .y=-|x |3.函数)(2∞+-∞-=,在x y 上是( )A .增函数B .既不是增函数也不是减函数C .减函数D .既是减函数也是增函数 4.若函数f(x)是区间[a,b]上的增函数,也是区间[b,c]上的增函数,则函数f(x)在区间[a,b]上是( )A .增函数B .是增函数或减函数C .是减函数D .未必是增函数或减函数5.已知函数f(x)=8+2x-x 2,如果g(x)=f(2-x 2),那么g(x) ( ) A.在区间(-1,0)上单调递减 B.在区间(0,1)上单调递减C.在区间(-2,0)上单调递减D 在区间(0,2)上单调递减6.设函数),2(21)(+∞-++=在区间x ax x f 上是单调递增函数,那么a 的取值范围是( )A .210<<aB .21>a C .a<-1或a>1 D .a>-27.函数),2[,32)(2+∞-∈+-=x mx x x f 当时是增函数,则m 的取值范围是( )A . [-8,+∞)B .[8,+∞)C .(-∞,- 8]D .(-∞,8]8.如果函数f(x)=x 2+bx+c 对任意实数t 都有f(4-t)=f(t),那么( )A .f(2)<f(1)<f(4)B .f(1)<f(2)<f(4)C .f(2)<f(4)<f(1)D .f(4)<f(2)<f(1)9.若函数34)(3+-=ax x x f 的单调递减区间是)21,21(-,则实数a 的值为 .10.(理科)若a >0,求函数)),0()(ln()(+∞∈+-=x a x x x f 的单调区间.2.4 函数的奇偶性1.若)(),()(12x f N n x x f n n 则∈=++是( )A .奇函数B .偶函数C .奇函数或偶函数D .非奇非偶函数2.设f(x)为定义域在R 上的偶函数,且f(x)在)3(),(),2(,)0[f f f π--∞+则为增函数的大小顺序为( ) A .)2()3()(->>-f f f π B .)3()2()(f f f >->-π C .)2()3()(-<<-f f f πD .)3()2()(f f f <-<-π3.如果f (x )是定义在R 上的偶函数,且在),0[+∞上是减函数,那么下述式子中正确的是( ) A .)1()43(2+-≥-a a f f B .)1()43(2+-≤-a a f fC .)1()43(2+-=-a a f f D .以上关系均不成立5.下列4个函数中:①y=3x -1,②);10(11log ≠>+-=a a xxy a且 ③123++=x x x y ,④).10)(2111(≠>+-=-a a a x y x且 其中既不是奇函数,又不是偶函数的是( )A .①B .②③C .①③D .①④6.已知f (x )是定义在R 上的偶函数,并满足:)(1)2(x f x f -=+,当2≤x ≤3,f (x )=x ,则f (5.5)=( )A .5.5B .-5.5C .-2.5D .2.57.设偶函数f (x )在),0[+∞上为减函数,则不等式f (x )> f (2x+1) 的解集是8.已知f (x )与g (x )的定义域都是{x|x ∈R ,且x ≠±1},若f (x )是偶函数,g(x )是奇函 数,且f (x )+ g(x )=x-11,则f (x )= ,g(x )= .9.已知定义域为(-∞,0)∪(0,+∞)的函数f (x )是偶函数,并且在(-∞,0)上是增函数,若f (-3)=0,则不等式)(x f x<0的解集是 . 11.设f (x )是定义在R 上的偶函数,在区间(-∞,0)上单调递增,且满足f (-a 2+2a -5)<f (2a 2+a +1), 求实数a 的取值范围.2.7 .指数函数与对数函数1.当10<<a 时,aa aa a a ,,的大小关系是( ) A .aa aa a a >> B .a aa aa a>>C .aa a a aa>>D .aa aaa a >>2.已知()|log |a f x x =,其中01a <<,则下列不等式成立的是( ) A .11()(2)()43f f f >> B .11(2)()()34f f f >>C .11()()(2)43f f f >>D .11()(2)()34f f f >> 3.函数)2(x f y =的定义域为[1,2],则函数)(log 2x f y =的定义域为( )A .[0,1]B .[1,2]C .[2,4]D .[4,16]4.若函数)2,3()(log )(321---=在ax x x f 上单调递减,则实数a 的取值范围是( )A .[9,12]B .[4,12]C .[4,27]D .[9,27]6.若定义在(—1,0)内的函数)1(log )(2+=x x f a 满足)(x f >0,则a 的取值范围是 7.若1)1(log )1(<-+k k ,则实数k 的取值范围是 . 8.已知函数)1,0)(4(log )(≠>-+=a a xax x f a 且的值域为R ,则实数a 的取值范围是 .10.求函数)(log )1(log 11log )(222x p x x x x f -+-+-+=的值域. 12.已知函数)10)(1(log )1(log )(≠>--+=a a x x x f a a 且 (1)讨论)(x f 的奇偶性与单调性; (2)若不等式2|)(|<x f 的解集为a x x 求},2121|{<<-的值;2.8 .二次函数1.设函数∈++=a x a ax x x f ,(232)(2R )的最小值为m (a ),当m (a )有最大值时a 的值为( ) A .34B .43C .98D .89 2.已知0)53()2(,2221=+++--k k x k x x x 是方程(k 为实数)的两个实数根,则2221x x +的最大值为( )A .19B .18C .955D .不存在3.设函数)0()(2≠++=a c bx ax x f ,对任意实数t 都有)2()2(t f t f -=+成立,则函数值)5(),2(),1(),1(f f f f -中,最小的一个不可能是( )A .f (-1)B .f (1)C .f (2)D .f (5)4.设二次函数f (x ),对x ∈R 有)21()(f x f ≤=25,其图象与x 轴交于两点,且这两点的横坐标的立方和为19,则f (x )的解析式为5.已知二次函数12)(2++=ax ax x f 在区间[-3,2]上的最大值为4,则a 的值为6.一元二次方程02)1(22=-+-+a x a x 的一根比1大,另一根比-1小,则实数a 的取值范围是7.已知二次函数∈++=c b a c bx ax x f ,,()(2R )满足,1)1(,0)1(==-f f 且对任意实数x 都有)(,0)(x f x x f 求≥-的解析式. 8.a >0,当]1,1[-∈x 时,函数b ax x x f +--=2)(的最小值是-1,最大值是1. 求使函数取得最大值和最小值时相应的x 的值.9.已知22444)(a a ax x x f --+-=在区间[0,1]上的最大值是-5,求a 的值. 10.函数)(x f y =是定义在R 上的奇函数,当22)(,0x x x f x -=≥时,(Ⅰ)求x <0时)(x f 的解析式;(Ⅱ)问是否存在这样的正数a ,b ,当)(,],[x f b a x 时∈的值域为]1,1[ab ?若存在,求出所有的a ,b 的值;若不存在,说明理由.2.9 .函数的图象1.函数)32(-x f 的图象,可由)32(+x f 的图象经过下述变换得到( ) A .向左平移6个单位 B .向右平移6个单位 C .向左平移3个单位 D .向右平移3个单位2.设函数)(x f y =与函数)(x g y =的图象如右图所示,则函数)()(x g x f y ⋅=的图象可能是下面的( )4.如图,点P 在边长的1的正方形的边上运动,设M 是CD 边的中点,当P 沿A →B →C →M 运动时,以点P 经过的路程x 为自变量,APM ∆的面积为y ,则函数)(x f y =的图象大致是( ) 6.设函数)(x f 的定义域为R ,则下列命题中: ①若)(x f y =为偶函数,则)2(+=x f y 的图象关于y 轴对称; ②若)2(+=x f y 为偶函数,则)(x f y =的图象关于直线2=x 对称;③若)2()2(x f x f -=-,则)(x f y =的图象关于直线2=x 对称;④函数)2(-=x f y 与函数)2(x f y -=的图象关于直线2=x 对称. 则其中正确命题的序号是10.m 为何值时,直线m x y l +-=:与曲线182+-=x y 有两个公共点?有一个公共点?无公共点?3.0导数复习1、导数的几何意义/0()f x 是曲线)(x f y =上点()(,00x f x )处的切线的斜率因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为))(()(00/0x x x f x f y -=-注意:“过点A 的曲线的切线方程”与“在点A 处的切线方程”是不尽相同的,后者A 必为切点,前者未必是切点.(1)曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为 ( ).A 30°.B 45°.C 60° .D 12(2)已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为 ( ).A 1.B 2.C 3.D 4(3)过点()1,0-作抛物线21y x x =++的切线,则其中一条切线为( ).A 220x y ++=.B 330x y -+=.C 10x y ++=.D 10x y -+=(4)求过点()1,1P 且与曲线3y x =相切的直线方程:导数的应用.利用导数判断函数单调性及求解单调区间导数和函数单调性的关系: 一般的,设函数y=f(x)在某个区间内有导数,如果在这个区间内有f '(x)>0, 那么f(x)为这个区间内的增函数, 对应区间为增区间; 如果在这个区间内有f '(x)<0,那么f(x)为这个区间内的减函数,对应区间为减区间。
高考数学一轮总复习专题检测2.1函数及其性质
函数及其性质一、选择题1.(2022届北京一六一中学10月月考,3)下列函数中,值域为R 的是( ) A.y=1x B.y=1+1x C.y=x+1x D.y=x-1x答案 D 对于函数y=1x ,因为x≠0,所以y≠0,故它的值域不是R,所以A 不满足题意; 对于函数y=1+1x ,因为x≠0,所以y≠1,故它的值域不是R,所以B 不满足题意;对于函数y=x+1x,由对勾函数的性质可知值域为(-∞,-2]∪[2,+∞),所以C 不满足题意;对于函数y=x-1x =x 2-1x,可得关于x 的方程x 2-yx-1=0有解,∵Δ=y 2+4>0,∴y 可以取任意实数,即y∈R,故D 满足条件. 故选D.2.(2022届北京一七一中学10月月考,7)存在函数f(x)满足:对任意x∈R 都有( ) A.f(sin2x)=sinx B.f(sin2x)=x 2+x C.f(x 2+1)=|x+1| D.f(x 2+2x)=|x+1|答案 D A 选项,取x=0,可知f(sin0)=sin0,即f(0)=0,再取x=π2,可知f(sinπ)=sin π2,即f(0)=1,矛盾,∴A 错误;同理可知B 错误;C 选项,取x=1,可知f(2)=2,再取x=-1,可知f(2)=0,矛盾,∴C 错误.故选D.3.(2022届黑龙江适应性测试,2)托马斯说:“函数是近代数学思想之花.”根据函数的概念判断,下列对应关系是从集合M={-1,2,4}到集合N={1,2,4,16}的函数的是( ) A.y=2x B.y=x+2 C.y=x 2D.y=2x答案 C A.当x=-1时,y=2x=-2,集合N 中没有对应值,不满足条件. B.当x=4时,y=x+2=6,集合N 中没有对应值,不满足条件.C 中函数满足条件. D.当x=-1时,y=12,集合N 中没有对应值,不满足条件.故选C. 4.(2022届西安期中,4)下列各图中,一定不是函数图象的是( )答案 A 对于A 选项,由图可知,存在一个x 同时有两个y 值与之对应,A 选项中的图不是函数图象;对于B 选项,由图可知,对于每个x,有唯一的y 值与之对应,B 选项中的图是函数图象,同理可知CD 选项中的图是函数图象,故选A. 5.(2022届山东鱼台一中月考一,2)已知函数f(x)={(12)x,x ≤0,x -2,x >0,设f(1)=a,则f(a)=( )B.12 12 32答案 A 因为f(x)={(12)x,x ≤0,x -2,x >0,所以f(1)=1-2=-1,所以a=-1,所以f(-1)=(12)-1=2.6.(2022届广东深圳七中月考,7)定义在R 上的函数f(x)满足f(x)={log 9(1-x),x ≤0,x (x -10),x >0,则f(2018)=( ) A.1212答案 A∵f(x)={log 9(1-x),x ≤0,x (x -10),x >0,∴f(2018)=f(2008)=f(1998)=…=f(8)=f(-2),∴f(2018)=log 93=12.故选A.7.(2022届广东普通高中10月质检,3)函数f(x)=1x +4x 在[1,2)上的值域是( ) A.[5,172) B.[4,172) C.(0,172) D.[5,+∞)答案 A 因为f'(x)=-1x 2+4=(2x +1)(2x -1)x 2,所以当x∈[1,2)时,f'(x)>0,f(x)是增函数,所以f(1)≤f(x)<f(2),即5≤f(x)<172.故选A.8.(2022届河北保定重点高中月考,7)设定义在R 上的函数f(x)=x·|x|,则f(x)( )A.既是奇函数,又是增函数B.既是偶函数,又是增函数C.既是奇函数,又是减函数D.既是偶函数,又是减函数答案 A ∵f(-x)=-x·|-x|=-x·|x|=-f(x),且f(x)的定义域关于原点对称,∴函数f(x)为奇函数,∵f(x)=x·|x|={x 2,x ≥0,-x 2,x <0,∴函数f(x)为增函数,故选A.9.(2022届北京市育英中学10月月考,2)下列函数中,在区间(0,+∞)上不是单调函数的是( )A.y=1x B.y=(x+1)2C.y=12x+√x +1 D.y=|x-1|答案 D A 选项,y=1x 在(0,+∞)上单调递减. B 选项,y=(x+1)2在(0,+∞)上单调递增.C 选项,y=12x+√x +1=12(√x )2+√x +1,在(0,+∞)上单调递增.D 选项,y=|x-1|={x -1,x ≥1,1-x ,x <1,在(0,1)上单调递减,在(1,+∞)上单调递增.故选D.10.(2022届山西忻州月考,9)设f(x)是定义域为R 的偶函数,若∀x 1,x 2∈(0,+∞)(x 1≠x 2),都有x (x 1)-f(x 2)x 1-x 2>0,则( )A.f(lo g 123.1)<f(log 23)=f (32)B.f(log 23)<f(lo g 123.1)<f (32)(32)<f(lo g 123.1)<f(log 23)(32)<f(log 23)<f(lo g 123.1)答案 D 因为∀x 1,x 2∈(0,+∞)(x 1≠x 2),都有x (x 1)-f(x 2)x 1-x 2>0,所以f(x)在(0,+∞)上单调递增,因为f(x)是定义域为R 的偶函数,所以f(lo g 123.1)=f(-log 23.1)=f(log 23.1),又因为232=2√2,所以232<3<3.1,而y=log 2x 在(0,+∞)上单调递增,所以32<log 23<log 23.1,故f (32)<f(log 23)<f(log 23.1),即f (32)<f(log 23)<f(lo g 123.1),故选D.11.(2022届四川广元质检(二),9)已知函数f(x)是定义在R上的偶函数,且对任意实数x,都有f(x)+f(4-x)=0,当x∈[-2,0]时,f(x)=-x2+4,则f(11)=( )答案 D ∵f(-x)=f(x),且f(x)+f(4-x)=0,∴f(4+x)=-f(-x)=-f(x),即f(8+x)=f(x),∴f(x)是以8为周期的偶函数,又当x∈[-2,0]时,f(x)=-x2+4,∴f(11)=f(3)=-f(1)=-f(-1)=-[-(-1)2+4]=-3.故选D.12.(2022届合肥联考,12)已知f(x)是定义在R上的奇函数,∀x∈R,恒有f(x+4)=-f(x),且当x∈[-2,0)时,f(x)=-x-1,则f(0)+f(1)+f(2)+…+f(2020)+f(2021)=()答案 B 因为f(x+4)=-f(x),所以f(x+8)=-f(x+4)=f(x),所以f(x)的周期是8.因为f(0)=0,f(2)=-f(-2)=-1,f(3)=-f(-1)=0,f(4)=-f(0)=0,f(1)=-f(-3)=f(3)=0,f(5)=-f(1)= 0,f(6)=-f(2)=1,f(7)=-f(3)=0,f(8)=-f(4)=0,又f(x)是周期为8的周期函数,所以f(0)+f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)=…=f(2008)+f(2009)+f(2010)+f(2011)+f(20 12)+f(2013)+f(2014)+f(2015)=0.f(2016)+f(2017)+f(2018)+f(2019)+f(2020)+f(2021)=f (0)+f(1)+f(2)+f(3)+f(4)+f(5)=0+0+(-1)+0+0+0=-1.所以f(0)+f(1)+f(2)+…+f(2020)+f(2021)=-1.故选B.13.(2022届清华大学中学生标准学术能力测试(11月),7)已知定义域为R的奇函数f(x)满足:f(x)=f(2-x),且当x∈[0,1]时,f(x)=ax+b,若f(-1)=2,则f(-1.5)=( )答案 C 由题意,f(0)=b=0,且f(1)=a+b=-f(-1)=-2,所以a=-2,所以当x∈[0,1]时,f(x)=-2x,因为f(x)=f(2-x),所以f(x+2)=f(-x)=-f(x),所以f(x+4)=-f(x+2)=f(x),所以函数f(x)是周期为4的函数,所以f(-1.5)=f(2.5)=-f(0.5)=-(-2×0.5)=1.14.(2022届河北保定重点高中月考,12)已知定义在R上的函数f(x),g(x),其中函数f(x)满足f(-x)=f(x)且在[0,+∞)上单调递减,函数g(x)满足g(1-x)=g(1+x)且在(1,+∞)上单调递减,设函数F(x)=1[f(x)+g(x)+|f(x)-g(x)|],则对任意x∈R,均有( )2A.F(1-x)≥F(1+x)B.F(1-x)≤F(1+x)C.F(1-x2)≥F(1+x2)D.F(1-x2)≤F(1+x2)答案 C根据题意,函数f(x)满足f(-x)=f(x),则f(x)为偶函数,又由f(x)在[0,+∞)上单调递减,且|1-x 2|≤|1+x 2|,得f(1-x 2)≥f(1+x 2).函数g(x)满足g(1-x)=g(1+x),即g(x)的图象关于直线x=1对称,则g(1-x 2)=g(1+x 2),又由F(x)=12[f(x)+g(x)+|f(x)-g(x)|]={x (x ), x (x )≥x (x ),x (x ), x (x )<x (x ),则F(x)的示意图可表示为图中实线部分,所以有F(1-x 2)≥F(1+x 2).故选C. 二、填空题15.(2022届福建永安三中10月月考,13)设函数f(x)={1+log 2(2-x),x <1,2x ,x ≥1,则f(-2)+f(log 26)= . 答案 9解析 f(-2)=1+log 24=3,f(log 26)=2log 26=6,∴f(-2)+f(log 26)=3+6=9.16.(2022届广东深圳三中月考,15)已知函数f(x)={13x 3-ax +1,0≤x <1,x ln x ,x ≥1,若f(x)≥f(1)恒成立,则正实数a 的取值范围是 . 答案 (0,43]解析 ∵a>0,∴当x≥1时,f(x)=alnx≥f(1),当0≤x<1时,f(x)=13x 3-ax+1,f'(x)=x 2-a.(1)若a≥1,则f'(x)<0,f(x)单调递减,f(x)≥f(1)成立,则13-a+1≥0,解得a≤43,∴1≤a≤43,(2)若0<a<1,则当0<x<√x 时,f'(x)<0,f(x)单调递减,当√x <x<1时,f'(x)>0,f(x)单调递增,因此x=√x 时,f(x)min =f(√x )=13(√x )3-(√x )3+1=-23x 32+1,所以-23x 32+1≥0,显然成立,∴0<a<1.综上,a 的取值范围是(0,43].17.(2022届山东学情10月联考,14)设f(x)是定义域为R 的奇函数,且f(1-x)=f(2+x),若f (43)=12,则f (-53)= . 答案 -12解析 因为f(1-x)=f(2+x),所以f(x)的图象关于直线x=32对称,又f(x)是奇函数,所以f (-53)=-f (53)=-f (43)=-12.18.(2022届山西忻州顶级名校联考,16)在下列命题中,正确命题的序号为 .(写出所有正确命题的序号)①函数f(x)=x+x x(x>0)的最小值为2√x ;②已知定义在R 上周期为4的函数f(x)满足f(2-x)=f(2+x),则f(x)一定为偶函数; ③定义在R 上的函数f(x)既是奇函数又是以2为周期的周期函数,则f(1)+f(4)+f(7)=0; ④已知函数f(x)=x 3,若a+b>0,则f(a)+f(b)>0. 答案 ②③④解析 ①当a=0时,f(x)=x(x>0)无最小值,故①错误;②因为f(2-x)=f(2+x),所以f(x)的图象关于直线x=2对称,又f(x)的周期为4,所以f(-x)=f(-x+4)=f(4-(-x+4))=f(x),故函数f(x)一定为偶函数,故②正确;③因为f(x)是定义在R 上的奇函数,又是以2为周期的周期函数,所以f(0)=0,f(-1)=-f(1),f(-1)=f(-1+2)=f(1),故f(1)=0,又f(4)=f(0+2×2)=f(0)=0,f(7)=f(1+2×3)=f(1)=0,所以f(1)+f(4)+f(7)=0,故③正确;④f(x)=x 3为奇函数,且在R 上单调递增,若a+b>0,则a>-b,有f(a)>f(-b)=-f(b),所以f(a)+f(b)>0,故④正确.19.(2022届山东鱼台一中月考,16)定义在R 上的函数f(x)=x+a+sinx,若f (x+π)是奇函数,则a= ;满足f(x)-π>0的x 的取值范围是 . 答案 -π;(2π,+∞)解析 f(x+π)=x+π+a -sinx,因为f(x+π)是奇函数,则π+a=0,即a=-π,f(x)=x -π+sinx,因为f'(x)=1+cosx≥0,则f(x)递增,又f(2π)=π,则f(x)-π>0⇔f(x)>π⇔f(x)>f(2π)⇔x>2π. 三、解答题20.(2022届福建长汀一中月考二,20)已知a,b∈R 且a>0,函数f(x)=4x +b4x -a 是奇函数. (1)求a,b 的值;(2)对任意x∈(0,+∞),不等式mf(x)-f (x2)>0恒成立,求实数m 的取值范围. 解析 (1)因为f(x)是奇函数,所以f(-x)=-f(x),即2-2ab+(b-a)(4x +4-x)=0恒成立,∴{x -x =0,2-2xx =0,又a>0,所以解得a=b=1.(2)不等式mf(x)-f (x 2)>0⇔m (1+24x -1)-(14x2-1>0对任意x∈(0,+∞)恒成立,令2x=t(t>1),则m>x +1x -1x 2+1x 2-1=(x +1)2x 2+1=x 2+1+2t x 2+1=1+2x x 2+1=1+2x +1x对t>1恒成立,∵y=2x +1x在(1,+∞)上单调递减,∴y=1+2x +1x<2,∴m≥2,∴m 的取值范围为[2,+∞).21.(2022届山西忻州顶级名校联考,19)已知函数f(x)是定义在R 上的奇函数,且当x>0时,f(x)=-x 2+2x.(1)求函数f(x)在R 上的解析式; (2)解关于x 的不等式f(x)<3.解析 (1)当x<0时,-x>0,则f(-x)=-(-x)2+2(-x)=-x 2-2x, 由f(x)是定义在R 上的奇函数,得f(x)=-f(-x)=x 2+2x,且f(0)=0,综上,f(x)={-x 2+2x,x >0,0,x =0,x 2+2x,x <0.(2)①当x>0时,-x 2+2x<3⇒x 2-2x+3>0,解得x∈R,所以x>0; ②当x=0时,0<3显然成立,所以x=0; ③当x<0时,x 2+2x<3,得-3<x<0. 综上,不等式的解集为(-3,+∞).。
高中数学必修一练习题(4)函数(含详细答案)
• 高中数学必修一复习练习(四)函数班 号 姓名 指数函数及其性质1.下列函数中指数函数的个数为( )①y =(12)x -1; ②y =2·3x ; ③y =a x (a >0且a ≠1,x ≥0); ④y =1x ; ⑤y =(12)2x -1.A .1个B .2个C .4个D .5个2.函数y =3x 与y =3-x 的图象关于下列哪条直线对称( )A .x 轴B .y 轴C .直线y =xD .直线y =-x3.若集合M ={y |y =2x ,x ∈R },N ={y |y =x 2,x ∈R },则集合M ,N 的关系为( ) A .M NB . M ⊆NC .N MD .M =N4.已知1>n >m >0,则指数函数①y =m x ,②y =n x 的图象为( )5.若函数y =(2a -1)x 为指数函数,则实数a 的取值范围是________. 6.函数y =a x +1(a >0且a ≠1)的图象必经过点________(填点的坐标). 7.已知函数f (x )=a x -1(x ≥0)的图象经过点(2,12),其中a >0且a ≠1.(1)求a 的值; (2)求函数y =f (x )(x ≥0)的值域.8.已知指数函数f (x )=a x 在区间[1,2]上的最大值比最小值大a2,求a 的值.1.若2x +1<1,则x 的取值范围是( )A .(-1,1)B .(-1,+∞)C .(0,1)∪(1,+∞)D .(-∞,-1)2.函数y =⎝⎛⎭⎫121-x的单调递增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)3.下列不等关系中,正确的是( ) A .(12)23<1<(12)13B .(12)13<(12)23<1C .1<(12)13<(12)23D .(12)23<(12)13<14.函数f (x )=2|x |,则f (x )( )A .在R 上是减函数B .在(-∞,0]上是减函数C .在[0,+∞)上是减函数D .在(-∞,+∞)上是增函数 5.方程3x -1=19的解是________.6.已知函数y =(13)x 在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.7.已知2x ≤(14)x -3,求函数y =(12)x 的值域.8.已知函数f (x )=a 2-3x(a >0,且a ≠1).(1)求该函数的图象恒过的定点坐标; (2)指出该函数的单调性.1.使式子log (x -1)(x 2-1)有意义的x 的值是( ) A .x <-1或x >1 B .x >1且x ≠2 C .x >1D .x ≠22.方程2log 3x =14的解是( )A.33B.3C.19D .93.化简:2lg (lg a 100)2+lg (lg a )的结果是( )A.12B .1C .2D .44.已知2x =3,log 483=y ,则x +2y 的值为( )A .3B .8C .4D .log 485.若log a x =2,log b x =3,log c x =6,则log abc x 的值为________.6.已知x ,y ∈(0,1),若lg x +lg y =lg(x +y ),则lg(1-x )+lg(1-y )=________. 7.计算下列各式的值:(1)lg12.5-lg 58+lg 12; (2)12lg25+lg2+lg 10+lg(0.01)-1; (3)log 2(log 264).8.方程lg 2x +(lg2+lg3)lg x +lg2lg3=0的两根之积为x 1x 2,求x 1x 2的值.1.下列函数中,定义域相同的一组是( ) A .y =a x 与y =log a x (a >0,a ≠1) B .y =x 与y =x C .y =lg x 与y =lg xD .y =x 2与y =lg x 22.函数y =2+log 2x (x ≥1)的值域为( )A .(2,+∞)B .(-∞,2)C .[2,+∞)D .[3,+∞) 3.函数y =log 12(3x -2)的定义域是( )A .[1,∞)B .(23,+∞)C .[23,1]D .(23,1]4.函数y =lg(x +1)的图象大致是( )5.函数y =log x (2-x )的定义域是________.6.若a >0且a ≠1,则函数y =log a (x -1)+1的图象恒过定点________. 7.求下列函数的定义域:(1)y =log 2(4x -3); (2)y =log 5-x (2x -2).8.已知f (x )=log 3x .(1)作出这个函数的图象;(2)当0<a <2时,有f (a )>f (2),利用图象求a 的取值范围.参考答案指数函数及其性质1.选A 由指数函数的定义可判定,只有③正确. 2.B3.选A x ∈R ,y =2x >0,y =x 2≥0,即M ={y |y >0},N ={y |y ≥0},所以M N. 4.选C 由0<m <n <1可知①②应为两条递减曲线,故只可能是选项C 或D , 进而再判断①②与n 和m 的对应关系,判断方法很多,不妨选择特殊点,令x =1, 则①②对应的函数值分别为m 和n ,由m <n 知选C.5.解析:函数y =(2a -1)x 为指数函数,则2a -1>0且2a -1≠1,∴a >12且a ≠1. 答案:a >12且a ≠16.∵指数函数y =a x 恒过定点(0,1).∴y =a x +1的图象必过点(0,2).答案:(0,2) 7.解:(1)函数图象过点(2,12),所以a 2-1=12,则a =12.(2)f (x )=(12)x -1(x ≥0),由x ≥0得,x -1≥-1,于是0<(12)x -1≤(12)-1=2.所以函数的值域为(0,2]. 8.解:由指数函数的概念知a >0,a ≠1.当a >1时,函数f (x )=a x 在区间[1,2]上是增函数,所以当x =2时,f (x )取最大值a 2,当x =1时,f (x )取最小值a , 由题意得a 2=a +a 2,即a 2=32a ,因为a >1,所以a =32;当0<a <1时,函数f (x )=a x 在区间[1,2]上是减函数,同理可以求得a =12.综上可知,a 的值为32或12✠✠指数函数及其性质的应用1.选D 不等式2x +1<1=20,∵y =2x 是增函数,∴x +1<0,即x <-1.2.选A 定义域为R.设u =1-x ,y =⎝⎛⎭⎫12u,∵u =1-x 在R 上为减函数,又∵y =⎝⎛⎭⎫12u在(-∞,+∞)上为减函数,∴y =⎝⎛⎭⎫121-x在(-∞,+∞)上是增函数.3.选D ∵函数y =(12)x 在R 上是减函数,而0<13<23,∴(12)23<(12)13<(12)0,即(12)23<(12)13<1.4.选B ∵y =2x 在R 上递增,而|x |在(-∞,0]上递减,在[0,+∞)是递增,∴f (x )=2|x |在(-∞,0]上递减,在[0,+∞)上递增.5.解析:∵3x -1=19,∴3x -1=3-2,∴x -1=-2,∴x =-1. 答案:-16.解析:函数y =(13)x 在定义域内单调递减,∴m =(13)-1=3,n =(13)-2=9, ∴m +n =12. 答案:127.解:∵2x ≤(14)x -3,即2x ≤26-2x ,∴x ≤6-2x ,∴x ≤2,∴y = (12)x ≥ (12)2=14,∴函数值域是[14,+∞).8.解:(1)当2-3x =0,即x =23时,a 2-3x =a 0=1. 所以,该函数的图象恒过定点(23,1)(2)∵u =2-3x 是减函数,∴当0<a <1时,f (x )在R 上是增函数;当a >1时,f (x )在R 上是减函数.❑❑对数与对数运算1.选B 由⎩⎪⎨⎪⎧x -1>0,x 2-1>0,x -1≠1,解得x >1且x ≠2.2.选C 由已知得log 3x =-2 ,∴ x =3-2=19.3.选C 由对数运算可知:lg(lg a 100)=lg(100lg a )=2+lg(lg a ),∴原式=2. 4.选A 由2x =3得:x =log 23.∴x +2y =log 23+2log 483=log 23+2log 283log 24=log 23+(3log 22-log 23)=3.5.解析:log a x =1log x a =2,∴log x a =12. 同理log x b =13,log x c =16.log abc x =1log x abc =1log x a +log x b +log x c =1. 答案:16.解析:lg(x +y )=lg x +lg y =lg(xy )⇒x +y =xy ,lg(1-x )+lg(1-y )=lg[(1-x )(1-y )]=lg(1-x -y +xy )=lg1=0. 答案:0 7.解:(1)原式=lg(252×85×12)=lg10=1.(2)原式=lg[2512×2×1012×(10-2)-1]=lg(5×2×1012×102)=lg1072=72.(3)原式=log 2(log 226)=log 26=1+log 23.8.解:因为lg2x +(lg2+lg3)lg x +lg2lg3=(lg x +lg2)(lg x +lg3),所以lg x =-lg2=lg2-1或lg x =-lg3=lg3-1,即x 1=12,x 2=13,所以x 1x 2=16.对数函数及其性质1.C2.选C 当x ≥1时,log 2x ≥0,所以y =2+log 2x ≥2.3.选D 由函数的解析式得log 12(3x -2)≥0=log 121.∴0<3x -2≤1,解得:23<x ≤1.4.选C 当x =0时y =0,而且函数为增函数,可见只有C 符合.5.解析:由对数函数的意义可得⎩⎪⎨⎪⎧2-x >0x >0x ≠1⇒⎩⎪⎨⎪⎧x <2x >0且x ≠1⇒0<x <2且x≠1. 答案:(0,1)∪(1,2)6.解析:当x =2时y =1. 答案:(2,1)7.解:(1)要使函数有意义,须满足:log 2(4x -3)≥0=log 21,⇒1≤ 4x -3⇒x ≥1,∴函数的定义域为[1,+∞).(2)要使函数有意义,须满足⎩⎪⎨⎪⎧2x -2>05-x >05-x ≠1⇒1<x <5且x ≠4. ∴函数的定义域为(1,4)∪(4,5).8.解:(1)作出函数y =log 3x 的图象如图所示.(2)令f (x )=f (2),即log 3x =log 32,解得x =2. 由如图所示的图象知:当0<a <2时,恒有f (a )<f (2). 故当0<a <2时,不存在满足f (a )>f (2)的a 的值.。
高中数学函数专题复习
高中数学函数专题复习2.1 映射与函数、函数的解析式1.不能构成A到B的映射的是哪个对应法则?设集合A={x|1≤x≤2},B={y|1≤y≤4},则不能构成A到B的映射的对应法则是:D。
f:x→y=4-x。
2.若函数f(3-2x)的定义域为[-1,2],则函数f(x)的定义域是什么?若函数f(3-2x)的定义域为[-1,2],则函数f(x)的定义域为:[-5/2,1]。
3.求f(f(f(2)))的值。
设函数f(x)=x-1(x≥1),f(f(f(2)))的值为:2.4.下面哪组函数是相同函数?下面相同函数的函数组是:C。
f(x)=(x-1)²。
g(x)=(x-1)²。
5.已知映射f:A→B,其中,集合A={-3,-2,-1,1,2,3,4}。
集合B中元素的个数是多少?已知映射f:A→B,其中,集合A={-3,-2,-1,1,2,3,4},集合B中元素的个数为:7.6.已知定义在[,+∞)的函数f(x),若f(f(f(k)))=25,则实数k 等于多少?已知定义在[,+∞)的函数f(x):f(x) = {x+2 (x≥2)。
2 (≤x<2)。
x (x<0)}若f(f(f(k)))=25,则实数k=4.2.2 函数的定义域和值域1.已知函数f(x)=(1+x)/(1-x),其定义域为M,f[f(x)]的定义域为N,则M∩N=什么?已知函数f(x)=(1+x)/(1-x),其定义域为M,f[f(x)]的定义域为N,则M∩N={x|-1<x<1}。
2.若f(x)的定义域为(0,1),-1/2<a<1/2,那么函数g(x)=f(x+a)+f(x-a)的定义域是什么?若f(x)的定义域为(0,1),-1/2<a<1/2,则函数g(x)=f(x+a)+f(x-a)的定义域为:(a,1-a)。
3.函数y=x-2x+a在[0,3]上的最小值是4,则a=什么?若最大值是4,则a=什么?当函数y=x-2x+a在[0,3]上的最小值是4时,a=2.当最大值是4时,a=1.4.已知函数f(x)=3-4x-2x²,下列结论不正确的是哪个?已知函数f(x)=3-4x-2x²,下列结论不正确的是:C。
高中数学三角函数专题复习(内附类型题以及历年高考真题含答案免费)
1.已知 tanx=2,求 sinx , cosx 的值.解: 因为 tan x = Sin X =2,又 sin 2x + cos 2x=1 , cosxsin x = 2cosx联立得丿2 2 ,sin x +cos x =1sin x -cosx _2 sin x cosx所以 sinx — cosx=2(sinx + cosx),22得到sinx= — 3cosx ,又sin x + cos x=1,联立方程组,解得3+10sin,COSX = -〒0- C ——3 所以 sin xcosx — 10法二:因为叱叱=2,sin x cosx所以 sinx — cosx=2(sinx + cosx),所以(sinx — cosx)2=4(sinx + cosx)2, 所以 1 — 2sin xcosx=4 + 8sin xcosx ,3所以有 sinxcosx — ■10求证:tan 2x sin 2x=tan 2x — sin 2x . I.F , [ ]22 2 22 2 2 22证明:法一:右边=tan' x — sin x=tan x — (tan x cos x)=tan x(1 — cos x)=tan x sin x , 法二:左边 =ta n 2x sin 2x=ta n 2x(1 — cos 2x)=ta n 2x — ta n 2x cos 2 x=ta n 2x — si n 2x ,问题得证.sinx =2.5解这个方程组得cosx =245sin x = --------- i 靠 cosx I 5tan(-120)cos(210)sin(-480)2 .求——tan(-690 ') sin(-150 丨 cos(330 )的值.解:原式tan( -120 180 )cos(18030 )sin( -360 -120 )o~tan(-720 30o )sin(-150 )cos(360 -30 )tan 60 (-cos30 )(-sin 120) 弋 3 tan30(—sin150 )cos303.卄 sin x - cosx右sin x cosx=2,,求 sinxcosx 的值. 解:法一:因为 3110 sinx 10- 尿,cosx4.问题得证.3 x =84[0 2兀]0x2 f(x)x1如sin(2 ■ 6)[-?,1], y [1 2]2(1)y sin x cosx+2(1)y=si n 2x t=cosx t(2)y 2sin xcosx[- 2, 2]cosx 2 [-1,1],2 cos x cosx (2)y 2sin xcosx (sinx2= (cos 2x cosx) 3 cosx)一 (t 2t) 3-(t 丄)2213 +— 4(sinx cosx)=(s in xy =t 2 -t -1,y=As in( + )( (6 0)(2, 2) 匚=4T=164、2 = . 2 sin(- 2)84f(x)=cos x f(x) 一 sinxcosx)20)© =一842sinxcosx sin x(si nx cosx) t=sinxcosx= 42 sin((2「2)..y _2 sin(_ x ).48 4()xwy f(x)42222f(x)=cos x 2sinxcosx sin4x (cos x sin x)(cos x sin x)_ 2= (cos x -sin x) -sin 2x =cos2x -sin 2xsin2x-2x) - - 2 sin(2x -;))x 可Og](2x--)%-丄]4 4 4x=0 f(x)tan - 21 cos 日 +sin 日cos : -sin -2 si n 2°—si n B . cos 日+2cos 2 &1 + si n 日 (1)cos ,Sinn _ cos^ cos 日 +si ne . sin 日1 ------ cos :-1十¥ =」—2逅;1 - tan v 1_22 2sinsin rcos v 2cos r2 2sin sin vcos v 2 cos 二2 2sin cos 二2 si nr sin 二 22=COS d COSdsin -彳1cos 二说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到) 程简化。
高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案)
1.tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=3.假设,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证.5.求函数)6π2sin(2+=x y 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求以下函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,那么,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,那么]2,2[-∈t 那么,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y 7.假设函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)假设],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)假设]2π,0[∈x ,那么]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 2tan =θ,求〔1〕θθθθsin cos sin cos -+;〔2〕θθθθ22cos 2cos .sin sin +-的值.解:〔1〕2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点〔如果不具备,通过构造的方法得到〕,进行弦、切互化,就会使解题过程简化。
(完整版)高中数学三角函数复习专题
高中数学三角函数复习专题一、知识点整理 :1、角的看法的推行:正负,范围,象限角,坐标轴上的角;2、角的会集的表示:①终边为一射线的角的会集:x x2k, k Z=|k 360o, k Z②终边为向来线的角的会集:x x k, k Z;③两射线介定的地域上的角的会集:x 2k x2k, k Z④两直线介定的地域上的角的会集:x k x k, k Z;3、任意角的三角函数:(1)弧长公式: l a R R 为圆弧的半径,a为圆心角弧度数, l 为弧长。
(2)扇形的面积公式:S 1lR R 为圆弧的半径, l 为弧长。
2(3)三角函数定义:角中边上任意一点 P 为 ( x, y) ,设 | OP |r 则:sin y, cos x ,tan y r= a 2b2 r r x反过来,角的终边上到原点的距离为r 的点P的坐标可写为:P r cos, r sin 比如:公式 cos()cos cossin sin的证明(4)特别角的三角函数值α032 64322sin α012310-10222cosα13210-101222tan α0313不存不存0 3在在(5)三角函数符号规律:第一象限全正,二正三切四余弦。
(6)三角函数线:(判断正负、比较大小,解方程或不等式等)y T 如图,角的终边与单位圆交于点P,过点 P 作 x 轴的垂线,P 垂足为 M ,则Ao 过点 A(1,0)作 x 轴的切线,交角终边OP 于点 T,则M x。
(7)同角三角函数关系式:①倒数关系: tana cot a 1sin a ②商数关系: tan acosa③平方关系: sin 2 a cos2 a1( 8)引诱公试sin cos tan三角函数值等于的同名三角函数值,前方-- sin+ cos- tan加上一个把看作锐角时,原三角函数值的- tan-+ sin- cos符号;即:函数名不变,符号看象限+- sin- cos+ tan2-- sin+ cos- tan2k++ sin+ cos+ tansin con tan2+ cos+ sin+ cot三角函数值等于的异名三角函数值,前方2+ cos- sin- cot加上一个把看作锐角时,原三角函数值的3- cos- sin+ cot2符号 ;3- cos+ sin- cot2即:函数名改变,符号看象限 : sin x cos x cos x比方444cos x sin x444.两角和与差的三角函数:(1)两角和与差公式:cos() cos a cos sin a sin sin( a) sin a coscosa sintan a(atan a tan注:公式的逆用也许变形)1 tan a tan.........(2)二倍角公式:sin 2a 2sin acosa cos 2a cos2 a sin 2 a12 sin2 a 2 cos2 a 12 tan atan 2a1 tan2 a(3)几个派生公式:①辅助角公式:a sinx bcosx a2b2 sin(x)a22 cos()b x比方: sinα± cosα= 2 sin4= 2 cos4.sinα±3 cosα= 2sin3=2cos3等.②降次公式: (sin cos) 21sin 2cos21cos2,sin 21cos222③ tan tan tan()(1 tan tan)5、三角函数的图像和性质:(此中 k z )三角函数y sin x定义域(- ∞, +∞)值域[-1,1]最小正周期T2奇偶性奇[ 2k,2k]22单调性单调递加[ 2k,2k3 ]22单调递减x k对称性2(k ,0)零值点x ky cosx(- ∞, +∞)[-1,1]T 2偶[( 2k 1) ,2k ]单调递加[( 2k , (2k 1) ]单调递减x k(k,0)2x k2y tan xx k2(-∞,+∞)T奇(k,k)22单调递加k(,0)x kx k2x 2 k,最值点y max1ymax 1;无x k2x(2k 1) ,y min1y min1 6、 .函数y Asin( x) 的图像与性质:(本节知识观察一般能化成形如y Asin( x) 图像及性质)( 1)函数 y Asin( x) 和 y Acos( x2 ) 的周期都是T( 2)函数y A tan( x) 和 y Acot( x) 的周期都是T( 3)五点法作y Asin( x) 的简图,设t x,取0、、、3、2来求相应x22的值以及对应的y 值再描点作图。
高三数学 函数复习练习 试题
某某省富阳市场口中学高三数学 函数复习练习一、选择题1.幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫4,12,则f ⎝ ⎛⎭⎪⎫14的值为( ). A .1 B .2 C .3 D .42.(2013·某某长郡中学一模)设函数f (x )=⎩⎪⎨⎪⎧x +12,x ≤-1,2x +2,x >-1,若f (x )>1成立,则实数x 的取值X 围是( ).A .(-∞,-2)B.⎝ ⎛⎭⎪⎫-12,+∞C.⎝ ⎛⎭⎪⎫-2,-12D .(-∞,-2)∪⎝ ⎛⎭⎪⎫-12,+∞3.(2013·某某一模)设函数f (x )是奇函数,并且在R 上为增函数,若0≤θ≤π2时,f (m sinθ)+f (1-m )>0恒成立,则实数m 的取值X 围是( ).A .(0,1)B .(-∞,0) C.⎝⎛⎭⎪⎫-∞,12D .(-∞,1) 4.(2013·某某模拟)已知函数f (x )是奇函数,当x >0时,f (x )=a x (a >0且a ≠1),且f ⎝ ⎛⎭⎪⎫log 124=-3,则a 的值为( ). A.3B .3 C .9 D.325.(2013·某某质检)已知a =2,b =,c ,则( ). A .a >b >c B .a >c >b C .c >a >b D .b >c >a6.(2013·某某调研)已知函数f (x )=⎩⎪⎨⎪⎧1-x ,x ≤0,a x,x >0,若f (1)=f (-1),则实数a 的值等于( ).A .1B .2C .3D .47.设a >1,且m =log a (a 2+1),n =log a (a -1),p =log a (2a ),则m ,n ,p 的大小关系为( ). A .n >m >p B .m >p >n C .m >n >p D .p >m >n8.(2013·东城区综合练习)设a =log 123,b =⎝ ⎛⎭⎪⎫13,c =ln π,则( ). A .a <b <c B .a <c <b C .c <a <b D .b <a <c9.(2013·某某名校模拟)设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( ).A .f ⎝ ⎛⎭⎪⎫13<f (2)<f ⎝ ⎛⎭⎪⎫12B .f ⎝ ⎛⎭⎪⎫12<f (2)<f ⎝ ⎛⎭⎪⎫13C .f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2)D .f (2)<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13 10.设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数:f K (x )=⎩⎪⎨⎪⎧f x ,f x ≤K ,K ,f x >K .取函数f (x )=a-|x |(a >1).当K =1a时,函数f K (x )在下列区间上单调递减的是( ). A .(-∞,0) B .(-a ,+∞) C .(-∞,-1) D .(1,+∞) 二、填空题11.(2012·某某质检)若函数f (x )=⎩⎪⎨⎪⎧2x ,x <3,3x -m ,x ≥3,且f (f (2))>7,则实数m 的取值X围是________.12.(2013·某某质检)函数y =log 12(3x -a )的定义域是⎝ ⎛⎭⎪⎫23,+∞,则a =________. 13.若f (x )=1+lg x ,g (x )=x 2,那么使2f [g (x )]=g [f (x )]的x 的值是________. 14.已知函数f (x )=|log 2x |,正实数m ,n 满足m <n ,且f (m )=f (n ),若f (x )在区间[m 2,n ]上的最大值为2,则m +n =________.15.(2012·某某高中月考)关于函数f (x )=lg x 2+1|x |(x ≠0),有下列命题:①其图象关于y 轴对称;②当x >0时,f (x )是增函数;当x <0时,f (x )是减函数; ③f (x )的最小值是lg 2;④f (x )在区间(-1,0),(2,+∞)上是增函数; ⑤f (x )无最大值,也无最小值.其中所有正确结论的序号是________.16.若实数x 满足log3 x =1+sin θ,则|x -1|+|x -9|的值为________. 17.已知函数f(x)=⎩⎪⎨⎪⎧log2⎝ ⎛⎭⎪⎫1x +1,x≥0,⎝ ⎛⎭⎪⎫12x -1,x <0.若f(3-2a2)>f(a),则实数a 的取值X 围为________.18.(2013·某某模拟)函数f(x)=log 12(x2-2x -3)的单调递增区间是________.19.设min{p ,q}表示p ,q 两者中的较小者,若函数f(x)=min{3-x ,log2x},则满足f(x)<12的集合为________.20.(2011·某某卷改编)若点(a ,b)在y =lg x 图象上,a≠1,则下列点也在此图象上的是________(填序号).①⎝ ⎛⎭⎪⎫1a ,b ;②(10a,1-b);③⎝ ⎛⎭⎪⎫10a ,b +1;④(a2,2b). 21.已知点⎝ ⎛⎭⎪⎫12,2在幂函数y =f (x )的图象上,点⎝ ⎛⎭⎪⎫-2,14在幂函数y =g (x )的图象上,则f (2)+g (-1)=________.22.(2012·苏锡常镇四市调研)如图,已知二次函数y =ax 2+bx +c (a ,b ,c 为实数,a ≠0)的图象过点C (t,2),且与x 轴交于A ,B 两点,若AC ⊥BC ,则a 的值为________.23.(2012·某某模拟)已知函数f (x )=|2x -3|,若0<2a <b +1,且f (2a )=f (b +3),则T =3a 2+b 的取值X 围为________.24.(2012·某某模拟)已知函数f (x )=9x -m ·3x+m +1在x ∈(0,+∞)上的图象恒在x 轴上方,则m 的取值X 围为________.25.对于函数f (x )=e x -e -x(x ∈R ),有下列结论:①f (x )的值域是R ;②f (x )是R 上的增函数;③对任意x ∈R ,有f (-x )+f (x )=0成立;④若方程|f (x )|=a 有两个相异实根,则a ≥0,其中所有正确的命题序号是________. 26.函数y =a2x -2(a >0,a ≠1)的图象恒过点A ,若直线l :mx +ny -1=0经过点A ,则坐标原点O 到直线l 的距离的最大值为________. 三.解答题1.已知函数f (x )=log a (3-ax )(a >0,且a ≠1).(1)当x ∈[0,2]时,函数f (x )恒有意义,某某数a 的取值X 围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1,如果存在,试求出a 的值;如果不存在,请说明理由.2.(2012·某某学情调查)已知函数f (x )=log 4(4x+1)+kx (x ∈R )是偶函数. (1)求k 的值;(2)若方程f (x )-m =0有解,求m 的取值X 围.基本初等函数(2)1.已知函数f (x )=-x +log 21-x1+x .(1)求f ⎝⎛⎭⎪⎫12 014+f ⎝ ⎛⎭⎪⎫-12 014的值;(2)当x ∈(-a ,a ],其中a ∈(0,1),a 是常数时,函数f (x )是否存在最小值?若存在,求出f (x )的最小值;若不存在,请说明理由.2.已知函数f (x )=x |x -2|. (1)写出f (x )的单调区间; (2)解不等式f (x )<3;(3)设0<a ≤2,求f (x )在[0,a ]上的最大值.3.(2012·某某调研)已知13≤a ≤1,若f (x )=ax 2-2x +1在区间[1,3]上的最大值为M (a ),最小值为N (a ),令g (a )=M (a )-N (a ). (1)求g (a )的函数表达式;(2)判断g (a )的单调性,并求出g (a )的最小值.4.(2012·某某检测)设二次函数f(x)=ax2+bx+c(a≠0)在区间[-2,2]上的最大值、最小值分别是M,m,集合A={x|f(x)=x}.(1)若A={1,2},且f(0)=2,求M和m的值;(2)若A={1},且a≥1,记g(a)=M+m,求g(a)的最小值.5.已知函数f(x)=2x-12x(x∈R).(1)讨论f(x)的单调性与奇偶性;(2)若2x f(2x)+mf(x)≥0对任意的x∈[0,+∞)恒成立,求m的取值X围.6.(2013·某某模拟)已知函数f(x)=a x-24-a x-1(a>0且a≠1).(1)求函数f(x)的定义域、值域;(2)某某数a的取值X围,使得当定义域为[1,+∞)时,f(x)≥0恒成立.7.如果函数f(x)=a x(a x-3a2-1)(a>0,a≠1)在区间[0,+∞)上是增函数,某某数a的取值X围.8.设函数f (x )=ka x -a -x(a >0且a ≠1)是奇函数. (1)求k 的值;(2)若f (1)>0,解关于x 的不等式f (x 2+2x )+f (x -4)>0;(3)若f (1)=32,且g (x )=a 2x +a -2x-2mf (x )在[1,+∞)上的最小值为-2,求m 的值.方程的解与函数的零点(1)一、选择题1 .已知函数f(x)是R 上的偶函数,且f(1-x)=f(1+x),当x ∈[0,1]时,f(x)=x 2,则函数y=f(x)-log 5x 的零点个数是 ( )A .3B .4C .5D .62 .已知函数⎩⎨⎧>-≤-=0,120,2)(x x x a x f x (R a ∈),若函数)(x f 在R 上有两个零点,则a 的取值X围是 ( )A .)1,(--∞B .]1,(-∞C .)0,1[-D .]1,0(3 .设函数f (x )=x |x |+bx +c ,给出下列四个命题:①c =0时,f (x )是奇函数 ②b =0,c >0时,方程f (x )=0只有一个实根 ③f (x )的图象关于(0,c )对称 ④方程f (x )=0至多两个实根其中正确的命题是 ( )A .①④B .①③C .①②③D .①②④4 .已知函数()ln 38f x x x =+-的零点0[,]x a b ∈,且1(,)b a a b N +-=∈,则a b +=( )A .5B .4C .3D .25 .函数21f ()log 22x x x =-+的零点个数为 ( ) ( )A .0B .1C .3D . 26 .函数()22x f x x =-零点的个数为( )A .1B .2C .3D .47 .函数12ln )(-+=x x x f 的零点的个数是( )A .0B .1C .2D .38 .奇函数()f x ,偶函数()g x 的图像分别如图1、2所示,方程(())0,(())0f g x g f x ==的实根个数分别为,a b ,则a b +=( )A .14B .10C .7D .39 .实系数一元二次方程01)1(2=+++++b a x a x 的两个实根为21,x x ,若有2110x x <<<,则ab的取值X 围是( )A .)21,1(-B .)21,2(-C .)21,1(--D .)21,2(--10已知函数()y f x =的周期为2,当[0,2]x ∈时,2()(1)f x x =-,如果()()g x f x =-5log 1x -,则函数()y g x =的所有零点之和为( )A .4B .6C .8D .1011.已知0x 是xx f x1)21()(+=的一个零点,)0,(),,(0201x x x x ∈-∞∈,则 ( )A .0)(,0)(21<<x f x fB .0)(,0)(21>>x f x fC .0)(,0)(21<>x f x fD .0)(,0)(21><x f x f提升:定义在R上的函数()g x 及二次函数()h x 满足:2()2()9,(2)(0)1x x g x g x e h h e+-=+--==且(3)2h -=-. (1)求()g x 和()h x 的解析式;(2)对于12,[1,1]x x ∈-,均有11222()5()()h x ax g x x g x ++≥-成立,求a 的取值X 围; (3)设(),(0)()(),(0)g x x f x h x x >⎧=⎨≤⎩,讨论方程[()]2f f x =的解的个数情况.方程的解与函数的零点(2)12.已知函数()()21,2,03,2,1x x f x f x a x x ⎧-⎪=-=⎨≥⎪-⎩<若方程有三个不同的实数根,则实数a 的取值X 围( )A .()0,1B .()0,2C .()0,3D .()1,313.若关于x 的方程24||5x x m -+=有四个不同的实数解,则实数m 的取值X 围是( )A .(2,3)B .[2,3]C .(1,5)D .[1,5]14.已知函数y=f(x)的周期为2,当x∈[-1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共有 ( )A .10个B .9个C .8个D .1个15.已知函数()()f x x ∈R 是偶函数,且()(4)f x f x =-+,当x ∈[0,2]时,()1f x x =-,则方程1()1||f x x =-在区间[-8,8]上的解的个数为( )A .6B .7C .8D .916.函数()22xf x a x=--的一个零点在区间()1,2内,则实数a 的取值X 围是 ( )A .()1,3B .()1,2C .()0,3D .()0,217.如右上图:二次函数a bx x x f +-=2)(的部分图象,则函数)()(x f e x g x '+=的零点所在的区间是( )A .)0,1(-B .()1,2C .)1,0(D .)3,2(18.设函数2()2,()ln 3xf x e xg x x x =+-=+-,若实数,a b 满足()0,()0f a g b ==,则 ( )A .0()()g a f b <<B .()()0f b g a <<C .()0()f b g a <<D .()0()g a f b <<19函数()ln x f x x e =+的零点所在的区间是( )A .(10,e)B .(1,1e)C .(1,e )D .(,e ∞)20.已知函数||()e ||x f x x =+.若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值X 围是( )A .(0,1)B .(1,)+∞C .(1,0)-D .(,1)-∞-21.已知()f x 是定义在(0,)+∞上的单调函数,且(0,),[()ln ]1x f f x x ∀∈+∞-=,则方程2()2()7f x x f x '+=的解所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)22.函数f(x)对任意x ∈R,满足f(x)=f(4-x).如果方程f(x)=0恰有2011个实根,则所有这些实根之和为 ( )A .0B .2011C .4022D .804423.已知关于x 的方程26(0)x x a a -=>的解集为P ,则P 中所有元素的和可能是( )A .3,6,9B .6,9,12C .9,12,15D .6,12,15【答案】B24.函数0.5() 2 |log |1x f x x =⋅-的零点个数为A . 1B . 2C . 3D .425.函数xx x f 2)1ln()(-+= 的零点所在的大致区间是( )A .(3,4) B(1, 2) C .(2,e )D .(0,1)【答案】B26.下列区间中,函数()=+43xf x e x -的零点所在的区间为( )A .(1-4,0) B .(0,14) C .(14,12) D .(12,34) 二、填空题27.已知关于x 的方程220x x m -+=(0m ≤)的解集为M ,则集合M 中所有的元素的和的最大值为____________.。
高中数学三角函数专题专项练习(非常好)
高中数学三角函数专题专项练习(非常好)三角函数疑难点解析】一、忽略隐含条件例3:若sinx+cosx-1>0,求x的取值范围。
正解:2sin(x+π/4)>1,由sin(x+π/4)>1/√2得2kπ+π/4<x+π/4<2kπ+3π/4(k∈Z)∴2kπ+π/4<x<2kπ+5π/4(k∈Z),即x∈(2kπ+π/4,2kπ+5π/4)(k∈Z)。
改写后:对于不等式sinx+cosx-1>0,可以化简为2sin(x+π/4)>1.由于sin(x+π/4)>1/√2,所以可以得到2kπ+π/4<x+π/4<2kπ+3π/4(k∈Z)。
进一步化简得到x∈(2kπ+π/4,2kπ+5π/4)(k∈Z)。
二、忽视角的范围,盲目地套用正弦、余弦的有界性例4:设α、β为锐角,且α+β=120°,讨论函数y=cos2α+cos2β的最值。
正解:y=1+(cos2α+cos2β)=1+cos(α+β)cos(α-β)=1-cos(α-β),可见,当cos(α-β)=1时,ymin=0;当cos(α-β)=-1时,ymax=2.分析:由已知得30°<α,β<90°,∴-60°<α-β<60°,则-1<cos(α-β)≤1,∴当cos(α-β)=1,即α=β=60°时,ymin=0,最大值不存在。
改写后:已知α、β为锐角,且α+β=120°,求函数y=cos2α+cos2β的最值。
根据cos2θ=1-2sin2θ和cos(α+β)=cosαcosβ-sinαsinβ,可以得到y=1+(cos2α+cos2β)=1+cos(α+β)cos(α-β)=1-co s(α-β)。
当cos(α-β)=1时,即α=β=60°时,ymin=0,最大值不存在。
高中数学函数经典复习题含答案
高中数学函数经典复习题含答案1、求函数的定义域1)y=(x-1)/(x^2-2x-15)先求分母为0的解:x^2-2x-15=0x-5)(x+3)=0得到:x=5或x=-3但是x=-3不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-3)∪(-3,5)∪(5,+∞)2)y=1-((x+1)/(x+3))-3先求分母为0的解:x+3=0得到:x=-3但是x=-3不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-3)∪(-3,-1)∪(-1,+∞)2、设函数1/(x-1)+(2x-1)+4-x^2的定义域为[1,∞),则函数f(x^2)的定义域为[1,∞);函数f(x-2)的定义域为[3,∞)。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-1,2],函数f(2x-1)的值域为[-2,3]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x)=f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。
因为F(x)的定义域存在,所以f(x+m)和f(x-m)的定义域必须都存在,即:1≤x+m≤11≤x-m≤1将两个不等式联立,得到:1≤x≤1m≤x≤m所以m的取值范围为[-1,1]。
二、求函数的值域5、求下列函数的值域:1)y=x+2/x-3 (x∈R)先求分母为0的解:x-3=0得到:x=3但是x=3不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,3)∪(3,+∞)当x→±∞时,y→±∞,所以值域为(-∞,-2]∪[2,+∞)2)y=x+2/x-3 (x∈[1,2])先求分母为0的解:x-3=0得到:x=3但是x=3不在定义域内,因为分母为0时分式无意义,所以定义域为[1,3)∪(3,2]∪(2,+∞)当x→1+时,y→-∞,当x→2-时,y→+∞,所以值域为(-∞,-2]∪[2,+∞)3)y=22/(3x-13x-1)先求分母为0的解:3x-13x-1=0得到:x=4但是x=4不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,4)∪(4,+∞)当x→±∞时,y→0,所以值域为(0,+∞)4)y=(5x^2+9x+4)/(2x-6) (x≥5)当x→+∞时,y→+∞,当x→5+时,y→+∞,所以值域为[5,+∞)5)y=(x-3)/(x+1)+x+1先求分母为0的解:x+1=0得到:x=-1但是x=-1不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-1)∪(-1,+∞)化简得到y=x-2,所以值域为(-∞,-2]∪[-2,+∞)6)y=(x-3+x+1)/(2x-1x+2)先求分母为0的解:2x-1=0或x+2=0得到:x=1/2或x=-2但是x=1/2不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,1/2)∪(1/2,-2)∪(-2,+∞)化简得到y=1/2,所以值域为{1/2}7)y=x^2-x/(x+2)先求分母为0的解:x+2=0得到:x=-2但是x=-2不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-2)∪(-2,+∞)化简得到y=x-2-5/(x+2),所以值域为(-∞,-13/4]∪[1/4,+∞)8)y=(2-x^2-x)/(3x+6)先求分母为0的解:3x+6=0得到:x=-2但是x=-2不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-2)∪(-2,+∞)化简得到y=-1/3,所以值域为{-1/3}三、求函数的解析式1、已知函数f(x-1)=x-4x,求函数f(x),f(2x+1)的解析式。
人教A版高中数学必修一《函数的基本性质》试题
人教A版高中数学必修一《函数的基本性质》试题【夯实基础】一、单选题1.(2022·全国·高一课时练习)函数的单调递增区间是()A. B.C. D.【答案】B【分析】直接由二次函数的单调性求解即可.【详解】由知,函数为开口向上,对称轴为的二次函数,则单调递增区间是.故选:B.2.(2022·全国·高一课时练习)定义在区间上的函数的图象如图所示,则的单调递减区间为()A. B. C. D.【答案】B【分析】根据函数图象直接确定单调递减区间即可.【详解】由题图知:在上的单调递减,在上的单调递增,所以的单调递减区间为.故选:B3.(2022·全国·高一课时练习)已知函数在上是增函数,则实数的取值范围为()A. B. C. D.【答案】D【分析】利用二次函数单调性,列式求解作答.【详解】函数的单调递增区间是,依题意,,所以,即实数的取值范围是.故选:D4.(2022·全国·高一)已知在为单调函数,则a的取值范围为()A. B. C. D.【答案】D【分析】求出的单调性,从而得到.【详解】在上单调递减,在上单调递增,故要想在为单调函数,需满足,故选:D5.(2022·湖北武汉·高一期末)已知二次函数在区间内是单调函数,则实数a的取值范围是()A. B.C. D.【答案】A【分析】结合图像讨论对称轴位置可得.【详解】由题知,当或,即或时,满足题意.故选:A6.(2022·甘肃庆阳·高一期末)若函数在上单调递增,且,则实数的取值范围是()A. B. C. D.【答案】C【分析】由单调性可直接得到,解不等式即可求得结果.【详解】在上单调递增,,,解得:,实数的取值范围为.故选:C.7.(2022·全国·高一课时练习)下列四个函数在是增函数的为()A. B.C. D.【答案】D【分析】根据各个函数的性质逐个判断即可【详解】对A,二次函数开口向上,对称轴为轴,在是减函数,故A不对.对B,为一次函数,,在是减函数,故B不对.对C,,二次函数,开口向下,对称轴为,在是增函数,故C不对.对D,为反比例类型,,在是增函数,故D对.故选:D8.(2021·河南南阳·高一阶段练习)已知函数,对于任意的恒成立,则实数的最小值是()A.0B.1C.2D.3【答案】D【分析】利用换元法将函数的最值转化为二次函数的最值,即可求得实数的最小值.【详解】对于任意的使恒成立,令(),则,即,设,则,故,即实数m的最小值是.故选:.二、多选题9.(2022·全国·高一课时练习)下列函数中,在上单调递增的是()A. B. C. D.【答案】AD【分析】画出各选项的函数图像,利用函数的图象来研究函数的单调性判断即可.【详解】画出函数图象如图所示,由图可得A,D中的函数在上单调递增,B,C中的函数在上不单调.故选:AD.10.(2021·江西·高一期中)如图是函数的图象,则函数在下列区间单调递增的是( )A. B. C. D.【答案】BC【分析】根据单调性的定义即可由图知道f(x)的增区间﹒【详解】图像从左往右上升的区间有:(-6,-4),(-1,2),(5,8),∴f(x)在(-6,-4),(-1,2),(5,8)上单调递增﹒故选:BC﹒三、填空题11.(2022·全国·高一课时练习)写出一个同时具有性质①对任意,都有;②的函数___________.【答案】(答案不唯一)【分析】根据题意可得函数在为减函数,且再写出即可.【详解】因为对任意,都有,所以函数在上减函数.又,故函数可以为.(注:满足题目条件的函数表达式均可.)故答案为:(答案不唯一)12.(2022·浙江丽水·高一开学考试)设函数,其中,.若在上不单调,则实数的一个可能的值为______.【答案】内的任意一个数.【分析】由对勾函数的性质判断出函数的单调区间,假设在上单调,即可求出的取值范围,其补集即为在上不单调时实数的取值范围.【详解】函数的定义域为,由对勾函数的性质可得函数在和上是单调递增,在和上是单调递减,若在上单调,则或,解得或,则在上不单调,实数的范围是,故答案为:内的任意一个数.13.(2022·全国·高一课时练习)函数的单调减区间为__________.【答案】##【分析】优先考虑定义域,在研究复合函数的单调性时,要弄清楚它由什么函数复合而成的,再根据“同增异减”可求解.【详解】函数是由函数和组成的复合函数,,解得或,函数的定义域是或,因为函数在单调递减,在单调递增,而在上单调递增,由复合函数单调性的“同增异减”,可得函数的单调减区间.故答案为:.四、解答题14.(2022·全国·高一)已知,函数.(1)指出在上的单调性(不需说明理由);(2)若在上的值域是,求的值.【答案】(1)在上是增函数(2)2【分析】(1)由于,利用反比例函数的性质,即可得到结果;(2)根据(1)的函数单调性,可知,,解方程即可求出结果.(1)解:因为,所以在上是增函数.(2)解:易知,由(1)可知在上为增函数.,解得,由得,解得.15.(2022·湖南·高一课时练习)设函数的定义域为,如果在上是减函数,在上也是减函数,能不能断定它在上是减函数?如果在上是增函数,在上也是增函数,能不能断定它在上是增函数?【分析】根据反例可判断两个结论的正误.【详解】取,则在上是减函数,在上也是减函数,但,,因此不能断定在上是减函数.若取,则在上是增函数,在上也是增函数,但,,因此不能断定在上是增函数.16.(2022·全国·高一专题练习)已知函数的定义域为.(1)求的定义域;(2)对于(1)中的集合,若,使得成立,求实数的取值范围.【答案】(1)(2)【分析】(1)的定义域可以求出,即的定义域;(2)令,若,使得成立,即可转化为成立,求出即可.(1)∵的定义域为,∴.∴,则.(2)令,,使得成立,即大于在上的最小值.∵,∴在上的最小值为,∴实数的取值范围是.【能力提升】一、单选题1.(2022·全国·高一课时练习)已知函数的定义域为R,满足,且当时,恒成立,设,,(其中),则a,b,c的大小关系为()A. B.C. D.【答案】B【分析】根据函数单调性的定义判断出在上单调递减,再利用把转化为,最后利用的单调性判断即可.【详解】因为,所以,因此,即,所以在上单调递减,又因为,所以,又因为,所以,所以.故选:B.2.(2021·江苏·盐城市大丰区新丰中学高一期中)函数的大致图象是()A. B.C. D.【答案】A【分析】探讨函数的定义域、单调性,再逐一分析各选项判断作答.【详解】函数的定义域为,选项C,D不满足,因,则函数在,上都单调递增,B不满足,则A满足.故选:A【点睛】方法点睛:函数图象的识别途径:(1)由函数的定义域,判断图象的左右位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性.3.(2022·全国·高一课时练习)设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是()A. B. C. D.【答案】B【分析】根据函数关系式可知,由此可确定在上的解析式,并确定每段区间上的最小值;由时,可确定在此区间内的两根,结合函数图象可确定的范围.【详解】由知:,;当时,,则;当时,,,则;当时,,,则;令,解得:或;作出函数的大致图象如图所示.对任意恒成立,,则,即实数的取值范围为.故选:B.二、多选题4.(2021·安徽·高一期中)下列命题正确的是()A.的定义城为,则的定义域为B.函数的值域为C.函数的值域为D.函数的单调增区间为【答案】AB【分析】根据抽象函数的定义域求法,可判断A;利用换元法求得函数值域,可判断B;利用基本不等式可判断C;单调区间之间不能用并集符号,可判断D.【详解】对于A选项,由于函数的定义域为,对于函数,,解得,所以函数的定义域为,A选项正确;对于B选项,令,则,,且时,取得等号,所以函数的值域为,B选项正确;对于C选项,,当且仅当时,即等号取得,但等号取不到,所以C选项错误;对于D选项,,所以函数的单调增区间为和,单调区间之间不能用并集符号,D选项错误,故选:AB.5.(2021·辽宁实验中学高一期中)下列命题,其中正确的命题是()A.函数在上是增函数B.函数在上是减函数C.函数的单调区间是D.已知在上是增函数,若,则有【答案】AD【分析】根据函数单调性的定义和复合函数单调性法则依次讨论各选项即可得答案.【详解】对于A选项,函数的对称轴为,开口向上,所以函数在上单调递增,故A正确;对于B选项,因为当时,,当时,,所以函数在上不是减函数,故B错误;对于C选项,解不等式得,函数的定义域为,故C错误;对于D选项,由得,由于在上是增函数,故,所以,故D正确.故选:AD6.(2022·全国·高一课时练习)已知函数的定义域是,且,当时,,,则下列说法正确的是()A.B.函数在上是减函数C.D.不等式的解集为【答案】ABD【分析】利用赋值法求得,判断A;根据函数的单调性定义结合抽象函数的性质,可判断函数的单调性,判断B;利用,可求得C中式子的值,判断C;求出,将转化为,即可解不等式组求出其解集,判断D.【详解】对于A,令,得,所以,故A正确;对于B,令,得,所以,任取,且,则,因为,所以,所以,所以在上是减函数,故B正确;对于C,,故C错误;对于D,因为,且,所以,所以,所以等价于,又在上是减函数,且,所以,解得,故D正确,故选:ABD.7.(2022·广东深圳·高一期末)(多选)世界公认的三大著名数学家为阿基米德、牛顿、高斯,其中享有“数学王子”美誉的高斯提出了取整函数,表示不超过x的最大整数,例如.已知,,则函数的值可能为()A.0B.1C.2D.3【答案】BCD【分析】利用常数分离法知,根据x的取值范围结合不等式的性质求出的取值范围,进而得到函数的值.【详解】,当时,,,,此时的取值为1;当时,,,,此时的取值为2,3.综上,函数的值可能为.故选:BCD.三、填空题8.(2022·全国·高一专题练习)点、均在抛物线(,a、b为常数)上,若,则t的取值范围为________.【答案】【分析】根据,可知抛物线开口向下,根据抛物线解析式可知抛物线的对称轴为,当P、Q 两点关于抛物线对称轴对称时,可求出,根据根据,,即可求出t的取值范围.【详解】根据,可知抛物线开口向下,根据抛物线解析式可知抛物线的对称轴为,则有时,y随x的增大而增大;当P、Q两点关于抛物线对称轴对称时,则有,解得,∵,,又∵时,y随x的增大而增大;∴可知当P、Q在对称轴的左侧是肯定满足要求,P、Q均在对称轴的右侧时肯定不满足要求,当P、Q分别在对称轴x=1的两侧时,随着P、Q向x轴正向移动,P的纵坐标在逐渐增大,Q的纵坐标逐渐减小,当P、Q两点关于抛物线对称轴对称时有,继续正方向移动,则有,∴满足的t的取值范围:,故答案为:.四、解答题9.(2022·全国·高一课时练习)已知函数,判断并证明在区间上的单调性.【答案】单调递增,证明见解析【分析】利用单调性的定义证明,先任取,,且,然后作差,变形,判断符号,即可得结论. 【详解】在区间上单调递增,理由如下:任取,,且,.因为,所以,,,所以所以,所以,即,所以函数在区间上单调递增.10.(2022·全国·高一课时练习)已知函数的定义域为,对任意正实数、都有,且当时,.求证:函数是上的增函数.【分析】任取、,且,可得出,结合已知条件可出、的大小关系,即可证得结论成立.【详解】证明:任取、,且,则.因为,所以,所以,即,所以函数是上的增函数.11.(2022·全国·高一课时练习)画出下列函数的图象,并写出单调区间:(1);(2).【答案】(1)图象见解析;单调递增区间为和,无单调递减区间(2)图象见解析;单调递增区间为,单调递减区间为和【分析】(1)根据函数的解析式可作出其图象,即可得单调区间;(2)化简函数的解析式为,结合二次函数性质可作出其图象,即可得单调区间.(1)画出的图象如图所示,可得其单调递增区间为和,无单调递减区间.(2),作出该函数的图象如图所示,观察图象,知该函数的单调递增区间为,单调递减区间为和.12.(2020·陕西·榆林市第十中学高一阶段练习)已知函数.(1)求证:在上是增函数;(2)当时,求不等式的解集.【答案】(1)证明见解析;(2)【分析】(1)利用函数单调性的定义与作差法即可证明;(2)将代入,然后求解不等式即可(1)任取,且,则,所以,所以,所以在区间上单调递增;(2)当时,,由可得,解得,故不等式的解集为13.(2021·广东广雅中学花都校区高一期中)设函数.(1)当时,求函数的单调递减区间;(2)若函数在R上单调递增,求a的取值范围;(3)若对,不等式恒成立,求a的取值范围.【答案】(1);(2);(3).【解析】(1)去掉绝对值符号后根据一次函数、二次函数的单调性可得所求的单调减区间. (2)去掉绝对值符号可得,根据函数在R上单调递增可得关于的不等式组,从而可得其取值范围.(3)等价于且恒成立,前者可分类讨论,后者可结合一次函数的图象和性质,两者结合可得a的取值范围.【详解】(1)时,,故在上为增函数,在上为减函数,在为增函数,故函数的单调递减区间为.(2)因为函数在R上单调递增,故,解得.(3)等价于且恒成立,先考虑恒成立,则,故.再考虑恒成立,又,故,故,解得,综上,的取值范围为.【点睛】方法点睛:对于含绝对值符号的函数,可先去掉绝对值符号,从而把问题题转化为常见的一次函数、二次函数在给定范围上的恒成立问题,注意先讨论简单的一次函数的性质,从而参数的初步范围后再讨论二次函数的性质.14.(2021·重庆市清华中学校高一阶段练习)对于定义域为的函数,如果存在区间,同时满足下列两个条件:①在区间上是单调的;②当定义域是时,的值域也是.则称是函数的一个“黄金区间”.(1)请证明:函数不存在“黄金区间”.(2)已知函数在上存在“黄金区间”,请求出它的“黄金区间”.(3)如果是函数的一个“黄金区间”,请求出的最大值.【答案】(1)证明见解析;(2);(3).【分析】(1)由为上的增函数和方程的解的情况可得证;(2)由可得出,再由二次函数的对称轴和方程,可求出函数的“黄金区间”;(3)化简得函数的单调性,由已知是方程的两个同号的实数根,再由根的判别式和根与系数的关系可表示,由或,可得的最大值.【详解】解:(1)证明:由为上的增函数,则有,∴,无解,∴不存在“黄金区间”;(2)记是函数的一个“黄金区间”,由及此时函数值域为,可知而其对称轴为,∴在上必为增函数,令,∴,∴故该函数有唯一一个“黄金区间”;(3)由在和上均为增函数,已知在“黄金区间”上单调,所以或,且在上为单调递增,则同理可得,,即是方程的两个同号的实数根,等价于方程有两个同号的实数根,又,则只要,∴或,而由韦达定理知,,所以,其中或,所以当时,取得最大值.【点睛】关键点点睛:本题考查函数的新定义,对于解决此类问题的关键在于紧扣函数的新定义,注意将值域问题转化为方程的根的情况得以解决.15.(2022·广东·普宁市第二中学高一期中)已知函数,,. 若不等式的解集为(1)求的值及;(2)判断函数在区间上的单调性,并利用定义证明你的结论.(3)已知且,若.试证:.【答案】(1);(2)函数在区间上的单调递增,证明见解析(3)见解析【分析】(1)根据二次不等式的解集可以得到二次函数的零点,回代即可求出参数的值(2)定义法证明单调性,假设,若,则单调递增,若,则单调递减(3)单调性的逆应用,可以通过证明函数值的大小,反推变量的大小,难度较大(1),即,因为不等式解集为,所以,解得:,所以(2)函数在区间上的单调递增,证明如下:假设,则因为,所以,所以,即当时,,所以函数在区间上的单调递增(3)由(2)可得:函数在区间上的单调递增,在区间上的单调递减,因为,且,,所以,,证明,即证明,即证明,因为,所以即证明,代入解析式得:,即,令,因为在区间上的单调递增,根据复合函数同增异减的性质可知,在区间上的单调递减,所以单调递增,即,所以在区间上恒成立,即,得证:【点睛】小问1求解析式,较易;小问2考察定义法证明单调性,按照常规方法求解即可;小问3难度较大,解题过程中应用到以下知识点:(1)可以通过证明函数值的大小,结合函数的单调性,反推出变量的大小,即若,且单减,则;解题过程(2)单调性的性质,复合函数同增异减以及增函数减去减函数为增函数16.(2021·江苏·高一单元测试)已知函数,(1)对任意的,函数在区间上的最大值为,试求实数的取值范围;(2)对任意的,若不等式任意()恒成立,求实数的取值范围.【答案】(1)(2)【分析】(1)由已知可得,结合对勾函数的单调性与最值情况求参数范围;(2)由题意不等式可转化为函数在上单调递增,结合分段函数的单调性,分情况讨论. (1)由,由对勾函数的性质得函数在上单调递减,在上单调递增,所以,又,所以,又函数在区间上的最大值为,所以,即,解得,所以;(2)不等式任意()恒成立,即,设,在上单调递增,即在上单调递增,当时,,①当时,单调递增,成立;②当时,单调递增,成立,③当时,只需,即,当时,,①当时,在上递减,所以不成立;②当时,在上递减,所以不成立;③当时,只需,即,综上所述,.17.(2021·全国·高一专题练习)已知函数对一切实数都有成立,且(1)求的解析式;(2),若存在,使得,有成立,求的取值范围.【答案】(1)(2)【分析】(1)赋值法,令y=1,求出,进而求出;(2)根据题干中的条件,只需,先求出函数的最大值,然后利用二次函数的性质求最值,进而求出a的取值范围.(1)∵函数对一切实数都有成立,且,令y=1,则,(2)由题意,有,则,对于g(x),当x=0时,g(0)=0,当时,,设,则在(0,1)单调递减,在单调递增,在x=1处取到最小值,所以,所以,综上,,当且仅当x=1时取到,所以;设,则h(x)为开口向上的二次函数,其对称轴为x=a,下面通过对称轴的位置对h(x)的最值情况进行分类讨论:当时,对称轴距离区间右侧x=2更远,故,∴,即;2)当时,对称轴距离区间左侧x=-1更远,故,∴,即;综上,.。
高考数学函数的应用多选题复习训练题(含答案)
高考数学函数的应用多选题复习训练题(含答案)1.(2021·全国·模拟预测)已知奇函数()f x 的定义域为R ,且在(0,)+∞上单调递减,若1(2)12f f ⎛⎫=−= ⎪⎝⎭,则下列命题中正确的是( ) A .()f x 有两个零点 B .(1)1f −>− C .(3)1f −< D .1(2)2f f ⎛⎫> ⎪⎝⎭【答案】BD 【解析】 【分析】根据奇函数的图象关于原点对称的特点,以及单调性和函数值结合选项可得答案. 【详解】根据题意可得函数()f x 在(0,)+∞上为减函数,(,0)−∞上为减函数.(0)0f =,由1(2)12f f ⎛⎫=−= ⎪⎝⎭可得1(2)12f f ⎛⎫−==− ⎪⎝⎭.对于A ,由()f x 在(0,)+∞上为减函数,且112f ⎛⎫= ⎪⎝⎭,(2)1f =−,所以存在01,22⎛⎫∈ ⎪⎝⎭x ,()00f x =,所以()f x 在(0,)+∞上有一个零点,同理()f x 在(,0)−∞上有一个零点, 又因为(0)0f =,所以()f x 有三个零点,故A 错误;对于B ,因为函数()f x 在(,0)−∞上为减函数.所以1(1)12f f ⎛⎫−>−=− ⎪⎝⎭,故B 正确;对于C ,因为函数()f x 在(,0)−∞上为减函数,所以(3)(2)1f f −>−=,故C 错误; 对于D ,112f ⎛⎫= ⎪⎝⎭,(2)1f =−,所以1(2)2f f ⎛⎫> ⎪⎝⎭,故D 正确. 故选:BD.2.(2022·湖北·一模)尽管目前人类还无法准确预报地震,但科学家经过研究,已经对地震有所了解,例如,地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg E =4.8+1.5M ,则下列说法正确的是( )A .地震释放的能量为1015.3焦耳时,地震里氏震级约为七级B .八级地震释放的能量约为七级地震释放的能量的6.3倍C .八级地震释放的能量约为六级地震释放的能量的1000倍D .记地震里氏震级为n (n =1,2,···,9,10),地震释放的能量为an ,则数列{an }是等比数列【答案】ACD 【解析】 【分析】根据所给公式,结合指对互化原则,逐一分析各个选项,即可得答案. 【详解】对于A :当15.310E =时,由题意得15.3lg10 4.8 1.5M =+, 解得7M =,即地震里氏震级约为七级,故A 正确;对于B :八级地震即8M =时,1lg 4.8 1.5816.8E =+⨯=,解得16.8110E =,所以16.81.5115.3101010 6.310E E ==>≠,所以八级地震释放的能量约为七级地震释放的能量的 1.510倍,故B 错误;对于C :六级地震即6M =时,2lg 4.8 1.5613.8E =+⨯=,解得13.8210E =,所以16.83113.821010100010E E ===, 即八级地震释放的能量约为六级地震释放的能量的1000倍,故C 正确; 对于D :由题意得lg 4.8 1.5n a n =+(n =1,2,···,9,10),所以 4.81.510nn a +=,所以 4.81.5(1) 6.31.511010n n n a ++++== 所以6.31.5 1.51 4.81.5101010nn n n a a +++==,即数列{an }是等比数列,故D 正确; 故选:ACD3.(2022·海南海口·模拟预测)已知函数()1x f x x+=,则( ) A .()f x 的定义域为R B . ()f x 是奇函数 C .()f x 在()0,+∞上单调递减 D . ()f x 有两个零点【答案】BC 【解析】 【分析】根据函数解析式,结合函数性质,对每个选项进行逐一分析,即可判断和选择. 【详解】对A :()f x 的定义域为{}0x x ≠,A 错误; 对B :()()11x x f x f x x x−++−==−=−−,且定义域关于原点对称,故()f x 是奇函数,B 正确; 对C :当0x >时,()111x f x x x+==+,单调递减,C 正确; 对D :因为0x ≠,10x +>,所以()0f x =无解,即()f x 没有零点,D 错误. 故选:BC .4.(2022·江苏·南京市宁海中学模拟预测)已知()f x 是定义在R 上的偶函数,且对任意x ∈R ,有()()11f x f x −=−+,当[]0,1x ∈时,()22f x x x =+−,则( )A .()f x 是以2为周期的周期函数B .点()3,0−是函数()f x 的一个对称中心C .()()202120222f f +=−D .函数()()2log 1y f x x =−+有3个零点 【答案】BD 【解析】 【分析】首先根据函数的对称性求出()f x 的周期和对称中心,然后求得()()20212022f f +.利用图象法即可判断D. 【详解】依题意,()f x 为偶函数, 且()()11f x f x +=−−,有1112x x−++=,即()f x 关于()1,0对称, 则()()()()()413132f x f x f x f x +=++=−−+=−−−()()()()()()()()221111f x f x f x f x f x f x =−−+=−+=−++=−+=−=,所以()f x 是周期为4的周期函数,故A 错误; 因为()f x 的周期为4,()f x 关于()1,0对称, 所以(3,0)−是函数()f x 的一个对称中心,故B 正确;因为()f x 的周期为4,则()()202110f f ==,()()()2022202f f f ==−=, 所以()()202120222f f +=,故C 错误;作函数()2log 1y x =+和()y f x =的图象如下图所示,由图可知,两个函数图象有3个交点,所以函数2log (1)()y x f x =+−有3个零点,故D 正确. 故选:BD.5.(2022·山东·济南一中模拟预测)设函数()()2log 1,2,23,2,x x x f x x ⎧−>=⎨−≤⎩则以下结论正确的为( ).A .()f x 为R 上的增函数B .()f x 有唯一零点0x ,且012x <<C .若()5f m =,则33m =D .()f x 的值域为R 【答案】BC 【解析】 【分析】作出()f x 的图象如图所示,对四个选项一一验证: 对于A :取特殊值()21f =,()31f =,即可判断; 对于B :利用图象判断零点; 对于C :直接解方程即可;对于D :根据图象直接求出值域,即可判断. 【详解】作出()f x 的图象如图所示:对于A:取特殊值:()21f =,()31f =,故A 错误;对于B:由图象已知,()f x 有唯一零点0x ,()f x 在(],2−∞上单调递增,且()10f <,()20f >,B 正确;对于C :当2x ≤时,231x −≤,故()2log 15m −=,解得33m =,C 正确. 对于D :()f x 的值域为()(]()0,3,13,+∞⋃−=−+∞,D 错误; 故选:BC6.(2022·河北保定·一模)已知a 、b 分别是方程20x x +=,30x x +=的两个实数根,则下列选项中正确的是( ). A .10b a −<<< B .10a b −<<< C .33a b b a ⋅<⋅ D .22b a a b ⋅<⋅【答案】BD 【解析】 【分析】在同一直角坐标系中画出2,3,x x y y y x ===−的图象,可判断AB ,然后结合不等式的性质可判断CD. 【详解】函数2,3,x x y y y x ===−在同一坐标系中的图象如下:所以10a b −<<<,所以22,33,0a b a b b a <<<−<−所以()()22,33a b a bb a b a −⋅<−⋅−⋅<−⋅所以22b a a b ⋅<⋅,33a b b a ⋅⋅> 故选:BD7.(2022·辽宁·鞍山一中模拟预测)已知函数()224,0,21,0,x x x x f x x −⎧+<=⎨−≥⎩若关于x 的方程()()244230f a f x a x −⋅++=有5个不同的实根,则实数a 的取值可以为( ) A .32−B .43−C .65−D .76−【答案】BCD 【解析】 【分析】换元,将原方程根的个数问题转化二次函数零点的分布问题,结合图象可解. 【详解】令()f x m =,记2()4423g m m am a =−++的两个零点为12,m m ,则由()f x 的图象可知:方程()()244230f x a f x a −⋅++=有5个不同的实根⇔12,y m y m ==与()f x 的图象共有5个交点121m ⇔−<≤−,且210m −<<(不妨设12m m <).则()()()221019016700230Δ230g a g a g a a a ⎧−=+>⎪−=+≤⎪⎨=+>⎪⎪=−−>⎩解得3726a −<≤−.故选:BCD8.(2022·重庆八中模拟预测)已知()f x 是定义在R 上的偶函数,且对任意R x ∈,有()()11f x f x +=−−,当[]0,1x ∈时,()22f x x x =+−,则( )A .()f x 是以4为周期的周期函数B .()()202120222f f +=−C .函数()()2log 1y f x x =−+有3个零点D .当[]3,4x ∈时,()2918f x x x =−+【答案】ACD 【解析】 【分析】首先判断出()f x 的周期,然后求得()()20212022f f +.利用图象法判断C 选项的正确性,通过求()f x 在区间[]3,4上的解析式来判断D 选项的正确性. 【详解】依题意,()f x 为偶函数,且()()11f x f x +=−−⇒()f x 关于()1,0对称,则()()()()()413132f x f x f x f x +=++=−−+=−−−()()()()()()()()221111f x f x f x f x f x f x =−−+=−+=−++=−+=−=,所以()f x 是周期为4的周期函数,A 正确.因为()f x 的周期为4,则()()202110f f ==,()()()2022202f f f ==−=, 所以()()202120222f f +=,B 错误;作函数()2log 1y x =+和()y f x =的图象如下图所示,由图可知,两个函数图象有3个交点,C 正确;当[]3,4x ∈时,[]40,1x −∈,则()()()()()224442918f x f x f x x x x x =−=−=−+−−=−+,D正确. 故选:ACD9.(2022·江苏·金陵中学模拟预测)已知函数()()2sin ,0f x x a ωϕω=++>,则下列结论正确的是( )A .若对于任意的x ∈R ,都有()1f x …成立,则1a −…B .若对于任意的x ∈R ,都有()()f x f x π+=成立,则2ω=C .当3πϕ=时,若()f x 在0,2π⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为10,3⎛⎤⎥⎝⎦D .当a =ϕ∈R ,函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上至少有两个零点,则ω的取值范围为[)4,+∞ 【答案】ACD 【解析】 【分析】由题可得()12sin a x ωϕ≤−+恒成立,利用三角函数的性质可判断A ,利用函数的周期的含义可判断B ,利用正弦函数的单调性可判断C ,由题可得22πωϕϕπ+−≥,进而可判断D.【详解】对于A ,对于任意的x ∈R ,都有()1f x …成立,所以()12sin a x ωϕ≤−+恒成立,又()[]sin 1,1x ωϕ+∈−,()[]12sin 1,3x ωϕ−+∈−, ∴1a ≤−,故A 正确;对于B ,由题可得π是函数的周期,但不能推出函数的最小正周期为π,故B 错误; 对于C ,当3πϕ=时,当0,2x π⎡⎤∈⎢⎥⎣⎦时,3,323x πππωπω++⎡⎤∈⎢⎥⎣⎦, 则322ωπππ+≤,0>ω,故103ω<≤,故C 正确;对于D ,当a =0,2x π⎡⎤∈⎢⎥⎣⎦时,,2x ωωϕϕϕπ++⎡⎤∈⎢⎥⎣⎦,由()()2sin f x x ωϕ=+0,2π⎡⎤⎢⎥⎣⎦上至少有两个零点,则22πωϕϕπ+−≥,即4ω≥,故D 正确.故选:ACD.10.(2022·全国·模拟预测)已知定义域为R 的偶函数()f x 有4个零点1x ,2x ,3x ,4x ()1234x x x x <<<,并且当0x ≥时,()21f x x ax =−+,则下列说法中正确的是( )A .实数a 的取值范围是()(),22,∞∞−−⋃+B .当0x <时,()21f x x ax =++C .12341x x x x =D .1234234x x x x +++的取值范围是)⎡+∞⎣【答案】BC 【解析】 【分析】由函数()f x 在(0,)+∞上有两个零点求出a 的范围判断A ;由偶函数定义求解析式判断B ; 由韦达定理结合偶函数对称性、对勾函数性质计算判断C ,D 作答. 【详解】因为()f x 为偶函数且有4个零点,则当0x >时()f x 有2个零点,即2Δ4002a a ⎧=−>⎪⎨−−>⎪⎩,解得2a >,A 不正确;当0x <时,0x −>,则()()21f x f x x ax =−=++,B 正确;偶函数()f x 的4个零点满足:1234x x x x <<<,则34,x x 是方程210x ax −+=的两个根, 则有30x >,341x x =且14x x =−,23x x =−,于是得()21234341x x x x x x ==,C 正确;由C 选项知,1234343332343x x x x x x x x +++=+=+,且301x <<,而函数3y x x=+在(0,1)上单调递减, 从而得333(4,)x x +∈+∞,D 不正确. 故选:BC11.(2022·河北沧州·模拟预测)已知三次函数32()1f x ax bx cx =++−,若函数()()1g x f x =−+的图象关于点(1,0)对称,且(2)0g −<,则( ) A .0a <B .()g x 有3个零点C .()f x 的对称中心是(1,0)−D .1240a b c −+<【答案】ABD 【解析】 【分析】由题设32()g x ax bx cx =−+−且()(2)0g x g x +−=,可得3,2b a c a ==,代入解析式,结合已知条件即可判断选项的正误. 【详解】由题设,32()g x ax bx cx =−+−,且()(2)0g x g x +−=, 所以3232(2)(2)(2)0ax bx cx a x b x c x −++−−−+−=,整理得2(3)2(3)420a b x b a x a b c −+−+−+=,故342a b a c b =⎧⎨+=⎩,可得3,2b a c a ==,故()(1)(2)g x ax x x =−−−,又(2)240g a −=<,即0a <,A 正确;()g x 有3个零点,B 正确;由()(2)()1(2)10g x g x f x f x +−=−++−+=,则()(2)2f x f x −+−=−,所以()f x 关于(1,1)−−对称,C 错误;1241212220a b c a a a a −+=−+=<,D 正确.故选:ABD12.(2022·福建三明·模拟预测)已知函数()()ln 1f x x x a x x =+−+在区间(1,+∞)内没有零点,则实数a 的取值可以为( ) A .-1 B .2 C .3 D .4【答案】ABC 【解析】 【分析】由题意设()ln 1ag x x a x=+−+,则在1x >上,()y f x = 与()y g x =有相同的零点,即讨论()g x 在区间()1,+∞内没有零点,求出其导函数,分析其单调性,得出其最值情况,从而结合其大致的图形可得出答案. 【详解】()()ln 1ln 1a f x x x a x x x x a x ⎛⎫=+−+=+−+ ⎪⎝⎭,设()ln 1a g x x a x =+−+则在1x >上,()y f x = 与()y g x =有相同的零点.故函数()f x 在区间()1,+∞内没有零点,即()g x 在区间()1,+∞内没有零点()221a x ag x x x x−'=−= 当1a ≤时,()20x ag x x −'=>在区间()1,+∞上恒成立,则()g x 在区间()1,+∞上单调递增. 所以()()110g x g >=>,显然()g x 在区间()1,+∞内没有零点. 当1a >时, 令()0g x '>,得x a >,令()0g x '<,得1x a << 所以()g x 在区间()1,a 上单调递减增.在区间(),a +∞上单调递增. 所以()()ln 2g x g a a a ≥=+−设()()ln 21h a a a a =+−>,则()()11101a h a a a a−=−=<> 所以()h a 在()1,+∞上单调递减,且()()3ln310,4ln 420g g =−>=−< 所以存在()03,4a ∈,使得()00h a =要使得()g x 在区间()1,+∞内没有零点,则()ln 20g a a a =+−> 所以()013,4a a <<∈综上所述,满足条件的a 的范围是()03,4a a <∈由选项可知:选项ABC 可使得()g x 在区间()1,+∞内没有零点,即满足题意. 故选:ABC13.(2022·辽宁锦州·一模)设函数()f x 的定义域为R ,()1f x −为奇函数,()1f x +为偶函数,当(]1,1x ∈−时,()21f x x =−+,则下列结论正确的是( )A .7839f ⎛⎫=− ⎪⎝⎭B .()f x 在()6,8上为减函数C .点()3,0是函数()f x 的一个对称中心D .方程()lg 0f x x +=仅有6个实数解【答案】CD 【解析】 【分析】根据()1f x −和()1f x +的奇偶性可推导得到()()8f x f x +=,()()22f x f x +=−−, 由7133f f ⎛⎫⎛⎫=− ⎪ ⎪⎝⎭⎝⎭可知A 错误;推导可得()()60f x f x ++−=,知C 正确;作出()f x 图象,结合图象知B 错误;将()lg 0f x x +=解的个数转化为()f x 与lg y x =−的交点个数,结合图象可知D 正确. 【详解】()1f x −为奇函数,()()11f x f x ∴−−=−−,即()()2f x f x −=−−,()f x ∴关于点()1,0−对称;()1f x +Q 为偶函数,()()11f x f x ∴−+=+,即()()2f x f x −=+,()f x ∴关于1x =对称;由()()2f x f x −=−−,()()2f x f x −=+得:()()22f x f x +=−−,()()()84f x f x f x ∴+=−+=,即()f x 是周期为8的周期函数; 对于A ,2711182133339f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=−=−−+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,A 错误;对于C ,()()()62f x f x f x +=−+=−−Q ,即()()60f x f x ++−=,()f x ∴关于点()3,0成中心对称,C 正确;对于BD ,由周期性和对称性可得()f x 图象如下图所示,由图象可知:()f x 在()6,8上单调递增,B 错误;方程()lg 0f x x +=的解的个数,等价于()f x 与lg y x =−的交点个数, ()()()12401f f f ==−=−Q ,lg12lg101−<−=−,∴结合图象可知:()f x 与lg y x =−共有6个交点,即()lg 0f x x +=有6个实数解,D 正确.故选:CD.14.(2022·辽宁鞍山·二模)已知函数()()22log ,(02)813,2x x f x x x x ⎧<<⎪=⎨−+≥⎪⎩,若()f x a =有四个不同的实数解1x ,2x ,3x ,4x ,且满足1234x x x x <<<,则下列命题正确的是( ) A .01a <<B.12922x x ⎡⎫+∈⎪⎢⎣⎭C .12342110,2x x x x ⎛⎫+++∈ ⎪⎝⎭D.)122x x ⎡+∈⎣【答案】ACD 【解析】 【分析】A.在同一坐标系中作出函数(),y f x y a ==的图象, 由()f x a =有四个不同的实数解判断;B.根据2122log log x x =,得到211x x =,转化为12222122,12+=+<<x x x x x ,利用对勾函数的性质判断;C. 由122221,12+=+<<x x x x x ,利用对勾函数的性质判断;D.由 1222222,12+=+<<x x x x x ,利用对勾函数的性质判断; 【详解】解:在同一坐标系中作出函数(),y f x y a ==的图象,如图所示:由图象知:若()f x a =有四个不同的实数解,则01a <<,故A 正确; 因为2122log log x x =,即2122log log x x −=,则211x x =, 所以12222122,12+=+<<x x x x x ,因为2212=+y x x 在()1,2上递增,所以221923,2⎛⎫+∈ ⎪⎝⎭x x ,故B 错误; 因为122221,12+=+<<x x x x x ,221=+y x x 在()1,2上递增,所以22152,)2x x +∈(,而348x x +=,所以12342110,2x x x x ⎛⎫+++∈ ⎪⎝⎭,故C 正确;因为1222222,12+=+<<x x x x x ,2212=+y x x在(上递减,在)2上递增,则222+∈x x ,故D 正确; 故选:ACD15.(2022·广东·普宁市华侨中学二模)对于函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨−>⎪⎩,下列结论中正确的是( )A .任取12,[1,)x x ∈+∞,都有123()()2f x f x −≤ B .11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中k ∈N ;C .()2(2)()k f x f x k k N *=+∈对一切[0,)x ∈+∞恒成立;D .函数()ln(1)y f x x =−−有3个零点; 【答案】ACD 【解析】 【分析】作出函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨−>⎪⎩的图象.对于A :利用图象求出max min (),()f x f x ,即可判断;对于B :直接求出1511222222k f f f k ⎛⎫⎛⎫⎛⎫++++=− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即可判断;对于C :由1()(2)2f x f x =−,求得()2(2)k f x f x k =+,即可判断; 对于D :作出()y f x =和ln(1)y x =−的图象,判断出函数()ln(1)y f x x =−−有3个零点. 【详解】作出函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨−>⎪⎩的图象如图所示.所以max min ()1,()1f x f x ==−.对于A :任取12,[1,)x x ∈+∞,都有()12max min 13()()()()122f x f x f x f x −≤−=−−=.故A 正确;对于B :因为1151111,,222222k f f f k +⎛⎫⎛⎫⎛⎫⎛⎫==+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以1112215112121222212kkf f f k ⎛⎫⎛⎫− ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎝⎭++++=+=− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭−.故B 错误;对于C :由1()(2)2f x f x =−,得到1(2)()2kf x k f x ⎛⎫+= ⎪⎝⎭,即()2(2)k f x f x k =+.故C 正确;对于D :函数()ln(1)y f x x =−−的定义域为()1,+∞.作出()y f x =和ln(1)y x =−的图象如图所示:当2x =时,sin2ln10y π=−=;当12x <<时,函数()y f x =与函数()ln 1y x =−的图象有一个交点; 当2x >时,因为2111s 49422in 41f f π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,971ln 1ln 1224⎪−>⎛⎫ ⎝>=⎭,所以函数()y f x =与函数()ln 1y x =−的图象有一个交点,所以函数()ln(1)y f x x =−−有3个零点.故D 正确.故选:ACD16.(2022·江苏江苏·三模)已知函数e x y x =+的零点为1x ,ln y x x =+的零点为2x ,则( ) A .120x x +> B .120x x < C .12ln 0x e x += D .12121x x x x −+<【答案】BCD 【解析】 【分析】将零点问题转化为交点问题,根据互为反函数的两个函数的性质逐一判断即可. 【详解】12,x x 分别为直线y x =−与e x y =和ln y x =的交点的横坐标,因为函数e x y =与函数ln y x =互为反函数,所们这两个函数的图象关于直线y x =, 而直线y x =−、y x =的交点是坐标原点, 故120x x +=,120x x <,()11,0x ∈−,()20,1x ∈, 1212ln 0e x x x x +=−−=,()()1212121110x x x x x x −+−=+−<,故12121x x x x −+<故选:BCD. 【点睛】关键点睛:利用反函数的性质是解题的关键.17.(2022·福建莆田·三模)已知函数231,1()41613,1x x f x x x x ⎧−<⎪=⎨−+−≥⎪⎩,函数()()g x f x a =−,则下列结论正确的是( )A .若()g x 有3个不同的零点,则a 的取值范围是[1,2)B .若()g x 有4个不同的零点,则a 的取值范围是()0,1C .若()g x 有4个不同的零点()12341234,,,x x x x x x x x <<<,则344x x +=D .若()g x 有4个不同的零点()12341234,,,x x x x x x x x <<<,则34x x 的取值范围是137,42⎛⎫⎪⎝⎭【答案】BCD 【解析】 【分析】根据题意,将问题转化为函数()y f x =与y a =图像交点个数问题,进而数形结合求解即可得答案. 【详解】解:令()()0g x f x a =−=得()f x a =,即所以()g x 零点个数为函数()y f x =与y a =图像交点个数, 故,作出函数()y f x =图像如图,由图可知,()g x 有3个不同的零点,则a 的取值范围是[){}1,20,故A 选项错误;()g x 有4个不同的零点,则a 的取值范围是()0,1,故B 选项正确;()g x 有4个不同的零点()12341234,,,x x x x x x x x <<<,此时34,x x 关于直线2x =对称,所以344x x +=,故C 选项正确;由C 选项可知344x x =−,所以()244344444x x x x x x =−=−+,由于()g x 有4个不同的零点,a 的取值范围是()0,1,故2440416131x x <−+−<,所以244137442x x <−+<,故D 选项正确. 故选:BCD18.(2022·山东泰安·三模)已知函数()2sin cos f x x x x =( )A .函数()f x 的最小正周期为πB .函数()f x 的对称轴方程为512x k π=π+(k ∈Z )C .函数()f x 的图象可由sin 2y x =的图象向右平移6π个单位长度得到D .方程()f x =[0,10]内有7个根 【答案】ACD 【解析】 【分析】先对函数化简变形,再利用正弦函数的性质逐个分析判断即可 【详解】()2sin cos f x x x x =11cos 2sin 222x x +=1sin 22sin 223x x x π⎛⎫==− ⎪⎝⎭, 对于A ,函数()f x 的最小正周期为22ππ=,所以A 正确, 对于B ,由2,Z 32x k k πππ−=+∈,得5,Z 122k x k ππ=+∈,所以函数()f x 的对称轴方程为5,Z 122k x k ππ=+∈,所以B 错误, 对于C ,sin 2y x =的图象向右平移6π,得sin2sin 263y x x ππ⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 的图象可由sin 2y x =的图象向右平移6π个单位长度得到,所以C 正确,对于D ,由()f x =422,Z 33x k k πππ−=+∈或522,Z 33x k k πππ−=+∈,得5,Z 6x k k ππ=+∈或,Z x k k ππ=+∈, 由5010,Z 6k k ππ≤+≤∈,得0,1,2k =, 由010,Z k k ππ≤+≤∈,得1,0,1,2k =−,所以方程()f x =[0,10]内有7个根,所以D 正确, 故选:ACD19.(2022·辽宁·模拟预测)已知定义在R 上的偶函数()f x 的图像是连续的,()()()63f x f x f ++=,()f x 在区间[]6,0−上是增函数,则下列结论正确的是( )A .()f x 的一个周期为6B .()f x 在区间[]12,18上单调递减C .()f x 的图像关于直线12x =对称D .()f x 在区间[]2022,2022−上共有100个零点【答案】BC 【解析】 【分析】由条件结合周期函数的定义证明函数()f x 为周期函数,再根据奇偶性,周期性,单调性判断B ,C ,并由零点的定义判断D. 【详解】因为()()()63f x f x f ++=,取3x =−,得()()()333f f f +−=,故()30f −=,又()f x 是偶函数,所以()()330f f =−=,所以()()60f x f x ++=,故()()()126f x f x f x +=−+=,即()f x 的一个周期为12,故A 项错误;又()f x 在区间[]6,0−上是增函数,所以()f x 在区间[]0,6上为减函数,由周期性可知,()f x 在区间[]12,18上单调递减,故B 项正确;因为()f x 是偶函数,所以()f x 的图像关于y 轴对称,由周期性可知()f x 的图像关于直线12x =对称,故C 项正确;因为()f x 在区间[]6,0−上是增函数,所以()f x 在区间[]0,6上为减函数,()()330f f =−=,由周期性可知,在区间[]0,12上,()()390f f ==,而区间[]0,2016上有168个周期,故()f x 在区间[]0,2016上有336个零点,又()()201930f f ==,所以()f x 在区间[]0,2022上有337个零点,由()f x 为偶函数,可知()f x 在区间[]2022,2022−上有674个零点,故D 项错误. 故选:BC 项.20.(2022·福建福州·模拟预测)设函数()f x 定义域为R ,(1)f x −为奇函数,(1)f x +为偶函数,当(1,1)x ∈−时,2()1f x x =−+,则下列结论正确的是( )A .7324f ⎛⎫=− ⎪⎝⎭B .(7)f x +为奇函数C .()f x 在(6,8)上为减函数D .方程()lg 0f x x +=仅有6个实数解【答案】ABD 【解析】【分析】由题干条件可以得到()f x 关于()1,0−对称,关于1x =对称,()f x 周期为8,从而求出1373()(24)22f f f ⎛⎫−=− −⎪⎝⎭=−=,A 正确;根据周期与奇偶性判断出B 选项,先根据奇偶性与单调性得到()f x 在()2,0−单调递增,再根据周期求出()f x 在(6,8)上单调递增,画出()f x 与lg y x =−的函数图象,判断出交点个数,从而得到D 选项正确.【详解】(1)f x +为偶函数,故(1)(1)f x f x +=−+,令52x =得:753()(1)()222f f f =−+=−, (1)f x −为奇函数,故(1)(1)f x f x −=−−−,令12x =得:311()(1)()222f f f −=−−=−−,其中1131244f ⎛⎫−=−+= ⎪⎝⎭,所以1373()(24)22ff f ⎛⎫−=− −⎪⎝⎭=−=,A 正确;因为(1)f x −为奇函数,所以()f x 关于()1,0−对称,又(1)f x +为偶函数,则()f x 关于1x =对称,所以()f x 周期为428⨯=,故()()71f x f x =+−,所以()()()(7)(1)1187f x f x f x f x f x −+=−−=−−=−−+=−+,从而(7)f x +为奇函数,B 正确;2()1f x x =−+在(1,0)x ∈−上单调递增,又()f x 关于()1,0−对称,所以()f x 在()2,0−上单调递增,且()f x 周期为8,故()f x 在(6,8)上单调递增,C 错误; 根据题目条件画出()f x 与lg y x =−的函数图象,如图所示:其中lg y x =−单调递减且lg121−<−,所以两函数有6个交点,故方程()lg 0f x x +=仅有6个实数解,D 正确. 故选:ABD 【点睛】抽象函数对称性与周期性的判断如下:若()()f x a f x b +=−+,则函数()y f x =关于2a bx +=对称;若()()0f x a f x b ++−+=,则函数()y f x =关于,02a b +⎛⎫⎪⎝⎭中心对称; 若()()f x a f x b +=+,则a b −是()y f x =的一个周期.21.(2022·重庆八中模拟预测)已知1a >,1x ,2x ,3x 为函数2()x f x a x =−的零点,123x x x <<,下列结论中正确的是( ) A .11x >− B .120x x +< C .若2132x x x =+,则321x x = D .a 的取值范围是2e 1,e ⎛⎫⎪⎝⎭【答案】ACD 【解析】 【分析】对于A ,只要利用函数零点的判断定理即可;对于B ,由于有了A 的结论,只要判断2x 的范围即可; 对于C ,利用函数表达式,将所给的条件带入,联立方程即可; 对于D ,需要将原函数转换成容易求导的解析式,再构造函数即可. 【详解】()()1011,1110,0010a f a f a a−>−=−=−<=−=> , 110x ∴−<< ,故A 正确;当01x ≤≤ 时,21,01x a a x ≤≤≤≤ ,()f x 必无零点,故21>x , 120x x ∴+> ,故B 错误;当2132x x x =+ 时,即123212223x x x a x a x a x ⎧=⎪=⎨⎪=⎩,两边取对数得()1122332log 2log 2log a a a x x x x x x ⎧=−⎪=⎨⎪=⎩ ,()2134log 2log 2log a a a x x x =−+ ,2213x x x =− ,联立方程22132132x x x x x x ⎧=−⎨=+⎩ 解得22323220x x x x −−= ,由于230,0x x >> ,321x x = ,故C 正确; 考虑()f x 在第一象限有两个零点:即方程2x a x = 有两个不同的解, 两边取自然对数得ln 2ln x a x = 有两个不同的解,设函数()ln 2ln g x x a x =− ,()'2ln 2ln ln a x a g x a x x ⎛⎫− ⎪⎝⎭=−= , 则02ln x x a==时,()'0g x = ,当0x x > 时,()'0g x > , 当0x x < 时,()'0g x < ,所以()()min 0222ln ln g x g x a ⎛⎫==− ⎪⎝⎭ ,要使得()g x 有两个零点,则必须()00g x <,即2ln 1ln a ⎛⎫> ⎪⎝⎭,解得2e e a < ,故D 正确; 故选:ACD.22.(2022·山东泰安·一模)已知函数()21,11ln 1,1x x f x x x x x ⎧−<⎪=−⎨⎪+−≥⎩,()g x kx k =−,k ∈R ,则下列结论正确的是( ) A .()f x 在()0,2上单调递增 B .当54k =时,方程()()f x g x =有且只有3个不同实根 C .()f x 的值域为[)1,−+∞D .若对于任意的x ∈R ,都有()()()()10x f x g x −−≤成立,则[)2,k ∈+∞ 【答案】BCD 【解析】 【分析】对于A :取特殊函数值35,44f f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭否定结论; 对于B :当54k =时,解方程()()f x g x =得到13x =和1x =是方程的根.利用零点存在定理证明在()4,+∞上有且只有一个零点.即可证明.对于C :根据单调性求出()f x 的值域.对于D :对x 分类讨论: 1x <、1x =和1x >三种情况,利用分离参数法分别求出k 得到范围,取交集即可. 【详解】对于A :()21,11ln 1,1x x f x xx x x ⎧−<⎪=−⎨⎪+−≥⎩. 因为23354134414f ⎛⎫ ⎪⎛⎫⎝⎭=−= ⎪⎝⎭−,55551ln 1ln 44444f ⎛⎫=+−=+ ⎪⎝⎭, 所以355515ln 1ln 0444444f f ⎛⎫⎛⎫⎛⎫−=−+=−> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以3544f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭. 所以()f x 在()0,2上不是增函数. 故A 错误;对于B :当54k =时,方程()()f x g x =可化为:()2511141x x x x ⎧−=−⎪−⎨⎪<⎩或()5ln 1141x x x x ⎧+−=−⎪⎨⎪≥⎩. 由()2511141x x x x ⎧−=−⎪−⎨⎪<⎩可解得:13x =. 对于()5ln 1141x x x x ⎧+−=−⎪⎨⎪≥⎩,显然1x =代入方程成立,所以1x =是方程的根.当1≥x 时,记()()()5ln 1ln 11144x h x x x x x =+−−−=−−. ()41414xh x x x−'=−=. 所以令()0h x '>,解得:14x <<;令()0h x '<,解得:4x >; 所以()h x 在()1,4上单增,在()4,+∞上单减. 所以()()410h h >=.所以()h x 在()1,4上没有零点;而()h x 在()4,+∞上单减,且()40h >,()()333311310e 44e ln e e h −=−=<−, 所以在()4,+∞上有且只有一个零点.综上所述:当54k =时,方程()()f x g x =有且只有3个不同实根. 故B 正确;对于C :对于()21,11ln 1,1x x f x xx x x ⎧−<⎪=−⎨⎪+−≥⎩. 当1≥x 时,()ln 1f x x x =+−.()110f x x'=+>,所以()()1ln1110f x f ≥=+−=; 当1≥x 时,()211x f x x=−−.()()2221x x f x x −'=−.令()0f x '>,解得:01x <<;令()0f x '<,解得:0x <; 所以()f x 在(),0∞−上单减,在()0,∞+上单增. 所以()()0011f x f ≥=−=−; 故()f x 的值域为[)1,−+∞成立. 故C 正确.对于D :对于任意的x ∈R ,都有()()()()10x f x g x −−≤成立, 所以()21111x x k x x<⎧⎪⎨−≥−⎪−⎩及()1ln 11x x x k x ≥⎧⎨+−≥−⎩恒成立.若()21111x x k x x<⎧⎪⎨−≥−⎪−⎩恒成立,则有()()()211111x k x x x x ≥−<−−−. 令()()()()21,1111x t x x x x x =−<−−−,只需()max k t x ≥. 令1m x =−,则0m <.则()22221113135124m y m m m m m +⎛⎫⎛⎫=−=−++=−++ ⎪ ⎪−⎝⎭⎝⎭. 所以max 54y =,即54k ≥.若()1ln 11x x x k x ≥⎧⎨+−≥−⎩恒成立,当1x =,无论k 取何值,不等式均成立,所以R k ∈. 当1x >,则有()ln 111xk x x ≥−>−.令()()ln 111xp x x x =+>−,只需()max k p x ≥. ()()()()22111ln 1ln 11x x xx x p x x x −−−−'==−−. 记()11ln x x x ϕ=−−,则()221110x x x x x ϕ−'=−=<,所以()11ln x x xϕ=−−在()1,+∞上单减,所以()()111ln101x ϕϕ<=−−=,即()0p x '<,所以()ln 11xp x x =+−在()1,+∞上单减,所以()()()max11ln ln lim 1lim 111211x x x x p x x x ++→→'⎛⎫=+=+=+= ⎪−'⎝⎭− 所以2k ≥. 综上所述:2k ≥. 故D 正确. 故选:BCD 【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围; (4)利用导数处理恒(能)成立问题.23.(2022·山东·德州市教育科学研究院二模)若函数()()2ln 21()f x x a x x a R =+−+∈存在两个极值点12,x x ()12x x <,则( ) A .函数()f x 至少有一个零点 B .0a <或2a >C .1102x <<D .()()1212ln 2f x f x +>−【答案】ACD 【解析】 【分析】对于A ,只需将1x = 代入验证即可,对于B ,通过函数存在2个极值点转化为导函数有2个变号零点问题,从而转化为二次函数根的分布问题即可,对于C ,利用B 选项的条件即可推导;对于D ,计算12()()f x f x + ,构造函数()h a ,求函数()h a 的最小值即可对于A ,()()22ln 21ln (1)f x x a x x x a x =+−+=+−2(1)ln1(11)0f a =+−= ,1x ∴= 是()f x 的一个零点,故A 正确对于B ,21221()(22)ax ax f x a x x x−+'=+−=()f x 存在两个极值点1212,()x x x x < ,22210ax ax ∴−+= 有两个不相等的实数根,即()'f x 有两个变号零点120,0x x >>0∴∆> ,即22(2)421484(2)0a a a a a a −−⨯⨯=−=−> ,20a a ∴><或又120,0x x >>,121210102x x x x a +=>⎧⎪∴⎨=>⎪⎩,解得0a > 综上,2a > ,故B 错误对于C ,由B 选项可得,121x x =+ ,211x x ∴=− ,111x x ∴−> ,1102x ∴<< 故C 正确对于D ,2212111222()()ln (21)ln (21)f x f x x a x x x a x x +=+−+++−+ 22121212ln [2()2]x x a x x x x =++−++将121211,2x x x x a+== 代入上式 212111()()ln(12212)ln 2(1)22f x f x a a a a a a+=+−⨯−⨯+=−+− ln 2ln 1ln ln 21a a a a =−−+−=−−−令()ln ln 21(2)h a a a a =−−−> 11()10a h a a a−'=−=> 有()h a 在(2,)+∞ 上单调递增,()(2)2ln 2ln 2112ln 2h a h ∴>=−−−=− , 故D 正确 故选:ACD24.(2022·河北保定·二模)已知函数2332xxy =−在()0,∞+上先增后减,函数3443xxy =−在()0,∞+上先增后减.若()231log log x =()321log log 0x a =>,()()242422log log log log x x b ==,()()343433log log log log 0x x c ==>,则( )A .a c <B .b a <C .c a <D .a b <【解析】 【分析】根据指数式与对数式的关系由条件求出1x ,2x ,3x ,构造函数结合零点存在性定理确定,,a b c 的范围,由此判断,,a b c 的大小关系. 【详解】∵()()231321log log log log x x a ==,∴31log 2a x =,21log 3ax =,∴23132aax ==.设()2332ttf t =−,∵()()0110f f ==>,()2815120f =−<,2332xxy =−在()0,∞+上先增后减,∴()1,2a ∈.∵()()242422log log log log x x b ==,∴42221log log 22b x x ==,22log 4bx =,∴142b b +=, ∴1b =.∵()()343433log log log log 0x x c ==>, ∴34343ccx == 设()3443t tg t =−,∵()010g =>,()1170g =−<,3443xxy =−在()0,∞+上先增后减,∴()0,1c ∈. ∴c b a <<. 故选:BC. 【点睛】本题解决的关键在于结合函数的单调性及零点存在性定理确定,a c 的范围. 25.(2022·福建厦门·模拟预测)已知函数()2441x x xf x x =+−−,则( )A .()f x 是奇函数B .()f x 的图象关于点()1,1对称C .()f x 有唯一一个零点D .不等式()()223f x f x +>的解集为()()1,13,−+∞【答案】BCD【分析】求解()f x 的定义域,可知定义域不关于原点对称,知A 错误;根据解析式验证可知()()112f x f x ++−=,则知B 正确;当1x >时,由单调性的性质可确定()f x 在()1,+∞上单调递减,结合值域的求法可求得()1f x >;结合对称性可知()f x 在(),1−∞上单调递减;利用零点存在定理可说明()f x 在(),1−∞有且仅有一个零点,知C 正确;结合C 的结论可说明1x >时()1f x >,1x <时,()1f x <;利用单调性,分别讨论23x +和2x 在同一单调区间内、两个不同单调区间内的情况,解不等式组可求得结果. 【详解】对于A ,由44010x x ⎧−≠⎨−≠⎩得:1x ≠,即()f x 定义域为{}1x x ≠,不关于原点对称,()f x ∴为非奇非偶函数,A 错误;对于B ,()112121144242x x x xx xf x x x+++++=+=+−⋅−,()()1122112412121444224244444xx x x x x x x x x x x x f x x x x x −−−−⋅−−−=−=−=−=−−−⋅−⋅−, ()()112f x f x ∴++−=,()f x ∴图象关于点()1,1对称,B 正确;对于C ,当1x >时,()1141212x xf x x=+−−; 2x t =在()1,+∞上单调递增,4y t t=−在()2,+∞上单调递增, 422xx y ∴=−在()1,+∞上单调递增,1422x x y ∴=−在()1,+∞上单调递减;11y x=−在()1,+∞上单调递增,111y x∴=−在()1,+∞上单调递减;()f x ∴在()1,+∞上单调递减;由B 知:()f x 图象关于()1,1对称,()f x ∴在(),1−∞上单调递减;当1x >时,2044xx>−,11111x x x =+>−−,()1f x ∴>,()f x ∴在()1,+∞上无零点;当1x <时,()11000143f =+=−<−,()1111210123044f −=+=>−, ()01,0x ∴∃∈−,使得()00f x =,则()f x 在(),1−∞上有唯一零点0x x =;综上所述:()f x 有唯一一个零点,C 正确;对于D ,由C 知:()f x 在(),1−∞和()1,+∞上单调递减, 又1x >时,()1f x >;1x ∴<时,()1f x <;①当22311x x +>⎧⎨>⎩,即1x >时,由()()223f x f x +>得:223x x +<,解得:1x <−(舍)或3x >;②当22311x x +<⎧⎨<⎩时,不等式组无解,不合题意;③当22311x x +>⎧⎨<⎩,即11x −<<时,()231f x +>,()21f x <,满足题意;④当22311x x +<⎧⎨>⎩,即1x <−时,()231f x +<,()21f x >,不合题意;综上所述:()()223f x f x +>的解集为:()()1,13,−+∞,D 正确.故选:BCD. 【点睛】关键点点睛:本题考查函数性质的综合应用问题,涉及到函数奇偶性的判断、对称性的判断、函数零点个数的求解、利用函数单调性解不等式;利用单调性解不等式的关键是能够确定函数的单调性,并根据单调性将函数值大小关系的比较转化为自变量大小关系的比较问题.。
高中数学总复习函数与导数专题练习
一、选择题1.设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A∩(B)等于( )A.{2}B.{2,3}C.{3}D.{1,3}2.设有三个命题,甲:相交直线l 、m 都在平面α内,并且都不在平面β内;乙:直线l 、m 中至少有一条与平面β相交;丙:平面α与平面β相交.那么,当甲成立时( ) A.乙是丙的充分而不必要条件 B.乙是丙的必要而不充分条件 C.乙是丙的充分且必要条件D.乙既不是丙的充分条件又不是丙的必要条件3.已知命题p :“|x -1|>2”,命题q :“x ∈Z ”,如果“p 且q”与“非q”同时为假命题,则满足条件的x 为( )A.{x|x≥3或x≤-1,x ∉Z }B.{x|-1≤x≤3,x Z }C.{-1,0,1,2,3}D.{0,1,2}4.有限集合 S 中元素的个数记作card(S),设 A,B 都为有限集合,给出下列命题,其中真命题的序号是( )①A∩B=φ的充要条件是card(A ∪B)=card(A)+card(B) ②A ⊆B 的必要条件是card(A)≤ card(B) ③A ⊄B 的充分条件是card(A)≤card(B) ④A=B 的充要条件是card(A)=card(B)A.③④B.①②C.①④D.②③5.(理)已知集合A={t|使{x|x 2+2tx-4t-3≠0}=R },B={t|使{x|x 2+2tx-2t=0}≠φ},其中x ,t ∈R ,则A∩B 等于( )A.[-3,-2]B.(-3,-2)C.(-3,-2)D.(-∞,0)∪[2,-∞)(文)已知集合M={(x,y )|y-1=k(x-1),x 、y ∈R },集合N={(x,y)|x 2+y 2-2y=0,x 、y ∈R },那么M∩N 中( )A.恰有两个元素B.恰有一个元素C.没有元素D.至多有一个元素6.已知f(x)=-24x -在区间M 上的反函数是其本身,则M 可以是( ) A.[-2,2] B.[-2,0] C.[0,2] D.(-2,2)7.设函数f(x)=⎩⎨⎧>≤++.0,2,0,2x x c bx x 若f(-4)=f(0),f(-2)=-2,则关于x 的方程f(x)=x 的解的个数为( )A.1B.2C.3D.48.(理)已知x ∈(-∞,1)时,不等式1+2x +(a-a 2)4x >0恒成立,则a 的取值范围是( ) A.(-1,14) B.(-12,32) C.(-∞,14] D.(-∞,6] (文)函数f(x)=ax 2-(3a-1)x+a 2在区间(1,+∞)上是增函数,那么实数a 的取值范围是( )A.[0,1]B.(-∞,-1)C.{-1}D.(-∞,5] 9.若x<0,则函数y=x 2+21x-x-x1的最小值是( )A.-94B.0C.2D.410.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y=2x 2+1,值域为{5,19}的“孪生函数”共有( ) A.10个 B.9个 C.8个 D.7个 11.已知函数f(x)=log 2x,F(x,y)=x+y 2,则F (f(41),1)等于( )A.-1B.5C.-8D.312.(理)指数函数f(x)=a x (a >0,且a≠1)的图象如图所示,那么方程[f -1(x)]2-2f -1(x)-3=0的解集为( )A.{-1,3}B.{271,3}C.{271} D.{31,27}(文)已知函数f(x)=3x-1,则它的反函数y=f -1(x)的图象是( )13.定义在R 上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x ∈[0,2π]时,f(x)=sinx ,则f(35π)的值为( )A.-21 B.21 C.-23 D. 2314.函数y=(21)x与函数y=-162x的图象关于( )A.直线x=2对称B.点(4,0)对称C.直线x=4对称D.点(2,0)对称15.已知函数f(x)=⎩⎨⎧≥<,1x,log 1,x 1),-0.5)(x -(a a x 在(-∞,+∞)内是减函数,则a 的取值范围是( )A.(0,1)B.(0,0.5)C.(-∞,0.5)D.(0.5,1) 16.函数f(x)=32x 3-2x+1在区间[0,1]上是( )A.单调递增的函数B.单调递减的函数C.先减后增的函数D.先增后减的函数 17.曲线y=31x 3-x 2+5在x=1处的切线的倾斜角是( )A.6πB.3πC.4πD.34π18.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值和最小值分别是( ) A.5,-15 B.5,4 C.-4,-15 D.5,-16 19.下列图象中,有一个是函数f(x)=31x 3+ax 2+(a 2-1)x+1(a ∈R ,a≠0)的导函数f′(x)的图象,则f(-1)等于( )A.31 B.-31 C.37 D.-31或3520.点P 的曲线y=x 3-x+32上移动,在点P 处的切线的倾斜角为α,则α的取值范围是( )A.[0,2π] B.[0,2π]∪[43π,π]C.[43π,π] D.(2π,43π]21.已知f(x)=-x 3-x,x ∈[m,n ]且f(m)·f(n)<0,则方程f(x)=0在区间[m,n ]上( )A.至少有三个实数根B.至少有两个实根C.有且只有一个实数根D.无实根22.函数f(x)的图象无论经过平移还是关于某条直线对称翻折后仍不能与y=log 21x 的图象重合,则f(x)是( )A.y=2-xB.y=2log 4xC.y=log 2(x+1)D.y=21·4x23.已知函数 f(x)=x 2-2ax+a 在区间(-∞,1)上有最小值,则函数g(x)=xx f )(在间(1,+∞)上一定( )A.有最小值B.有最大值C.是减函数D.是增函数24.已知函数f(x)=x 2(ax+b)(a,b ∈R )在x=2时有极值,其图象在点(1,f(1))处的切线与直线3x+y=0平行,则函数f(x)的单调减区间为( ) A.(-∞,0) B.(0,2) C.(2,+∞) D.(-∞,+∞)25.设点P 是曲线:y=x 3-3x+b(b 为实常数)上任意一点,P 点处切线的倾斜角为α,则α的取值范围是( ) A.[32π,π]B.(2π,65π) C.[0,2π]∪[65π,π] D.[0,2π)∪[32π,π)二、填空题26.下列判断:(1)命题“若q 则p”与命题“若」p 则」q”互为逆否命题;(2)“am 2<bm 2”是“a<b”的充要条件;(3)“矩形的两条对角线相等”的否命题为假;(4)命题“⊂φ{1,2}”为真.则正确说法的序号为_________________.27.(理)已知三个不等式①x 2-4x+3<0,②x 2-6x+8<0,③2x 2-9x+m<0,要使同时满足①和②的所有x 的值都满足③,则实数m 的取值范围是___________.(文)已知二次函数f(x)=4x 2-2(p-2)x-2p 2-p+1,若在区间[-1,1]内至少存在一个实数c,使f(c)>0,则实数p 的取值范围是_______________.28.已知定义在区间[0,1]上的函数y=f(x),图象如图所示.对满足0<x 1<x 2<1的任意x 1,x 2,给出下列结论:①f(x 1)-f(x 2)>x 1-x 2; ②x 2f(x 1)>x 1f(x 2); ③2)()(21x f x f +<f(221x x +).其中正确结论的序号是________________(把所有正确结论的序号都填上).29.若函数y=f(x)=ax 3-bx 2+cx 的图象过点A(1,4),且当x=2时,y 有极值0,则f(-1)=_______. 30.写出一个函数的解析式f(x)=_________,使它同时满足下列条件:①定义域为R ,②是偶函数,③值域是(0,1],④不是周期函数.(只写出满足条件的一个答案即可)三、解答题31.在M={x||x-1|>4},P={x|x 2+(a-8)x-8a≤0}的前提下:(1)求a 的一个值,使它成为M∩P={x|5<x≤8}的一个充分不必要条件;(2)求a 的取值范围,使它成为M∩P={x|5<x≤8}的一个必要不充分条件.32.在等比数列{a n }中,前n 项和为S n ,若S m ,S m+2,S m+1成等差数列,则a m ,a m+2,a m+1成等差数列.(1)写出这个命题的逆命题;(2)判断逆命题是否为真,并给出证明.33.已知函数f(x)=4x 2-4ax+a 2-2a+2在[0,2]上有最小值3,求a 的值.34.已知对于x 的所有实数值,二次函数f(x)=x 2-4ax+2a+12(a ∈R)的值都是非负的,求关于x 的方程2+a x =|a-1|+2的根的取值范围.35.已知函数y=f(x)是R 上的奇函数,当x≤0时,f(x)=193x+x-21.(1)判断并证明y=f(x)在(-∞,0)上的单调性; (2)求y=f(x)的值域; (3)求不等式f(x)>31的解集.36.定义在(-1,1)上的函数f(x),①对任意x ,y ∈(-1,1)都有:f(x)+f(y)=f(xyy x ++1);②当x ∈(-1,0)时,f(x)>0,回答下列问题:(1)判断f(x)在(-1,1)上的奇偶性,并说明理由; (2)判断函数f(x)在(0,1)上的单调性,并说明理由; (3)(理)若f(51)=21,试求f(21)-f(111)-f(191)的值.37.已知函数f(x)=x 3+3ax 2-3b ,g(x)=-2x 2+2x+3(a≠0)(1)若f(x)的图象与g(x)的图象在x=2处的切线互相平行,求a 的值;(2)若函数y=f(x)的两个极值点x=x 1,x=x 2恰是方程f(x)=g(x)的两个根,求a 、b 的值;并求此时函数y=f(x)的单调区间.38.一水渠的横截面如下图所示,它的横截面曲线是抛物线形,AB 宽2m ,渠OC 深为1.5m ,水面EF 距AB 为0.5m.(1)求截面图中水面宽度;(2)如把此水渠改造成横截面是等腰梯形,要求渠深不变,不准往回填土,只准挖土,试求截面梯形的下边长为多大时,才能使所挖的土最少? 39.已知平面向量a=(23,-21),b=(21,23).(1)证明:a ⊥b;(2)若存在不为零的实数t,x,y ,使得c=a+2xb,d=-ya+(t-2x 2)b,且c ⊥d,试求函数y=f(x)的表达式; (3)若t ∈[6,+∞],当f(x)在区间[0,1]上的最大值为12时,求此时t 的值. 40.(理)已知函数f(x)=bx ax +2,在x=1处取得极值为2.(1)求函数f(x)的解析式;(2)若函数f(x)在区间(m ,2m +1)上为增函数,求实数m 的取值范围; (3)若P (x 0,y 0)为f(x)=bx ax +2图象上的任意一点,直线l 与f(x)=bx ax +2的图象相切于点P ,求直线l 的斜率的取值范围.(文)已知三次函数f(x)的导函数为f′(x),且f′(1)=0,f′(2)=3,f′(3)=12. (1)求f(x)-f(0)的表达式; (2)若对任意的x ∈[-1,4],都有f(x)>f′(x)成立,求f(0)的取值范围.高中总复习数学函数与导数专题练习参考答案一、选择题 1. D解析:∵B={1,3,4},∴A∩(B)={1,3}.2. C解析:乙成立时,平面α、β有交点,即丙成立;当丙成立时,若直线l 、m 均不相交,则l 、m 与平面α、β的交线平行,此时l ∥m ,与甲矛盾,故乙也成立,即乙是丙的充要条件. 3. C解析:∵“p 且q”与“非q”同时为假命题⇒p 为假,q 为真,又|x-1|>2⇔x<-1或x>3, ∴满足条件的x 为-1≤x≤3,x ∈Z ,即x=-1,0,1,2,3. 4. B解析:令A={1},B={2},则card(A)=card(B),故④为假,排除A 、C ;又令A={1},B={1,2},则card(A)≤card(B),A ⊆B ,排除③,故选B. 5.(理)B解析:{x|x 2+2tx-4t-3≠0}=R 等价于方程x 2+2tx-4t-3=0无解, 故Δ1=(2t)2+4(4t+3)<0,-3<t<-1,∴A={t|-3<t<-1}. {x|x 2+2tx-2t=0}≠φ等价于方程x 2+2tx-2t=0有解, 故Δ2=4t 2+8t≥0,t≤-2或t≥0, ∴B={t|t≤-2或t≥0},A∩B=(-3,-2]. (文)A解析:直线y-1=k(x-1)过圆x 2+y 2-2y=0上的点(1,1)且斜率存在,故直线与圆相交(不相切),即选A.6. B解析:∵-4-x 2∈[-2,0],∴M ⊆[-2,0],故选B. 7. C 解析:⎩⎨⎧-=-=-2)2()0()4(f f f ⇒f(x)=x 2+4x+2(x≤0),f(x)=x ⇒x=2,-1,-2.8.(理)B解析:设t=2x,t ∈(0,2],则1+2x+(a-a 2)4x>0⇔a 2-a<21tt +=(t1+21)2-41.∵t ∈(0,2),t 1∈[21,+∞], ∴(t 1+21)2-41∈[43,+∞],∴ a 2-a<43⇔-21<a<23.(文)A解析:令a=-1,则f(x)=-x 2+4x+1,易知不满足题意,排除B 、C 、D ,选A. 9. D 解析:y=(x+x 1)2-(x+x1)-2=(x+x1-21)2-49,令t=x+x1,因x<0,故t≤-2. 又y=(t-21)2-49在(-∞,-2)递减,∴ y min =(-2-21)2-49=4.10. B解析:令2x 2+1=5,则x=±2;令2x 2+1=19,则 x=±3.则集合A={-2,2},B={-3,3}中各至少有一个元素为定义域中的元素,故定义域有)()(22122212C C C C +⨯+×=9种,即“孪生函数”有9个. 11. A 解析:f(41)=log 241=-2,F(f(41),1)=F(-2,1)=-2+1=-1.12.(理) B 解析:f(x)=(31)x ,f -1(x)=31log x ,由原方程得 f -1(x)=-1或3,故x=3或271.(文)D解析:根据 f -1(x)=log 3x+1的定义域及值域观察可得. 13. D 解析:f(535π)=f(32π)=f(-32π)=f(3π)=sin3π=23.14. D解析:设点(x 0,y 0)是y=(21)x图象上的点,关于点(2,0)对称点为(x,y ),则x 0=4-x,y 0=-y,又y 0=(21)x0,故-y=(21)4-x,即y=-2x-4=-162x,故选D.15. B解析:⎩⎨⎧<<<-1005.0a a ⇒0<a<0.5.16. B解析:f′(x)=2x 2-2,当 x ∈[0,1]时,f′(x)<0, 故函数f(x)在区间[0,1]上单调递减.17. D 解析:∵y′|x=1=(x 2-2x )|x=1=1-2=-1,由导数的几何意义知,曲线在该点的切线斜率为-1,∴倾斜角为43π.18. A解析:y′=6x 2-6x-12=6(x-2)(x+1), 令y ′=0,得x=2或x=-1(舍).∵f(0)=5,f(2)=-15,f(3)=-4,∴y max =5,y min =-15. 19. B 解析:∵f′(x)=x 2+2ax+a 2-1=(x+a)2-1,又a≠0, ∴f′(x)的图象为第三个,知f′(0)=0,故a=-1,f(-1)=-31+a+1=-31.20. B解析:设点P(x 0,y 0),在点P 处的切线的斜率为k=tanα=(x 3-x+32)′|x=x0=3x 02-1≥-1,又∵0≤α≤π,∴α∈[0,2π]∪[43π,π].21. C解析:f′(x)=-3x 2-1<0,故f(x)在[m,n ]单调递减,又f(m)·f(n)<0,故f(m)>0,f(n)<0, ∴f(x)=0在区间[m,n ]上有且只有一个实数根. 22. D解析:y=2-x 与y=21logx 的图象关于直线y=x 对称;y=2log 4x=log 2x 与y=21log x 的图象关于x 轴对称;y=log 2(x+1)的图象向右平移一个单位即为y=21logx 的图象,故排除A 、B 、C ,选D.23. C解析:f(x)=x 2-2ax+a 在区间(-∞,1)上有最小值,故a<1, 而g(x)=x+xa -2a ,g′(x)=1-2xa .∵x>1,a<1,∴g′(x)<0,即g(x)在(1,+∞)递减. 24. B解析:∵f(x)=ax 3+bx 2,f′(x)=3ax 2+2bx, ∴⎩⎨⎧-=+=⨯+⨯,323,022232b a b a即⎩⎨⎧-==.3,1b a令f′(x)=3x 2-6x<0,则0<x<2,即选B. 25. D解析:∵y′=3x 2-3≥-3,∴tanα≥-3, 又α∈[0,π],∴α∈[0,2π]∪[32π,π].二、填空题26.(1)(3)(4) 解析:(2)错在当m=0时不成立,其他根据概念即可判断. 27.(理)m≤9解析:同时满足①②的x 的范围为2<x<3,要令f(x)=2x 2-9x+m<0在(2,3)上恒成立,则f(x)=0的两根x 1、x 2(x 1≤x 2)应满足x 1≤2且x 2≥3.则f(2)≤0且f(3)≤0,解得m≤9. (文)(-3,23)解析:只需f(1)=-2p 2-3p+9>0或f(-1)=-2p 2+p+1>0 即-3<p <23或21-<p <1,∴p ∈(-3,23).28.②③解析:设P(x 1,y 1),Q(x 2,y 2)由图象知k PQ ∈(0,+∞),k OP >k OQ ,故①错,②对,又直线x=221x x +与函数f(x)的图象的交点在线段PQ 的中点上方,故③正确. 29. -4解析:∵f′(x)=3ax 2-2bx+c,∴f′(2)=12a -4b+c=0. 又f(1)=a-b+c=4, ∴b=5411+a ,c=51616a-.所以f(-1)=-(a+b+c)=-(a+5411+a +51616a-)=-4.30.(21)|x|等解析:f(x)=(21)|x|或y=(31)|x|或y=a |x|(0<a<1).三、解答题31.解:由题意,M={x|x<-3或x>5},P={x|(x+a)(x-8)≤0}.则 M∩P={x|5<x≤8}⇔-3≤-a≤5⇔-5≤a≤3.(1)只要是满足-5≤a≤3的一个数即可作为答案.(2)只要使集合{x|-5≤a≤3}成为所得范围集合的真子集即可作为答案. 32.解:(1)逆命题:在等比数列 {a n }中,前n 项和为S n ,若a m ,a m+2,a m+1成等差数列,则S m ,S m+2,S m+1成等差数列;(2)设{a n }的首项为a 1,公比为q ,则2a m+2=a m +a m+1,于是2a 1q m+1=a 1q m-1+a 1q m . 由a 1≠0,q≠0,化简上式得2q 2-q-1=0, 解得q=1或q=-21,当q=1时,∵S m =ma 1,S m+2=(m+2)a 1,S (m+1)=(m+1)a 1, ∴S m +S m+1≠2S m+2,即S m ,S m+2,S m+1不成等差数列;当q=-21时,∵S m +S m+1=])21(1[34211])21(1[211])21(1[21111++--=+--++--m m ma a a而2S m+2=])21[(34211])21(1[2221212+++-=+--=m m m a a S ,∴S m +S m+1=2S m+2,即S m ,S m+2,S m+1成等差数列;综上得,当公比q=1时,逆命题为假,当q=-21时,逆命题为真.33.解:函数图象的对称轴为x=2a ,①当2a <0即a<0时,f(0)=3,即a 2-2a+2=3,∴a=1-2或a=1+2(舍),②当0≤2a ≤2即0≤a≤4时,f(2a )=3,∴a=-21(舍),③当2a >2即a>4时,f(x)min =f(2)=3即a 2-10a+18=3,∴a=5+10或5-10(舍),综上可知a=1-2或a=5+10.34.解析:由条件知Δ≤0,即(-4a)2-4(2a+12)≤0,∴-23≤a≤2,(1)当-23≤a <1时,原方程化为x=-a 2+a+6,∵-a 2+a+6=-(a-21)2+425, ∴当a=-23时,x min =49,当a=21时,x max =425.∴49≤x≤425.(2)当1≤a≤2时,x=a 2+3a+2=(a+23)2-41,∴当a=1时,x min =6,当a=2时,x max =12,∴6≤x≤12. 综上所述,49≤x≤12.35.解:(1)设 x 1<x 2<0,则31x <32x ,321x x +<1,∵f(x 1)-f(x 2)=19311+x x -19311+x x =)1)(1(3993332122112122++-+-++x x x x x x x x =)1)(1()1)((99333112121++--+x x x x x x <0,∴f(x 1)<f(x 2),即y=f(x)在(-∞,0)上是增函数. (2)∵0<193+xx =xx3131+≤21,∴当x≤0时, f(x)=193+x x-21∈(-21,0];当x>0时,f(x)=21-193+xx+1∈(0,21).综上得y=f(x)的值域为(-21,21).(3)∵f(x)=(-21,21),又∵f(x)>31,∴f(x)∈(31,21),此时f(x)=21-193+xx(x>0),令21-193+xx>31,即193+xx<61⇒32x-6·3x +1>0⇒3x>3+22⇒x>log 3(3+22), ∴不等式 f(x)>31的解集是(log 3(3+22),+∞).36.解:(1)令x=y=0⇒f(0)=0,令y=-x ,则f(x)+f(-x)=0⇒f(-x)=-f(x)⇒f(x)在(-1,1)上是奇函数.(2)设0<x 1<x 2<1,则f(x 1)-f(x 2)=f(x 1)+f(-x 2)=f(21211x x x x --),而x 1-x 2<0,0<x 1x 2<1⇒-1<21211x x x x --<0⇒f(21211x x x x --)>0.即当x 1<x 2时,f(x 1)>f(x 2). ∴f (x )在(0,1)上单调递减.(3)(理)由于f(21)-f(51)=f(21)+f(-51)=f(52115121⨯--)=f(31),f(31)-f(111)=f(41),f(41)-f(191)=f(51),∴f(21)-f(111)-f(191)=2f(51)=2×21=1.37.解:f′(x)=3x 2+6ax,g′(x)=-4x+2. (1)f′(2)=12+12a,g′(2)=-6. ∵12+12a=-6,∴a=-23.(2)令f′(x)=0得x 1=0或x 2=-2a,分别代入g(x)=-2x 2+2x+3得g(0)=3或g(-2a)=-8a 2-4a+3, ∴⎩⎨⎧-+-=+---=.3128348,33332b a a a a b ∴⎩⎨⎧-=-=.1,1a b此时f′(x)=3x 2-6x=0,得x=0或x=2,∴f(x)的单调递减区间是[0,2],递增区间是(-∞,0),[2,+∞]. 38.解:(1)建立如图所示坐标系,则抛物线方程为x 2=32(y+23),当y=-0.5时,x=±36,∴水面宽EF=362m.(2)如上图,设抛物线一点M(t,23t 2-23)(t>0),因改造水渠中需挖土,而且要求挖出的土最少,所以只能沿过点M 与抛物线相切的切线挖土.由y=23x 2-23,求导得y′=3x ,∴过点M 的切线斜率为3t ,切线方程为y-(23t 2-23)=3t(x-t).令y=0,则x 1=tt 212+,令y=-23,则x 2=2t ,故截面梯形面积为S=21(2x 1+2x 2)·23=23(t21+t)≥223,当且仅当t=22时所挖土最少,此时下底宽22m.答:故截面梯形的下底边长为0.707米宽时,才能使所挖的土最少. 39.(1)证明:∵a·b=23⨯21-21⨯23=0,∴a ⊥b.(2)解:c·d=-y+2x(t-2x 2)=0⇒f(x)=2tx-4x 3.(3)解:若存在t 满足条件,则f′(x)=2t -12x 2(t≥0),由f′(x)=0⇒x=6t ,当0≤x<6t ,f′(x)>0,f(x)在[0,6t ]上递增;当x>6t时,f′(x)<0,f(x)在(6t ,+∞)上递减.∴t≥6时,f(x)在[0,1]递增,f(x)max =f(1)=2t-4=12,∴t=8∈[6,+∞).综上,存在常数t=8,使f(x)有最大值为12. 40.(理)解:(1)已知函数f(x)=bx ax +2,∴f′(x)=222)()2()(b x x ax b x a +-+,又函数f(x)在x=1处取得极值2,∴⎩⎨⎧==',2)1(,0)1(f f 即⎪⎩⎪⎨⎧=+=-+2102)1(ba ab a ⇒⎩⎨⎧==.1,4b a ∴f(x)=142+x x .(2)∵f′(x)=222)1()2(4)1(4+-+x x x x =222)1(44+-x x.由f′(x)>0,得4-4x 2>0,即-1<x<1, 所以f(x)=142+x x 的单调增区间为(-1,1).因函数f(x)在(m ,2m +1)上单调递增,则有⎪⎩⎪⎨⎧>+≤+-≥,12,112,1m m m m 解得-1<m≤0,即m ∈(-1,0)时,函数f(x)在(m ,2m +1)上为增函数. (3)f(x)=142+x x ,∴f′(x)=222)1()2(4)1(4+-+x x x x ,直线l 的斜率为k=f′(x 0)=220220)1(8)1(4+-+x x x =4[11)1(220220+-+x x ].令1120+x =t ,t ∈(0,1),则直线l 的斜率k=4(2t 2-t),t ∈(0,1)∴k ∈[-21,4],即直线l 的斜率k 的取值范围是[-21,4][或者由k=f′(x 0)转化为关于x 02的方程,根据该方程有非负根求解]. (文)解:(1)设f(x)=ax 3+bx 2+cx+d,则f′(x)=3ax 2+2bx+c. ∴⎪⎩⎪⎨⎧=++=++=++,12627,3412,023c b a c b a c b a 即⎪⎩⎪⎨⎧=-==.3,3,1c b a ∴f(x)-f(0)=x 3-3x 2+3x.(2)f′(x)=3x2-6x+3.对任意的x∈[-1,4],f(x)>f′(x)⇔f(x)-f′(x)=x3-6x2+9x+f(0)-3>0⇔f(0)>F(x)=-x3+6x2-9x+3.∵F′(x)=-3x2+12x-9,当x∈[-1,1)时,F′(x)<0;当x=1或3时,F′(x)=0,当x∈(1,3)时,F′(x)>0;当x∈(3,4]时,F′(x)<0,又F(-1)>F(3),F(-1)>F(1),F(-1)>F(4).∴F(x)在[-1,4]上的最大值为F(-1)=19,f(0)的取值范围是(19,+∞).。
高中数学高考总复习函数概念习题及详解
高中数学高考总复习函数概念习题及详解一、选择题1.(文)(2010·浙江文)已知函数f (x )=log 2(x +1),若f (a )=1,则a =( ) A .0 B .1 C .2D .3[答案] B[解析] 由题意知,f (a )=log 2(a +1)=1,∴a +1=2, ∴a =1.(理)(2010·广东六校)设函数f (x )=⎩⎪⎨⎪⎧2xx ∈(-∞,2]log 2x x ∈(2,+∞),则满足f (x )=4的x 的值是( )A .2B .16C .2或16D .-2或16[答案] C[解析] 当f (x )=2x 时.2x =4,解得x =2. 当f (x )=log 2x 时,log 2x =4,解得x =16. ∴x =2或16.故选C.2.(文)(2010·湖北文,3)已知函数f (x )=⎩⎪⎨⎪⎧log 3x x >02x x ≤0,则f (f (19))=( )A .4 B.14 C .-4D .-14[答案] B[解析] ∵f (19)=log 319=-2<0∴f (f (19))=f (-2)=2-2=14.(理)设函数f (x )=⎩⎪⎨⎪⎧21-x-1 (x <1)lg x (x ≥1),若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(10,+∞)B .(-1,+∞)C .(-∞,-2)∪(-1,10)D .(0,10) [答案] A[解析] 由⎩⎪⎨⎪⎧ x 0<121-x 0-1>1或⎩⎪⎨⎪⎧x 0≥1lg x 0>1⇒x 0<0或x 0>10.3.(2010·天津模拟)若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f (x )=x 2,值域为{1,4}的“同族函数”共有( )A .7个B .8个C .9个D .10个[答案] C[解析] 由x 2=1得x =±1,由x 2=4得x =±2,故函数的定义域可以是{1,2},{-1,2},{1,-2},{-1,-2},{1,2,-1},{1,2,-2},{1,-2,-1},{-1,2,-2}和{-1,-2,1,2},故选C.4.(2010·柳州、贵港、钦州模拟)设函数f (x )=1-2x1+x ,函数y =g (x )的图象与y =f (x )的图象关于直线y =x 对称,则g (1)等于( )A .-32B .-1C .-12D .0[答案] D[解析] 设g (1)=a ,由已知条件知,f (x )与g (x )互为反函数,∴f (a )=1,即1-2a1+a =1,∴a =0.5.(2010·广东六校)若函数y =f (x )的图象如图所示,则函数y =f (1-x )的图象大致为( )[答案] A[解析] 解法1:y =f (-x )的图象与y =f (x )的图象关于y 轴对称.将y =f (-x )的图象向右平移一个单位得y =f (1-x )的图象,故选A.解法2:由f (0)=0知,y =f (1-x )的图象应过(1,0)点,排除B 、C ;由x =1不在y =f (x )的定义域内知,y =f (1-x )的定义域应不包括x =0,排除D ,故选A.高考总复习含详解答案6.(文)(2010·广东四校)已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表,填写下列g (f (x ))的表格,其三个数依次为( )A.3,1,2 C .1,2,3D .3,2,1[答案] D[解析] 由表格可知,f (1)=2,f (2)=3,f (3)=1,g (1)=1,g (2)=3,g (3)=2, ∴g (f (1))=g (2)=3,g (f (2))=g (3)=2,g (f (3))=g (1)=1, ∴三个数依次为3,2,1,故选D.(理)(2010·山东肥城联考)已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表:则方程g [f (x )]=x 的解集为( ) A .{1} B .{2} C .{3}D .∅[答案] C[解析] g [f (1)]=g (2)=2,g [f (2)]=g (3)=1; g [f (3)]=g (1)=3,故选C.7.若函数f (x )=log a (x +1) (a >0且a ≠1)的定义域和值域都是[0,1],则a 等于( ) A.13B. 2C.22D .2[答案] D[解析] ∵0≤x ≤1,∴1≤x +1≤2,又∵0≤log a (x +1)≤1,故a >1,且log a 2=1,∴a =2.8.(文)(2010·天津文)设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x )g (x )-x ,x ≥g (x ),则f (x )的值域是( )A.⎣⎡⎦⎤-94,0∪(1,+∞) B .[0,+∞)C.⎣⎡⎭⎫-94,+∞D.⎣⎡⎦⎤-94,0∪(2,+∞) [答案] D[解析] 由题意可知f (x )=⎩⎪⎨⎪⎧x 2+x +2 x <-1或x >2x 2-x -2 -1≤x ≤21°当x <-1或x >2时,f (x )=x 2+x +2=⎝⎛⎭⎫x +122+74 由函数的图可得f (x )∈(2,+∞).2°当-1≤x ≤2时,f (x )=x 2-x -2=⎝⎛⎭⎫x -122-94, 故当x =12时,f (x )min =f ⎝⎛⎭⎫12=-94, 当x =-1时,f (x )max =f (-1)=0, ∴f (x )∈⎣⎡⎦⎤-94,0. 综上所述,该分段函数的值域为⎣⎡⎦⎤-94,0∪(2,+∞). (理)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(1-x ) (x ≤0)f (x -1)-f (x -2) (x >0),则f (2010)的值为( ) A .-1 B .0 C .1D .2[答案] B[解析] f (2010)=f (2009)-f (2008)=(f (2008)-f (2007))-f (2008)=-f (2007),同理f (2007)=-f (2004),∴f (2010)=f (2004),∴当x >0时,f (x )以6为周期进行循环, ∴f (2010)=f (0)=log 21=0.9.(文)对任意两实数a 、b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧a ,若a ≤b ;b ,若a >b函数f (x )=log 12(3x高考总复习含详解答案-2)*log 2x 的值域为( )A .(-∞,0)B .(0,+∞)C .(-∞,0]D .[0,+∞)[答案] C[解析] ∵a *b =⎩⎪⎨⎪⎧a ,若a ≤b ,b ,若a >b .而函数f (x )=log 12(3x -2)与log 2x 的大致图象如右图所示,∴f (x )的值域为(-∞,0].(理)定义max{a 、b 、c }表示a 、b 、c 三个数中的最大值,f (x )=max{⎝⎛⎭⎫12x,x -2,log 2x (x >0)},则f (x )的最小值所在范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,3)[答案] C[解析] 在同一坐标系中画出函数y =⎝⎛⎭⎫12x,y =x -2与y =log 2x 的图象,y =⎝⎛⎭⎫12x 与y =log 2x 图象的交点为A (x 1,y 1),y =x -2与y =log 2x 图象的交点为B (x 2,y 2),则由f (x )的定义知,当x ≤x 1时,f (x )=⎝⎛⎭⎫12x,当x 1<x <x 2时,f (x )=log 2x ,当x ≥x 2时,f (x )=x -2,∴f (x )的最小值在A 点取得,∵0<y 1<1,故选C.10.(文)(2010·江西吉安一中)如图,已知四边形ABCD 在映射f :(x ,y )→(x +1,2y )作用下的象集为四边形A 1B 1C 1D 1,若四边形A 1B 1C 1D 1的面积是12,则四边形ABCD 的面积是()A .9B .6C .6 3D .12[答案] B[解析] 本题考察阅读理解能力,由映射f 的定义知,在f 作用下点(x ,y )变为(x +1,2y ),∴在f 作用下|A 1C 1|=|AC |,|B 1D 1|=2|BD |,且A 1、C 1仍在x 轴上,B 1、D 1仍在y 轴上,故S ABCD =12|AC |·|BD |=12|A 1C 1|·12|B 1D 1|=12SA 1B 1C 1D 1=6,故选B.(理)设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c x ≤02 x >0,若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4[答案] C[解析] 解法1:当x ≤0时,f (x )=x 2+bx +c . ∵f (-4)=f (0),f (-2)=-2,∴⎩⎪⎨⎪⎧ (-4)2+b ·(-4)+c =c (-2)2+b ·(-2)+c =-2,解得⎩⎪⎨⎪⎧b =4c =2, ∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2 x ≤02 x >0,当x ≤0时,由f (x )=x 得,x 2+4x +2=x , 解得x =-2,或x =-1; 当x >0时,由f (x )=x 得,x =2, ∴方程f (x )=x 有3个解.解法2:由f (-4)=f (0)且f (-2)=-2可得,f (x )=x 2+bx +c 的对称轴是x =-2,且顶点为(-2,-2),于是可得到f (x )的简图如图所示.方程f (x )=x 的解的个数就是函数图象y =f (x )与y =x 的图象的交点的个数,所以有3个解.二、填空题11.(文)(2010·北京东城区)函数y =x +1+lg(2-x )的定义域是________. [答案] [-1,2)[解析] 由⎩⎪⎨⎪⎧x +1≥02-x >0得,-1≤x <2.(理)函数f (x )=x +4-x 的最大值与最小值的比值为________. [答案]2[解析] ∵⎩⎪⎨⎪⎧x ≥04-x ≥0,∴0≤x ≤4,f 2(x )=4+2x (4-x )≤4+[x +(4-x )]=8,且f高考总复习含详解答案2(x )≥4,∵f (x )≥0,∴2≤f (x )≤22,故所求比值为 2.[点评] (1)可用导数求解;(2)∵0≤x ≤4,∴0≤x 4≤1,故可令x 4=sin 2θ(0≤θ≤π2)转化为三角函数求解.12.函数y =cos x -1sin x -2 x ∈[0,π]的值域为________.[答案] ⎣⎡⎦⎤0,43 [解析] 函数表示点(sin α,cos α)与点(2,1)连线斜率.而点(sin α,cos α)α∈[0,π]表示单位圆右半部分,由几何意义,知y ∈[0,43].13.(2010·湖南湘潭市)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f (x )的图象恰好通过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数,有下列函数①f (x )=sin2x ②g (x )=x 3 ③h (x )=⎝⎛⎭⎫13x ④φ(x )=ln x .其中是一阶整点函数的是________.(写出所有正确结论的序号) [答案] ①④[解析] 其中①只过(0,0)点,④只过(1,0)点;②过(0,1),(1,1),(2,8)等,③过(0,1),(-1,3)等.14.(文)若f (a +b )=f (a )·f (b )且f (1)=1,则f (2)f (1)+f (3)f (2)+…+f (2012)f (2011)=________.[答案] 2011[解析] 令b =1,则f (a +1)f (a )=f (1)=1,∴f (2)f (1)+f (3)f (2)+…+f (2012)f (2011)=2011. (理)设函数f (x )=x |x |+bx +c ,给出下列命题: ①b =0,c >0时,方程f (x )=0只有一个实数根; ②c =0时,y =f (x )是奇函数; ③方程f (x )=0至多有两个实根.上述三个命题中所有的正确命题的序号为________. [答案] ①②[解析] ①f (x )=x |x |+c=⎩⎪⎨⎪⎧x 2+c ,x ≥0-x 2+c ,x <0, 如右图与x 轴只有一个交点.所以方程f (x )=0只有一个实数根正确. ②c =0时,f (x )=x |x |+bx 显然是奇函数.③当c =0,b <0时,f (x )=x |x |+bx =⎩⎪⎨⎪⎧x 2+bx ,x ≥0-x 2+bx ,x <0如右图方程f (x )=0可以有三个实数根. 综上所述,正确命题的序号为①②. 三、解答题15.(文)(2010·深圳九校)某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,t 小时内供水总量为1206t 吨,(0≤t ≤24).(1)从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨?(2)若蓄水池中水量少于80吨时,就会出现供水紧张现象,请问在一天的24小时内,有几小时出现供水紧张现象.[解析] (1)设t 小时后蓄水池中的水量为y 吨, 则y =400+60t -1206t (0≤t ≤24) 令6t =x ,则x 2=6t 且0≤x ≤12,∴y =400+10x 2-120x =10(x -6)2+40(0≤x ≤12); ∴当x =6,即t =6时,y min =40,即从供水开始到第6小时时,蓄水池水量最少,只有40吨. (2)依题意400+10x 2-120x <80, 得x 2-12x +32<0,解得4<x <8,即4<6t <8,∴83<t <323;∵323-83=8,∴每天约有8小时供水紧张.(理)某物流公司购买了一块长AM =30米,宽AN =20米的矩形地块AMPN ,规划建设占地如图中矩形ABCD 的仓库,其余地方为道路和停车场,要求顶点C 在地块对角线MN 上,B 、D 分别在边AM 、AN 上,假设AB 长度为x 米.(1)要使仓库占地ABCD 的面积不少于144平方米,AB 长度应在什么范围内? (2)若规划建设的仓库是高度与AB 长度相同的长方体形建筑,问AB 长度为多少时仓库的库容最大?(墙体及楼板所占空间忽略不计)高考总复习含详解答案[解析] (1)依题意得三角形NDC 与三角形NAM 相似,所以DC AM =ND NA ,即x 30=20-AD20,AD =20-23x ,矩形ABCD 的面积为S =20x -23x 2 (0<x <30),要使仓库占地ABCD 的面积不少于144平方米, 即20x -23x 2≥144,化简得x 2-30x +216≤0,解得12≤x ≤18. 所以AB 长度应在[12,18]内.(2)仓库体积为V =20x 2-23x 3(0<x <30),V ′=40x -2x 2=0得x =0或x =20, 当0<x <20时,V ′>0,当20<x <30时V ′<0, 所以x =20时,V 取最大值80003m 3,即AB 长度为20米时仓库的库容最大.16.(2010·皖南八校联考)对定义域分别是Df ,Dg 的函数y =f (x ),y =g (x ),规定: 函数h (x )=⎩⎪⎨⎪⎧f (x )g (x ),当x ∈Df 且x ∈Dg ,f (x ),当x ∈Df 且x ∉Dg ,g (x ),当x ∈Dg 且x ∉Df .(1)若函数f (x )=1x -1,g (x )=x 2,写出函数h (x )的解析式;(2)求问题(1)中函数h (x )的值域;(3)若g (x )=f (x +α),其中α是常数,且α∈[0,π],请设计一个定义域为R 的函数y =f (x ),及一个α的值,使得h (x )=cos4x ,并予以证明.[解析] (1)由定义知,h (x )=⎩⎪⎨⎪⎧x 2x -1,x ∈(-∞,1)∪(1,+∞),1,x =1.(2)由(1)知,当x ≠1时,h (x )=x -1+1x -1+2,则当x >1时,有h (x )≥4(当且仅当x =2时,取“=”); 当x <1时,有h (x )≤0(当且仅当x =0时,取“=”). 则函数h (x )的值域是(-∞,0]∪{1}∪[4,+∞).(3)可取f (x )=sin2x +cos2x ,α=π4,则g (x )=f (x +α)=cos2x -sin2x ,于是h (x )=f (x )f (x +α)=cos4x .(或取f (x )=1+2sin2x ,α=π2,则g (x )=f (x +α)=1-2sin2x .于是h (x )=f (x )f (x +α)=cos4x ).[点评] 本题中(1)、(2)问不难求解,关键是读懂h (x )的定义,第(3)问是一个开放性问题,乍一看可能觉得无从下手,但细加观察不难发现,cos4x =cos 22x -sin 22x =(cos2x +sin2x )(cos2x -sin2x )积式的一个因式取作f (x ),只要能够找到α,使f (x +α)等于另一个因式也就找到了f (x )和g (x ).17.(文)某种商品在30天内每件的销售价格P (元)与时间t (天)的函数关系如图所示:该商品在30天内日销售量Q (件)与时间t (天)之间的关系如表所示:(1)(2)在所给直角坐标系中,根据表中提供的数据描出实数对(t ,Q )的对应点,并确定日销售量Q 与时间t 的一个函数关系式;(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?(日销售金额=每件的销售价格×日销售量)[解析] (1)P =⎩⎪⎨⎪⎧t +20 (0<t <25,t ∈N *)-t +100 (25≤t ≤30,t ∈N *) (2)图略,Q =40-t (t ∈N *) (3)设日销售金额为y (元),则y =⎩⎪⎨⎪⎧-t 2+20t +800 (0<t <25,t ∈N *)t 2-140t +4000 (25≤t ≤30,t ∈N *)高考总复习含详解答案=⎩⎪⎨⎪⎧-(t -10)2+900 (0<t <25,t ∈N *)(t -70)2-900 (25≤t ≤30,t ∈N *) 若0<t <25(t ∈N *),则当t =10时,y max =900;若25≤t ≤30(t ∈N *),则当t =25时,y max =1125.由1125>900,知y max =1125,∴这种商品日销售金额的最大值为1125元,30天中的第25天的日销售金额最大. (理)(2010·广东六校)某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府通过投资对该项特产的销售进行扶持,已知每投入x 万元,可获得纯利润P =-1160(x -40)2+100万元(已扣除投资,下同),当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在未来10年内对该项目每年都投入60万元的销售投资,其中在前5年中,每年都从60万元中拨出30万元用于修建一条公路,公路5年建成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每投入x 万元,可获纯利润Q =-159160(60-x )2+1192·(60-x )万元,问仅从这10年的累积利润看,该规划方案是否可行?[解析] 在实施规划前,由题设P =-1160(x -40)2+100(万元),知每年只需投入40万,即可获得最大利润100万元,则10年的总利润为W 1=100×10=1000(万元)实施规划后的前5年中,由题设P =-1160(x -40)2+100知,每年投入30万元时,有最大利润P max =7958(万元) 前5年的利润和为7958×5=39758(万元) 设在公路通车的后5年中,每年用x 万元投资于本地的销售,而剩下的(60-x )万元用于外地区的销售投资,则其总利润为W 2=[-1160(x -40)2+100]×5+(-159160x 2+1192x )×5=-5(x -30)2+4950. 当x =30时,W 2=4950(万元)为最大值,从而10年的总利润为39758+4950(万元). ∵39758+4950>1000, ∴该规划方案有极大实施价值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.word 格式.2.1 映射与函数、函数的解析式一、选择题:1.设集合A{ x | 1x2},B{ y | 1y 4} ,则下述对应法则 f 中,不能构成 A 到B 的映射的是()A .f : x y x2B. f : x y 3x 2C .f : x y x 4D .f : x y 4 x 22.若函数f (32x) 的定义域为[-1,2],则函数 f (x) 的定义域是()A.[51]B. [ -1, 2]C.[ -1,5]1 ,D.[ ,2] 223,设函数 f (x)x1(x1))( x,则 f ( f ( f ( 2))) =(11)A. 0B. 1C. 2D.2 4.下面各组函数中为相同函数的是()A.f ( x)( x 1)2 , g( x)x 1B.C.f ( x)x 21, g( x)x 1 x 1f ( x)( x 1) 2 , g( x)( x 1) 2 D .f ( x)x21, g( x)x21x2x25. 已知映射 f :A B ,其中,集合A3,2, 1,1,2,3,4 ,集合 B 中的元素都是 A 中元素在映射 f下的象,且对任意的 a A, 在B中和它对应的元素是 a ,则集合B中元素的个数是( )(A) 4(B) 5(C) 6(D) 77.已知定义在[0,) 的函数f ( x)x2(x2)x2(0x 2)若 f ( f ( f (k )))25,则实数 k 42.2 函数的定义域和值域1.已知函数1 x 的定义域为 N ,则 M ∩ N=.f ( x)的定义域为 M , f[f(x)]1 x2. 如果 f(x)(0,1) ,1 0 ,那么函数 g(x)=f(x+a)+f(x-a)的定义域为 a的定义域2为 .3. 函数 y=x 2-2x+a在 [0,3]上的最小值是4,则 a=;若最大值是4,则a=.2)4.已知函数 f(x)=3-4x-2x , 则下列结论不正确的是(A .在( - ∞, +∞)内有最大值 5,无最小值,B .在 [-3 ,2] 内的最大值是 5,最小值是 -13C .在 [1 , 2)内有最大值 -3 ,最小值 -13 ,D .在 [0 , +∞)内有最大值 3,无最小值5.已知函数 yx3, yx2x 2 9的值域分别是集合P 、 Q ,则()x 47 x 12A . p QB . P=QC .P QD .以上答案都不对6.若函数ymx 1的定义域为 R ,则实数 m 的取值范围是()mx 24mx 3A . (0,3] B . (0,3)C .[0,3] D .[0,3)44447.函数 y2x 2 4x ( x [ 0,4]) 的值域是()A .[0 , 2]B .[1 ,2]C .[ -2,2]D .[- 2, 2]8. 若函数 f ( x)3x 1的值域是 { y | y0} { y | y4}, 则f (x) 的定义域是 ( )x 1A . [1,3] B. [ 1 ,1) (1,3]C. ( , 1]或[3,) D.[3,+ ∞ )3339.求下列函数的定义域:① y1 x 2x 12x 2 10.求下列函数的值域:① y3x5( x 1) ② y=|x+5|+|x-6|③ y 4x 2x 25x 3x④ yx1 2x⑤ yx22 x 4111.设函数f ( x) x 2 x .4(Ⅰ)若定义域限制为 [0 ,3] ,求 f ( x) 的值域;(Ⅱ)若定义域限制为[ a, a1] 时, f ( x) 的值域为 [11,] ,求 a 的值 .2 161.下述函数中,在( ,0) 上为增函数的是()A . y=x 2-2B . y=3C . y= 12 xD . y( x 2) 2x2.下述函数中,单调递增区间是(,0] 的是()A . y=-1B . y=- ( x - 1)C . y=x 2- 2D . y=- | x |x3.函数 yx 2 在(, ) 上是()A .增函数 B.既不是增函数也不是减函数C .减函数D .既是减函数也是增函数4.若函数 f(x) 是区间 [a,b] 上的增函数,也是区间 [b,c]上的增函数,则函数 f(x) 在区间 [a,b]上是()A .增函数B .是增函数或减函数C .是减函数D.未必是增函数或减函数5.已知函数 f(x)=8+2x-x 2,如果 g(x)=f(2-x2) ,那么 g(x) ( )A. 在区间( -1 ,0)上单调递减B. 在区间( 0, 1)上单调递减C. 在区间( -2 ,0)上单调递减D 在区间( 0, 2)上单调递减6.设函数f (x)ax 1在区间 ( 2, ) 上是单调递增函数,那么 a 的取值范围是()1 x2 1A . 0 aB . aC . a<-1 或 a>1D . a>- 22 27.函数f ( x ) 2 x 2 mx 3,当 x [ 2, ) 时是增函数,则的取值范围是()mA . [ - 8,+∞)B .[8 ,+∞)C .(-∞,- 8]D.(-∞, 8] 8.如果函数 f(x)=x2+bx+c 对任意实数 t 都有 f(4-t)=f(t),那么()A . f(2)<f(1)<f(4)B . f(1)<f(2)<f(4)C . f(2)<f(4)<f(1)D . f(4)<f(2)<f(1)9.若函数 f ( ) 4x 3ax 3 的单调递减区间是1 1 ),则实数 a 的值为 .x( ,2 210. ( 理科 ) 若 a >0,求函数 f ( x) x ln( x a)( x (0,)) 的单调区间 .1.若 f ( x)x n 2 n 1 (n N ), 则f (x) 是()A .奇函数B.偶函数C .奇函数或偶函数D .非奇非偶函数2.设 f(x) 为定义域在 R 上的偶函数, 且 f(x) 在 [0)为增函数 ,则 f ( 2), f ( ), f (3) 的大小顺序为()A . f ( ) f (3) f ( 2)B . f ( ) f ( 2) f (3)C . f ()f (3) f ( 2)D . f ()f (2)f (3)3.如果 f ( x ) 是定义在 R 上的偶函数,且在 [ 0, ) 上是减函数,那么下述式子中正确的是()A . f ( 3)f ( a 2a 1)B . f (3f (a 2a 1)4)4C . f (3 ) f ( a 2 a1)D .以上关系均不成立45.下列 4 个函数中: ① y=3 x -1, ② ylog a 1 x且1); ③ yx 3x 21 ( a0 ax1 ,x④ yx(11 1)( a0且 a 1).其中既不是奇函数,又不是偶函数的是()ax2A . ①B . ②③C . ①③D . ①④6.已知 f ( x ) 是定义在 R 上的偶函数 ,并满足:f (x2)1,当 ≤ x ≤ ,f (x )=x ,则f ( x)2 3f (5.5)= ()A . 5.5B .- 5.5C .- 2.5D . 2.57.设偶函数 f ( x ) 在 [ 0,) 上为减函数,则不等式f ( x )> f (2 x+1) 的解集是8.已知 f ( x ) 与 g ( x ) 的定义域都是 { x|x ∈R ,且 x ≠±1} ,若 f ( x ) 是偶函数, g( x ) 是奇函 数,且 f ( x )+ g( x )=1,则 f ( x )= ,g( x )=.1 x9.已知定义域为(-∞, 0)∪( 0,+∞)的函数 f ( x ) 是偶函数,并且在(-∞, 0)上是x 增函数,若 f ( - 3)=0 ,则不等式 <0 的解集是.f (x)11.设 f ( x ) 是定义在 R 上的偶函数,在区间(-∞,0)上单调递增,且满足 f ( - a 2 +2a -5)< f (2 2 + +1), 求实数a 的取值范围 .a a2.7 . 指数函数与对数函数1.当 0 a1时, a, a a ,a a a的大小关系是()A . a aaaa aB . aaa a aaC . aa aa aaD . aaa aa a2.已知 f ( x) | log a x | ,其中 0a 1,则下列不等式成立的是()1f (2)1B . f (2)1 f ( 1A . f ( ) f ( )f ( ))4 3341 f ( 1 ) f (2)1 f (2)f (1C . f ( ) 3D . f ( ))4343.函数 yf (2 x ) 的定义域为 [1 , 2] ,则函数 yf (log 2 x) 的定义域为()A .[0 , 1]B .[1 ,2]C .[2 ,4]D . [4 , 16]4.若函数 f (x)log 1 ( x 3 ax)在( 3, 2) 上单调递减,则实数a 的取值范围是()2A . [9 , 12]B . [4 , 12]C . [4 , 27]D . [9 , 27].若定义在 (— 1 , 0) 内的函数f ( x) log 2 a ( x 1) 满足 f (x) > 0,则 a 的取值范围是67.若 log (1 k )(1k ) 1,则实数 k 的取值范围是.8 .已知函数f ( x)log a ( xa 4)(a 0,且 a 1) 的值域为R ,则实数 a 的取值范围x是 .10.求函数 f (x)log 2x1 log2 ( x 1) log 2 ( p x) 的值域 .x 112.已知函数 f ( x)log a (1x) log a (1 x)(a且a 1)0 ( 1)讨论 f ( x) 的奇偶性与单调性;( 2)若不等式 | f (x) |2 的解集为 { x |1 x 1}, 求 a 的值;222.8 . 二次函数1.设函数 f (x) 2x 2 3ax 2a( x, a R )的最小值为 m ( a ),当 m ( a )有最大值时 a 的值为()A .4B .3C .8D .934982.已知 x 1 ,x 2 是方程 x( k2) x( kk 5) 0( k为实数)的两个实数根, 则x 1x 222322的最大值为()A . 19B . 18C . 55 D .不存在93.设函数 f ( x)ax 2bx c(a 0) ,对任意实数 t 都有 f (2 t )f (2 t) 成立,则函数值 f ( 1), f (1), f (2), f (5) 中,最小的一个不可能是()A . f ( - 1)B . f (1)C . f (2)D . f (5)4.设二次函数 f ( x ) ,对 x ∈ R 有 f (x)1f ( ) =25,其图象与 x 轴交于两点,且这两点的横19,则 f ( x ) 的解析式为2坐标的立方和为5.已知二次函数f ( x)ax 22 ax 1 在区间 [ - 3, 2] 上的最大值为 4,则 a 的值为6.一元二次方程 x2(a21) xa20的一根比1 大,另一根比- 1 小,则实数 a的取值范围是7.已知二次函数 f (x)ax 2bx c(a, b, c R )满足 f ( 1) 0, f (1)1, 且对任意实数 x都有 f ( x) x 0, 求 f (x) 的解析式 .8. a >0,当 x[ 1,1] 时,函数 f (x)x2ax b 的最小值是-1,最大值是1. 求使函数取得最大值和最小值时相应的x 的值 .9.已知 f (x) 4x24ax 4a a 2在区间 [0 , 1]上的最大值是- 5,求 a 的值 .10.函数 yf (x) 是定义在 R 上的奇函数,当 x 0时, f ( x) 2xx 2,(Ⅰ)求 x <0 时 f (x) 的解析式;(Ⅱ)问是否存在这样的正数 a ,b ,当 x[ a,b]时, f (x)的值域为 [1 , 1] 若存在,求出所有的 a , b 的值;若不存在,说明理由 .b a2.9 .函数的图象1.函数 f (2x 3) 的图象,可由 f (2x 3) 的图象经过下述变换得到()A .向左平移 6 个单位B .向右平移 6 个单位C .向左平移 3 个单位D .向右平移 3 个单位2.设函数y f (x) 与函数y g ( x ) 的图象如右图所示,则函数y f ( x) g(x) 的图象可能是下面的()4.如图,点P 在边长的 1 的正方形的边上运动,设M是 CD边的中点,当 P 沿 A→B→ C→ M运动时,以点 P 经过的路程x 为自变量,APM 的面积为 y ,则函数y f ( x) 的图象大致是()6.设函数f (x)的定义域为 R,则下列命题中:①若 y f (x) 为偶函数,则 y f ( x2) 的图象关于y 轴对称;②若 y f (x 2) 为偶函数,则 y f ( x) 的图象关于直线x2对称;③若 f ( x2) f (2x) ,则y f ( x) 的图象关于直线x 2 对称;④函数 y f (x2)与函数 y f ( 2 x) 的图象关于直线x2对称.则其中正确命题的序号是10.m为何值时,直线l : y x m与曲线y8x21有两个公共点?有一个公共.word 格式.点?无公共点?3.0 导数复习1、导数的几何意义f / ( x0 ) 是曲线 y f (x) 上点( x0 , f (x0 ) )处的切线的斜率因此,如果 y f (x) 在点 x0可导,则曲线 y f ( x) 在点( x0 , f ( x0 ) )处的切线方程为y f ( x0 ) f / ( x0 )( x x0 )注意:“过点 A 的曲线的切线方程” 与“在点 A 处的切线方程” 是不尽相同的,后者 A 必为切点,前者未必是切点 .( 1)曲线 y=x 3- 2x+4 在点 (1,3)处的切线的倾斜角为()A.30°B.45°C.60°D.12( 2)已知曲线y x2的一条切线的斜率为1,则切点的横坐标为()42A. 1B. 2C. 3D. 4()过点 1,0 作抛物线y x 2x 1的切线,则其中一条切线为()3A. 2x y 2 0B. 3x y 3 0C. x y 1 0D. x y 1 0( 4)求过点 P 1,1且与曲线 y x3相切的直线方程:导数的应用. 利用导数判断函数单调性及求解单调区间导数和函数单调性的关系:一般的,设函数 y=f(x) 在某个区间内有导数,如果在这个区间内有 f (x)>0,那么f(x)为这个区间内的增函数,对应区间为增区间;如果在这个区间内有 f (x)<0,那么f(x)为这个区间内的减函数,对应区间为减区间。