上海中考数学二模压轴题(第25题)解析

合集下载

2010上海各区中考二模数学压轴25题解析

2010上海各区中考二模数学压轴25题解析

2010上海各区二模数学压轴25题解析1、(松江)解:1(1)∵90=Ð=ÐFEB DEC ,∴BEC DEF Ð=Ð…………11分∵90=Ð+Ð=Ð+ÐDCP BCE DCP EDF ,…………………………,…………………………11分∴BCE EDF Ð=Ð,∴△DEF ∽△CEB ……………………………………………………………………11分(2)∵PDC Rt D 中,CP DE ^,∴90=Ð=ÐCED CDP ∴△DEC ∽△PDC ,∴DC PDECDE=………………………………………………………………………………11分∵△DEF ∽△CEB ,∴DCDF CBDF ECDE ==……………………………………………………………………11分∴DCDF DCPD =,∴DF PD =………………………………………………………………………………………………11分∵AP =x ,DF =y ,∴,1x PD -=∴x y -=1…………………………………………………………11分)10(<<x ……………………………………………………………………………………………………………………………………11分(3)∵△DEF ∽△CEB ,∴22CBDF S S CEBDEF =D D (1)……………………………………………………11分∵CFDF S S CEFDEF =D D (2),∴(1)¸(2)得2CBCF DF S S CEBcEF ×=D D …………………………11分又∵EFC BECS SD D =4,∴412=×=D D CB CFDF S S CEBcEF …………………………………………………………11分当P 点在边DA 上时,有411)1(=×-xx ,解得21=x ………………………………………………………………………………………………22分当P 点在边DA 的延长线上时,411)1(=×+xx ,解得212-=x …………………………………………………………………………………………11分2、(浦东)解:(1)在矩形ABCD 中,中,∵AD ∥BC ,∴∠APB =∠DAP .又由题意,得∠QAD =∠DAP ,∴∠APB =∠QAD .∵∠B =∠ADQ =90°,∴△ADQ ∽△PBA .………………………………(1分)∴BPAD ABDQ =,即443+=x y .∴412+=x y .………………………………………………………………(1分)定义域为0>x .……………………………………………………………(1分)(2)不发生变化.…………………………………………………………………(1分) 证明如下:证明如下:∵∠QAD =∠DAP ,∠ADE =∠ADQ =90°,AD =AD , ∴△ADE ≌△ADQ .∴DE =DQ =y .………………………………………………………………(1分)∴124124482121=+++=×+×=+=D D x x x PC QE AD QE S S S PQE AQE .…(3分)(3)过点Q 作QF ⊥AP 于点F .∵以4为半径的⊙Q 与直线AP 相切,∴QF =4.…………………………(1分) ∵12=S ,∴AP =6.………………………………………………………(1分)分) 在Rt △ABP 中,中,∵AB =3,∴∠BPA =30°.…………………………………………………(1分) ∴∠PAQ =60°.°. ∴AQ =338.………………………………………………………………(1分)分)设⊙A 的半径为r .∵⊙A 与⊙Q 相切,∴⊙A 与⊙Q 外切或内切.外切或内切.(i )当⊙A 与⊙Q 外切时,AQ =r +4,即338=r +4.∴r =4338-.………………………………………………………………(1分)(ii )当⊙A 与⊙Q 内切时,AQ =r -4,即338=r -4.∴r =4338+.………………………………………………………………(1分)综上所述,⊙A 的半径为4338-或4338+.3、(长宁)(1)由题意知由题意知 ∠COB = 90°B(8,0) OB=8 在Rt △OBC 中tan ∠ABC = 21OBOC = OC= O B ×tan tan∠∠ABC = 8ABC = 8××21=4 =4 ∴∴C(0,4) …1分 8OC AB 21S ABC =×=D ∴AB = 4 A(4,0)………………………1分 把A 、B 、C 三点的坐标带入)0(2>++=a c bx ax y 得 ïîïíì==++=++408640416c c b a c b a解得解得ïîïíì=-==42381c b a ……………………………………….2分 所以抛物线的解析式为423812+-=x x y 。

初中数学中考压轴题及答案详解(上海篇)

初中数学中考压轴题及答案详解(上海篇)

专题训练125.如图9,在Rt△ABC中,∠ACB=90°.半径为1的圆A与边AB相交于点D,与边AC相交于点E,连结DE并延长,与线段BC的延长线交于点P.(1)当∠B=30°时,连结AP,若△AEP与△BDP相似,求CE的长;(2)若CE=2,BD=BC,求∠BPD的正切值;(3)若1tan3BPD∠=,设CE=x,△ABC的周长为y,求y关于x的函数关系式.图9 图10(备用)参考答案:(1)解:∵∠B=30°∠ACB=90°∴∠BAC=60°∵AD=AE ∴∠AED=60°=∠CEP ∴∠EPC=30°∴三角形BDP为等腰三角形∵△AEP与△BDP相似∴∠EAP=∠EPA=∠DBP=∠DPB=30°∴AE=EP=1∴在RT△ECP中,EC=12EP=12(2)过点D作DQ⊥AC于点Q,且设AQ=a,BD=x ∵AE=1,EC=2∴QC=3-a∵∠ACB=90°∴△ADQ与△ABC相似∴AD AQ AB AC=即113ax=+,∴31 ax=+∵在RT△ADQ中2222328111x x DQ AD AQx x+-⎛⎫=-=-=⎪++⎝⎭∵DQ AD BC AB=∴228111x x x x x +-+=+ 解之得x=4,即BC=4 过点C 作CF//DP∴△ADE 与△AFC 相似,∴AE ADAC AF=,即AF=AC ,即DF=EC=2, ∴BF=DF=2∵△BFC 与△BDP 相似 ∴2142BF BC BD BP ===,即:BC=CP=4 ∴tan ∠BPD=2142EC CP ==(3)过D 点作DQ ⊥AC 于点Q ,则△DQE 与△PCE 相似,设AQ=a ,则QE=1-a ∴QE DQEC CP =且1tan 3BPD ∠= ∴()31DQ a =-∵在Rt △ADQ 中,据勾股定理得:222AD AQ DQ =+ 即:()222131a a =+-⎡⎤⎣⎦,解之得41()5a a ==舍去 ∵△ADQ 与△ABC 相似∴445155AD DQ AQ AB BC AC x x====++ ∴5533,44x xAB BC ++==∴三角形ABC 的周长553313344x xy AB BC AC x x ++=++=+++=+ 即:33y x =+,其中x>0专题训练21.如图,在平面直角坐标系中,二次函数26y ax x c =++的图像经过点()4,0A 、()1,0B -,与y 轴交于点C ,点D 在线段OC 上,=OD t ,点E 在第二象限,∠=90ADE ,1=2tan DAE ∠,EF OD ⊥,垂足为F .(1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示); (3)当∠ECA =∠OAC 时,求t 的值.参考答案:解:(1)二次函数y=ax 2+6x+c 的图象经过点A (4,0)、B (﹣1,0),∴,解得。

上海二模25题解题思路

上海二模25题解题思路

上海二模25题解题思路利用圆中所有的半径相等,就可以创造等腰三角形圆中垂径定义,垂直于玄的把玄分成相等的两半如果告诉你三角函数,往往可以创造直角三角形来求值,而圆中的直角三角形来自垂径定理,或者圆上与直径两点的连线半径相等创造的等腰三角形,如果交点在圆边上,则利用对角相等,又可以创造更多的等角圆中求Y 与X 的表达式,就是要找到Y与X的对应关系,可能是相似三经销,也可能是直角三角形求解勾股定理,相似三角形,面积法,三角函数等都是求某个线段长的方法不规则的相似三角形共同边模式,如果某个边是一对相似三角形的共同边,往往这个边的平方等于另外两个相似边的乘积,可能就能列出方程求解如果给的两个线段不是在同一个三角形中,往往要找到第三个三角形,这个三角形与这两个线段所在的三角形都相似,从而取得比例关系,这个三角形要找到往往需要做辅助线,与前面两个三角形的各一个边平行要找到题目中给出的所有条件的数学含义特别关注,3 、4、5;6、8、10;7;24、25等符合勾股定理的数求两个圆的关系,首先找两个圆心之间的距离,可能是用直角勾股定理或三角函数来求再找到两个圆的半径,距离等半径之和或差,或者相切,还有相交或者相离对折那么对折相对点的连线被折线垂直平分,意味直角且是两个相等的线段,最好做出图形旋转那么旋转后的图形,往往可以在旋转前的图形中找到相似三角形,往往可以利用旋转前的图形以及相似比求得;如果旋转后形成的旋转角比较特殊,也可以考虑求解,找到旋转点,原来的角与旋转后形成的角相等,即可求相似或全等,边成比例如果要求有共同平行线的两个相似三角形,可以把这对平行线映射到另外一段更长的边上,形成某个梯形,看看是否可以求解如果一个点是某个弧的中点,如果弧是半圆形的那就意味着一个等腰直角三角形相等角的相似三角形,往往有两个比例关系,可能两个对边交叉比例,再求解如果告诉一对角相等,则可以找另外一对边是否成比例关系,如果有比例关系,也是相似三角形,即边角边,而这个比例关系,又可能隐藏在另外一对相似三角形中求证,可以从要求证的结果倒推,最后找到要求证的内容角平分线相遇平行线,往往容易创造等腰三角形平行线中相似三角形,多找相似三角形,把平行线延长,把可能相交的线延长,又可能创造相似三角形如果一个四边形的对角线把一个四边形分成四个,相对的三角形相似,则另一对也相似,求法是相似的三角形导出比例关系,再用角相等,边成比例求解如果在一个三角形内部再切一个三角形,且切的三角形的一个角与原来三角形的一个角相等,就创造了一对相似三角形若告诉你某个三角函数,但这个角所在的三角形不是直角,但又有平行线,实际上是告诉平行角的三角函数SIN COS, TAN出现根号3,考虑特殊角相似三角形面积比等于边长比的平方,最值问题转化为二次函数问题,注意定义域的等于与否最短距离转化为牛饮水的问题要在图形上做标记,把相等角,相等边,已知函数,未知标在图上,帮助思考平行线等边可以求出平行四边形,邻边相等可以求出菱形,菱形对角线相等垂直平分对折标出已经线段长,对折后的线段长,再看看是否用勾股定理求解。

2021年上海市各区初三数学二模压轴题连排共80页

2021年上海市各区初三数学二模压轴题连排共80页

2021年上海市各区中考数学模拟压轴题图文解析目录第24、25题图文解析例2021年上海市宝山区中考第24、25题/ 2例2021年上海市崇明县中考第24、25题/ 6例2021年上海市奉贤区中考第24、25题/ 10例2021年上海市虹口区中考第24、25题/ 14例2021年上海市黄浦区中考第24、25题/ 19例2021年上海市嘉定区中考第24、25题/ 22例2021年上海市金山区中考第24、25题/25例2021年上海市静安区中考第24、25题/28例2021年上海市闵行区中考第24、25题/ 33例2021年上海市浦东新区中考第24、25题/ 36例2021年上海市普陀区中考第24、25题/ 40例2021年上海市青浦区中考第24、25题/ 44例2021年上海市松江区中考第24、25题/ 48例2021年上海市徐汇区中考第24、25题/ 51例2021年上海市杨浦区中考第24、25题/ 55例2021年上海市长宁区中考第24、25题/60第18题图文解析例2021年上海市宝山区中考第18题/ 64例2021年上海市崇明县中考第18题/ 65例2021年上海市奉贤区中考第18题/ 66例2021年上海市虹口区中考第18题/ 67例2021年上海市黄浦区中考第18题/ 68例2021年上海市嘉定区中考第18题/ 69例2021年上海市金山区中考第18题/70例2021年上海市静安区中考第18题/ 71例2021年上海市闵行区中考第18题/ 72例2021年上海市浦东新区中考第17题/ 73例2021年上海市浦东新区中考第18题/ 74例2021年上海市普陀区中考第18题/ 75例2021年上海市青浦区中考第18题/ 76例2021年上海市松江区中考第18题/ 77例2021年上海市徐汇区中考第18题/ 78例2021年上海市杨浦区中考第18题/ 79例2021年上海市长宁区中考第18题/80例 2021年上海市宝山区中考模拟第24题如图1,在平面直角坐标系xOy 中,抛物线y =ax 2+bx -1(a ≠0)经过点A (-2, 0)、B (1, 0)和D (-3, n ),与y 轴交于点C .(1)求该抛物线的表达式及点D 的坐标;(2)将抛物线平移,使点C 落在点B 处,点D 落在点E 处,求△ODE 的面积;(3)如果点P 在y 轴上,△PCD 与△ABC 相似,求点P 的坐标.图1动感体验请打开几何画板文件名“21宝山24”,可以体验到,△ODE 与△OMN 是同高三角形.点击屏幕左下方的按钮“第(3)题”,拖动点P 在运动,可以体验到,△PCD 与△ABC 相似存在两种情况.思路点拨1.第(1)题先写出抛物线的交点式,再根据常数项相等列关于a 的方程.2.第(2)题求△ODE 的面积可以用割补法,也可以先求直线DE 与坐标轴围成的三角形的面积,再根据同高三角形的面积比等于底边的比来解.3.第(3)题关键的一步是寻找一组等角,然后根据夹角的两条边对应成比例,分两种情况列方程求CP 的长.图文解析(1)抛物线的交点式为y =a (x +2)(x -1),对照y =ax 2+bx -1,根据常数项相等, 得-2a =-1.解得12a =. 所以2111(2)(1)1222y x x x x =+-=+-. 当x =-3时,11(2)(1)(1)(4)222y x x =+-=⨯-⨯-=.所以D (-3, 2). (2)如图2,点C (0,-1)先向上平移1个单位,再向右平移1个单位,得到点B (1, 0). 所以点D (-3, 2)按C →B 的方向平移,得到点E (-2, 3).由D (-3, 2)、E (-2, 3),得直线DE 的解析式为y =x +5.直线DE 与y 轴交于点M (0, 5),与x 轴交于点N (-5, 0),所以S △OMN =252. 因为15DE MN =,所以S △ODE =15S △OMN =52.(3)如图2,由A (-2, 0)、B (1, 0)、C (0,-1),可知∠ABC =45°,BA =3,BC .如图3,由D (-3, 2) 、C (0,-1),可知∠DCO =45°,CD =当点P 在y 轴上点C 上方时,∠DCP =∠ABC =45°,分两种情况讨论相似: ①当CP BACD BC ==.解得CP =9.此时P (0, 8)(图3中的点P ′).②当CPBCCD BA ==.解得CP =2.此时P (0, 1) (图3中的点P ).图2 图3考点伸展第(2)题求△ODE 的面积的方法多样,例如S △ODE =S △OMN ―S △OME ―S △OND .例 2021年上海市宝山区中考模拟第25题如图1,已知AB ⊥BC ,DC ⊥BC ,垂足分别为B 、C ,AC 与BD 交于点P .(1)如果AB =3,CD =5,以点P 为圆心作圆,⊙P 与直线BC 相切.①求圆P 的半径长;②若BC =8,以BC 为直径作⊙O ,试判断⊙O 与⊙P 的位置关系,并说明理由.(2)如果分别以AB 、CD 为直径的两圆外切,求证:△ABC 与△BCD 相似.图1动感体验请打开几何画板文件名“21宝山25”,拖动点C 运动,改变BC 的长度,可以体验到,PH 的长度始终保持不变.观察度量值,可以体验到,当BC =8时,⊙O 与⊙P 内切.点击屏幕左下方的按钮“第(2)题”,拖动点A 或点C 改变两圆的半径,可以体验到,当两圆相切时,△ABC 与△BCD 始终保持相似.思路点拨1.第(1)题用字母表示线段的长,设BH =m ,CH =n ,计算起来比较方便.2.判断两圆的位置关系,需要罗列三要素,即两圆半径和圆心距.3.第(2)题中蕴含了两个经典,一是外切两圆的圆心以及外公切线的两个切点,围成了一个直角梯形,一般策略是把这个直角梯形分割为一个矩形和一个直角三角形.另一个经典是代数计算,用到了两个完全平方公式的差.图文解析(1)①如图2,设⊙P 与直线BC 相切于点H ,那么PH ⊥BC .设BH =m ,CH =n .由PH //AB //DC ,得PH CH n AB BC m n ==+,PH BH m DC BC m n ==+. 两式相加,得1PH PH AB DC +=. 所以135PH PH +=. 解得r P =PH =158.图2 图3②如图3,因为BC =8,那么rO =OB =4. 由=PH BH DC BC ,得15858=BH .解得BH =3. 在Rt △POH 中,PH =158,OH =OB -BH =4-3=1,由勾股定理,得PO =178. 因为r O -r P =1548-=178,所以d =PO =r O -r P . 图4 所以⊙O 与⊙P 内切(如图4所示).(2)如图5,设AB =2a ,DC =2b ,那么AB ·DC =4ab .取AB 的中点M ,DC 的中点N ,联结MN .那么r M =a ,r N =b .作MG ⊥DC 于G ,得矩形BCGM .在Rt △MNG 中,MN =b +a ,NG =b -a ,所以MG 2=(b +a )2-(b -a )2=4ab .所以AB ·DC =MG 2.又因为MG =BC ,所以=AB BC BC DC. 又因为∠ABC =∠BCD =90°,所以△ABC ∽△BCD (如图6所示).图5 图6考点伸展我们把第(1)题一般化.如图7,AC 与BD 交于点P ,AB //PH //DC ,如果AB =3,DC =5,那么PH =158.求解过程完全相同,与BC 的长无关,与AB 的斜率无关.图7例 2021年上海市崇明区中考模拟第24题如图1,在平面直角坐标系xOy 中,直线y =x -3分别交x 轴、y 轴于A 、B 两点,抛物线y =x 2+bx +c 经过点A 和B ,且其顶点为D .(1)求抛物线的表达式;(2)求∠BAD 的正切值;(3)设点C 为抛物线与x 轴的另一个交点,点E 为抛物线的对称轴与直线y =x -3的交点,点P 是直线y =x -3上的动点,如果△P AC 与△AED 是相似三角形,求点P 的坐标.图1动感体验请打开几何画板文件名“21崇明24”,拖动点P 在BA 的延长线上运动,可以体验到,△P AC 与△AED 相似存在两种情况.思路点拨1.第(2)题由A 、B 、D 三点的坐标,根据勾股定理的逆定理得到△ABC 是直角三角形.2.第(3)题关键的一步,是寻求一组相等的角,然后根据夹角的两边对应成比例分两种情况列方程求AP 的长,进而求点P 的坐标.图文解析(1)由y =x -3,得A (3, 0),B (0,-3).因为抛物线y =x 2+bx +c 与x 轴交于A 、C 两点,设y =(x -3)(x -x C ).代入点B (0,-3),得-3=-3(-x C ).解得x C =-1.所以y =(x -3)(x +1)=x 2-2x -3,顶点为D (1,-4).(2)如图2,由A (3, 0)、B (0,-3)、D (1,-4),得AB 2=18,BD 2=2,AD 2=20. 所以AB 2+BD 2=AD 2.所以△ABD 是直角三角形,∠ABD =90°.所以tan ∠BAD =BD AB =13.图2(3)如图3,由A (3, 0),B (0,-3),得OA =OB ,∠OAB =45°.抛物线的顶点为D (1,-4),当x =1时,y =x -3=-2.所以E (1,-2).所以ED =2,EA =当点P 在BA 的延长线上时,∠CAP =∠AED =135°,分两种情况讨论△P AC 与△AED 相似.①当AP EA AC ED =时,4AP =AP = 作PH ⊥x 轴于H ,那么PH =AH =4.此时P (7, 4)(如图3所示).②当AP EDAC EA =时,4AP =AP = 此时PH =AH =2,P (5, 2) (如图4所示).图3 图4考点伸展第(2)题也可以用几何计算的方法.如图2,作DF ⊥y 轴于F .由△OAB 和△DFB 都是等腰直角三角形,得到∠ABD =90°.直角三角形ABD 两条直角边的比,就是两个等腰直角三角形斜边的比,等于相似比1∶3.例 2021年上海市崇明区中考模拟第25题如图1,在矩形ABCD中,E是边CD的中点,点F在边AD上,EF⊥BD,垂足为点G.(1)如图2,当矩形ABCD为正方形时,求DGGB的值;(2)如果15=DGGB,AF=x,AB=y,求y与x的函数关系式,并写出函数定义域;(3)如果AB=4cm,以点A为圆心,3cm长为半径的⊙A与以点B为圆心的⊙B外切,以点F为圆心的⊙F与⊙A、⊙B都内切,求DGGB的值.图1 图2 备用图动感体验请打开几何画板文件名“21崇明25”,拖动点D运动,可以体验到,⊙F与⊙A内切的切点是确定的,⊙F与⊙B内切时,Rt△ABF就确定了.思路点拨1.这三个小题都和DG∶GB相关,因此添加辅助线的方法是一致的,延长FE交BC 的延长线于点M,这样就利用了中点E.2.第(3)题中,⊙A、⊙B、⊙F的半径分别为3、1、r,当⊙F与⊙A、⊙B都内切时,用r表示圆心距AF、BF,再利用勾股定理解Rt△ABF,就得到了AF的长.图文解析(1)设正方形ABCD的边长为2a.如图3,延长FE交BC的延长线于点M.因为AD//BM,E是DC的中点,所以DF=CM.因为△DEG是等腰直角三角形,所以△DEF也是等腰直角三角形.所以DF=DE=CE=CM=a.再由AD//BM,得1===33 DG DF aGB BM a.(2)如图4,延长FE交BC延长线于点M.设DF=m.因为AD//BM,E是DC的中点,所以DF=CM=m.再由AD//BM,得15DF DGBM BG==.所以BM=5DF=5m.所以BC=5m-m=4m.所以AF=4m-m=3m=x.所以m=13x.如图5,根据等角的余角相等,得∠1=∠2.由tan ∠1=tan ∠2,得CB CE CD CM=.所以142=y m y m .所以228=y m .因为x >0,y >0,所以3==y x .定义域是x >0.图3 图4 图5(3)如图6,因为⊙A 与⊙B 外切,所以圆心距AB =r A +r B .所以3+r B =4.解得r B =1.设⊙F 的半径为r .因为⊙F 与⊙A 、⊙B 都内切,所以圆心距AF =r F -r A =r -3,圆心距BF =r F -r B =r -1.在Rt △ABF 中,根据勾股定理,得AB 2+AF 2=BF 2.所以42+(r -3)2=(r -1)2. 解得r =6.所以AF =r -3=3.如图7,设DF =CM =m ,那么BC =m +3.由△DCB ∽△ECM ,得=CD CM CB CE .所以432=+m m .整理,得m 2+3m -8=0.解得m .如图8,由AD //BM ,得23==+DG FD m GB BM m .代入=m DG GB .图6 图7 图8考点伸展第(3)题中的⊙F 不存在其他情况,从解题过程可以看到,圆心距AF 不论表示为r -3还是3-r ,圆心距BF 不论表示为r -1还是1-r ,由勾股定理得42+(r -3)2=(r -1)2,这个方程是一元一次方程,解是唯一的.例 2021年上海市奉贤区中考模拟第24题如图1,在平面直角坐标系中,已知B (0, 2)、C 3(1,)2-,点A 在x 轴正半轴上,且OA =2OB ,抛物线y =ax 2+bx (a ≠0)经过点A 、C .(1)求这条抛物线的表达式;(2)将抛物线先向右平移m 个单位,再向上平移1个单位,此时点C 恰好落在直线AB 上的点C ′处,求m的值;(3)设点B 关于原抛物线对称轴的对称点为B ′,联结AC ,如果点F 在直线AB ′上,∠ACF =∠BAO ,求点F的坐标. 图1 动感体验请打开几何画板文件名“21奉贤24”,可以体验到,∠CAO =∠BAO ,按照点F 与直线AC 的位置关系,∠ACF =∠BAO 存在两种情况.思路点拨1.抛物线的平移,归根到底是对应点的平移.第(2)题其实是点C 平移以后落在直线AB 上,抛物线的平移是假象.2.第(3)题中∠ACF =∠BAO ,按照点F 与直线AC 的位置关系,分两种情况. 图文解析(1)由B (0, 2)、OA =2OB ,得OA =4,A (4, 0).因为抛物线与x 轴交于O 、A 两点,设y =ax (x -4).代入点C 3(1,)2-,得31(3)2a -=⨯⨯-.解得12a =. 所以211(4)222y x x x x =-=-. (2)由A (4, 0)、B (0, 2),得直线AB 的解析式为122y x =-+. 如图2,点C 3(1,)2-先向右平移m 个单位,再向上平移1个单位得点C ′1(1,)2m +-. 将点C ′1(1,)2m +-代入直线AB 的解析式122y x =-+,得11(1)222m -=-++. 解得m =4.图2(3)由A (4, 0)、B (0, 2)、C 3(1,)2-,可得tan ∠BAO =24=12,tan ∠CAO =332÷=12. 所以∠BAO =∠CAO (如图3所示).如图3,点B 与点B ′关于OA 的垂直平分线对称,所以直线AB ′是x =4.如果∠ACF =∠BAO ,分两种情况:①点F 在直线AC 的下方.过点C 作x 轴的平行线交直线AB ′于点F .此时F 3(4,)2-. ②点F ′在直线AC 的上方.设F ′C 与x 轴交于点G ,那么GA =GC .设G (m , 0),由GA 2=GC 2,得2223(1)()(4)2m m -+=-.解得178m =.所以G 17(,0)8. 由174'58'38F A GA F F CF -===,得'53F A AF =.所以5535'3322F A AF ==⨯=.此时F ′5(4,)2.图3 图4考点伸展第(3)题求点F ′的坐标,也可以先求tan2α的值.如图4,已知A (4, 0)、B (0, 2),作AB 的垂直平分线交y 轴于点P ,垂足为Q ,那么 ∠APB =2∠BAO =2α.设P (0, n ).由P A 2=PB 2,可得42+n 2=(2-n )2.解得n =-3.所以tan2α=tan ∠APO =OA OP =43. 第(3)题求点F ′的坐标,还可以先说理再计算.如果把△CAF 与△CAF ′看作同高三角形,面积比等于AF ∶AF ′.又因为CA 平分∠FCF ′,所以点A 到CF 、CF ′的距离相等,因此△CAF 与△CAF ′又可以看作等高三角形,面积比等于CF ∶CF ′. 所以''CF AF CF AF =.设F ′(4, y )3322y y==. 整理,得4y 2-4y -15=0.解得52y =,或32y =-(与点F 重合,舍去).例 2021年上海市奉贤区中考模拟第25题如图1,已知扇形AOB 的半径OA =4,∠AOB =90°,点C 、D 分别在半径OA 、OB 上(点C 不与点A 重合),联结CD .点P 是弧AB 上一点,PC =PD .(1)当cot ∠ODC =34,以CD 为半径的圆D 与圆O 相切时,求CD 的长; (2)当点D 与点B 重合,点P 为弧AB 的中点时,求∠OCD 的度数;(3)如果OC =2,且四边形ODPC 是梯形,求PCD OCDS S △△的值.图1 备用图 备用图动感体验请打开几何画板文件名“21奉贤25”,拖动点D 在OB 上运动,可以体验到,⊙O 与 ⊙D 可以内切于点B .点击屏幕左下方的按钮“第(2)题”,可以体验到,△OAP 、△OBP 和△P AC 都是顶角为45°的等腰三角形.点击按钮“第(3)题”,可以体验到,梯形ODPC 存在两种情况.思路点拨1.相切两圆的连心线必过切点,⊙O 与⊙D 可以内切于点B .2.第(2)题把图形中的等腰三角形都标记出来,标记出内角的度数.事实上,PC 与PD 垂直且相等.3.第(3)题根据梯形的一组对边平行,可以先画出准确的示意图,再进行计算.两个三角形的面积比等于底边的比.图文解析(1)如图2,在Rt △OCD 中,cot ∠ODC =34,设OD =3m ,OC =4m ,那么CD =5m . 因为相切两圆的连心线必过切点,所以连心线OD 过切点B .所以⊙O 与⊙D 内切于点B .所以r O -r D =d =OD .所以4-5m =3m .解得m =12.所以CD =5m =52.图2 图3 图4(2)如图3,因为点P为弧AB的中点,所以P A=PD,∠POA=∠POD=45°.又因为OA=OP,所以∠OAP=∠OP A=67.5°.同理可得∠OPD=∠ODP=67.5°.所以∠APD=135°.如图4,因为P A=PD,PC=PD,得P A=PC.所以在△ACP中,∠P AC=∠PCA=67.5°,∠APC=45°.在△PCD中,∠CPD=∠APD-∠APC=90°,所以∠PCD=45°.所以∠OCD=180°-∠ACP-∠PCD=180°-67.5-45°=67.5°.(3)如果四边形ODPC是梯形,按照对边平行,分两种情况.①如图5,当CP//OD时,△PCD与△OCD是等高三角形,面积比等于PC∶OD.作PH⊥OB于H,得矩形OCPH.联结OP.在Rt△OCP中,OC=2,OP=4,所以PC=.在Rt△DPH中,PH=OC=2,PD=PC=,所以DH=所以OD=OH-DH=所以3PCDOCDS PCS OD==+△△图5 图6 图7②如图6,当DP//CO时,△PCD与△OCD是等高三角形,面积比等于PD∶OC.作PG⊥AO于G,得矩形PGOD.联结OP.设PC=PD=m.在Rt△PDO和Rt△PGC中,由OD2=PG2,得22216(2)m m m-=--.整理,得m2+4m-20=0.解得m=2±(舍去负值).所以1PCDOCDS PDS OC===△△.考点伸展第(2)题当点P是弧AB的中点时,这个图形是一个典型图,如图7,PC与PD垂直且相等.例 2021年上海市虹口区中考模拟第24题如图1,在平面直角坐标系中,直线l:34y x b=+与x轴、y轴分别交于点A、B,与双曲线H:kyx=交于点P9(2,)2,直线x=m分别与直线l和双曲线H交于点E、D.(1)求k和b的值;(2)当点E在线段AB上时,如果ED=BO,求m的值;(3)点C是y轴上一点,如果四边形BCDE是菱形,求点C的坐标.图1动感体验请打开几何画板文件名“21虹口24”,拖动点E运动,可以体验到,菱形BCDE存在两种情况,点E分别在点B的左侧和右侧.思路点拨1.第(2)题用m表示E、D两点的坐标,再用m表示ED的长.2.第(3)题根据ED2=EB2列方程,就可以不遗不漏地得到所有可能的菱形.图文解析(1)将点P9(2,)2代入kyx=,得k=xy=9.将点P9(2,)2代入34y x b=+,得93224b=⨯+.解得b=3.所以BO=3.(2)如图2,由E3(,3)4m m+,D9(,)mm,得ED=39(3)4mm+-.如果ED=BO=3,那么39(3)34mm+-=.整理,得34mm=.解得m=(舍去),或m=-(3)如图3,由E3(,3)4m m+、B(0, 3),得EB2=22235()()44m m m+=.由(2)知,ED=39 (3)4mm+-.如果四边形BCDE是菱形,那么EB=ED.由EB2=ED2,得22539 ()(3)44m mm⎡⎤=+-⎢⎥⎣⎦.①方程539(3)44m mm=+-整理,得m2-6m+18=0.此方程无实数根.②方程539(3)44m mm-=+-整理,得2m2+3m-9=0.解得m=-3,或32m=.当m =-3时,EB 2=25()4m =154.所以BC =154. 此时将点B 向下平移个154单位得到点C 3(0,)4-(如图3所示). 当32m =时,EB 2=25()4m =158.所以BC =158. 此时将点B 向上平移个158单位得到点C 39(0,)8(如图4所示).图2 图3 图4考点伸展第(3)题还可以这样构图:如图5,设四边形BCDE 是菱形,边长为5n .作EM ⊥y 轴于M ,作DN ⊥y 轴于N ,那么EM =DN =4n ,BM =CN =3n .将点B (0, 3)向下平移5n 个单位得点C (0, 3-5n ),点C (0, 3-5n )向下平移3n 个单位,再向左平移4n 个单位,得点D (-4n , 3-8n ).将点D (-4n , 3-8n )代入9y x=,得-4n (3-8n )=9. 整理,得32n 2-12n -9=0.解得n =34,或n =38-. 当n =34时,3-5n =34-.此时C 3(0,)4-.当n =38-时,3-5n =398.此时C 39(0,)8.图5例 2021年上海市虹口区中考模拟第25题在Rt△ABC中,∠ABC=90°,tan A=34,AC=5,点M是射线AB上一点,以MC为半径的⊙M交直线AC于点D.(1)如图1,当MC=AC时,求CD的长;(2)当点D在线段AC的延长线上时,设BM=x,四边形CBMD的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)如果直线MD与射线BC相交于点E,且△ECD与△EMC相似,求线段BM的长.图1 备用图动感体验请打开几何画板文件名“21虹口25”,拖动点M在AB的延长线上运动,可以体验到,四边形CBMD的面积等于△CBM与△CDM的面积之和.点击屏幕左下方的按钮“第(3)题”,拖动点M在射线AB上运动,可以体验到,△ECD与△EMC相似存在两种情况.思路点拨1.第(1)题为第(2)题提供了方法依据,第(2)题求不规则四边形的面积,先要用x表示CD的长.2.第(3)题点M的位置在变,点D的位置随之改变,根据点M和点D的位置画出示意图,分三种情况讨论,其中两种情况下,根据相似三角形的对应角相等和等边对等角,等量代换以后都能得到角平分线,从而得到HM=BM.图文解析(1)在Rt△ABC中,由tan A=34,AC=5,可得AB=4,CB=3.如图2,作MH⊥CD于H,那么CD=2CH.因为MC=AC,CB⊥AM,所以AB=BM=4.所以AM=8.在Rt△AMH中,cos A=45,所以AH=AM∙cos A=485⨯=325.所以CH=AH-AC=3255-=75.所以CD=2CH=145.图2 图3 图4(2)如图3,在Rt △AMH 中,cos A =45,AM =4+x ,所以AH =AM ∙cos A =4(4)5+x , MH =3(4)5+x .所以CH =AH -AC =4(4)55+-x =495-x . 所以CD =2CH =2(49)5-x . 如图4,S 四边形CBMD =S △CBM +S △CDM =1122⋅+⋅BM CB CD MH . 所以y =312(49)3(4)2255-+⋅⋅+x x x . 整理,得y =22411721650+-x x .定义域是x >94. 当x =94时,⊙M 与直线AC 相切于点C . (3)以点M 和点D 的位置为分类标准,分三种情况讨论.①如图5,点M 在线段AB 上,点D 在线段CA 的延长线上.由△ECD ∽△EMC ,得∠ECM =∠EDC .又因为MC =MD ,所以∠MCD =∠EDC .等量代换,得∠ECM =∠MCD .所以CM 是∠BCH 的平分线,HM =BM =x .如图6,在Rt △AMH 中,由sin A =HM AM =35,得3(4)5=-x x . 解得x =BM =32.图5 图6②如图7,当点M 在线段AB 的延长线上,点D 在线段AC 上时,△ECD 是锐角三角形,△EMC 是钝角三角形,这两个三角形不可能相似.④如图8,点M 在线段AB 的延长线上,点D 在线段AC 的延长线上.由△ECD ∽△EMC ,得∠EDC =∠ECM .根据等角的补角相等,得∠MDC =∠BCM .图7 图8 图9如图9,因为MC=MD,所以∠MCD=∠MDC.等量代换,得∠BCM=∠MCD.所以CM是∠BCD的角平分线,HM=BM=x.在Rt△AMH中,由sin A=HMAM=35,得3(4)5x x=+.解得x=BM=6.考点伸展第(2)题求四边形CBMD的面积,也可以用△ADM的面积减去△ACB的面积.计算CD和MH的方法相同.如果抛物线C1:y=ax2+bx+c与抛物线C2:y=-ax2+dx+e的开口方向相反,顶点相同,我们称抛物线C2是C1的“对顶”抛物线.(1)求抛物线y=x2-4x+7的“对顶”抛物线的表达式;(2)将y=x2-4x+7的“对顶”抛物线沿其对称轴平移,使所得抛物线与原抛物线y =x2-4x+7形成两个交点M、N,记平移前后两抛物线的顶点分别为A、B,当四边形AMBN 是正方形时,求正方形AMBN的面积;(3)某同学在探究“对顶”抛物线时发现:如果抛物线C1与C2的顶点位于x轴上,那么系数b与d,c与e之间的关系是确定的,请写出它们之间的关系.动感体验请打开几何画板文件名“21 黄浦24”,拖动x轴正半轴上表示实数a的点可以改变a 的值,拖动点A可以平移抛物线,拖动点B可以上下平移抛物线C2,可以体验到,四边形AMBN可以成为正方形.思路点拨1.把一般式化为顶点式,就可以写出“对顶”抛物线的顶点式.2.正方形的对角线互相垂直平分且相等,将点A向上平移m个单位,再向右平移m个单位,就可以表示出点N的坐标.然后将点N代入C1就可以求得平移距离m的值.3.第(3)题直接写出两条抛物线的顶点式,再化为一般式进行比较.图文解析(1)由y=x2-4x+7=(x-2)2+3,得顶点为(2, 3).所以它的“对顶”抛物线的表达式为y=-(x-2)2+3=-x2+4x-1.(2)如图1,已知A(2, 3),设AB=2m,那么B(2, 3+2m).如果四边形AMBN是正方形,那么N(2+m, 3+m).将点N(2+m, 3+m)代入y=(x-2)2+3,得3+m=m2+3.解得m=1,或m=0(舍去).所以AB=2.所以正方形AMBN的面积=2.(3)如果抛物线C1与C2的顶点位于x轴上,设顶点为(n, 0).所以C1为y=a(x-n)2=ax2-2anx+an2,C2为y=-a(x-n)2=-ax2+2anx-an2.所以b=-2an,d=2an,c=an2,e=-an2.所以b=-d,c=-e.也就是说,b与d互为相反数,c与e互为相反数.图1 图2考点伸展第(2)题可以一般化,如图所示2,当1(a>0)时,四边形AMBN是正方形.ma如图1,AD 是△ABC 的角平分线,过点C 作AD 的垂线交边AB 于点E ,垂足为点O ,联结DE .(1)求证:DE =DC ;(2)当∠ACB =90°,且△BDE 与△ABC 的面积比为1∶3时,求CE ∶AD 的值;(3)是否存在△ABC 能使CE 为△ABC 边AB 上的中线,且CE =AD ?如果能,请用∠CAB 的某个三角比的值来表示它此时的大小;若不能,请说明理由.图1 备用图动感体验请打开几何画板文件名“21黄浦25”,拖动点C 落在半圆上,可以体验到,DE ⊥AB .当点E 与圆心重合时,可以体验到,△ADC 、△ADE 和△BDE 全等.点击按钮“CE =AD ,E 是AB 的中点”,观察度量值,可以体验到,这样的△ABC 是存在的.思路点拨1.第(1)题由等腰三角形的“三线合一”可知AD 垂直平分CE .2.第(2)题可以转化为三个直角三角形全等,得到30°角的Rt △ABC .3.第(3)题就是求等腰三角形ACE 的顶角的三角比,如果知道腰和底的比,或者底边与高的比,这个三角形的形状就确定了.图文解析(1)因为∠1=∠2,CE ⊥AD ,AO =AO ,所以△ACO ≌△AEO .所以AC =AE . 根据等腰三角形的“三线合一”,可得AD 垂直平分CE .所以DE =DC .(2)因为S △BDE ∶S △ABC =1∶3,所以S △BDE ∶S 四边形ACDE =1∶2.又因为△ACD ≌△AED ,所以△ADC 、△ADE 和△BDE 面积相等.所以E 是AB 的中点.如果∠ACB =90°,那么DE ⊥AB .所以DE 垂直平分AB .所以DA =DB .所以∠2=∠3.又因为∠1=∠2,所以∠1=∠2=∠3=30°.所以△ACE 是等边三角形.于是cos 2cos302CE AE AD AD ==∠=︒=.图2 图3(3)如图4,作BF //CE 交AD 的延长线于点F .如果CE 是△ABC 的中线,那么E 是AB 的中点.所以O 是AF 的中点.所以OE 是△ABF 的中位线.所以BF =2OE =2OC . 所以2DF BF OD CO==. 设DO =n ,DF =2n ,那么OF =3n .所以AO =OF =3n .所以AD =4n .如果CE =AD ,那么CE =4n .如图5,作CG ⊥AE 于G .在Rt △AEO 中,AO =3n ,EO =12CE =2n ,所以AE .由S △ACE =1122⋅=⋅AE CG CE AO 1432⋅=⋅CG n n .解得CG .在Rt △ACG 中,AC =AE ,CG ,所以sin ∠CAG =CG AC =1213.图4 图5考点伸展在本题情景下,如果△ABC 是等腰直角三角形,∠ACB =90°,如图6所示,这个图形就是我们熟悉的一个典型图,AB =AC +CD .图6 图7第(3)题情景下,把这个图形看作△CEB 被一条直线所截,与三边或延长线分别交于点D 、O 、A ,如图7所示,理论上过C 、E 、B 、D 、O 、A 等六个点的每一个点,都有两种添加平行线的方法,例如图8、图9、图10.图8 图9 图10在平面直角坐标系中,二次函数f (x )=ax 2-2ax +a -1(其中a 是常数,且a ≠0)的图像是开口向上的抛物线.(1)求该抛物线的顶点P 的坐标;(2)我们将横、纵坐标都是整数的点叫做“整点”,将抛物线f (x )=ax 2-2ax +a -1与y 轴的交点记为A ,如果线段OA 上的“整点”的个数小于4,试求a 的取值范围;(3)如果f (-1)、f (0)、f (3)、f (4)这四个函数值中有且只有一个大于0,试写出符合题意的一个函数解析式;结合函数图像,求a 的取值范围.动感体验请打开几何画板文件名“21嘉定24”,拖动点A 在y 轴上运动,可以体验到,f (-1)和f (3)的函数值相等,f (0)对应点A ,只有f (4)这个函数值大于0.思路点拨1.按照点A 在x 轴下方和上方两种情况分类考虑,再综合考虑.2.抛物线的对称轴为x =1,所以f (-1)和f (3)的函数值相等.抛物线开口向上,所以f (0)<f (3),只有f (4)>0.3.第(3)题先探究a 的取值范围,再写出一种具体情况.临界点是f (3)=0和f (4)=0. 图文解析(1)由f (x )=ax 2-2ax +a -1=a (x -1)2-1,得抛物线的顶点P 的坐标为(1,-1).(2)由f (x )=ax 2-2ax +a -1,得A (0, a -1).①因为抛物线的顶点为P (1,-1),当点A 在x 轴下方时,-1<a -1≤0.解得0<a ≤1.②当点A 在x 轴上方时,0<a -1<3.解得1<a <4.③当点A 与点O 重合时,线段OA 不存在.因此a -1≠0.解得a ≠1.综上所述,a 的取值范围是0<a <4且a ≠1.(3)如图1,因为抛物线的对称轴为直线x =1,所以f (-1)和f (3)的函数值相等. 如果f (-1)、f (0)、f (3)、f (4)这四个函数值中有且只有一个大于0,因为抛物线的开口向上,所以只有f (4)的值大于0.由(3)0,(4)0,f f ⎧⎨⎩≤> 得不等式组410,910.a a -⎧⎨-⎩≤> 解得a 的取值范围是1194a <≤. 例如:当18a =时,符合题意的一个函数解析式是21(1)18y x =--. 图1 考点伸展第(3)题如果没有抛物线开口向上的条件,当开口向下时,f (0)>0.已知:⊙O 的半径长是5,AB 是⊙O 的直径,CD 是⊙O 的弦.分别过点A 、B 向直线CD 作垂线,垂足分别为E 、F .(1)如图1,当点A 、B 位于直线CD 同侧,求证:CF =DE ;(2)如图2,当点A 、B 位于直线CD 两侧,∠BAE =30°,且AE =2BF 时,求弦CD 的长;(3)设弦CD 的长为l ,线段AE 的长为m ,线段BF 的长为n ,探究l 与m 、n 之间的数量关系,并用含m 、n 的代数式表示l .图1 图2 备用图动感体验请打开几何画板文件名“21嘉定25”,拖动点A 运动,可以体验到,OH 是△ABK 的中位线,当A 、B 两点在弦CD 的同侧时,OH 等于AE +BE 的一半;点A 、B 两点在弦CD 的两侧时,OH 等于AE -BF 的一半.思路点拨1.作弦心距OH ,求CD 的长先求DH 的长.2.由O 、H 是两个中点,不由得想到中位线.图文解析(1)如图3,作OH ⊥CD 于H .由垂径定理,得CH =DH .因为BF //OH //AE ,OA =OB ,所以FH =EH .所以FH -CH =EH -DH ,即CF =DE .(2)如图4,设AB 与CD 交于点G .由AE //BF ,得2AG AE BG BF ==.所以23AG AB =.所以AG =23AB =203.图3 图4 图5如图5,在Rt △OGH 中,OG =AG -OA =2053-=53,∠GOH =∠A =30°,所以OH =OG ·cos30°=53.在Rt △OCH 中,OC =5,OH ,由勾股定理,得CH所以CD =2OD (3)如图3,点A 、B 位于直线CD 同侧.因为OH 是梯形ABFE 的中位线,所以OH =1()2+BF AE =1()2+m n . 如图5,在Rt △OCH 中,OC =5,OH =1()2+m n ,由勾股定理,得CH .所以l =CD =2CH .如图6,点A 、B 位于直线CD 两侧.延长BH 交AE 于点K .因为BF //AE ,H 是FE 的中点,所以KE =BF =n .因为OH 是△ABK 的中位线,所以OH =12AK =1()2AE BF -=1()2m n -. 如图5,在Rt △OCH 中,OC =5,OH =1()2-m n ,由勾股定理,得CH所以l =CD =2CH .考点伸展如图6、如图7是对立统一的两个图,OH 是△ABK 的中位线.如图6,当A 、B 在CD两侧时,OH =12AK =2AE BF -.如图7,当A 、B 在CD 同侧时,OH =12AK =2AE BF +.图6 图7如图1,已知直线y=kx+b经过A(-2, 0)、B(1, 3)两点,抛物线y=ax2-4ax+b与已知直线交于C、D两点(点C在点D的右侧),顶点为P.(1)求直线y=kx+b的表达式;(2)若抛物线的顶点不在第一象限,求a的取值范围;(3)若直线DP与直线AB所成的夹角等于15°,且点P在直线AB上方,求抛物线y=ax2-4ax+b的表达式.动感体验请打开几何画板文件名“21金山24”,拖动点P在第四象限的对称轴上运动,可以体验到,抛物线与y轴的交点D是确定的.点击屏幕左下方的按钮“第(3)题”,可以体验到,△PDF是60°角的直角三角形.思路点拨1.注意到两个解析式的常数项相同,抛物线与直线左侧的交点D是确定的.2.第(3)题构造60°角的直角三角形,先求顶点P的坐标.图文解析(1)将A(-2, 0)、B(1, 3)两点分别代入y=kx+b,得20,3.k bk b-+=⎧⎨+=⎩解得k=1,b=2.所以直线的表达式为y=x+2.(2)由y=ax2-4ax+2=a(x-2)2+2-4a,可知抛物线的顶点为P(2, 2-4a).如图1所示,如果顶点不在第一象限,那么2-4a<0.解得12 a>.(3)抛物线的对称轴为直线x=2,设对称轴与直线AB交于点E,那么E(2, 4).抛物线与直线的左侧的交点D的坐标为(0, 2).如图2,过点D向对称轴作垂线,垂足为F,那么△DEF是腰长为2的等腰直角三角形.当点P在直线AB上方,∠PDE=15°时,在Rt△PDF中,∠PDF=60°.所以PF=.所以顶点P(2,2+.所以224a+-.解得a=.所以抛物线的表达式为y=ax2-4ax+2=22++.图1 图2考点伸展第(2)题可以数形结合,抛物线开口向上,a>0,由∆=(-4a)2-8>0,解得12 a>.如图1,在△ABC 中,AB =AC=,∠BAC =120°,△ADE 的顶点D 在边BC 上,AE 交BC 边于点F (点F 在点D 的右侧),∠DAE =30°.(1)求证:△ABF ∽△DCA ;(2)若AD =ED .①联结EC ,当点F 是BC 的黄金分割点(FC >BF )时,求ABF FECS S △△. ②联结BE ,当DF =1时,求BE 的长.图1 备用图 备用图动感体验请打开几何画板文件名“21金山25”,拖动点D 在BC 上运动,可以体验到,△ABF 、△DCA 与△DAF 两两相似.点击屏幕左下方的按钮“第(2)题①”,拖动点D 在BC 上运动,可以体验到,CE 与BC 的夹角始终保持30°不变,△ABF 与△ECF 始终保持相似.点击屏幕左下方的按钮“第(2)题②”,观察DF 的度量值,可以体验到,DF =1存在两种情况,分别是AD ⊥BC 和AF ⊥BC 的时刻.思路点拨1.第(1)题也是“三等角”问题,有三个三角形两两相似.2.第(2)题中的四边形AEDC 被对角线分成四个三角形,相对的两个三角形相似.3.第(2)题中AB 与CE 保持平行关系,△ABF 与△ECF 保持相似.图文解析(1)如图2,在△ABC 中,AB =AC ,∠BAC =120°,所以∠B =∠C =30°. 设∠BAD =α,那么∠ADC =α+30°.又因为∠BAF =α+30°,所以∠ADC =∠BAF .所以△ABF ∽△DCA .(2)①因为点F 是BC 的黄金分割点(FC >BF ),所以=BF FC . 如图3,由AD =ED ,得∠AED =∠DAE =30°.等量代换,得∠AED =∠C .又因为∠DFE =∠AFC ,所以△DFE ∽△AFC .所以FD FA FE FC =. 又因为∠DF A =∠EFC ,所以△DF A ∽△EFC .所以∠FCE =∠F AD =30°.如图4,因为∠B =∠FCE ,所以AB //CE .所以△ABF ∽△ECF .所以22=()==ABF FEC S BF S FC △△.。

2021上海二模数学压轴题解答题25几何综合3

2021上海二模数学压轴题解答题25几何综合3
2021年ห้องสมุดไป่ตู้海16区中考数学二模压轴题汇编
难点专题五几何综合(解答题25题)
杨浦
松江
嘉定
奉贤
青浦
黄埔
浦东新区
松江
【2021杨浦二模】
25.如图,已知Q是∠BAC的边AC上一点,AQ=15,cot∠BAC= ,点P是射线AB上一点,联结PQ,⊙O经过点A且与QP相切于点P,与边AC相交于另一点D.
(1)当圆心O在射线AB上时,求⊙O的半径;
∴BC=4,
∵AD∥BC,
∴∠ADG=∠DFC,
∵△ADG和△CDF相似,
∴∠AGD=∠FDC或∠DAG=∠FDC,
①当∠AGD=∠FDC,即△ADG∽△CFD时,有AG∥DC,延长CE交DA的延长线于点M,可得AM=4,
由 得 ,
∴AG=2,
∵△ADG∽△CFD,
∴ ,即 ,
∴CF=3,
∴BF=1;

解得,m= 或﹣3,
经检验,x= 是分式方程的解,且符合题意.
∴AP=3.
如图,当点O在射线AB的下方时,同法可得AP= .
综上所述,满足条件的AP的值为3或 .
(3)如图,当⊙P与⊙O内切时,
由△PHO∽△QKP,可得 ,
∵OH⊥AP,
∴AH=PH,
∴AP=2PH,QK=2PH,
∴PA=QK=12,
∵AD:BC=1:2,
∴AD=2k,
如图:延长CE交DA的延长线于点M,
∵AD∥BC,
∴ ,且 ,
∵点E为边AB中点,
∴AM=BC=4k,
∴DM=DA+AM=2k+4k=6k,
∴ ;
(2)AG∥DC,且 .

上海市各区县二模第25题压轴整理

上海市各区县二模第25题压轴整理

一、以矩形为背景的压轴题(2009二模)1. 有一张长方形纸片ABCD ,其中AB =3,BC =4,将它折叠后,可使点C 与点A 重合(图1),也可使点C 与AB 上的点E 重合(图2),也可使点C 与AD 上的点E 重合(图3),折痕为线段FG .(1) 如图1,当点C 与点A 重合时,则折痕FG 的长为 . (2) 如图2,点E 在AB 上,且AE =1,当点C 与点E 重合时,则折痕FG 的长为 .(3) 如图3,当C 与AD 上的点E 重合,折痕FG 与边BC 、CD 分别相交于点F 、G ,AE=x ,BF=y ,求y 关于x 的函数解析式,并写出函数定义域.(4) 如果折叠后,使点C 与这张纸的边上点E 重合,且DG =1,那么点E 可以在边上(写出所有可能的情况).2.(本题满分14分,第(1)小题3分,第(2)小题8分,第(3)小题3分) 如图,正方形ABCD 的边长为4,E 是BC 边的中点,点P 在射线AD 上,过P 作PF AE ⊥于F ,设PA x =. (1)求证:PFA ABE △∽△;(2)若以P F E ,,为顶点的三角形也与ABE △相似,试求x 的值;(3)试求当x 取何值时,以D 为圆心,DP 为半径的⊙D 与线段AE 只有一个公共点。

ABCDHFA B C DABCDEF 第25题图备用图H图3G图2图1G(3)如果把条件中的“EG ⊥FH ”改为“EG 与FH 的夹角为45°”,并假设正方形ABCD 254.如图,已知在正方形ABCD 中,AB = 2,P 是边BC 上的任意一点,E 是边BC 延长线上一点,联结AP .过点P 作PF ⊥AP ,与∠DCE 的平分线CF 相交于点F .联结AF ,与边CD 相交于点G ,联结PG .(1)求证:AP = FP ;(2)⊙P 、⊙G 的半径分别是PB 和GD ,试判断⊙P 与⊙G 两圆的位置关系,并说明理由;(3)当BP 取何值时,PG // CF .BA CDEPFG(第25题图)ABC DEO lA ′ABCDEO lF 5.(本题满分14分)在矩形ABCD 中,AB =3,点O 在对角线AC 上,直线l 过点O ,且与AC 垂直交AD 于点E.(1)若直线l 过点B ,把△ABE 沿直线l 翻折,点A 与矩形ABCD 的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F ,且AO =41AC ,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由;二、以三角形为背景的压轴题(2009二模)1、(本题满分14分)已知:等腰△ABC 中,AB=AC=5cm 。

最新上海中考数学二模压轴题(第25题)解析

最新上海中考数学二模压轴题(第25题)解析

(2015长宁)如图,已知矩形ABCD ,AB =12 cm ,AD =10 cm ,⊙O 与AD 、AB 、BC 三边都相切,与DC 交于点E 、F 。

已知点P 、Q 、R 分别从D 、A 、B 三点同时出发,沿矩形ABCD 的边逆时针方向匀速运动,点P 、Q 、R 的运动速度分别是1 cm/s 、x cm/s 、1.5 cm/s ,当点Q 到达点B 时停止运动,P 、R 两点同时停止运动.设运动时间为t (单位:s ).(1)求证: DE =CF ; (2)设x = 3,当△P AQ 与△QBR 相似时,求出t 的值;(3)设△P AQ 关于直线PQ 对称的图形是△P A'Q ,当t 和x 分别为何值时,点A'与圆心O 恰好重合,求出符合条件的t 、x 的值.第25题图OFED CBA PQ RAC BE OD 备用图(2015杨浦二模)在Rt △ABC 中,∠BAC=90°,BC=10,3tan 4ABC ∠=,点O 是AB 边上动点,以O 为圆心,OB 为半径的⊙O 与边BC 的另一交点为D ,过点D 作AB 的垂线,交⊙O 于点E ,联结BE 、AE 。

当AE//BC (如图(1))时,求⊙O 的半径长;设BO=x ,AE=y ,求y 关于 x 的函数关系式,并写出定义域;若以A 为圆心的⊙A 与⊙O 有公共点D 、E ,当⊙A 恰好也过点C 时,求DE 的长。

图(1) AB CDE O ABC备用图(第25题图)(2015徐汇)如图,在Rt ABC ∆中,90ACB ∠=,AC=4,1cos 4A =,点P 是边AB 上的动点,以PA 为半径作P ;(1)若P 与AC 边的另一交点为点D ,设AP x =,PCD ∆的面积为y ,求y 关于x 的函数解析式,并直接写出函数的定义域; (2)若P 被直线BC 和直线AC 截得的弦长相等,求AP 的长;(3)若C 的半径等于1,且P 与C 的公共弦长为2,求AP 的长;PDC BACBA(2015松江)如图,已知在直角梯形ABCD 中,AD ∥BC ,∠ABC=90º,AB=4,AD=3,25sin 5BCD ∠=,点P 是对角线BD 上一动点,过点P 作PH ⊥CD ,垂足为H . (1)求证:∠BCD=∠BDC ;(2)如图1,若以P 为圆心、PB 为半径的圆和以H 为圆心、HD 为半径的圆外切时,求DP 的长; (3)如图2,点E 在BC 延长线上,且满足DP=CE ,PE 交DC 于点F ,若△ADH 和△ECF 相似,求DP 的长.ABCHPD (第25题图1)ABCHPD EF(第25题图2)(2015普陀)如图11-1,已知梯形ABCD 中,AD //BC ,90D ∠=,5BC =,3CD =,cot 1B =.P 是边BC 上的一个动点(不与点B 、点C 重合),过点P 作射线PE ,使射线PE 交射线BA 于点E ,BPE CPD ∠=∠.(1)如图11-2,当点E 与点A 重合时,求DPC ∠的正切值;(2)当点E 落在线段AB 上时,设BP x =,BE y =,试求y 与x 之间的函数解析式,并写出x 的取值范围;(3)设以BE 长为半径的⊙B 和以AD 为直径的⊙O 相切,求BP 的长.CBDA 图11-1CBDA 图11备用图(E )P CBDA 图11-2(2015浦东)如图,已知在△ABC 中,射线AM ∥BC ,P 是边BC 上一动点,∠APD =∠B ,PD 交射线AM 于点D ,联结CD .AB =4,BC =6,∠B =60°. (1)求证:BP AD AP ⋅=2;(2)如果以AD 为半径的圆A 与以BP 为半径的圆B 相切,求线段BP 的长度;(3)将△ACD 绕点A 旋转,如果点D 恰好与点B 重合,点C 落在点E 的位置上,求此时∠BEP 的余切值.(2015闵行)如图,已知在梯形ABCD 中,AD // BC ,AB = DC = 5,AD = 4.M 、N 分别是边AD 、BC 上的任意一点,联结AN 、DN .点E 、F 分别在线段AN 、DN 上,且ME // DN ,MF // AN ,联结EF .(1)如图1,如果EF // BC ,求EF 的长;(2)如果四边形MENF 的面积是△ADN 的面积的38,求AM 的长; (3)如果BC = 10,试探索△ABN 、△AND 、△DNC 能否两两相似?如果能,求AN 的长;如果不能,请说明理由.A BCD MNEF(图1)A B C D MNEF (第25题图)(2015静安青浦)在⊙O中,OC⊥弦AB,垂足为C,点D在⊙O上.(1)如图1,已知OA=5,AB=6,如果OD//AB,CD与半径OB相交于点E,求DE的长;(2)已知OA=5,AB=6(如图2),如果射线OD与AB的延长线相交于点F,且△OCD是等腰三角形,求AF的长;(3)如果OD//AB,CD⊥OB,垂足为E,求sin∠ODC的值.(第25题图1)BO A CDE(第25题图2)BOA C(2015金山)如图,已知在ABC ∆中,10==AC AB ,34tan =∠B (1) 求BC 的长; (2) 点D 、E 分别是边AB 、AC 的中点,不重合的两动点M 、N 在边BC 上(点M 、N 不与点B 、C 重合),且点N 始终在点M 的右边,联结DN 、EM ,交于点O ,设x MN =,四边形ADOE 的面积为y .①求y 关于x 的函数关系式,并写出定义域;②当OMN ∆是等腰三角形且1=BM 时,求MN 的长.CB A第25题图CBA备用图(2015黄埔)如图8,Rt △ABC 中,90C ︒∠=,30A ︒∠=,BC =2,CD 是斜边AB 上的高,点E为边AC 上一点(点E 不与点A 、C 重合),联结DE ,作CF ⊥DE ,CF 与边AB 、线段DE 分别交于点F 、G .(1)求线段CD 、AD 的长; (2)设CE x =,DF y =,求y 关于x 的函数解析式,并写出它的定义域;(3)联结EF ,当△EFG 与△CDG 相似时,求线段CE 的长.DCBA(备用图)图8GFDCB A E更多精品文档 (2015奉贤)已知:如图,线段AB =8,以A 为圆心,5为半径作圆A ,点C 在⊙A 上,过点C 作CD //AB 交⊙A 于点D (点D 在C 右侧),联结BC 、AD .(1)若CD=6,求四边形ABCD 的面积;(2)设CD =x ,BC =y ,求y 与x 的函数关系式及自变量x 的取值范围;(3)设BC 的中点为M ,AD 的中点为N ,线段MN 交⊙A 于点E ,联结CE ,当CD 取何值时,CE //AD .DC B (第25题图)AB (备用图)A更多精品文档(2015崇明)如图,在Rt ABC ∆中,90ACB ∠=︒,8AC =,4tan 3B =,点P 是线段AB 上的一个动点, 以点P 为圆心,PA 为半径的P 与射线AC 的另一个交点为点D ,射线PD 交射线BC 于点E , 点Q 是线段BE 的中点.(1)当点E 在BC 的延长线上时,设PA x =,CEy =,求y 关于x 的函数关系式,并写出定义域; (2)以点Q 为圆心,QB 为半径的Q 和P 相切时,求P 的半径; (3)射线PQ 与P 相交于点M ,联结PC 、MC ,当PMC ∆是等腰三角形时,求AP 的长.(第25题图) A P D C E Q B (备用图1)B A C(备用图2)BA C更多精品文档 (2015宝山)在Rt △ABC 中,︒=∠90C ,2=BC ,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE ,过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合如图10,求BAE ∠cot 的值;(2)若点M 在边BC 上如图11,设边长x AC =,y BM =,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若EBM BAE ∠=∠,求斜边AB 的长.AC B (M )ED图10 A C B M E D 图11。

上海中考数学第25题分析(下)

上海中考数学第25题分析(下)

上海中考数学第25题分析(下)——与圆有关的压轴题前言:我们古代数学家刘徽、祖冲之为了研究圆(周长和面积),费尽毕生精力,不管是割圆术还是牟合方盖,不管极限思想还是圆周率的精确,都是古人智慧的结晶,也许正因为古人的智慧铺垫,才有了如今我们学习圆的轻松和方便,今天我们一起来探究下圆的压轴!一、圆的知识梳理及拓展延伸——重要!!!1、圆的定义(轨迹法):平面上的动点到定点的距离等于定长,这样的轨迹称之为圆(定点为圆心,定长为半径)。

2、圆心角和圆周角:顶点在圆心上的角叫做圆心角。

顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

3、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4、在同圆或等圆中,如果两个圆心角,两个圆周角,两条弧,两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

5、切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。

6、切线的性质:①经过切点垂直于这条半径的直线是圆的切线。

②经过切点垂直于切线的直线必经过圆心。

③圆的切线垂直于经过切点的半径。

7、直径所对的圆心角为直角。

8、两圆相交,则连心线平分公共弦——注意事连心线,不是圆心之间的线段! 9、①圆的周长及面积公式:r C π2=,2r S π=; ②扇形的周长及面积公式:r n C π2360=,2360r n S π=; 10、圆的割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。

11、圆和圆的位置关系:相交、相离(外离+内含)、相切(外切+内切)。

12、四点共圆:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

四点共圆有三个性质:①共圆的四个点所连成同侧共底的两个三角形的顶角相等;②圆内接四边形的对角互补;③圆内接四边形的外角等于内对角。

题外话:圆的性质是所有章节最多的一个,还有弦切角+圆心角+圆周角的关系、圆幂定理及逆定理、托勒密定理及其逆定理等等,但可恨的是上海中考这个拿学业水平考当选拨的考试,它根本就不考那么多!二、25题与圆有关的压轴题题型归纳圆的综合在一模试卷中出现的不多,二模中是重点题型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2015长宁)如图,已知矩形ABCD , AB =12 cm, AD =10 cm, Q O与AD、AB、BC三边都相切,与
DC交于点E、F。

已知点P、Q、R分别从D、A、B三点同时出发,沿矩形ABCD的边逆时针方向匀速运动,点P、Q、R的运动速度分别是1 cm/s、x cm/s、1.5 cm/s,当点Q到达点B时停止运动,P、
R两点同时停止运动.设运动时间为t (单位:s).(1)求证:DE=CF ;
(2)设x = 3,当△ PAQ与厶QBR相似时,求出t的值;
(3)设厶PAQ关于直线PQ对称的图形是△ PA'Q,当t和x分别为何值时,点A'与圆心O恰好重合, 求岀符合条件的t、x的值.
第25题图
3
(2015 杨浦二模)在Rt△ ABC 中,/ BAC=90 °,BC=10,tan ZABC ,点0 是AB 边上动点,
4
以0为圆心,0B为半径的。

O与边BC的另一交点为D,过点D作AB的垂线,交。

O于点E,联结
BE、AE。

当AE//BC (如图(1))时,求。

0的半径长;
设BO=x,AE=y,求y关于x的函数关系式,并写出定义域; 若以A为圆心的。

A与。

0有公共点
D 、E,当。

A恰好也过点C时,求DE的长。

C
1
A B
(2015徐汇)如图,在 Rt ABC 中,/ACB =90:, AC =4 , cosA ,点P 是边AB 上的动
4
点,以PA 为半径作口 p ;
(1 )若[P 与AC 边的另一交点为点D ,设AP =x ,. PCD 的面积为y ,求y 关于x 的函数解 析式,并直接写岀函数的定义域;
(2) 若L P 被直线BC 和直线AC 截得的弦长相等,求 AP 的长; (3) 若口 C 的半径等于1,且L P 与L C 的公共弦长为
2 ,求AP 的长;
(2015 松江)如图,已知在直角梯形ABCD 中,AD // BC , / ABC=90 o, AB=4 , AD=3 ,
(1 )求证:/ BCD= / BDC ;
(2)如图1,若以P为圆心、PB为半径的圆和以H为圆心、HD为半径的圆外切时,求DP的长;
(3)如图2,点E在BC延长线上,且满足DP=CE,PE交DC于点尸,若厶ADH和厶ECF相似,求
DP的长.
sin. BCD
5
,点P是对角线BD上一动点,过点P作PH丄CD,垂足为H .
(2015 普陀)如图11-1,已知梯形ABCD 中,AD // BC,/ D =90:, BC = 5 , CD = 3 , cot B =1.
P是边BC上的一个动点(不与点B、点C重合),过点P作射线PE,使射线PE交射线BA于点E,
N BPE=NCPD .
(1)如图11-2,当点E与点A重合时,求.DPC的正切值;
(2)当点E落在线段AB上时,设BP = X,BE =y,试求y与x之间的函数解析式,并写岀x的取值范围;
(3)设以BE长为半径的。

B和以AD为直径的。

O相切,求BP的长.
B C
图 11-1
A(E) D
B PC
图 11-2
图11
备用图
(2015浦东)如图,已知在厶ABC中,射线AM // BC , P是边BC上一动点,/ APD= / B, PD
交射线AM 于点D,联结CD . AB=4, BC=6,/ B=60°.
(1)求证:AP2 = AD BP ;
(2)如果以AD为半径的圆A与以BP为半径的圆B相切,求线段BP的长度;
(3)将厶ACD绕点A旋转,如果点D恰好与点B重合,点C落在点E的位置上,求此时/ BEP 的余切值.
才____ 6 W
(第25址
(2015闵行)如图,已知在梯形ABCD中,AD // BC , AB = DC = 5 , AD = 4 . M、N分别是边AD、BC 上的任意一点,联结AN、DN.点E、F分别在线段AN、DN上,且ME // DN , MF // AN,联结EF .
(1)如图1,如果EF // BC,求EF的长;
3
(2)如果四边形MENF的面积是厶ADN的面积的上,求AM的长;
8
(3)如果BC = 10,试探索厶ABN、A AND、△ DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由
.
(第25题图) (图
1
(2015静安青浦)在。

O中,OC丄弦AB,垂足为C,点D在。

O 上.
(1)如图1,已知OA= 5, AB = 6,如果OD//AB, CD与半径OB相交于点E,求DE的长;
(2)已知OA =5, AB = 6 (如图2),如果射线OD与AB的延长线相交于点尸,且厶OCD是等
腰三角形,求AF的长;
(3)女口果OD//AB, CD 丄OB,垂足为E, 求sin/ODC 的值
.
4
(2015 金山)如图,已知在:ABC 中,AB 二AC=10, tan. B -
3
(1) 求BC 的长;
(2)
点D 、E 分别是边 AB 、AC 的中点,不重合的两动点 M 、N 在边BC 上(点M 、N 不与 点B 、C 重合),且点
N 始终在点 M 的右边,联结 DN 、EM ,交于点O ,设MN = x ,四 边形ADOE 的面积为y •
① 求y 关于x 的函数关系式,并写岀定义域; ② 当.OMN 是等腰三角形且BM =1时,求MN 的长.
第25
题图备用图
(2015 黄埔)如图8, Rt△ ABC 中,.C =90 , . A = 30 , BC=2, CD 是斜边AB 上的高,点E 为边AC上一点(点E不与点A、C重合),联结DE,作CF丄DE , CF与边AB、线段DE分别交于点F、G .
(1)求线段CD、AD的长;
(2)设CE =x,DF =y,求y关于x的函数解析式,并写出它的定义域;
(3)联结EF,当厶EFG与厶CDG相似时,求线段CE的长
.
(2015奉贤)已知:如图,线段AB=8,以A为圆心,5为半径作圆A,点C在。

A上,过点C作CD//AB 交。

A于点D (点D在C右侧),联结BC、AD .
(1 )若CD=6,求四边形ABCD的面积;
(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围;
.
(3)设BC的中点为M, AD的中点为N,线段MN交。

A于点E,联结CE,当CD取何值时,CE//AD
(备用
(第25题
4
(2015崇明)如图,在BC 中,.ACB =90 , AC =8 , tanB ,点P 是线段AB 上的一个动点,
3
以点P 为圆心,PA 为半径的L P 与射线AC 的另一个交点为点 D ,射线PD 交射线BC 于点E ,
点Q 是线段BE 的中点.
(1) 当点E 在BC 的延长线上时,设PA=x ,CE =y ,求y 关于x 的函数关系式,并写出定义域;
(2) 以点Q 为圆心,QB 为半径的LI Q 和L P 相切时,求L P 的半径;
(3) 射线PQ 与L P 相交于点M ,联结PC 、MC ,当.PMC 是等腰三角形时,求 AP 的长.
(备用图2

(2015宝山)在Rt△ ABC中,艺C = 90 , BC =2 , Rt△ ABC绕着点B按顺时针方向旋转,使点C 落在斜边AB上的点D ,设点A旋转后与点E重合,联结AE ,过点E作直线EM与射线CB 垂直,交点为M .
(1)若点M与点B重合如图10,求cot^BAE的值;
(2)若点M在边BC上如图11,设边长AC =x,BM = y,点M与点B不重合,求y与x的函
数关系式,并写岀自变量x的取值范围;
(3)若.BAE二.EBM,求斜边AB的长.。

相关文档
最新文档