七年级数学下册期末复习(二) 实数
最新人教版部编版七年级数学下册全册 期末知识点总结复习 专题训练期末复习(二) 实数
![最新人教版部编版七年级数学下册全册 期末知识点总结复习 专题训练期末复习(二) 实数](https://img.taocdn.com/s3/m/8c626164fad6195f302ba609.png)
A.6 个 C.4 个
B.5 个 D.3 个
6.(2019·黔东南期末)估计-1+ 10的值在( A )
A.2 到 3 之间
B.3 到 4 之间
C.-2 到-3 之间
D.-3 到-4 之间
7.在 x,3 x, x2+1, (-x)2中,一定有意义的有( B )
A.4 个
B.3 个
C.2 个
D.1 个
实数与数轴上的点一一对应.求数轴上两点间的距离就是用右边 的数减去左边的数;求较小的数就用较大的数减去两点间的距离;求 较大的数就用较小的数加上两点间的距离.
4.实数 a,b,c 在数轴上对应的点如图所示,下列式子中,正确 的是( D )
A.ac>bc C.-a<-b<c
B.a-b=a-b D.-a-c>-b-c
3 B.
-217=-13
D.3 -106=-102
4.(2018·遵义桐梓县月考)π,272,- 3,3 343,3.1416,0.3·中,
无理数的个数是( B )
A.1 个
B.2 个
C.3 个
D.4 个
5.如图,数轴上 A,B 两点表示的数分别为 2和 5.1,则 A,B 两点之间表示整数的点共有( C )
解:-0.6.
重难点 2 实数与数轴 【例 2】 在如图所示的数轴上,AB=AC,A,B 两点对应的实 数分别是 3和-1,则点 C 所对应的实数是( D )
A.1+ 3 C.2 3-1
B.2+ 3 D.2 3+1
【思路点拨】 由题意,得 AB= 3-(-1)= 3+1,所以 AC= 3 +1.所以点 C 对应的实数为 3+( 3+1),计算即可.
14.(2018·广东)一个正数的平方根是 x+1 和 x-5,则 x= 2 .
七年级下册实数知识点复习
![七年级下册实数知识点复习](https://img.taocdn.com/s3/m/0c72b4d218e8b8f67c1cfad6195f312b3069eb7c.png)
七年级下册实数知识点复习本文主要对七年级下册实数知识点进行复习总结,旨在帮助同学们更好地掌握这部分知识,取得更好的学习成果。
一、实数的概念及表示方法实数指在数轴上能够表示的所有数,包括整数、分数以及无理数等。
我们可以用数轴或者数线来表示实数,也可以用分数形式表示。
二、实数的比较对于任意两个实数a、b(a≠b),我们可以用大小关系符号("<"、">"、"≤"、"≥")进行比较。
具体规则如下:1. 如果a<b,则称a小于b;2. 如果a>b,则称a大于b;3. 如果a≤b,则称a小于等于b;4. 如果a≥b,则称a大于等于b。
三、有理数的概念及性质有理数指可以写成两个整数之比(其中分母不为零)的数,包括正整数、负整数、零和分数等。
有理数有以下性质:1. 有理数可以用分数形式表示;2. 有理数的加、减、乘、除运算仍是有理数;3. 有理数的大小关系可以通过分数的通分和比较分子的大小得出。
四、无理数的概念及性质无理数指不能写成两个整数之比的数,例如根号2、圆周率等。
无理数没有精确的表示方法,通常采用近似值来表示。
五、实数的运算实数的加、减、乘、除运算是我们常见的数学运算。
对于任意两个实数a、b,有以下计算公式:1. a+b=b+a2. a-b≠b-a3. ab=ba4. 如果b≠0,则a÷b≠b÷a六、实数的绝对值实数a的绝对值定义为:|a|=a(a≥0)或者|a|=-a(a<0)。
实数的绝对值具有以下性质:1. |a|≥0,|a|=0当且仅当a=0;2. |ab|=|a|×|b|;3. |a+b|≤|a|+|b|。
七、实数的乘方和开方运算实数的乘方运算指将一个数a乘以若干个a的积,例如a³表示a乘以a的平方。
实数的开方运算指求一个数的n次方根,例如√a 表示a的平方根。
实数的乘方和开方运算具有以下性质:1. 如果a>0,则a的乘方仍然是正数,如果a<0,则a的乘方是负数或者复数;2. 如果a≥0,则a的平方根存在且唯一,如果a<0,则a的平方根不存在;3. 满足a≥0,b>0,且n为正整数,则√(ab)=√a×√b,(a+b)²=a²+2ab+b²。
七年级下实数复习
![七年级下实数复习](https://img.taocdn.com/s3/m/f1aa9bc81eb91a37f0115c89.png)
实数复习一、知识结构乘方−−−−→←互为逆运算开方⎪⎩⎪⎨⎧−−→−−−→−立方根平方根开立方开平方 实数无理数有理数→⎭⎬⎫实数知识点:20200002233..无理数的表示算术平方根定义如果一个非负数的平方等于,即那么这个非负数就叫做的算术平方根,记为,算术平方根为非负数平方根正数的平方根有个,它们互为相反数的平方根是负数没有平方根定义:如果一个数的平方等于,即,那么这个数就叫做的平方根,记为立方根正数的立方根是正数负数的立方根是负数的立方根是定义:如果一个数的立方等于,即,那么这个数就叫做的立方根,记为x a x ax a a a a x a a a x a x a x a a =≥⎧⎨⎪⎪⎩⎪⎪=±⎧⎨⎪⎪⎩⎪⎪=⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪30.实数及其相关概念概念有理数和无理数统称实数分类有理数无理数或正数负数绝对值、相反数、倒数的意义同有理数实数与数轴上的点是一一对应实数的运算法则、运算规律与有理数的运算法则运算规律相同。
⎧⎨⎪⎩⎪⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪1.两个实数大小的比较的常用方法有: ①同次根式下比较被开方数法 ②作差比较法 ③作商比较法 ④平方法2、若3,b a b ++a ,则的值为( ) A 、0 B 、1 C 、-1 D 、2五、立方根的定义1.若64611)23(3=-+x ,则x 等于( ).2.如果一个实数的平方根与它的立方根相等,则这个数是( ) A .0 B .正实数 C .0和1 D .1 3.已知2a-1的平方根是±3,3a+2b+4的立方根是3,求a+b 的平方根.4.已知:x-2的平方根是±2,2x+y+7的立方根是3,求x 2+y 2的算术平方根. 5.已知13--+=n m m p 是3+m 的算术平方根,3422+--=n m n q 是2-n 的立方根,试求q p -6. (规律)______00525.0,738.125.533=-=1、若y x ,为实数,且833+-+-=x x y ,求y x 3+的立方根2、计算:=-+-+-2112x x x若x ,y 都是实数,且42112=+-+-y x x ,则xy 的值( )。
七年级下册实数知识点总结
![七年级下册实数知识点总结](https://img.taocdn.com/s3/m/76d6dde1d05abe23482fb4daa58da0116c171fde.png)
七年级下册实数知识点总结实数是数学中的一个重要概念,它描述了所有可能存在的数。
实数包含了所有正数、负数和0。
本文将对七年级下册实数知识点进行总结,分别包括实数的定义、实数的分类、小数的位数与精度、绝对值、数轴、交集和并集等方面。
一、实数的定义实数是指所有可能存在的数,包括正数、负数和0,同时也包括全部的分数、无理数和代数数。
在实数中,每一个数都可以表示为十进制小数,也都能在数轴上表示出来。
二、实数的分类实数可以分为有理数和无理数两大类。
其中,有理数可以表示成两个整数之间的比例,包括正整数、负整数、分数和0;无理数则是不能表示成两个整数之间的比例,主要包括无限不循环小数和代数数。
三、小数的位数与精度小数是实数的一种常见表现形式,它是十进制数在小数点右边的数字,可以表示任意大小的实数。
小数的位数与精度是小数的重要概念。
位数指小数点后面的数字位数,而精度则是指小数的表示精度,直接影响到数值的精度,越高的精度会使得数值更加准确。
四、绝对值绝对值是一个数和0的距离,它与原始数的正负性无关。
对于任何实数a,其绝对值都是一个非负数,一般用两个竖杠表示,即|a|。
五、数轴数轴是一条直线,用于表示所有实数。
数轴上的点与实数一一对应,比如,数轴上1和-1对应的分别是正1和负1这两个数。
数轴上的点按照大小顺序排列,可以帮助我们更好的理解实数之间的关系。
六、交集和并集在集合中,交集指的是两个集合中共有的元素构成的新集合,而并集则是两个集合中所有元素组成的集合。
在实数中,交集和并集的概念同样也适用,可以通过数轴上的区间表示。
以上便是七年级下册实数知识点的总结,希望能够帮助各位同学更好地理解实数的概念和分类,为今后的数学学习打下良好的基础。
七年级下册实数知识点总结及常见问题
![七年级下册实数知识点总结及常见问题](https://img.taocdn.com/s3/m/3952f9b2690203d8ce2f0066f5335a8102d266a1.png)
七年级下册实数知识点总结及常见问题一、知识点总结1. 实数的定义:实数是指有理数和无理数的总称。
有理数包括整数、分数和小数,而无理数指不能表示为有理数的数。
2. 实数的分类:- 正数:大于零的实数,可以表示为有限小数或无限循环小数。
- 负数:小于零的实数,可以表示为有限小数或无限循环小数。
- 零:不大于零也不小于零的实数,可以表示为有限小数。
3. 实数的比较:可以利用大小关系符号(>、<、≥、≤、=)来比较两个实数的大小。
4. 实数的运算:- 加法:实数的加法满足交换律和结合律,可以利用数轴理解实数的加法。
- 减法:实数的减法可以转化为加法运算,即a - b = a + (-b)。
- 乘法:实数的乘法满足交换律和结合律,可以利用数轴理解实数的乘法。
- 除法:实数的除法可以转化为乘法运算,即a ÷b = a ×(1/b)。
5. 实数的绝对值:实数a的绝对值是其到零点的距离,表示为|a|。
非负实数的绝对值即为其本身,而负数的绝对值为其相反数。
6. 实数的分数形式和小数形式相互转化:分数形式可以转化为小数形式,小数形式也可以转化为分数形式。
二、常见问题1. 如何判断一个实数是正数、负数还是零?- 如果一个实数大于零,则它是正数。
- 如果一个实数小于零,则它是负数。
- 如果一个实数等于零,则它是零。
2. 实数的加法和减法有哪些特点?- 加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。
- 减法可以转化为加法,即a - b = a + (-b)。
3. 实数的乘法和除法有哪些特点?- 乘法满足交换律和结合律,即a × b = b × a,(a × b) × c = a ×(b × c)。
- 除法可以转化为乘法,即a ÷ b = a × (1/b)。
七年级下册数学实数知识点归纳
![七年级下册数学实数知识点归纳](https://img.taocdn.com/s3/m/8c650f2f0a4e767f5acfa1c7aa00b52acfc79c30.png)
七年级下册数学实数知识点归纳数学是一门重要的学科,它伴随着我们的成长与发展。
在学习数学的过程中,实数是我们必须掌握的基础知识,因为实数在日常生活中得到广泛的应用。
本文着重介绍了七年级下册数学中实数的相关知识点。
一、实数的概念实数是指所有的有理数和无理数的总和,它包括了正数、负数和零。
实数构成了数轴上的所有点,在数学上称为实数线,它是我们熟知的数学概念之一。
二、实数的分类实数可以分为有理数和无理数。
1. 有理数:有理数是能用两个整数的比表示的数,包括正整数、负整数、零和分数,如1/2,3,-4等。
2. 无理数:无理数是不能表示为整数比值的实数,如√2,π等。
三、实数的运算实数的运算包括加法、减法、乘法和除法四种基本运算。
1. 加法运算两个实数相加就是把它们相应位置上的数合在一起,得到一个新的数。
例如2+3=5。
2. 减法运算两个实数相减就是在数轴上将它们所处的位置之间的距离相减得到新数。
例如6-2=4。
3. 乘法运算两个实数相乘就是将它们对应位置上的数相乘,得到一个新的数。
例如2×3=6。
4. 除法运算两个实数相除就是将它们对应位置上的数相除,得到一个新的数。
例如8 ÷ 4=2。
四、实数的性质实数具有很多特殊的性质,包括:1. 交换律实数加法和乘法都满足交换律,即a + b = b + a,a × b = b × a。
2. 结合律实数加法和乘法都满足结合律,即(a + b) + c = a + (b + c),(a ×b) × c = a × (b × c)。
3. 分配律乘法对加法有分配律,即a × (b + c) = a × b + a × c。
4. 加法与乘法的逆元素对于实数a,存在它的相反数-b,使得a + (-b) = 0,也称-a为a 的相反数。
对于非零实数a,存在它的倒数1/a,使得a × 1/a = 1,也称1/a为a的倒数。
七年级下册实数知识点汇总
![七年级下册实数知识点汇总](https://img.taocdn.com/s3/m/92859f3c91c69ec3d5bbfd0a79563c1ec5dad720.png)
七年级下册实数知识点汇总本文将为大家汇总七年级下册实数的知识点,内容包括实数的定义、有理数、无理数、实数的基本性质以及实数的应用等。
一、实数的定义实数是数学中最为基础的概念之一,它是所有数字的总称,不仅包括整数、分数,还包括无限不循环小数和无限循环小数。
实数集通常用符号R来表示,其定义如下:R={x | x是一个实数}其中,符号|表示“满足以下条件”。
二、有理数有理数是指可以表示为两个整数之比的数,包括正整数、负整数、正分数和负分数。
有理数的特点是可以化为分数的形式,并且在数轴上可以用有理数点表示。
关于有理数还有以下几个知识点:1.有理数的加减乘除运算有理数的加减乘除运算与整数的运算类似,需要注意符号的变化和约分化简。
2.有理数的绝对值有理数的绝对值表示该数距离0的距离,可以用以下公式表示:|x|=x(x≥0),|x|=-x(x<0)。
3.有理数的大小比较当两个有理数相等时,它们大小相等;当它们符号相同时,绝对值大的数较大;当它们符号不同时,正数比负数大。
三、无理数无理数是指不能表示为两个整数之比的数,一般用根号表示。
无理数的表示方法有以下两种:1.小数表示法无理数可以用无限不循环小数表示,如√2=1.41421356……。
2.代数式表示法无理数可以用代数式表示,如π。
四、实数的基本性质实数具有以下几条基本性质:1.闭合性实数集是对四则运算封闭的,即两个实数进行四则运算后得到的仍然是一个实数。
2.结合律、交换律、分配律实数的四则运算具有结合律、交换律和分配律。
3.唯一性任何一个实数都有唯一的相反数和倒数,例如-5的相反数为5,5的倒数为1/5。
4.比较性实数之间可以进行大小比较,且大小关系具有传递性。
五、实数的应用实数在日常生活和科学技术中有广泛应用,例如:1.金融方面,股票、汇率等都是实数。
2.物理方面,速度、力、功等物理量都是实数。
3.几何方面,三角函数中的正弦、余弦、正切等都是实数。
七年级下册数学实数试卷及答案(人教版) (二)解析
![七年级下册数学实数试卷及答案(人教版) (二)解析](https://img.taocdn.com/s3/m/e5dfcf340a4c2e3f5727a5e9856a561252d32193.png)
一、选择题1.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是( )A .M N <B .M N >C .M ND .M N ≥2.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( ) A .132B .146C .161D .6663.已知边长为a 的正方形面积为8,则下列关于a 的说法中,错误的是( ) A .a 是无理数B .a 是8的算术平方根C .a 满足不等式组2030a a ->⎧⎨-<⎩D .a 的值不能在数轴表示4.如图,数轴上点P 表示的数可能是( )A .2B .38C .10D .55.已知T 1=22119311242++==,T 2=2211497123366++==,T 3=22111=34++21313()1212=,⋯,T n=22111(1)n n +++,其中n 为正整数.设S n =T 1+T 2+T 3+⋯+T n ,则S 2021值是( ) A .202120212022B .202120222022C .120212021D .1202220216.数轴上A ,B ,C ,D 四点中,两点之间的距离最接近于6的是( )A .点C 和点DB .点B 和点C C .点A 和点CD .点A 和点B 7.193的值应在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间8.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( ) A .135B .220C .345D .4079.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;164±,其中正确的个数有( ) A .0个 B .1个C .2个D .3个10.现定义一种新运算“*”,规定a *b =ab +a -b ,如1*3=1×3+1-3,则(-2*5)*6等于( )A .120B .125C .-120D .-125二、填空题11.阅读下列解题过程: 计算:232425122222++++++ 解:设232425122222S =++++++① 则232526222222S =+++++②由②-①得,2621S =-运用所学到的方法计算:233015555++++⋯⋯+=______________.12.对于任意有理数a ,b ,规定一种新的运算a ⊙b =a (a +b )﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____13.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________.14.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.15.定义一种新运算a b ※,其规则是:当a b >时,2a b a b =-※,当a b =时,a b a b =+※,当a b <时,2a b b a =-※,若()21x -=※,则x =____________. 16.将1,2,3,6按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,如(5,4)表示的数是2(即第5排从左向右第4个数),那么(2021,1011)所表示的数是 ___.17.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2,则圆与数轴的公共点到原点的距离最远时,该点所表示的数是_______.18.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是_____.若点B 表示 3.14-,则点B 在点A 的______边(填“左”或“右”).19.已知M 是满足不等式a <N M N +的平方根为__________.20.规定:用符号[x ]表示一个不大于实数x 的最大整数,例如:[3.69]=3,=2,[﹣2.56]=﹣3,[=﹣2.按这个规定,[1]=_____.三、解答题21.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C ); ②从A 、B 类数中任取一数,则它们的和属于 类(填A ,B 或C );③从A 类数中任意取出8个数,从B 类数中任意取出9个数,从C 类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号). ①2m n +属于C 类;②m n -属于A 类;③m ,n 属于同一类.22.对于实数a ,我们规定:用符号为a 的根整数,例如:3=,=3.(1)仿照以上方法计算:=______;=_____.(2)若1=,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次3=→=1,这时候结果为1.(3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____. 23.阅读下面的文字,解答问题.对于实数a ,我们规定:用符号[a ]表示不大于a 的最大整数;用{a }表示a 减去[a ]所得的差.例如:=1,[2.2]=2,1,{2.2}=2.2﹣2=0.2.(1)仿照以上方法计算:]= {5= ;(2)若]=1,写出所有满足题意的整数x 的值: .(3)已知y 0是一个不大于280的非负数,且满足}=0.我们规定:y 1=],y 2=,y 3=],…,以此类推,直到y n 第一次等于1时停止计算.当y 0是符合条件的所有数中的最大数时,此时y 0= ,n = .24.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:<<,①31000100==,又1000593191000000∴,∴能确定59319的立方根是个两位数.10100②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9.③如果划去59319后面的三位319得到数59,<<,可得304034<<,由此能确定59319的立方根的十位数是3因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.①它的立方根是_______位数.②它的立方根的个位数是_______.③它的立方根的十位数是__________.④195112的立方根是________.(2)请直接填写....结果:=________.=________.25.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:<<______位(1)由33101000,1001000000==,因为1000327681000000数;(2)由32768的个位上的数是8________,划去327683=27,4=64后面的三位数768得到32,因为33_____________-分别是两个数的立方,仿照上面的计算过程,请计算:(3)已知13824和110592________=26.(阅读材料)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:<<,第一步:∵10=100,1000593191000000∴<<.10100∴能确定59319的立方根是个两位数.第二步:∵59319的个位数是9,39729= ∴能确定59319的立方根的个位数是9.第三步:如果划去59319后面的三位319得到数59, 而333275964<<,则33594<<,可得3305931940<<, 由此能确定59319的立方根的十位数是3,因此59319的立方根是39. (解答问题)根据上面材料,解答下面的问题 (1)求110592的立方根,写出步骤. (2)填空:321952=__________.27.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法. (1)图2中A 、B 两点表示的数分别为___________,____________;(2)请你参照上面的方法:①把图3中51⨯的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长a =___________.(注:小正方形边长都为1,拼接不重叠也无空隙)②在①的基础上,参照图2的画法,在数轴上分别用点M 、N 表示数a 以及3a -.(图中标出必要线段的长)28.阅读下面的文字,解答问题:2是无理数,而无理数是无限不循环小数,2的小数部分我们不可能全部写出来,而12<2212.请解答下列问题:21_______,小数部分是_________;(2)7的小数部分为15a ,b ,求7a b +(3)已知:100110x y +=+,其中x 是整数,且01y <<,求11024x y -的平方根.29.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<______位数;(2)由32768的个位上的数是8________,划去32768后面的三位数768得到32,因为333=27,4=64_____________(3)已知13824和110592-分别是两个数的立方,仿照上面的计算过程,请计算:________=30.规定两数a ,b 之间的一种运算,记作(a ,b ):如果c a b =,那么(a ,b )=c . 例如:因为23=8,所以(2,8)=3. (1)根据上述规定,填空:(3,27)=_______,(5,1)=_______,(2, 14)=_______.(2)小明在研究这种运算时发现一个现象:(3n ,4n )=(3,4)小明给出了如下的证明:设(3n ,4n )=x ,则(3n )x =4n ,即(3x )n =4n 所以3x =4,即(3,4)=x , 所以(3n ,4n )=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由:(4,5)+(4,6)=(4,30)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 设122018p x x x =+++,232018q x x x =++,然后求出M -N 的值,再与0进行比较即可.【详解】解:根据题意,设122018p x x x =+++,232018q x x x =++,∴1p q x -=, ∴()()12201823201920192019()M x x x x x x p q x pq p x =++++++=•+=+•;()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•;∴20192019()M N pq p x pq q x -=+•-+•=2019()x p q •- =201910x x •>; ∴M N >; 故选:B. 【点睛】本题考查了比较实数的大小,以及数字规律性问题,解题的关键是熟练掌握作差法比较大小.2.B解析:B 【详解】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案. 详解:1.52=2.25,可得出有2个1; }2.52=6.25,可得出有4个2; 3.52=12.25,可得出有6个3; 4.52=20.25,可得出有8个4; 5.52=30.25,可得出有10个5; 则剩余6个数全为6.故=1×2+2×4+3×6+4×8+5×10+6×6=146. 故选B.点睛本题考查了估算无理数的大小.3.D解析:D 【分析】根据题意求得a ,根据无理数的定义,算术平方根的定义,无理数的估算,实数与数轴一一对应逐项分析判断即可 【详解】解:根据题意,28a =,则a =A.a 是无理数,故该选项正确,不符合题意; B. a 是8的算术平方根,故该选项正确,不符合题意;C.48<23<,则a 满足不等式组2030a a ->⎧⎨-<⎩, 故该选项正确,不符合题意;D. a 的值能在数轴表示,故该选项不正确,符合题意; 故选D 【点睛】本题考查了无理数的定义,算术平方根的定义,无理数的估算,实数与数轴一一对应,是解题的关键.无理数的定义:“无限不循环的小数是无理数”, 平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根.4.D解析:D 【分析】先对四个选项中的无理数进行估算,再根据P 点的位置即可得出结果. 【详解】解:∵12,3<4,23, ∴根据点P 在数轴上的位置可知:点P故选D . 【点睛】本题主要考查了无理数的估算,能够正确估算出无理数的范围是解决本题的关键.5.A解析:A 【分析】根据数字间的规律探索列式计算 【详解】解:由题意可得:T 1312+1=212⨯⨯,T 2723+1=623⨯⨯,T 31334+1=1234⨯⨯∴T ()()1+11n n n n ++ ∴T 2021=20212022+120212022⨯⨯∴S 2021=T 1+T 2+T 3+⋯+T 2021=371320212022+1+++...261220212022⨯+⨯ =11111++1++1++...1+261220212022+⨯=11112021++++ (261220212022)=11112021++++...+12233420212022⨯⨯⨯⨯ =11111112021+1++...+2233420212022⎛⎫-+--- ⎪⎝⎭ =12021+12022⎛⎫- ⎪⎝⎭=202120212022故选:A.【点睛】本题考查实数数字类的规律探索,探索规律,准确计算是解题关键.6.A解析:A【分析】的范围,结合数轴可得答案.【详解】解:∵4<6<9,∴2<3,∴的是点C和点D.故选:A.【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.7.C解析:C【分析】先根据19位于两个相邻平方数16和25【详解】解:由于16<19<25,所以45<<,因此738<<,故选:C.【点睛】本题主要考查了估算无理数的大小的能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8.D解析:D【分析】分别算出某数各个数位上数字的立方和,看其是否等于某数本身,若等于即为“水仙花数”,若不等于,即不是“水仙花数” .【详解】解:∵333135153135++=≠,∴A不是“水仙花数”;∵33+=≠,∴B不是“水仙花数”;2216220∵333++=≠,∴C不是“水仙花数”;345216345∵33+=,∴D是“水仙花数”;47407故选D .【点睛】本题考查新定义下的实数运算,正确理解题目所给概念并熟练应用实数运算法则去完成有关计算是解题关键.9.C解析:C【分析】分别根据相关的知识点对四个选项进行判断即可.【详解】解:①所有无理数都能用数轴上的点表示,故①正确;②若一个数的平方根等于它本身,则这个数是0,故②错误;③任何实数都有立方根,③说法正确;2±,故④说法错误;故其中正确的个数有:2个.故选:C.【点睛】本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点.10.D解析:D【详解】根据题目中的运算方法a*b=ab+a-b,可得(-2*5)*6=(-2×5-2-5)*6=-17*6=-17×6+(-17)-6=-125.故选D.点睛:本题主要考查了新定义运算,根据题目所给的规律(或运算方法),利用有理数的混合法则计算正确是解题关键.二、填空题11..【分析】设S=,等号两边都乘以5可解决.【详解】解:设S=①则5S=②②-①得4S=,所以S=.故答案是:.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的解析:3151 4-.设S=233015555++++⋯⋯+,等号两边都乘以5可解决.【详解】解:设S=233015555++++⋯⋯+①则5S=23303155555+++⋯⋯++②②-①得4S=311-5,所以S=3151 4-.故答案是:3151 4-.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决.12.-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,解析:-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.13.;观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有, 又因为,,,,,所以第n 个数的绝对值是,所以第个数是,第n 个数是,故答案为-82,.点睛:本题主要考查了有理数的混合运解析:82-;2(1)(1)n n -⋅+【详解】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有(1)n -,又因为2211=+,2521=+,21031=+,21741=+,,所以第n 个数的绝对值是21n +,所以第9个数是92(1)(91)82-⋅+=-,第n 个数是2(1)(1)n n -⋅+,故答案为-82,2(1)(1)n n -⋅+.点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律.14.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.或﹣5【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x >﹣2时,则有,解得:,成立;当x=﹣2时,则有,解得:x=3,矛盾,舍去;当x <﹣2时,则有,解得:x=﹣5,成立 解析:12-或﹣5 【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x >﹣2时,则有()22(2)1x x -=--=※,解得:12x =-,成立;当x =﹣2时,则有()2(2)1x x -=+-=※,解得:x =3,矛盾,舍去;当x <﹣2时,则有()22(2)1x x -=⨯--=※,解得:x =﹣5,成立,综上,x =12-或﹣5, 故答案为:12-或﹣5. 【点睛】本题考查新定义下的实数运算、解一元一次方程,理解新定义运算法则,运用分类讨论思想正确列出方程是解答的关键.16.1【分析】所给一系列数是4个数一循环,看是第几个数,除以4,根据余数得到相应循环的数即可.【详解】解:前2020排共有的个数是:,表示的数是第个数,,第2021排的第1011个数为1.解析:1【分析】所给一系列数是4个数一循环,看(2021,1011)是第几个数,除以4,根据余数得到相应循环的数即可.【详解】解:前2020排共有的个数是:(20201)20201234202020412102+⨯++++⋯⋯+==, (2021,1011)∴表示的数是第204121010112042221+=个数,204222151055541=⨯+,∴第2021排的第1011个数为1.故答案为:1.【点睛】本题考查算术平方根与规律型:数字的变化类,根据规律判断出是第几个数是解本题的关键.17.﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4解析:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4(周),滚动第3次,所对应的周数为0﹣3﹣1+2=﹣2(周),滚动第4次,所对应的周数为0﹣3﹣1+2﹣1=﹣3(周),滚动第5次,所对应的周数为0﹣3﹣1+2﹣1+3=0(周),滚动第6次,所对应的周数为0﹣3﹣1+2﹣1+3+2=2(周),所以圆与数轴的公共点到原点的距离最远是﹣4周,即该点所表示的数是﹣8π,故答案为:﹣8π.【点睛】题目主要考察数轴上的点及圆的滚动周长问题,确定相应滚动周数是解题关键.18.-π 右【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点及π的值即可解答.【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴OA之间的距离解析:-π 右【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点及π的值即可解答.【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴OA之间的距离为圆的周长=π,A点在原点的左边.∴A点对应的数是-π.∵π>3.14,∴-π<-3.14.故A点表示的数是-π.若点B表示-3.14,则点B在点A的右边.故答案为:-π,右.【点睛】本题考查数轴、圆的周长公式、利用数轴比较数的大小.需记住两个负数比较大小,绝对值大的反而小.【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵,∴,∵,∴,∵,∴,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7解析:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵< ∴221, ∵∴23<,∵a <∴23a -<<,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2, ∵∴78<,N=7,M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.20.-5∵3<<4,∴−4<−<−3,∴−5<−−1<−4,∴[−−1]=−5.故答案为−5.点睛:本题考查了估算无理数的大小的应用,解决此题的关键是求出的范围.解析:-5【详解】∵,∴,∴,∴故答案为−5..三、解答题21.(1)A;(2)①B;②C;③B;(3)①③.【分析】÷,结合计算结果即可进行判断;(1)计算20203(2)①从A类数中任取两个数进行计算,即可求解;②从A、B两类数中任取两个数进行计算,即可求解;③根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,再除以3,即可得到答案;(3)根据m,n的余数之和,举例,观察即可判断.【详解】解:(1)根据题意,÷=,∵202036731∴2020被3除余数为1,属于A类;故答案为:A.(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴两个A类数的和被3除余数为2,则它们的和属于B类;②从A、B类数中任取一数,与①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴从A、B类数中任取一数,则它们的和属于C类;③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则⨯+⨯+=,8192026÷=,∴26382∴余数为2,属于B类;故答案为:①B;②C;③B.(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,∵最后的结果属于C类,∴m+2n能被3整除,即m+2n属于C类,①正确;②若m=1,n=1,则|m-n|=0,不属于B类,②错误;③观察可发现若m+2n属于C类,m,n必须是同一类,③正确;综上,①③正确.故答案为:①③.【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答.22.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1(2)根据定义可知x<4,可得满足题意的x的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:(1)∵22=4, 62=36,52=25,∴56,∴,,故答案为2,5;(2)∵12=1,22=4,且=1,∴x=1,2,3,故答案为1,2,3;(3)第一次:,第二次:,第三次:,故答案为3;(4)最大的正整数是255,理由是:∵,,,∴对255只需进行3次操作后变为1,∵,,,,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.23.(1)2;32)1、2、3;(3)256,4【分析】(1)依照定义进行计算即可;(2)由题可知,04x <<,则可得满足题意的整数的x 的值为1、2、3;(3)由0=,可知,0y 是某个整数的平方,又0y 是符合条件的所有数中最大的数,则0256y =,再依次进行计算.【详解】解:(1)由定义可得,2=,[52=,{53∴=故答案为:2;3.(2)[]1x =,2∴<,即04x <<,∴整数x 的值为1、2、3.故答案为:1、2、3.(3)0{}0y =,即0==,∴2t =,且t 是自然数,0y 是符合条件的所有数中的最大数,0256y ∴=,1[16]16y ∴===,2[4]4y ===,3[2]2y ===,41y ===,即4n =.故答案为:256,4.【点睛】本题属于新定义类问题,主要考查估算无理数大小,无理数的整数部分和小数部分,理解定义内容是解题关键.24.(1)①两;②8;③5;④58;(2)①24;②56.【分析】(1)①根据例题进行推理得出答案;②根据例题进行推理得出答案;③根据例题进行推理得出答案;④根据②③得出答案;(2)①先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论;②先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论.【详解】<<,(1)①31000100=,10001951121000000∴<<,10100∴能确定195112的立方根是一个两位数,故答案为:两;②∵195112的个位数字是2,又∵38512=,∴能确定195112的个位数字是8,故答案为:8;③如果划去195112后面三位112得到数195,<∴<,56可得5060<,由此能确定195112的立方根的十位数是5,故答案为:5;④根据②③可得:195112的立方根是58,故答案为:58;(2)①13824的立方根是两位数,立方根的个位数是4,十位数是2,∴13824的立方根是24,故答案为:24;②175616的立方根是两位数,立方根的个位数是6,十位数是5,∴175616的立方根是56,故答案为:56.【点睛】此题考查立方根的性质,一个数的立方数的特点,正确理解题意仿照例题解题的能力,掌握一个数的立方数的特点是解题的关键.25.(1)两;(2)2,3;(3)24,-48.【分析】(1)根据题中所给的分析方法先求出这32768的立方根都是两位数;(2)继续分析求出个位数和十位数即可;(3)利用(1)(2)中材料中的过程进行分析可得结论.【详解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10100,∴故答案为:两;(2)∵只有个位数是2的立方数是个位数是8,∴2划去32768后面的三位数768得到32,因为33=27,43=64,∵27<32<64,∴3040.∴3.故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10100,∴∵只有个位数是4的立方数是个位数是4,∴4划去13824后面的三位数824得到13,因为23=8,33=27,∵8<13<27,∴2030.∴;由103=1000,1003=1000000,1000<110592<1000000,∴10100,∴∵只有个位数是8的立方数是个位数是2,∴8,划去110592后面的三位数592得到110,因为43=64,53=125,∵64<110<125,∴4050.∴;故答案为:24,-48.【点睛】此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数.26.(1)48;(2)28【分析】(1)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.(2)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.【详解】解:(1)第一步:10100=,11059210100000000<<,10100∴, ∴能确定110592的立方根是个两位数.第二步:110592的个位数是2,38512=,∴能确定110592的立方根的个位数是8.第三步:如果划去110592后面的三位592得到数110,45,可得4050,由此能确定110592的立方根的十位数是4,因此110592的立方根是48;(2)第一步:10=100=,1000219521000000<<,10100∴<,∴能确定21952的立方根是个两位数.第二步:21952的个位数是2,38512=,∴能确定21952的立方根的个位数是8.第三步:如果划去21952后面的三位952得到数21,23<,可得2030,由此能确定21952的立方根的十位数是2,因此21952的立方根是28.28,故答案为:28.【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.27.(1)2)①②见解析【分析】(1)根据图1得到小正方形的对角线长,即可得出数轴上点A 和点B 表示的数(2)根据长方形的面积得正方形的面积,即可得到正方形的边长,再画出图象即可; (3)从原点开始画一个长是2,高是1的长方形,对角线长即是a ,再用圆规以这个长度画弧,交数轴于点M ,再把这个长方形向左平移3个单位,用同样的方法得到点N .【详解】(1)由图1,∴图2中点A 表示的数是,点B ,故答案是:(2)①长方形的面积是5,拼成的正方形的面积也应该是5,∴正方形的边长是5,如图所示:故答案是:5;②如图所示:【点睛】本题考查无理数的表示方法,解题的关键是理解题意,模仿题目中给出的解题方法进行求解.28.(1) 421;(2)1;(2) ±12.【分析】(121(2715a、b的值,再代入求出即可;(3110的范围,求出x、y的值,再代入求出即可.【详解】解:(1)∵4215,∴21421,故答案为421;(2)∵27<3,∴7-2,∵3154,∴b=3,∴777;(3)∵100<110<121,∴1011011,∴110<110111,∵110,其中x是整数,且0<y<1,∴x=110,110110,∴110110110+10=144,的平方根是±12.【点睛】键.29.(1)两;(2)2,3;(3)24,-48.【分析】(1)根据题中所给的分析方法先求出这32768的立方根都是两位数;(2)继续分析求出个位数和十位数即可;(3)利用(1)(2)中材料中的过程进行分析可得结论.【详解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10100,∴故答案为:两;(2)∵只有个位数是2的立方数是个位数是8,∴2划去32768后面的三位数768得到32,因为33=27,43=64,∵27<32<64,∴3040.∴3.故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10100,∴∵只有个位数是4的立方数是个位数是4,∴4划去13824后面的三位数824得到13,因为23=8,33=27,∵8<13<27,∴2030.∴;由103=1000,1003=1000000,1000<110592<1000000,∴10100,∴∵只有个位数是8的立方数是个位数是2,∴8,划去110592后面的三位数592得到110,因为43=64,53=125,∵64<110<125,∴4050.∴;故答案为:24,-48.【点睛】此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数.30.(1)3,0,-2 (2) (4,30)【解析】分析:(1)根据阅读材料,应用规定的运算方式计算即可;(2)应用规定和同底数幂相乘的性质逆用变形计算即可.详解:(1)∵33=27∴(3,27)=3∵50=1∴(5,1)=1∵2-2=14∴(2,1)=-24(2)设(4,5)=x,(4,6)=y则x45=,y4=6∴x y x y+=⋅=44430∴(4,30)=x+y∴(4,5)+(4,6)=(4,30)点睛:此题是一个规定计算的应用型的题目,关键是灵活应用规定的关系式计算,熟练记忆幂的相关性质.。
七年级下册实数知识点归纳
![七年级下册实数知识点归纳](https://img.taocdn.com/s3/m/e64767e26e1aff00bed5b9f3f90f76c661374cdf.png)
七年级下册实数知识点归纳实数是数学中的一个基本概念,是指可以表示成小数的数字,包含有理数和无理数两种类型。
本文将对七年级下册中实数相关的知识点进行归纳总结,让读者更好地掌握实数概念和运用。
一、有理数有理数即可以写成两个整数比的数,包括正整数、负整数、正分数、负分数和0。
在有理数中,正数用“+”表示,负数用“-”表示。
1. 有理数的大小比较对于有理数a和b,可以通过它们的大小关系来进行比较,即:①当a>b时,a大于b②当a<b时,a小于b③当a=b时,a等于b例如:-2<0,7/8<1/2,-3> -5/3,0=0/72. 有理数的加减法有理数的加减法可以归结为数轴上的移动,即可以通过模型来形象化理解。
具体规律如下:①同号数相加减,绝对值相加,符号不变②异号数相加减,绝对值相减,正负号跟绝对值大的数相同例如:-2+(-3)=-5,4-(-6)=10,-2+3=1,-9+3=-63. 有理数的乘法有理数的乘法规律非常简单,即符号相同正数相乘为正,符号不同负数相乘为负。
例如:(-2)×3=-6,(-5)×(-7)=354. 有理数的除法有理数的除法要注意被除数、除数和商的符号。
符号相同商为正,符号不同商为负。
例如:6/(-2)=-3,(-9)/3=-3二、无理数无理数是指不能表示成有理数的数,包括所有不能表示成分数的实数,例如π、√2等。
1. 无理数的性质无理数的运算遵循实数的运算性质,其中无理数的乘除不再保持精确的解。
另外,任何有理数和无理数做代数运算或任何无理数之间做代数运算只能用近似值。
2. 无理数的转化由于无理数不能通过简单的运算转化为有理数,因此需要通过一些特殊的方法进行转化。
常见的方法有:①提取公因数:例如√8=2√2,√48=4√3②化简根式:例如√18=3√2,3√75=5√3③近似计算:例如将π取3.14,将√2取1.4142三、实数集合与范围实数可以用一个数轴来表示,这样利于掌握实数的范围。
(word完整版)七年级下册实数知识点总结及常见题,推荐文档
![(word完整版)七年级下册实数知识点总结及常见题,推荐文档](https://img.taocdn.com/s3/m/30f126b090c69ec3d4bb7507.png)
实数1•算术平方根:正数a的正的平方根叫做a的算术平方根,记作“ .a”。
2. 如果x2a,则x叫做a的平方根,记作“ 土,a”(a称为被开方数)。
3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个且为正。
联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。
(3)0的算术平方根与平方根同为0。
5. 如果x3=a,则x叫做a的立方根,记作“储”(a称为被开方数)。
6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。
7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。
8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9. 实数:有理数和无理数统称为实数有理数:有限小数或无限循环小数(分数又可以转化成无限循环小数)无理数:无限不循环小数(常见无理数有-2,,等)10. 数轴上的点和实数—对应。
题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和土1。
2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。
3- a 本身为非负数,有非负性,即卩Va >0;有意义的条件是a> 0。
4、公式:⑴(j a)2=a (a>0);⑵(a 取任何数)。
5、区分a )2=a (a > 0),与a2=a6、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0 (此性质应用很广,务必掌握)。
【典型例题】1. 下列语句中,正确的是()A •一个实数的平方根有两个,它们互为相反数B. 负数没有立方根C. 一个实数的立方根不是正数就是负数D. 立方根是这个数本身的数共有三个2. 下列说法正确的是()2A. -2是(2)的算术平方根B. 3是-9的算术平方根C. 16的平方根是土4D. 27的立方根是土33. 已知实数x , y 满足 X 2+(y+1) 2=0,则x-y 等于 _________________4. 求下列各式的值(1) 、81 ;( 2) 16 ;( 3)、9 ;( 4) ... ( 4)2\25 '4、 3 4= ____________5、 若m 、n 互为相反数,则 m J5 n = ________________26、 若a a ,贝 V a ___ 03、已知一个正数的两个平方根分别是2a - 2和a - 4,贝U a 的值是 _______5. 已知实数x , y 满足x 2+(y+1) 2=0,则 x-y 等于6. (1) 64的立方根是 4(2) 下列说法中:① 3都是27的立方根,②3 y 3 y ,③.64的立方根是2, ④ -8 2 4。
七年级下册数学实数重点总结
![七年级下册数学实数重点总结](https://img.taocdn.com/s3/m/7433a783ab00b52acfc789eb172ded630a1c9811.png)
七年级下册数学实数重点总结一、整数与正数整数是由0及其后的负整数组成,用正负号表示。
正数是指大于零的数。
二、实数的分类实数包括有理数和无理数。
1. 有理数有理数是可以表示为两个整数的比例的数,可以是整数、分数和循环小数。
例如:1,-3,2/3,0.25。
2. 无理数无理数是不能表示为两个整数的比例的数,无限不循环小数,不能化为分数形式。
例如:π,√2。
三、实数的运算1. 加法和减法实数的加法和减法满足交换律、结合律和分配律。
2. 乘法和除法实数的乘法和除法满足交换律、结合律和分配律。
3. 幂运算实数的幂运算满足指数运算法则。
四、实数的大小比较实数的大小比较可以通过大小关系符号进行判断。
1. 大于(>)大于符号表示左边的数大于右边的数。
2. 小于(<)小于符号表示左边的数小于右边的数。
3. 大于等于(≥)大于等于符号表示左边的数大于或等于右边的数。
4. 小于等于(≤)小于等于符号表示左边的数小于或等于右边的数。
五、实数的绝对值实数的绝对值是该实数到原点的距离,如果实数为正数,则绝对值等于本身;如果实数为负数,则绝对值等于相反数。
六、实数的相反数和倒数1. 相反数两个数互为相反数,它们的和为0。
例如:5和-5是互为相反数。
2. 倒数一个非零数的倒数是指其与1的商。
例如:5的倒数是1/5。
七、区间区间是指由两个实数构成的数的集合。
例如:(a, b),表示大于a且小于b的所有实数。
以上是七年级下册数学实数的重点总结,希望能对同学们的学习有所帮助。
(完整word版)初一数学七下实数所有知识点总结和常考题型练习题,文档
![(完整word版)初一数学七下实数所有知识点总结和常考题型练习题,文档](https://img.taocdn.com/s3/m/5cf542a4cf84b9d529ea7ad8.png)
实数知识点一、实数的倒数、相反数和绝对值1、相反数只有符号不同样的两个数叫做互为相反数〔零的相反数是零〕,从数轴上看,互为相反数的两个数所对应的点关于原点对称,若是 a 与 b 互为相反数,那么有 a+b=0, a=— b,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a| ≥0。
零的绝对值时它自己,也可看作它的相反数,假设 |a|=a ,那么 a≥ 0;假设 |a|=-a ,那么 a≤ 0。
正数大于零,负数小于零,正数大于所有负数,两个负数,绝对值大的反而小。
3、倒数若是 a 与 b 互为倒数,那么有ab=1,反之亦成立。
倒数等于自己的数是 1 和 -1 。
零没有倒数。
二、平方根、算数平方根和立方根1、平方根若是一个数的平方等于a,那么这个数就叫做 a 的平方根〔或二次方跟〕。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数 a 的平方根记做“ a 〞。
2、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“ a 〞。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a 〔 a0〕a0a 2a;注意 a 的双重非负性:- a〔a <0〕a03、立方根若是一个数的立方等于a,那么这个数就叫做 a 的立方根〔或 a 的三次方根〕。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:3a 3 a,这说明三次根号内的负号可以移到根号外面。
三、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2、科学记数法把一个数写做 a 10n的形式,其中1a10 ,n是整数,这种记数法叫做科学记数法。
四、实数大小的比较1、数轴规定了原点、正方向和单位长度的直线叫做数轴〔画数轴时,要注意上述规定的三要素缺一不可以〕。
2、实数大小比较的几种常用方法(1〕数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
最新人教版部编版七年级数学下册全册 期末知识点总结复习 专题训练期末复习(二) 实数36页PPT
![最新人教版部编版七年级数学下册全册 期末知识点总结复习 专题训练期末复习(二) 实数36页PPT](https://img.taocdn.com/s3/m/ac9241d7011ca300a7c39065.png)
ቤተ መጻሕፍቲ ባይዱ 31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
最新人教版部编版七年级数学下册全 册 期末知识点总结复习 专题训练期末
复习(二) 实数
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
七年级下册实数知识点
![七年级下册实数知识点](https://img.taocdn.com/s3/m/285dec21974bcf84b9d528ea81c758f5f61f2918.png)
七年级下册实数知识点实数是数学中非常重要的一个概念,是指所有的有理数和无理数的总和。
在七年级下册中,我们将学习有关实数的基本概念和性质,包括实数的分类与比较,实数的运算及其性质,实数的绝对值和数轴等。
一、实数概论实数是数学中的基本概念之一。
它包括有理数和无理数两类数。
其中有理数包括所有可以表示为两个整数的比的数,无理数则是不能表示为有理数的数。
实数的集合符号为R。
二、实数的分类与比较我们可以通过大小关系将实数分为三类,正数、负数和零数。
其中正数指大于0的实数,负数指小于0的实数,零数指等于0的实数。
在比较大小方面,我们要注意实数的绝对值大小关系,绝对值大的实数更大。
三、实数的运算及其性质1. 实数的加法:对于任意实数a和b,它们的和a+b仍然是一个实数,满足交换律和结合律。
2. 实数的减法:对于任意实数a和b,它们的差a-b仍然是一个实数。
3. 实数的乘法:对于任意实数a和b,它们的积ab仍然是一个实数,满足交换律和结合律。
4. 实数的除法:对于非零实数a和b,a/b仍然是一个实数,不满足交换律和结合律。
5. 实数运算的性质:实数运算满足分配律、吸收律和消去律。
四、实数的绝对值和数轴实数的绝对值是指一个实数到原点的距离。
对于任意实数a,其绝对值表示为|a|,满足非负性、正定性和三角不等式。
实数的绝对值可以用数轴来表示,数轴上0点为原点,左侧为负数,右侧为正数,每个实数对应数轴上的一个点。
实数a的绝对值可以表示为a在数轴上到原点的距离。
总结:七年级下册学习实数知识点,包括实数的基本概念和性质,实数的分类与比较,实数的运算及其性质,实数的绝对值和数轴等。
实数是数学中的重要概念,它是所有有理数和无理数的总和。
在实数的学习中,我们要注意实数的分类和大小关系、实数运算的基本性质和绝对值的概念及其在数轴上的表示。
七年级下册数学第二章实数知识点
![七年级下册数学第二章实数知识点](https://img.taocdn.com/s3/m/6d844905ed630b1c59eeb59d.png)
1、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
2、实数大小比较的几种常用方法
(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a、b是实数,
联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
3、立方根
(1)立方根的定义:如果一个数x的立方等于 ,这个数叫做 的立方根(也叫做三次方根),即如果 ,那么 叫做 的立方根
(2)一个数 的立方根,记作 ,读作:“三次根号 ”,
其中 叫被开方数,3叫根指数,不能省略,若省略表示平方。
人教版七年级数学下册
第六章实数
一、实数的概念及分类
1、实数的分类
正有理数
有理数 零 有限小数和无限循环小数
实数 负有理数
正无理数
无理数 无限不循环小数
负无理数
整数包括正整数、零、负整数。
实数正整数又叫自然数。
正整理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
三、平方根、算数平方根和立方根
1、平方根
(1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根.即:如果 ,那么x叫做a的平方根.
(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。
(3)平方与开平方互为逆运算: 3的平方等于9,9的平方根是 3
(3) (x≥0) <———————————————>
a是x的平方,x是a的算术平方根x的平方是a,a的算术平方根是x
人教版七年级数学下册实数章末复习二实数测试题
![人教版七年级数学下册实数章末复习二实数测试题](https://img.taocdn.com/s3/m/996629e7a76e58fafbb00392.png)
章末复习(二) 实数基础题知识点1 平方根、算术平方根、立方根的概念与性质1.(武汉中考)若式子x -2在实数范围内有意义,则x 的取值范围是(C )A .x ≥-2B .x >-2C .x ≥2D .x ≤2 2.(滨州中考)数5的算术平方根为(A )A . 5B .25C .±25D .± 5 3.下列说法中正确的是(D )A .-4没有立方根B .1的立方根是±1C .136的立方根是16D .-5的立方根是3-54.利用计算器计算:52-32=4,552-332=44,5552-3332=444.猜想23802580333555 个个-=480444个⋯ . 5.已知2a +1的算术平方根是0,b -a 的算术平方根是12,求12ab 的算术平方根.解:∵2a +1=0,∴a =-12.∵b -a =12,∴b -a =14.∴b =-14.∴12ab =12×⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-14=116. ∴12ab 的算术平方根是14.知识点2 实数的分类与估算6.(烟台中考)下列实数中,有理数是(D )A .8B .34C .π2D .0.101 001 0017.下列语句中,正确的是(A )A .无理数都是无限小数B .无限小数都是无理数C .带根号的数都是无理数D .不带根号的数都是无理数8.估算17+4的值在(D )A .5和6之间B .6和7之间C .7和8之间D .8和9之间 知识点3 实数与数轴9.如图,下列各数中,数轴上点A 表示的数可能是(C )A .4的算术平方根B .4的平方根C .8的算术平方根D .10的算术平方根10.如图,数轴上的两个点A ,B 所表示的数分别是a ,b ,在a +b ,a -b ,ab ,|a|-|b|中,是正数的有1个.知识点4 实数的性质及运算11.计算:3-22+23=33-2212.实数1-2的相反数是2-1,绝对值是2-1. 13.求下列各式的值:(1)(5)2-22; 解:原式=5-2=3.(2)(-3)2+3-64; 解:原式=3+(-4)=-1.(3)121+7×⎝⎛⎭⎪⎫2-17-31 000.解:原式=11+27-1-10=27.中档题14.计算(-8)2的结果是(B )A .-8B .8C .16D .-16 15.下列各式正确的是(A )A .±31=±1 B .4=±2 C .(-6)2=-6 D .3-27=316.下列说法中,正确的有(B )①只有正数才有平方根;②a 一定有立方根;③-a 没意义;④3-a =-3a ;⑤只有正数才有立方根.A .1个B .2个C .3个D .4个17.(郾城区期中)如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有(C )A .0个B .1个C .2个D .3个 18.已知30.5≈0.793 7,35≈1.710 0,那么下列各式正确的是(B )A .3500≈17.100B .3500≈7.937 C .3500≈171.00 D .3500≈79.3719.下列各组数中,互为倒数的一组是(D )A .5与-5B .2与12C .|-π|与(-π)2D .32与2320.写出3-9到23之间的所有整数:-2,-1,0,1,2,3,4. 21.-27的立方根与81的平方根之和是0或-6.22.有若干个面积为2的正方形,根据下图拼图的启示填空:(1)计算:2+8=32; (2)计算:8+32=62; (3)计算:32+128=122. 23.求下列各式中x 的值:(1)x 2-5=49; (2)(x -1)3=125.解:x 2-5=49, 解:(x -1)3=125,x 2=499, x -1=5,x =±73. x =6.24.用长3 cm ,宽2.5 cm 的邮票30枚,拼成一个正方形,则这个正方形的边长是多少?解:设这个正方形的边长是x cm ,根据题意,得 x 2=3×2.5×30.解得x =15. 答:这个正方形的边长是15 cm . 25.已知2a -1的平方根是±3,(-16)2的算术平方根是b ,求a +b.解:由题意,得2a -1=32.解得a =5.由于(-16)2=16,∴b =4. ∴a +b =5+4=3.26.已知a 为250的整数部分,b -1是400的算术平方根,求a +b 的值.解:∵152<250<162, ∴250的整数部分是15,即a =15. ∵b -1=400=20,∴b =21. ∴a +b =15+21=36=6. 综合题27.已知实数a ,b 在数轴上的位置如图所示,化简:|a -b|-a 2+(-b)2+23b 3.解:由图知,a>0,b<0,a -b>0. ∴原式=a -b -a -b +2b =0.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为() A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是()A.m-n B.m+nC.2m-n D.2m+n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b >0.其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O 的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE =2∠COF . (2)∠BOE =2∠COF 仍成立. 理由:设∠AOC =β, 则∠AOE =90°-β,又因为OF 是∠AOE 的平分线, 所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β).所以∠BOE =2∠COF . 25.解:(1)0.5x ;(0.65x -15) (2)(165-123)÷6×30=210(度), 210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元. (3)设10月的用电量为a 度. 根据题意,得0.65a -15=0.55a , 解得a =150.答:该用户10月用电150度. 26.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130, 解得t =65.65×4=260,260+30=290, 所以点D 表示的数为-290. (4)ON -AQ 的值不变. 设运动时间为m s , 则PO =100+8m ,AQ =4m . 由题意知N 为PO 的中点, 得ON =12PO =50+4m ,所以ON +AQ =50+4m +4m =50+8m , ON -AQ =50+4m -4m =50.故ON-AQ的值不变,这个值为50.。
七年级的实数下册知识点
![七年级的实数下册知识点](https://img.taocdn.com/s3/m/5799a7772f3f5727a5e9856a561252d380eb20ba.png)
七年级的实数下册知识点随着教育的不断发展,教育内容也在不断更新迭代。
在初中数学教学中,实数是一个比较重要的知识点。
下面就让我们一起来了解一下七年级的实数下册知识点吧。
一、有理数和无理数1、有理数:能表示为两整数之比的数,包括正整数、负整数、分数和零。
2、无理数:不能表示为两整数之比的数,如根号2、根号3等。
3、实数:有理数和无理数的统称。
二、实数的运算1、加减法:实数加减法遵循“负负得正、正负得负”的规律。
2、乘法:实数乘法遵循“异号相乘得负、同号相乘得正”的规律。
3、除法:实数除法遵循“除数不能为0”的原则。
三、实数的比较1、相等:两个实数相等,当且仅当它们的差为0。
2、大小:对于两个实数a、b,如果a-b>0,那么a>b;如果a-b=0,那么a=b;如果a-b<0,那么a<b。
四、绝对值1、绝对值:一个实数的绝对值是它到数轴原点的距离。
2、绝对值的性质:(1)非负性:任何实数的绝对值不小于0,即|a|>=0。
(2)同号值相等:如果a>0,则|a|=a;如果a<0,则|a|=-a。
(3)三角不等式:对于任意的实数a和b,有|a+b|<=|a|+|b|。
五、实数的分段函数1、定义:在数轴上,将一个区间分成若干个部分,每个部分上有一个公式,这种函数就是分段函数。
2、表示方法:y=f(x)={x+1 (x<0)x-1 (x>=0)}3、分段函数的图形:六、实数的应用1、蚂蚁爬杆问题:一个长5厘米的杆上有一只1厘米的蚂蚁,假设它每秒钟爬1厘米,那么当蚂蚁爬到杆的端点时,它总共爬了多少米?解:蚂蚁爬到杆的端点,需要爬4秒钟。
所以蚂蚁总共爬了4米。
2、比例问题:如果a:b=3:4,b:c=5:6,求a:b:c的比值。
解:由已知可得,a:b=3:4,b:c=5:6。
所以,a:b:c=15:20:24。
3、混合问题:某超市销售两种饮料,甲饮料售价5元/瓶,乙饮料售价3元/瓶。
数学七年级下册实数知识点2篇
![数学七年级下册实数知识点2篇](https://img.taocdn.com/s3/m/dff413c8e43a580216fc700abb68a98270feac62.png)
数学七年级下册实数知识点数学七年级下册实数知识点精选2篇(一)下面是数学七年级下册实数的几个重点知识点:1. 有理数:有理数包括整数和分数,可以写成有限小数或循环小数的数。
2. 无理数:无理数是不能被表示为两个整数的比值的数,它的十进制表示是无限不循环的小数。
3. 实数:实数包括有理数和无理数,它们统一了有理数和无理数的概念。
4. 数轴:数轴是用来表示实数的直线,它上面的每个点都和一个实数对应。
5. 绝对值:绝对值是一个实数的非负值,表示这个数到0的距离。
6. 相反数:两个数的和等于0,这两个数互为相反数。
7. 加法运算:实数的加法运算满足交换律、结合律和存在零元素性质。
8. 减法运算:减法可以转化为加法,即a-b=a+(-b)。
9. 乘法运算:实数的乘法运算满足交换律、结合律和存在单位元素性质。
10. 除法运算:除法可以转化为乘法,即a÷b=a×(1/b)。
11. 分数的乘除:分数的乘法是将分子和分母分别相乘,分数的除法是将被除数的分子乘以除数的倒数。
12. 混合运算:多个实数加减乘除混合运算时,要按照运算顺序进行计算。
这些是七年级下册实数的一些重点知识点,希望对你有帮助!数学七年级下册实数知识点精选2篇(二)第三章的主要知识点如下:1. 同号数的加减:同号数相加(减)的结果仍为同号。
2. 异号数的加减:异号数相加(减)的结果的符号取绝对值较大的数的符号。
3. 数轴上的数:数轴是按照一定比例划分的直线,可以用来表示实数的大小关系。
4. 整数比较:在数轴上,数越大,数所在的位置越向右。
5. 负数:负数是小于零的整数。
6. 负数的表示:可以用带负号的数字表示,如-5,-3等。
7. 相反数:两个数的和为零时,互为相反数。
8. 数量的相反数:表示相反意义的带正负号的数。
9. 相反数的性质:两个数的相反数相加等于零。
10. 原点与坐标轴:原点是数轴上的零点,数轴分为正半轴和负半轴,分别表示正数和负数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册期末复习(二)实数考点一平方根·立方根·算术平方根的意义【例1】(1)4的算术平方根是( )A.2B.-2C.±2〔( )A.4B.±4C.2D.±2〔( )A.2B.-2C.12D.-12【分析】(1)因为22=4,所以4的算术平方根是2;〔的平方根是±2,2;〔3)因为23=8,的相反数是-2,-2.【解答】(1)A 〔2)D 〔3)B【方法归纳】求一个数的平方根·算术平方根以及立方根时,首先应对该数进行化简,然后结合它们的意义求解.只有非负数才有平方根和算术平方根,而所有实数都有立方根,且实数与其立方根的符号一致.1.求下列各数的平方根:〔1)2549; 〔2)214; 〔3)(-2)2.2.求下列各式的值:〔〔.考点二实数的分类【例2】把下列各数分别填入相应的数集里.-3π,-2213,7,327-,0.324 371,0.5,39,-0.4,16,0.808 008 000 8…无理数集合{ …}; 有理数集合{ …}; 分数集合{ …}; 负无理数集合{ …}.【分析】根据实数的概念及实数的分类,把数填到相应的数集内即可. 【解答】无理数集合{-3π,7,39,-0.4,0.808 008 000 8…,…}; 有理数集合{-2213,327-,0.324 371,0.5,16,…}; 分数集合{-2213,0.324 371,0.5,…}; 负无理数集合{-3π,-0.4,…}.【方法归纳】我们学过的无理数有以下类型:π,3π等含π的式子;2,33等开方开不尽的数;0.101 001 000 1…等特殊结构的数.注意区分各类数之间的不同点,不能只根据外形进行判断,如误认为327-是无理数.3.下列实数是无理数的是( )A.-1B.0C.πD.134.实数-7.5,15,4,38,-π,0.15,23中,有理数的个数为a,无理数的个数为b,则a-b 的值为( )A.2B.3C.4D.5 5.把下列各数分别填入相应的集合中:+17.3,12,0,π,-323,227,9.32%,-316,-25考点三 实数与数轴【例3】在如图所示的数轴上,AB=AC,A,B两点对应的实数分别是3和-1,则点C所对应的实数是( )A.1+3B.2+3C.23-1D.23+1 【分析】由题意得AB=3-(-1)=3+1,所以AC=3+1.所以C点对应的实数为3+(3+1)=23+1.【解答】D【方法归纳】实数与数轴上的点一一对应.求数轴上两点间的距离就是用右边的数减去左边的数;求较小的数就用较大的数减去两点间的距离;求较大的数就用较小的数加上两点间的距离.6.如图,若A是实数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是( )A.a<1<-aB.a<-a<1C.1<-a<aD.-a<a<17.实数在数轴上的位置如图所示,下列式子错误的是( )A.a<bB.|a|>|b|C.-a<-bD.b-a>08.实数m,n在数轴上的位置如图所示,则|n-m|=__________.考点四实数的运算【例4】30.125131623718⎛⎫⎪⎝⎭-【分析】将被开方数化简,然后根据算式的运算顺序求解.【解答】原式3184916316412-74+14=-1.【方法归纳】当被开方数是小数时通常将其化成分数,然后求其方根;当被开方数是带分数时通常将其化成假分数,然后求方根;当被开方数是a2时通常先计算出a2的值,然后求方根.9.35128131-10.计算:(-2)3×()24-+()334-×(12)2-20×|2-1|.复习测试一·选择题(每小题3分,共30分) 1.下列说法正确的是( )A.-2是-4的平方根B.2是(-2)2的算术平方根C.(-2)2的平方根是2D.8的平方根是4 2.下列语句正确的是( )A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是0 3.下列各式错误的是( ) A.30.008=0.2 B.3127-=-13C.121=±11D.3610-=-102 4.在3.125 78,-5,227,3,5.27,3π,2-1中,无理数的个数是( )A.1个B.2个C.3个D.4个5.如图,数轴上A,B 两点表示的数分别为2和5.1,则A,B 两点之间表示整数的点共有( )A.6个B.5个C.4个D.3个 6.估计10+1的值( )A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间7.如图,数轴上点P 表示的数可能是( )7 7 C.-3.2 108.3a 3b =0,则a 与b 的关系是( )A.a=b=0B.a 与b 相等C.a 与b 互为相反数D.a=1b9.已知n 是一个正整数,则n 的最小值是( )A.3B.5C.15D.2510.求1+2+22+23+…+22 014的值,可令S=1+2+22+23+…+22 014,则2S=2+22+23+…+22 015,因此2S-S=22 015-1,仿照以上推理,计算出1+5+52+53+…+52 014的值为( )A.52 014-1B.52 015-1C.2015514-D.2014514-二·填空题(每小题4分,共20分)11.已知a ·b 是两个连续的整数,且则2a+b=__________.12.则2x+5的平方根是__________.13.-27__________.14.对于任意不相等的两个数a,b,定义一种运算※如下:a ※b=a b -,如3※2=32-那么12※4=__________.15.…所提示的规律,可得出一般性的结论是____________________(用含n 的式子表示).三·解答题(共50分) 16.(15分)计算:〔1)2-5+3; 〔2)+1+3+|1-|;〔17.(10分)求下列各式中的x :〔1)25(x-1)2=49; 〔2)64(x-2)3-1=0.18.(8分)已知|a-b-1|与3(a-2b+3)2互为相反数,求a 和b 的值.19.(8分)座钟的摆摆动一个来回所需的时间称为一个周期,其计算公式为T =2其中T 表示周期(单位:秒),l 表示摆长(单位:米),g=9.8米/秒2.假如一台座钟的摆长为0.5米,它每摆动一个来回发一次滴答声,那么在一分钟内,该座钟大约发出多少次滴答声?(可利用计算器计算,其中π取3.14)20.(9分)已知:M=a a+b+3的算术平方根,N=2a b -a+6b 的算术平方根,求M ·N 的值.参考答案变式练习 1.(1)±57; 〔2)±32; 〔3)±2. 2.(1)-4; 〔2)-0.6.3.C4.B5.+17.3,12,0,-323,227,9.32%,-25,…π… +17.3,-323,227,9.32%,… 12,0,-25,…6.A7.C8.m-n9.原式=8-9-1=-2.10.原式=-8×4+(-4)×14+20×复习测试1.B2.D3.C4.D5.C6.C7.B8.C9.C 10.C11.10 12.±3 13.-1或-5 14.12 为大于或等于2的自然数)16.(1)原式;〔2)原式; 〔3)原式=5+1+12-4=14. 17.(1)化简得(x-1)2=4925. 所以x-1=±75. 所以x=125或x=-25;〔2)化简得(x-2)3=164.所以x-2=14.所以x=94.18.因为|a-b-1|≥0,3(a-2b+3)2≥0,又因为|a-b-1|与3(a-2b+3)2互为相反数, 所以a-b-1=0,a-2b+3=0,解它们组成的方程组得a=5,b=4.19.∵T =2表示周期(单位:秒),l 表示摆长(单位:米),g=9.8米/秒2.∴T=2 1.42(秒). ∴在一分钟内,该座钟大约发出滴答声的次数为60÷1.42≈42. 20.由题意,得2,22 2.a b a b -=-+=⎧⎨⎩解得4,2.a b ==⎧⎨⎩∴ 于是M ·N=3×4=12.。