光合作用曲线的拟合分析方法

合集下载

影响光合作用的因素及曲线分析

影响光合作用的因素及曲线分析

【一】影响光合作用的环境因素及其在生产上的应用1.单因子因素(1)光照强度①原理分析:光照强度影响光合速率的原理是通过影响光反应阶段,制约ATP和[H]的产生,进而制约暗反应阶段。

②图像分析:A点时只进行细胞呼吸;AB段随着光照强度的增强,光合作用强度也增强,但是仍然小于细胞呼吸强度;B点时代谢特点为光合作用强度等于细胞呼吸强度;BC段随着光照强度的增强,光合作用强度也不断增强;C点对应的光照强度为光饱和点,限制C点的环境因素可能有温度或二氧化碳浓度等。

③应用分析:欲使植物正常生长,则必须使光照强度大于B点对应的光照强度;适当提高光照强度可增加大棚作物产量。

(2)光照面积①图像分析:OA段表明随叶面积的不断增大,光合作用实际量不断增大,A点为光合作用面积的饱和点。

随叶面积的增大,光合作用强度不再增加,原因是有很多叶被遮挡,光照不足。

OB段表明干物质量随光合作用增加而增加,而由于A点以后光合作用强度不再增加,但叶片随叶面积的不断增加,呼吸量(OC段)不断增加,所以干物质积累量不断降低(BC段)。

②应用分析:适当间苗、修剪,合理施肥、浇水,避免徒长。

封行过早,使中下层叶子所受的光照往往在光补偿点以下,白白消耗有机物,造成不必要的浪费。

(3)CO2浓度①原理分析:CO2浓度影响光合作用的原理是通过影响暗反应阶段,制约C3生成。

②图像分析:图1中A点表示光合作用速率等于细胞呼吸速率时的CO2浓度,即CO2补偿点,而图2中的A′点表示进行光合作用所需CO2的最低浓度;两图中的B和B′点都表示CO2饱和点,两图都表示在一定范围内,光合作用速率随CO2浓度增加而增大。

③应用分析:大气中的CO2浓度处于OA′段时,植物无法进行光合作用;在农业生产中可通过“正其行,通其风”和增施农家肥等措施增加CO2浓度,提高光合作用速率。

(4)温度①原理分析:是通过影响酶活性进而影响光合作用。

②图像分析:低温导致酶的活性降低,引起植物的光合作用速率降低,在一定范围内随着温度的升高酶活性升高进而引起光合速率也增强;温度过高会引起酶活性降低,植物光合速率降低。

光合作用光响应曲线拟合方法

光合作用光响应曲线拟合方法

光合作用光响应曲线拟合方法
点击Photosynthesis Work Bench ,选择AQ Curve 序主界面。

将PAR 和Pn 值输入左边的数据框中,点击
Results 菜单下的Fit Curve ,程序计算出AQE Amax 和Light Saturation 等参数值,并作出原始数据的散
点图和拟合曲线。

Photosynthesis Work Bench 程序
我们在此用来进行数据拟合的是非直角双曲线模型,另外还有其他的模型可供选择。

请参考: 张弥,吴家兵,关德新等.长白山阔叶红松林主要树种光合作用的光响应曲线.应用生态学报,2006,17(9):1575-1578. 王秀伟.兴安落叶松人工林碳循环关键过程的研究.东北林业大学硕士论文,2006.。

有关光合作用曲线图研究分析

有关光合作用曲线图研究分析

有关光合作用的曲线图的分析(一)1、纵坐标代表实际光合作用强度还是净光合作用强度?这是什么图?分析坐标图时,首先要明确纵坐标和横坐标的含义。

大家知道我们通常用单位时间里CO2 吸收量、O2 释放量、有机物的制造量来代表光合作用强度。

而光合作用强度又有实际光合作用强度和净光合作用强度,我们如何区分它们呢?光合总产量和光合净产量常用的判定方法:①如果CO2 吸收量出现负值,则纵坐标为光合净产量;②(光下)CO2 吸收量、O2释放量和葡萄糖积累量都表示光合净产量;③光合作用CO2 吸收量、光合作用O2释放量和葡萄糖制造量都表示光合总产量。

因此本图纵坐标代表的是净光合作用强度。

2、如何描述该曲线?A点:A点时光照强度为0,光合作用强度为0,植物只进行呼吸作用,不进行光合作用。

AC段:在一定的光照强度范围内,随着光照强度的增加,光合作用强度逐渐增加C点:当光照强度增加到一定值时,光合作用强度达到最大值。

CD段:当光照强度超过一定值时,光合作用强度不随光照强度的增加而增加。

3、几个点、几个线段的生物学含义:A点:A点时光照强度为0,光合作用强度为0,植物只进行呼吸作用,不进行光合作用。

净光合强度为负值由此点获得的信息是:呼吸速率为OA的绝对值。

AB段:此时光照较弱,实际光合作用强度小于呼吸作用强度。

净光合强度仍为负值。

此时呼吸作用产生的CO2除了用于光合作用外还有剩余。

表现为释放CO2。

B点:实际光合作用强度等于呼吸作用强度(光合作用与呼吸作用处于动态衡),净光合作用强度净为0。

表现为既不释放CO2也不吸收CO2(此点为光合作用补偿点)BC段:实际光合作用强度大于呼吸作用强度,呼吸产生的CO2不够光合作用所用,表现为吸收CO2。

C点:当光照强度增加到一定值时,光合作用强度达到最大值。

此值为纵坐标(此点为光合作用饱和点)CD段:净光合作用强度已达到最大值,不随光照强度的增加而增加。

N点:为光合作用强度达到最大值(CM)时所对应的最低的光照强度。

光合作用CO响应曲线拟合方程

光合作用CO响应曲线拟合方程

光合作用CO2响应曲线拟合方程1、Michaelis Menten方程K- Michaelis Menten常数2、指数方程P n = a (1-e-bx) + Cx-胞间浓度b-羧化速率a-最大光合速率c-呼吸速率Watling et al, 2000. Plant Physiology 123: 1143-1152.3、直角双曲线方程A-同化速率CE-羧化效率Ci-胞间CO2浓度A max-饱和CO2下的同化速率R esp-叶片的呼吸速率4、Farquhar方程在任何特定条件下,光合作用将受到三个潜在因素的限制:(1)由Rubisco催化的羧化作用最大速率限制(Rubisco限制);(2)电子传递速率控制的RuBP再生限制(RuBP限制);(3)由磷酸丙糖利用速率控制的RuBP再生限制(TPU限制)。

A O C i =−⎛⎝⎜⎞⎠×105.τmin(Wc,Wj,Wp) - R day R day -光下的CO 2 释放, Wc -Rubisco 的活性,Wj -RuBP 再生速率,Wp -有机磷的再生速率,O -叶绿体羧化部位的O 2浓度,τ-Rubisco 的特异因子。

当Rubisco 活性仅受羧化速率限制时,羧化作用被表达为:[]Wc Vc Ci Ci Kc O Ko =++max .(/)1 K c 和 K o 分别是RuBP 羧化反应和氧化反应的Michaelis-Menten 常数。

这种限制条件发生在低Ci(<20 Pa)和高辐射(>1500 µmol m -2s -1)条件下。

当由于RuBP 的再生,电子传递限制光合作用时,羧化作用被表达为:W J C C O j i i =+.(/)4τ 4-表示4个电子能够产生足够的ATP 和 NADPH 来再生RuBP , J -潜在的电子传递速率, 可以通过下列方程计算。

J I IJ =÷+αα.(.)max 12α-光转换效率,J max -光饱和下的电子传递速率,I -入射辐射。

影响光合作用的因素及曲线分析

影响光合作用的因素及曲线分析

【一】影响光合作用的环境因素及其在生产上的应用1. 单因子因素(1) 光照强度①原理分析:光照强度影响光合速率的原理是通过影响光反应阶段,制约ATP 和[H] 的产生,进而制约暗反应阶段。

②图像分析: A 点时只进行细胞呼吸;AB 段随着光照强度的增强,光合作用强度也增强,但是仍然小于细胞呼吸强度; B 点时代谢特点为光合作用强度等于细胞呼吸强度;BC 段随着光照强度的增强,光合作用强度也不断增强; C 点对应的光照强度为光饱和点,限制 C 点的环境因素可能有温度或二氧化碳浓度等。

③应用分析:欲使植物正常生长,则必须使光照强度大于 B 点对应的光照强度;适当提高光照强度可增加大棚作物产量。

(2) 光照面积①图像分析:OA 段表明随叶面积的不断增大,光合作用实际量不断增大, A 点为光合作用面积的饱和点。

随叶面积的增大,光合作用强度不再增加,原因是有很多叶被遮挡,光照不足。

OB 段表明干物质量随光合作用增加而增加,而由于 A 点以后光合作用强度不再增加,但叶片随叶面积的不断增加,呼吸量(OC 段)不断增加,所以干物质积累量不断降低(BC 段)。

②应用分析:适当间苗、修剪,合理施肥、浇水,避免徒长。

封行过早,使中下层叶子所受的光照往往在光补偿点以下,白白消耗有机物,造成不必要的浪费。

(3)CO2 浓度① 原理分析:CO2 浓度影响光合作用的原理是通过影响暗反应阶段,制约C3 生成。

② 图像分析:图1 中A 点表示光合作用速率等于细胞呼吸速率时的CO2 浓度,即CO2 补偿点,而图 2 中的A′ 点表示进行光合作用所需CO2 的最低浓度;两图中的 B 和B′ 点都表示CO2 饱和点,两图都表示在一定范围内,光合作用速率随CO2 浓度增加而增大。

③应用分析:大气中的CO2 浓度处于OA ′段时,植物无法进行光合作用;在农业生产中可通过“正其行,通其风”和增施农家肥等措施增加CO2 浓度,提高光合作用速率。

光合作用曲线图分析大全

光合作用曲线图分析大全

有关光合作用的曲线图的分析1.光照强度对光合作用强度的影响(1)、纵坐标代表实际光合作用强度还是净光合作用强度?光合总产量和光合净产量常用的判定方法:①如果CO2吸收量出现负值,则纵坐标为光合净产量;②(光下)CO2吸收量、O2释放量和葡萄糖积累量都表示光合净产量;③光合作用CO2吸收量、光合作用O2释放量和葡萄糖制造量都表示光合总产量。

因此本图纵坐标代表的是净光合作用强度。

(2)、几个点、几个线段的生物学含义:A点:A点时光照强度为0,光合作用强度为0,植物只进行呼吸作用,不进行光合作用。

净光合强度为负值由此点获得的信息是:呼吸速率为OA的绝对值。

B点:实际光合作用强度等于呼吸作用强度(光合作用与呼吸作用处于动态衡),净光合作用强度净为0。

表现为既不释放CO2也不吸收CO2(此点为光合作用补偿点)C点:当光照强度增加到一定值时,光合作用强度达到最大值。

此值为纵坐标(此点为光合作用饱和点)N点:为光合作用强度达到最大值(CM)时所对应的最低的光照强度。

(先描述纵轴后横轴)AC段:在一定的光照强度范围内,随着光照强度的增加,光合作用强度逐渐增加AB段:此时光照较弱,实际光合作用强度小于呼吸作用强度。

净光合强度仍为负值。

此时呼吸作用产生的CO2除了用于光合作用外还有剩余。

表现为释放CO2。

BC段:实际光合作用强度大于呼吸作用强度,呼吸产生的CO2不够光合作用所用,表现为吸收CO2。

CD段:当光照强度超过一定值时,净光合作用强度已达到最大值,光合作用强度不随光照强度的增加而增加。

(3)、AC段、CD段限制光合作用强度的主要因素在纵坐标没有达到最大值之前,主要受横坐标的限制,当达到最大值之后,限制因素主要是其它因素了AC段:限制AC段光合作用强度的因素主要是光照强度。

CD段:限制CD段光合作用强度的因素主要是外因有:CO2浓度、温度等。

内因有:酶、叶绿体色素、C5(4)、什么光照强度,植物能正常生长?净光合作用强度>0,植物才能正常生长。

光合作用和细胞呼吸中典型曲线的分析 (3)

光合作用和细胞呼吸中典型曲线的分析 (3)

光合作用和细胞呼吸中典型曲线的分析【方法归纳】从以下两个角度综合分析光合作用和细胞呼吸的曲线(1)光合作用与细胞呼吸典型曲线上各点的分析:有关光合作用和细胞呼吸关系的变化曲线图中,最典型的就是夏季的一天中CO2的吸收和释放变化曲线图,如下图1所示。

曲线的各点含义及形成原因分析如下:a点:凌晨3时~4时,温度降低,细胞呼吸强度减弱,CO2释放减少;b点:上午6时左右,太阳出来,开始进行光合作用;bc段:光合作用强度小于细胞呼吸强度;c点:上午7时左右,光合作用强度等于细胞呼吸强度;ce段:光合作用强度大于细胞呼吸强度;d点:温度过高,部分气孔关闭,出现“午休”现象;e点:下午6时左右,光合作用强度等于细胞呼吸强度;ef段:光合作用强度小于细胞呼吸强度;fg段:太阳落山,光合作用停止,只进行细胞呼吸。

(2)有机物产生与消耗情况的分析(见下图2):①积累有机物时间段:ce段。

c点和e点时,光合作用强度与细胞呼吸强度相等,c~e由于光照强度的增强,光合作用强度大于细胞呼吸强度,故不断积累有机物。

②制造有机物时间段:bf段。

b点大约为早上6点,太阳升起,有光照,开始进行光合作用;f点大约为下午6点,太阳落山,无光,停止光合作用。

③消耗有机物时间段:Og段。

一天24小时,细胞的生命活动时刻在进行,即不停地消耗能量,故细胞呼吸始终进行。

④一天中有机物积累最多的时间点:e点。

白天,光合作用强度大于细胞呼吸强度,积累有机物;e点后,随着光照的减弱,细胞呼吸强度大于光合作用强度,故e点时积累的有机物最多。

⑤一昼夜有机物的净积累量表示:SP-SM-SN。

SP表示白天的净积累量,SM和SN表示夜晚的净消耗量,故SP-(SM+SN)为一昼夜的净积累量。

【易错提醒】(1)注意区分图1与典例图中纵坐标的含义,前者表示细胞吸收或释放二氧化碳的量,后者表示容器内二氧化碳浓度,两者变量不同。

(2)曲线的坡度表示反应速率的大小,坡度越大,表明光合作用或呼吸作用速率越大。

影响光合作用的曲线分析

影响光合作用的曲线分析


•例:下图是夏季晴朗的白天,某种绿色植物叶片光合 作用强度的曲线图。分析回答:
11..7~为1什0时么的7光~照1不0断时增的强,光所合以作光合用作强用度强度不不断断增增强强。? 2供2..应1减为2时少什左,么右所的以1温光2时度合很作左高用右强,的度蒸明腾光显作合减用作弱很。强用,强气度孔关明闭显,减二弱氧化?碳 33..14为~什17么时的1光4~照不1断7时减弱的,光所合以光作合用作强用强度度不不断断减下弱降。?
呼吸速率:指单位面积的叶片在单位时间内分解有 机物的速率,或用黑暗条件下释放的CO2量表示,是 植物呼吸作用的生理指标。
导 这里有几个关键的生物量你要搞清楚:
• 真光合速率:植物在光下实际合成有机物的速率
• 净光合速率:指光照下测定的CO2吸收速率或(氧 气释放速率)。也叫表观光合速率
• 1、真(总)光合速率=净光合速率+呼吸速率; 2、(光合作用)制造的有机物=合成的有机物=积累 的有机物+消耗的有机物(呼吸作用); 3、叶绿体固定的CO2=光合作用所需要的CO2=从 外界吸收的CO2+呼吸释放的CO2;单位为CO2量/单 位面积或单位时间=真光合速率
图1
图2
图3
图4
评 CO2







③C:光饱和点:光合速率最大时的光照强度。
C:光饱和点 主要受暗反应酶活性和CO2浓 度限制
C
净光合速率
0
CO2
B 光补偿点: 光照强度
真光合 速率
释 A 呼吸速率 主要受光反应产物的限制 放 ............ ...............................................................

有关光合作用的曲线图的分析

有关光合作用的曲线图的分析

有关光合作用(de)曲线图(de)分析1.光照强度对光合作用强度(de)影响(1)、纵坐标代表实际光合作用强度还是净光合作用强度光合总产量和光合净产量常用(de)判定方法:①如果CO2 吸收量出现负值,则纵坐标为光合净产量;②(光下)CO2 吸收量、O2释放量和葡萄糖积累量都表示光合净产量;③光合作用CO2 吸收量、光合作用O2释放量和葡萄糖制造量都表示光合总产量.因此本图纵坐标代表(de)是净光合作用强度.(2)、几个点、几个线段(de)生物学含义:A点:A点时光照强度为0,光合作用强度为0,植物只进行呼吸作用,不进行光合作用.净光合强度为负值由此点获得(de)信息是:呼吸速率为OA(de)绝对值.B点:实际光合作用强度等于呼吸作用强度(光合作用与呼吸作用处于动态衡),净光合作用强度净为0.表现为既不释放CO2也不吸收CO2(此点为光合作用补偿点)C点:当光照强度增加到一定值时,光合作用强度达到最大值.此值为纵坐标(此点为光合作用饱和点)N点:为光合作用强度达到最大值(CM)时所对应(de)最低(de)光照强度.(先描述纵轴后横轴)AC段:在一定(de)光照强度范围内,随着光照强度(de)增加,光合作用强度逐渐增加AB段:此时光照较弱,实际光合作用强度小于呼吸作用强度.净光合强度仍为负值.此时呼吸作用产生(de)CO2除了用于光合作用外还有剩余.表现为释放CO2.BC段:实际光合作用强度大于呼吸作用强度,呼吸产生(de)CO2不够光合作用所用,表现为吸收CO2.CD段:当光照强度超过一定值时,净光合作用强度已达到最大值,光合作用强度不随光照强度(de)增加而增加.(3)、AC段、CD段限制光合作用强度(de)主要因素在纵坐标没有达到最大值之前,主要受横坐标(de)限制,当达到最大值之后,限制因素主要是其它因素了AC段:限制AC段光合作用强度(de)因素主要是光照强度.CD段:限制CD段光合作用强度(de)因素主要是外因有:CO2浓度、温度等.内因有:酶、叶绿体色素、C5(4)、什么光照强度,植物能正常生长净光合作用强度> 0,植物才能正常生长.BC段(不包括b点)和CD段光合作用强度大于呼吸作用强度,所以白天光照强度大于B点,植物能正常生长.在一昼夜中,白天(de)光照强度需要满足白天(de)光合净产量 > 晚上(de)呼吸消耗量,植物才能正常生长.(5)、若该曲线是某阳生植物,那么阴生植物(de)相关曲线图如何为什么阴生植物(de)呼吸作用强度一般比阳生植物低,所以对应(de)A点一般上移.阴生植物叶绿素含量相对较多,且叶绿素a/叶绿素b(de)比值相对较小,叶绿素b(de)含量相对较多,在光照比较弱时,光合作用强度就达到最大,所以对应(de)C点左移.阴生植物在光照比较弱时,光合作用强度就等于呼吸作用强度,所以对应(de)B点左移.(6)、已知某植物光合作用和呼吸作用(de)最适温度分别是25℃和30℃,则温度由25℃上升到30℃时,对应(de)A点、B点、N点分别如何移动根据光合作用和呼吸作用(de)最适温度可知,温度由25℃上升到30℃时,光合作用减弱,呼吸作用增强,所以对应(de)A点下移.光照强度增强才能使光合作用强度等于呼吸作用强度,所以B点右移.由于最大光合作用强度减小了,制造(de)有机物减少了,所需要(de)光能也应该减少,所以N点应该左移.(7).若实验时将光照由白光改为蓝光(光照强度不变),则B点如何移动把白光改为蓝光(光照强度不变),相当于把其它颜色(de)光都替换为蓝光,植物全部能被吸收,则光合作用效率提高,但呼吸作用基本没有变,所以光照强度相对较弱时光合作用强度就等于呼吸作用强度,即b点左移,而A点不变.若把白光改为蓝光,过滤掉其它颜色(de)光(光照强度减弱),则光合作用效率减弱,对应b点右移.(8).若植物体缺Mg,则对应(de)了B点如何移动植物体缺Mg,叶绿素合成减少,光合作用效率减弱,但呼吸作用没有变,需要增加光照强度,光合作用强度才等于呼吸,所以B点右移(9)、A点、B点产生ATP(de)细胞结构是什么a点只进行呼吸作用,产生ATP(de)细胞结构是细胞质基质和线粒体.B点既进行光合作用,又进行呼吸作用,产生ATP(de)细胞结构是叶绿体基粒、细胞质基质和线粒体.(10)、处于A点、AB段、B点、BC段时,右图分别发生哪些过程A点:e f (前者是CO2 ,后者是O2)AB段:a b e f(a是CO2,b是O2)B点:a bBC段:a b c d(c是O2,d是CO2)(11)、C4植物光合作用(de)曲线怎么画在P点之前,不管是C3植物还是C4植物都随光照强度(de)增强光合作用强度不断增强,但达到各自(de)光饱和点后都不再增强,其限制因素主要是温度和CO2浓度.在Q点造成两曲线差异(de)原因主要是C4植物比C3植物光能利用率高,C3植物比C4植物更容易达到光饱和点.注意与CO2浓度对光合强度影响(de)区别:在同光照、较适宜、高浓度(de)CO2(de)情况下,C3植物(de)光合强度反而比C4植物高.(11)、光质对光合作用强度(de)影响(de)曲线怎么画开始时光合强度就不同,最后达到了相同,这说明与温度、CO2浓度没有关系,除了这两个因素和光强度外重复(de)因素只有光质,不同(de)光质影响光反应,因此最初光合强度就有差异,但随光强度(de)增强,最终都能达到光(de)饱和点.2.CO2浓度对光合作用强度(de)影响(1)曲线(一)①在一定范围内,光合作用速率随CO2浓度升高而加快,但达到一定浓度后,再增大CO2浓度,光合作用速率不再加快.② CO2补偿点:A点,外界CO2浓度很低时,绿色植物叶不能利用外界(de)CO2制造有机物,只有当植物达到CO2补偿点后才利用外界(de)CO2合成有机物.B点表示光合作用速率最大时(de)CO2浓度,即CO2饱和点,B点以后随着CO2浓度(de)升高,光合作用速率不再加快,此时限制光合作用速率(de)因素主要是光照强度. ③若CO 2浓度一定,光照强度减弱,A 点B 点移动趋势如下:光照强度减弱,要达到光合作用强度与呼吸作用强度相等,需较高浓度CO 2,故A 点右移.由于光照强度减弱,光反应减弱而产生(de)[H]及ATP 减少,影响了暗反应中CO 2(de)还原,故CO 2(de)固定减弱,所需CO 2浓度随之减少,B 点应左移.④若该曲线表示C 3植物,则C 4植物(de)A 、B 点移动趋势如下:由于C4植物能固定较低浓度(de)CO 2,故A 点左移,而光合作用速率最大时所需(de)CO 2浓度应降低,B 点左移,曲线如图示中(de)虚线.(2)曲线(二)a-b:CO 2太低,农作物消耗光合产物;b-c:随CO 2(de)浓度增加,光合作用强度增强;c-d:CO 2浓度再增加,光合作用强度保持不变;d-e:CO 2浓度超过一定限度,将引起原生质体中毒或气孔关闭,抑制光合作用.(3)曲线(三)由于C 4植物叶肉细胞中含有PEP 羧化酶,对CO 2(de)亲和力很强,可以把大气中含量很低(de)CO 2以C 4(de)形式固定下来,故C 4植物能利用较低(de)CO 2进行光合作用,CO 2(de)补偿点低,容易达到CO 2饱和点.而C 3植物(de)CO 2(de)补偿点高,不易达到CO 2饱和点.故在较低(de)CO 2浓度下(通常大气中(de)CO 2浓度很低,植株经常处于“饥饿状态”)C 4比C 3植物(de)光合作用强度强(即P点之前).一般来说,C 4植物由于“CO 2泵”(de)存在,CO 2补偿点和CO 2饱和点均低于C 3植物.3.温度对光合作用强度(de)影响:它主要通过影响暗反应中酶(de)催化效率来影响光合作用(de)速率.在一定温度范围内,随着温度(de)升高,光合速率随着增加,超过一定(de)温度,光合速率不但不增大,反而降低.因温度太高,酶(de)活性降低.此外温度过高,蒸腾供应减少,从而间接影响光合速率.作用过强,导致气孔关闭,CO2①若Ⅲ表示呼吸速率,则Ⅰ、Ⅱ分别表示实际光合速率和净光合速率,即净光合速率等于实际光合速率减去呼吸速率.②在一定(de)温度范围内,在正常(de)光照强度下,提高温度会促进光合作用(de)进行.但提高温度也会促进呼吸作用.如左图所示.所以植物净光合作用(de)最适温度不一定就是植物体内酶(de)最适温度.在20℃左右,植物中有机物(de)净积累量最大.4.水或矿质元素对光合作用强度(de)影响水是光合作用原料之一,同时也是代谢(de)必须介质,缺少时会使光合速率下降.矿质元素如:Mg是叶绿素(de)组成成分,N是光合作用有关酶(de)组成成分,P是ATP(de)组成成分,缺少也会影响光合速率.5.叶龄对光合作用强度(de)影响○1随幼叶不断生长,叶面积不断增大,叶内叶绿体不断增多,叶绿素含量不断增加,光合速率不断增加;○2壮叶时,叶面积、叶绿体都处于稳定状态,光合速率基本稳定;○3老叶时,随叶龄增加,叶内叶绿素被破坏,光合速率下降.5. 叶面指数对光合作用强度(de)影响OA段表明随叶面积(de)不断增大,光合作用实际量不断增大,A点为光合作用面积(de)饱和点,随叶面积(de)增大,光合作用不再增大,原因是有很多叶被遮挡在光补偿点以下.OB段干物质量随光合作用增加而增加,而由于A点以后光合作用量不再增加,所以干物质(de)量不断降低,如BD段.E点表示光合作用实际量与呼吸量相等,干物质量积累为零.植物(de)叶面积指数不能超过D点,超过植物将入不敷出,无法生活下去.6.多因素对光合作用(de)影响从图中可以解读以下信息:(1)解读图一曲线可知:光照强度较弱时,光合作用合成量相同,即在一定范围内增加(de)量均相等,当超过这一范围后,三条曲线增加(de)量就不相同,说明限制因素不是光照强度,而是CO2浓度和温度,即x1、x2、x3(de)差异是由于温度和CO2浓度影响了光合作用(de)暗反应所致.(2)图二,三条曲线开始不同,最后达到相同,这说明与温度、CO2浓度及光照强度均没有关系,除这些以外可重复(de)因素是光质,即y1、y2、y3(de)差异是由于光质影响了光合作用(de)光反应所致.(3)图三,三条曲线开始时不同,最后也不同,说明与CO2浓度、温度、光质均有关,这些因素导致光合作用光反应和暗反应均不同所致.(4)图四,P点之前,限制光合速率(de)因素是温度,随温度(de)升高,其光合速率不断提浓度.Q点后酶(de)活高.Q点时是酶(de)最适温度,要提高光合速率,只有提高光强或CO2性随温度降低而降低,其光合速率也随之降低.有关光合作用和细胞呼吸中曲线(de)拓展延伸有关光合作用和呼吸作用关系(de)变化曲线图中,最典型(de)就是夏季(de)一天中CO2吸收和释放变化曲线图,如图1所示:1.曲线(de)各点含义及形成原因分析a点:凌晨3时~4时,温度降低,呼吸作用减弱,CO2释放减少;b点:上午6时左右,太阳出来,开始进行光合作用;bc段:光合作用小于呼吸作用;c点:上午7时左右,光合作用等于呼吸作用;ce段:光合作用大于呼吸作用;d点:温度过高,部分气孔关闭,出现“午休”现象;e点:下午6时左右,光合作用等于呼吸作用;ef段:光合作用小于呼吸作用;fg段:太阳落山,停止光合作用,只进行呼吸作用.2.有关有机物情况(de)分析(见图2)(1)积累有机物时间段:ce段;(2)制造有机物时间段:bf段;(3)消耗有机物时间段:og段;(4)一天中有机物积累最多(de)时间点:e点;(5)一昼夜有机物(de)积累量表示:Sp-SM-SN.3.在相对密闭(de)环境中,一昼夜CO2含量(de)变化曲线图 (见图3)(1)如果N点低于M点,说明经过一昼夜,植物体内(de)有机物总量增加;(2)如果N点高于M点,说明经过一昼夜,植物体内(de)有机物总量减少;(3)如果N点等于M点,说明经过一昼夜,植物体内(de)有机物总量不变;(4)CO2含量最高点为c点,CO2含量最低点为e点.4.在相对密闭(de)环境下,一昼夜O2含量(de)变化曲线图(见图4)(1)如果N点低于M点,说明经过一昼夜,植物体内(de)有机物总量减少;(2)如果N点高于M点,说明经过一昼夜,植物体内(de)有机物总量增加;(3)如果N点等于M点,说明经过一昼夜,植物体内(de)有机物总量不变;(4)O2含量最高点为e点,O2含量最低点为c点.5.用线粒体和叶绿体表示两者关系图5中表示O2(de)是②③⑥;图中表示CO2(de)是①④⑤.6.植物叶片细胞内三碳化合物含量变化曲线图(见图7)AB时间段:夜晚无光,叶绿体中不产生ATP和NADPH,三碳化合物不能被还原,含量较高. BC时间段:随着光照逐渐增强,叶绿体中产生ATP和NADPH逐渐增加,三碳化合物不断被还原,含量逐渐降低.CD时间段:由于发生“午休”现象,部分气孔关闭,CO2进入减少,三碳化合物合成减少,含量最低.DE时间段:关闭(de)气孔逐渐张开,CO2进入增加,三碳化合物合成增加,含量增加.EF时间段:随着光照逐渐减弱,叶绿体中产生ATP和NADPH逐渐减少,三碳化合物被还消耗(de)越来越少,含量逐渐增加.FG时间段:夜晚无光,叶绿体中不产生ATP和NADPH,三碳化合物不能被还原,含量较高7.植物叶片细胞内五碳化合物含量变化曲线图(见图8)AB时间段:夜晚无光,叶绿体中不产生ATP和NADPH,三碳化合物不能被还原成五碳化合物,五碳化合物含量较低.BC时间段:随着光照逐渐增强,叶绿体中产生ATP和NADPH逐渐增加,三碳化合物不断被还原成五碳化合物,五碳化合物含量逐渐增加.CD时间段:由于发生“午休”现象,部分气孔关闭,CO2进入减少,五碳化合物固定合成三碳化合物减少,含量最高.DE时间段:关闭(de)气孔逐渐张开,CO2进入增加,五碳化合物固定生成三碳化合物合成增加,五碳化合物含量减少.EF时间段:随着光照逐渐减弱,叶绿体中产生ATP和NADPH逐渐减少,三碳化合物还原成五碳化合物越来越少,五碳化合物含量逐渐减少.FG时间段:夜晚无光,叶绿体中不产生ATP和NADPH,三碳化合物不能被还原成五碳化合物,五碳化合物含量较低.。

影响光合作用的曲线分析

影响光合作用的曲线分析

注意: (1)在相同光照条件下,随二氧化碳浓度 (或温度)升高,光合速率升高。 (2)在相同二氧化碳浓度(或温度)条件下,随光照增强,光合速率升高。 (3)起点光合速率不为零,是因为细胞呼吸释放二氧化碳或在较低温度条件下也能进行一定得光合作用?

发现规律
横坐标
图中甲、乙、丙分别表示几种环境因素对小麦光合作用强度的影响,除各图中所示因素外,其他因素均控制在小麦生长的适宜范围。请据图回答以下问题:

影响光合作用强弱的因素
2.外部因素
1.内部因素
光合速率:是衡量光合作用强弱的指标。其的大小可用单位时间、单位叶面积所吸收的CO2量或用释放的O2量表示,亦可用单位时间、单位叶面积所合成有机物(积累的干物质)量表示。
呼吸速率:指单位面积的叶片在单位时间内分解有机物的速率,或用黑暗条件下释放的CO2量表示,是植物呼吸作用的生理指标。
相等
24.5
减少

5.将某一绿色植物放置在密封的玻璃容器中,给予充足的光照时,容器内二氧化碳的含量每小时减少440mg;放在黑暗中的时候,容器内二氧化碳含量每小时增加88 mg 1)在上述光照条件下,这株植物每小时制造 mg葡萄糖
(2)在上述光照条件下,这株植物每小时积累 mg葡萄糖.
1.7~10时的光照不断增强,所以光合作用强度不断增强。
2.12时左右的温度很高,蒸腾作用很强,气孔关闭,二氧化碳供应减少,所以光合作用强度明显减弱。

t1 t2 t3
t4
温度
在生产上的应用
对光合作用的影响
外因
1.适时播种 2.温室栽培时,白天适当提高温度,晚上适当降温.

这里有几个关键的生物量你要搞清楚:

光合作用(曲线图分析20130307)

光合作用(曲线图分析20130307)

影响光合作用速率的因素曲线归类例1.(06年四川)将川芎植株的一叶片置于恒温的密闭小室,调节小室CO 2浓度,在适宜光照强度下测定叶片光合作用的强度(以CO 2的吸收速率表示),测定结果如下图。

下列相关叙述,正确的是:A .如果光照强度适当降低,a 点左移,b 点左移B .如果光照强度适当降低,a 点左移,b 点右移C .如果光照强度适当增强,a 点右移,b 点右移D .如果光照强度适当增强,a 点左移,b 点右移【解析】本题考查的CO 2浓度和光照强度对光合作用的影响,二者的变动都会影响光合作用的补偿点和最大光合作用强度。

本题涉及光合作用的CO 2浓度和光照强度两个基本条件。

假定光照强度降低,要达到补偿点a ,则需要更高的CO 2浓度,a 点应右移,A 、B 选项不正确;假定光照强度升高,CO 2利用率升高,要达到光补偿点a ,在CO 2浓度低一些的时候即可达到,a 点应左移,C 选项不正确,故D 项正确。

另外,光照强度升高,则需要更高浓度的CO 2才能达到最大光合作用强度,b 点应右移。

例2.右上图表示水稻光合作用强#与光照强度之间的关系。

曲线a 是在15°C 、C02浓度为0. 03%的环境中测定的结果,曲线b 是在B 点时改变某些条件后测定的结果。

下列分析不正确的是A. B点时刻,叶肉细胞与维管束鞘细胞中的叶绿体都能产生NADPHB .A点与B点相比,A点时的叶绿体中C3化合物被还原的速率较慢C. A点时刻,叶肉细胞中线粒体产生的CO2量可能多于叶绿体消耗的CO2量D. 曲线b与曲线a有明显差异的原因可能是B点以后改变了CO2浓度或温度例3.为探究不同条件对叶片中淀粉合成的影响,将某植物在黑暗中放置一段时间,耗尽叶片中的淀粉。

然后取生理状态一致的叶片,平均分成8组,实验处理如下表所示。

一段时间后,检测叶片中有无淀粉,回答问题:(1)光照条件下,组5叶片通过__________作用产生淀粉:叶肉细胞释放出的氧气来自于___________的光解。

影响光合作用的因素及曲线分析

影响光合作用的因素及曲线分析

一影响光合作用的环境因素及其在生产上的应用1.单因子因素1光照强度①原理分析:光照强度影响光合速率的原理是通过影响光反应阶段,制约ATP和H的产生,进而制约暗反应阶段;②图像分析:A点时只进行细胞呼吸;AB段随着光照强度的增强,光合作用强度也增强,但是仍然小于细胞呼吸强度;B点时代谢特点为光合作用强度等于细胞呼吸强度;BC段随着光照强度的增强,光合作用强度也不断增强;C点对应的光照强度为光饱和点,限制C点的环境因素可能有温度或二氧化碳浓度等;③应用分析:欲使植物正常生长,则必须使光照强度大于B点对应的光照强度;适当提高光照强度可增加大棚作物产量;2光照面积①图像分析:OA段表明随叶面积的不断增大,光合作用实际量不断增大,A点为光合作用面积的饱和点;随叶面积的增大,光合作用强度不再增加,原因是有很多叶被遮挡,光照不足;OB段表明干物质量随光合作用增加而增加,而由于A点以后光合作用强度不再增加,但叶片随叶面积的不断增加,呼吸量OC段不断增加,所以干物质积累量不断降低BC段;②应用分析:适当间苗、修剪,合理施肥、浇水,避免徒长;封行过早,使中下层叶子所受的光照往往在光补偿点以下,白白消耗有机物,造成不必要的浪费;3CO2浓度①原理分析:CO2浓度影响光合作用的原理是通过影响暗反应阶段,制约C3生成;②图像分析:图1中A点表示光合作用速率等于细胞呼吸速率时的CO2浓度,即CO2补偿点,而图2中的A′点表示进行光合作用所需CO2的最低浓度;两图中的B和B′点都表示CO2饱和点,两图都表示在一定范围内,光合作用速率随CO2浓度增加而增大;③应用分析:大气中的CO2浓度处于OA′段时,植物无法进行光合作用;在农业生产中可通过“正其行,通其风”和增施农家肥等措施增加CO2浓度,提高光合作用速率;4温度①原理分析:是通过影响酶活性进而影响光合作用;②图像分析:低温导致酶的活性降低,引起植物的光合作用速率降低,在一定范围内随着温度的升高酶活性升高进而引起光合速率也增强;温度过高会引起酶活性降低,植物光合速率降低;③应用分析:温室中白天调到光合作用最适温度,以提高光合作用速率;晚上适当降低温室的温度,以降低细胞呼吸,保证植物有机物积累;5必需矿质元素①图像分析:在一定浓度范围内,增大必需矿质元素的供应,可提高光合作用速率,但当超过一定浓度后,会因土壤溶液浓度过高而导致植物光合作用速率下降;②应用分析:在农业生产上,根据植物的需肥规律,适时、适量地增施肥料,可以提高作物的光能利用率;2.多因子因素1曲线分析:P点时,限制光合速率的因素应为横坐标所表示的因子,随其因子的不断加强,光合速率不断提高;当到Q点时,横坐标所表示的因子不再是影响光合速率的因素,要想提高光合速率,可采取适当提高图示中的其他因子的方法;2应用:温室栽培时,在一定光照强度下,白天适当提高温度,增加光合作用酶的活性,提高光合速率,也可同时充入适量的CO2进一步提高光合速率,当温度适宜时,要适当提高光照强度和CO2浓度以提高光合速率;易错警示光合作用影响因素中的2个易忽略点1易忽略温度改变对光合作用的影响;温度改变时,不管是光反应还是暗反应均会受影响,但主要影响暗反应,因为参与暗反应的酶的种类和数量都比参与光反应的多;2易忽略CO2浓度对光合作用的影响;CO2浓度很低时,光合作用不能进行;当CO2浓度大于某值时,光合作用才能进行;对于植物来说,也存在CO2的补偿点和饱和点,CO2浓度过大时,会抑制植物的呼吸作用,进而影响到光合作用;二外界环境变化对C3、C5的影响1.光照强度与光合速率的关系曲线图各点涵义光照强度与光合速率的关系曲线图如图1所示,a点光照强度为0,则此时植物只进行呼吸作用,该点表示该植物在该温度下的呼吸作用强度,而且整条曲线的呼吸作用强度不变,因此,在温度改变的情况下,a点的文职可能上移或下移,进一步影响b点和c点的位置;B点表示同一种子在同一时间内,光合作用吸收CO2与呼吸作用放出CO2量相等,该点称之为光补偿点,植物在光补偿点时,有机物形成和消耗相等,不能够积累于物质,而且夜间好要消耗于物质,因此,从全天来看,植物所需要的最低光照强度必须高于补偿点,才能使植物正常生长,一般情况,阳生植物的光补偿点高于阴生植物;C点光照强度不再为光合作用强度的限制因素,即光合作用不再随着光照强度增大而增大,此点昌盛的原因是电子传递反应,酶活性等成为限制因子,CO2代谢与吸收光能不同步,因此,通常认为此时光合作用强度被CO2的浓度限制,植物的饱和光强与品种、叶片厚度、单位叶面积、叶绿素含量多少等有关,大体上,阳生植物叶片饱和和光强为360—或更高,阴生植物的饱和光强为90—180mol m-2s-1,上述饱和光强的数值是指单叶而言,对群体则不适用,因为大田作物群体对光能利用与单株叶片不同,群体枝叶繁茂,当外部光照很强,达到单叶饱和光强以上时,而群体内部的光照强度仍在饱和强度以下,中、下层叶片就比较充分利用全体中的透射光和反射光,群体对光能利用更充分,饱和光强就会上升,因此,整个曲线图只能对单株叶片而言,不对整株;2.曲线各点移动的分析温度如图1所示,如升高温度,但温度对光合作用和呼吸作用而言,都还在最适温度以下,则有,升温,呼吸作用加强,且强度远大于光合作用,a点向下移动,b点向右移动,需要较强光照强度才能产生与呼吸作用消耗量相当的有机物,c点则向右上方移动,温度升高,光反应与暗反应的酶活性都升高,则可利用更强的光照;另一种升温对图象各点移动的影响,则是光合作用与呼吸作用最适温度不同,而且升高温度,会使其中之一超过最适温度如下题:例1.若已知某植物光合作用和呼吸作用的最适温度分别为25和30,如图曲线表示该植物在25时光合作用速率与光照强度的关系,若将温度提高到30的条件下原光照强度和CO2浓度不变,理论上分析曲线C、D点位置如何变化解析:该类题型与前一类题型有一个明显不同之处,光合作用与呼吸作用最适温度不同,该题中温度由25升高到30,呼吸速率是增大,达到最适温度,而光合作用却是下降,超过最适温度,因而有,a点因呼吸作用加强而往下移,c点为光补偿点,往右移有两个方面的原因,一方面是呼吸作用加强,需较强的黄找强度才能产生呼吸作用消耗量相当的有机物,另一方面的原因是光合速率下降,产上有机物速率也下降,也需较强的光照强度才能产生与原来相等的有机物量;d点则因温度超过最适温度,酶活性下降,而往下移;答案:c点往右移 d点往下移如图2中虚线所示2.2 CO2浓度CO2浓度也是影响光合作用的重要因素之一,CO2浓度对光强与光合作用速率关系曲线图的影响,一般认为是在CO2浓度,不影响呼吸作用的前提下进行的,CO2浓度与光合作用速率的关系曲线图如图3所示,从该图可知,一定范围内提高CO2浓度,可以促使光合作用,因此,在一定范围内提高CO2浓度,光合作用速率与光照强度关系曲线图,图中各点位置应如下图4虚线所示:a点:不移动;因为CO2A浓度的适当提升,不会抑止呼吸作用b点:不移动;b点限制因子是光照强度,升高CO2浓度不影响该点c点:右上方移动;C点光饱和点,其限制因子为CO2浓度或湿度,适当提高CO2浓度,可促进植物利用更高光强的生物活动2.3阴生和阳生阴生植物,顾名思义就是指生活需要较低光照强度的植物;阳生植物,则反之,原因不论是表示阴生植物还是阳生植物,改变后,其各点都会移动,其各点移动情况如图5所示:总之,光照强度与光合作用速率的关系曲线图中各点如何移动,这一类的题其解答关键之处,在于理解各点的涵义并能分析各点产生的原因及其主要限制因素,然后,在此基础上进行分析各点的位置如何变动;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光合作用曲线的拟合分析方法
光合速率对光强的响应

光合作用(Photo)对光强变化(PPFD)的响应过
程大体分为三个阶段(许大全,2002): 1、光量子密度小于200μmol-1m-2s-1,Photo与PPFD 呈线性关系 2、Photo随PPFD升高而曲线式增高 3、Photo不再随PPFD的升高而增高,即光饱合阶段
Photo 20 14 10 6 4 1 28 35 38 41 42.2 Ci 208 128 99 70 60 43 269 432 614 993 1380
初始羧化效率和光呼吸速率拟合
利用Ci≤200
μmol-1mol的数 据进行线性拟 合(许大全, 2002)
线性拟合结果

得出初始羧化效率为0.112 光呼吸速率为2.18 μmolCO2-1m-2s-1



光曲线拟合方法

关于光响应曲线的拟合方法有许多种(Baly,1935;
Thornley, 1976; Farquhar et al. 1980; Leakey et al. 2006)

Michaelis-Menten模型

直角双曲线模型(Rectangular hyperbola
equation)
expression中输入非直角双曲线模型理论公
式,在Nonlinear regression模块中的
Parameters子对话框中设置参数及其初始值
案例
Q 0 25 50 100 150 200 300 400 600 800 1000 1200 1400 1600 2000 Photo -9 -5 -2 4.1 5.4 6.4 11 15 21 24 23.9 25.9 25.3 25.3 22.9
拟合参数值
光合参数
Amax Rday k φ
非直角双曲线模型拟合值
35.06 7.145 0.727 0.077
LSP
LCP
543.32
88.06
光合速率对CO2浓度的响应

研究植物净光合速率和CO2之间的关系
参数: CO2饱和点:利用高CO2浓度的能力 光合能力:叶片的光合电子传递和磷酸化的活性 CO2补偿点:叶光合同化作用与呼吸消耗相当时的 CO2浓度 羧化效率: Rubisco量的多少与酶活性的大小 光下呼吸


A=0.112Ci-2.18 (Ci≤200 μmol-1mol)
分别代入Photo为0和63.386μmolCO2-1m-2s-1

计算得到CCP和LSP为19.46和585.41 μmol1m-2s-1
拟合参数值
光合参数
Amax Rphoto ⍺ LSP LCP
非直角双曲线模型拟合值
63.386 2.18 0.112 585.41 19.46
利用SPSS拟合

Nonlinear regression模块
Analyze Regression Nonlinear


Photo变量选入Dependent中,在Model
expression中输入非直角双曲线模型理论公
式,在Nonlinear regression模块中的
Parameters子对话框中设置参数及其初始值

K、Amax、 φ 、Rday初始值分别为0.5、30、 0.05、2(刘宇峰等,2005)

Photo=0.077*PPFD-6.781(PPFD≤200
μmol-1m-2s-1 )

分别代入Photo为0和35.055μmolCO2-1m-2s-1 计算得到LCP和LSP为88.06和543.32 μmol1m-2s-1
拟合指标



φ :表观量子效率 Amax:最大净光合速率 Rday:暗呼吸速率 LSP:光饱合点 LCP:光补偿点 K:光响应曲线曲角
利用SPSS拟合

Nonlinear regression模块
Analyze Regression Nonlinear


Photo变量选入Dependent中,在Model

非直角双曲线模型(non- Rectangular
hyperbola equation )
非直角双曲线模型

光饱合点(LSP)和光补偿点 (LCP)的拟合方法
Photo= φ *PPFD-Rday(PPFD≤200 μmol-1m-2s-1 )
当Photo为0时的PPFD则为光补偿点(LCP) 当Photo为Amax时的PPFD则为光饱合点(LSP)


直角偿点 (CCP)的拟合方法
Photo= ⍺ *Ci-Rphoto(Ci≤200 μmol-1mol)
当Photo为0时的Ci则为光补偿点(CCP) 当Photo为Amax时的Ci则为光饱合点(CSP)
拟合指标



⍺ :初始羧化效率 Amax:最大净光合速率 Rp:光呼吸速率 CSP:CO2饱合点 CCP:CO2补偿点
相关文档
最新文档