上海中考数学二模压轴题(第25题)解析
2010上海各区中考二模数学压轴25题解析
2010上海各区二模数学压轴25题解析1、(松江)解:1(1)∵90=Ð=ÐFEB DEC ,∴BEC DEF Ð=Ð…………11分∵90=Ð+Ð=Ð+ÐDCP BCE DCP EDF ,…………………………,…………………………11分∴BCE EDF Ð=Ð,∴△DEF ∽△CEB ……………………………………………………………………11分(2)∵PDC Rt D 中,CP DE ^,∴90=Ð=ÐCED CDP ∴△DEC ∽△PDC ,∴DC PDECDE=………………………………………………………………………………11分∵△DEF ∽△CEB ,∴DCDF CBDF ECDE ==……………………………………………………………………11分∴DCDF DCPD =,∴DF PD =………………………………………………………………………………………………11分∵AP =x ,DF =y ,∴,1x PD -=∴x y -=1…………………………………………………………11分)10(<<x ……………………………………………………………………………………………………………………………………11分(3)∵△DEF ∽△CEB ,∴22CBDF S S CEBDEF =D D (1)……………………………………………………11分∵CFDF S S CEFDEF =D D (2),∴(1)¸(2)得2CBCF DF S S CEBcEF ×=D D …………………………11分又∵EFC BECS SD D =4,∴412=×=D D CB CFDF S S CEBcEF …………………………………………………………11分当P 点在边DA 上时,有411)1(=×-xx ,解得21=x ………………………………………………………………………………………………22分当P 点在边DA 的延长线上时,411)1(=×+xx ,解得212-=x …………………………………………………………………………………………11分2、(浦东)解:(1)在矩形ABCD 中,中,∵AD ∥BC ,∴∠APB =∠DAP .又由题意,得∠QAD =∠DAP ,∴∠APB =∠QAD .∵∠B =∠ADQ =90°,∴△ADQ ∽△PBA .………………………………(1分)∴BPAD ABDQ =,即443+=x y .∴412+=x y .………………………………………………………………(1分)定义域为0>x .……………………………………………………………(1分)(2)不发生变化.…………………………………………………………………(1分) 证明如下:证明如下:∵∠QAD =∠DAP ,∠ADE =∠ADQ =90°,AD =AD , ∴△ADE ≌△ADQ .∴DE =DQ =y .………………………………………………………………(1分)∴124124482121=+++=×+×=+=D D x x x PC QE AD QE S S S PQE AQE .…(3分)(3)过点Q 作QF ⊥AP 于点F .∵以4为半径的⊙Q 与直线AP 相切,∴QF =4.…………………………(1分) ∵12=S ,∴AP =6.………………………………………………………(1分)分) 在Rt △ABP 中,中,∵AB =3,∴∠BPA =30°.…………………………………………………(1分) ∴∠PAQ =60°.°. ∴AQ =338.………………………………………………………………(1分)分)设⊙A 的半径为r .∵⊙A 与⊙Q 相切,∴⊙A 与⊙Q 外切或内切.外切或内切.(i )当⊙A 与⊙Q 外切时,AQ =r +4,即338=r +4.∴r =4338-.………………………………………………………………(1分)(ii )当⊙A 与⊙Q 内切时,AQ =r -4,即338=r -4.∴r =4338+.………………………………………………………………(1分)综上所述,⊙A 的半径为4338-或4338+.3、(长宁)(1)由题意知由题意知 ∠COB = 90°B(8,0) OB=8 在Rt △OBC 中tan ∠ABC = 21OBOC = OC= O B ×tan tan∠∠ABC = 8ABC = 8××21=4 =4 ∴∴C(0,4) …1分 8OC AB 21S ABC =×=D ∴AB = 4 A(4,0)………………………1分 把A 、B 、C 三点的坐标带入)0(2>++=a c bx ax y 得 ïîïíì==++=++408640416c c b a c b a解得解得ïîïíì=-==42381c b a ……………………………………….2分 所以抛物线的解析式为423812+-=x x y 。
初中数学中考压轴题及答案详解(上海篇)
专题训练125.如图9,在Rt△ABC中,∠ACB=90°.半径为1的圆A与边AB相交于点D,与边AC相交于点E,连结DE并延长,与线段BC的延长线交于点P.(1)当∠B=30°时,连结AP,若△AEP与△BDP相似,求CE的长;(2)若CE=2,BD=BC,求∠BPD的正切值;(3)若1tan3BPD∠=,设CE=x,△ABC的周长为y,求y关于x的函数关系式.图9 图10(备用)参考答案:(1)解:∵∠B=30°∠ACB=90°∴∠BAC=60°∵AD=AE ∴∠AED=60°=∠CEP ∴∠EPC=30°∴三角形BDP为等腰三角形∵△AEP与△BDP相似∴∠EAP=∠EPA=∠DBP=∠DPB=30°∴AE=EP=1∴在RT△ECP中,EC=12EP=12(2)过点D作DQ⊥AC于点Q,且设AQ=a,BD=x ∵AE=1,EC=2∴QC=3-a∵∠ACB=90°∴△ADQ与△ABC相似∴AD AQ AB AC=即113ax=+,∴31 ax=+∵在RT△ADQ中2222328111x x DQ AD AQx x+-⎛⎫=-=-=⎪++⎝⎭∵DQ AD BC AB=∴228111x x x x x +-+=+ 解之得x=4,即BC=4 过点C 作CF//DP∴△ADE 与△AFC 相似,∴AE ADAC AF=,即AF=AC ,即DF=EC=2, ∴BF=DF=2∵△BFC 与△BDP 相似 ∴2142BF BC BD BP ===,即:BC=CP=4 ∴tan ∠BPD=2142EC CP ==(3)过D 点作DQ ⊥AC 于点Q ,则△DQE 与△PCE 相似,设AQ=a ,则QE=1-a ∴QE DQEC CP =且1tan 3BPD ∠= ∴()31DQ a =-∵在Rt △ADQ 中,据勾股定理得:222AD AQ DQ =+ 即:()222131a a =+-⎡⎤⎣⎦,解之得41()5a a ==舍去 ∵△ADQ 与△ABC 相似∴445155AD DQ AQ AB BC AC x x====++ ∴5533,44x xAB BC ++==∴三角形ABC 的周长553313344x xy AB BC AC x x ++=++=+++=+ 即:33y x =+,其中x>0专题训练21.如图,在平面直角坐标系中,二次函数26y ax x c =++的图像经过点()4,0A 、()1,0B -,与y 轴交于点C ,点D 在线段OC 上,=OD t ,点E 在第二象限,∠=90ADE ,1=2tan DAE ∠,EF OD ⊥,垂足为F .(1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示); (3)当∠ECA =∠OAC 时,求t 的值.参考答案:解:(1)二次函数y=ax 2+6x+c 的图象经过点A (4,0)、B (﹣1,0),∴,解得。
上海二模25题解题思路
上海二模25题解题思路利用圆中所有的半径相等,就可以创造等腰三角形圆中垂径定义,垂直于玄的把玄分成相等的两半如果告诉你三角函数,往往可以创造直角三角形来求值,而圆中的直角三角形来自垂径定理,或者圆上与直径两点的连线半径相等创造的等腰三角形,如果交点在圆边上,则利用对角相等,又可以创造更多的等角圆中求Y 与X 的表达式,就是要找到Y与X的对应关系,可能是相似三经销,也可能是直角三角形求解勾股定理,相似三角形,面积法,三角函数等都是求某个线段长的方法不规则的相似三角形共同边模式,如果某个边是一对相似三角形的共同边,往往这个边的平方等于另外两个相似边的乘积,可能就能列出方程求解如果给的两个线段不是在同一个三角形中,往往要找到第三个三角形,这个三角形与这两个线段所在的三角形都相似,从而取得比例关系,这个三角形要找到往往需要做辅助线,与前面两个三角形的各一个边平行要找到题目中给出的所有条件的数学含义特别关注,3 、4、5;6、8、10;7;24、25等符合勾股定理的数求两个圆的关系,首先找两个圆心之间的距离,可能是用直角勾股定理或三角函数来求再找到两个圆的半径,距离等半径之和或差,或者相切,还有相交或者相离对折那么对折相对点的连线被折线垂直平分,意味直角且是两个相等的线段,最好做出图形旋转那么旋转后的图形,往往可以在旋转前的图形中找到相似三角形,往往可以利用旋转前的图形以及相似比求得;如果旋转后形成的旋转角比较特殊,也可以考虑求解,找到旋转点,原来的角与旋转后形成的角相等,即可求相似或全等,边成比例如果要求有共同平行线的两个相似三角形,可以把这对平行线映射到另外一段更长的边上,形成某个梯形,看看是否可以求解如果一个点是某个弧的中点,如果弧是半圆形的那就意味着一个等腰直角三角形相等角的相似三角形,往往有两个比例关系,可能两个对边交叉比例,再求解如果告诉一对角相等,则可以找另外一对边是否成比例关系,如果有比例关系,也是相似三角形,即边角边,而这个比例关系,又可能隐藏在另外一对相似三角形中求证,可以从要求证的结果倒推,最后找到要求证的内容角平分线相遇平行线,往往容易创造等腰三角形平行线中相似三角形,多找相似三角形,把平行线延长,把可能相交的线延长,又可能创造相似三角形如果一个四边形的对角线把一个四边形分成四个,相对的三角形相似,则另一对也相似,求法是相似的三角形导出比例关系,再用角相等,边成比例求解如果在一个三角形内部再切一个三角形,且切的三角形的一个角与原来三角形的一个角相等,就创造了一对相似三角形若告诉你某个三角函数,但这个角所在的三角形不是直角,但又有平行线,实际上是告诉平行角的三角函数SIN COS, TAN出现根号3,考虑特殊角相似三角形面积比等于边长比的平方,最值问题转化为二次函数问题,注意定义域的等于与否最短距离转化为牛饮水的问题要在图形上做标记,把相等角,相等边,已知函数,未知标在图上,帮助思考平行线等边可以求出平行四边形,邻边相等可以求出菱形,菱形对角线相等垂直平分对折标出已经线段长,对折后的线段长,再看看是否用勾股定理求解。
2021年上海市各区初三数学二模压轴题连排共80页
2021年上海市各区中考数学模拟压轴题图文解析目录第24、25题图文解析例2021年上海市宝山区中考第24、25题/ 2例2021年上海市崇明县中考第24、25题/ 6例2021年上海市奉贤区中考第24、25题/ 10例2021年上海市虹口区中考第24、25题/ 14例2021年上海市黄浦区中考第24、25题/ 19例2021年上海市嘉定区中考第24、25题/ 22例2021年上海市金山区中考第24、25题/25例2021年上海市静安区中考第24、25题/28例2021年上海市闵行区中考第24、25题/ 33例2021年上海市浦东新区中考第24、25题/ 36例2021年上海市普陀区中考第24、25题/ 40例2021年上海市青浦区中考第24、25题/ 44例2021年上海市松江区中考第24、25题/ 48例2021年上海市徐汇区中考第24、25题/ 51例2021年上海市杨浦区中考第24、25题/ 55例2021年上海市长宁区中考第24、25题/60第18题图文解析例2021年上海市宝山区中考第18题/ 64例2021年上海市崇明县中考第18题/ 65例2021年上海市奉贤区中考第18题/ 66例2021年上海市虹口区中考第18题/ 67例2021年上海市黄浦区中考第18题/ 68例2021年上海市嘉定区中考第18题/ 69例2021年上海市金山区中考第18题/70例2021年上海市静安区中考第18题/ 71例2021年上海市闵行区中考第18题/ 72例2021年上海市浦东新区中考第17题/ 73例2021年上海市浦东新区中考第18题/ 74例2021年上海市普陀区中考第18题/ 75例2021年上海市青浦区中考第18题/ 76例2021年上海市松江区中考第18题/ 77例2021年上海市徐汇区中考第18题/ 78例2021年上海市杨浦区中考第18题/ 79例2021年上海市长宁区中考第18题/80例 2021年上海市宝山区中考模拟第24题如图1,在平面直角坐标系xOy 中,抛物线y =ax 2+bx -1(a ≠0)经过点A (-2, 0)、B (1, 0)和D (-3, n ),与y 轴交于点C .(1)求该抛物线的表达式及点D 的坐标;(2)将抛物线平移,使点C 落在点B 处,点D 落在点E 处,求△ODE 的面积;(3)如果点P 在y 轴上,△PCD 与△ABC 相似,求点P 的坐标.图1动感体验请打开几何画板文件名“21宝山24”,可以体验到,△ODE 与△OMN 是同高三角形.点击屏幕左下方的按钮“第(3)题”,拖动点P 在运动,可以体验到,△PCD 与△ABC 相似存在两种情况.思路点拨1.第(1)题先写出抛物线的交点式,再根据常数项相等列关于a 的方程.2.第(2)题求△ODE 的面积可以用割补法,也可以先求直线DE 与坐标轴围成的三角形的面积,再根据同高三角形的面积比等于底边的比来解.3.第(3)题关键的一步是寻找一组等角,然后根据夹角的两条边对应成比例,分两种情况列方程求CP 的长.图文解析(1)抛物线的交点式为y =a (x +2)(x -1),对照y =ax 2+bx -1,根据常数项相等, 得-2a =-1.解得12a =. 所以2111(2)(1)1222y x x x x =+-=+-. 当x =-3时,11(2)(1)(1)(4)222y x x =+-=⨯-⨯-=.所以D (-3, 2). (2)如图2,点C (0,-1)先向上平移1个单位,再向右平移1个单位,得到点B (1, 0). 所以点D (-3, 2)按C →B 的方向平移,得到点E (-2, 3).由D (-3, 2)、E (-2, 3),得直线DE 的解析式为y =x +5.直线DE 与y 轴交于点M (0, 5),与x 轴交于点N (-5, 0),所以S △OMN =252. 因为15DE MN =,所以S △ODE =15S △OMN =52.(3)如图2,由A (-2, 0)、B (1, 0)、C (0,-1),可知∠ABC =45°,BA =3,BC .如图3,由D (-3, 2) 、C (0,-1),可知∠DCO =45°,CD =当点P 在y 轴上点C 上方时,∠DCP =∠ABC =45°,分两种情况讨论相似: ①当CP BACD BC ==.解得CP =9.此时P (0, 8)(图3中的点P ′).②当CPBCCD BA ==.解得CP =2.此时P (0, 1) (图3中的点P ).图2 图3考点伸展第(2)题求△ODE 的面积的方法多样,例如S △ODE =S △OMN ―S △OME ―S △OND .例 2021年上海市宝山区中考模拟第25题如图1,已知AB ⊥BC ,DC ⊥BC ,垂足分别为B 、C ,AC 与BD 交于点P .(1)如果AB =3,CD =5,以点P 为圆心作圆,⊙P 与直线BC 相切.①求圆P 的半径长;②若BC =8,以BC 为直径作⊙O ,试判断⊙O 与⊙P 的位置关系,并说明理由.(2)如果分别以AB 、CD 为直径的两圆外切,求证:△ABC 与△BCD 相似.图1动感体验请打开几何画板文件名“21宝山25”,拖动点C 运动,改变BC 的长度,可以体验到,PH 的长度始终保持不变.观察度量值,可以体验到,当BC =8时,⊙O 与⊙P 内切.点击屏幕左下方的按钮“第(2)题”,拖动点A 或点C 改变两圆的半径,可以体验到,当两圆相切时,△ABC 与△BCD 始终保持相似.思路点拨1.第(1)题用字母表示线段的长,设BH =m ,CH =n ,计算起来比较方便.2.判断两圆的位置关系,需要罗列三要素,即两圆半径和圆心距.3.第(2)题中蕴含了两个经典,一是外切两圆的圆心以及外公切线的两个切点,围成了一个直角梯形,一般策略是把这个直角梯形分割为一个矩形和一个直角三角形.另一个经典是代数计算,用到了两个完全平方公式的差.图文解析(1)①如图2,设⊙P 与直线BC 相切于点H ,那么PH ⊥BC .设BH =m ,CH =n .由PH //AB //DC ,得PH CH n AB BC m n ==+,PH BH m DC BC m n ==+. 两式相加,得1PH PH AB DC +=. 所以135PH PH +=. 解得r P =PH =158.图2 图3②如图3,因为BC =8,那么rO =OB =4. 由=PH BH DC BC ,得15858=BH .解得BH =3. 在Rt △POH 中,PH =158,OH =OB -BH =4-3=1,由勾股定理,得PO =178. 因为r O -r P =1548-=178,所以d =PO =r O -r P . 图4 所以⊙O 与⊙P 内切(如图4所示).(2)如图5,设AB =2a ,DC =2b ,那么AB ·DC =4ab .取AB 的中点M ,DC 的中点N ,联结MN .那么r M =a ,r N =b .作MG ⊥DC 于G ,得矩形BCGM .在Rt △MNG 中,MN =b +a ,NG =b -a ,所以MG 2=(b +a )2-(b -a )2=4ab .所以AB ·DC =MG 2.又因为MG =BC ,所以=AB BC BC DC. 又因为∠ABC =∠BCD =90°,所以△ABC ∽△BCD (如图6所示).图5 图6考点伸展我们把第(1)题一般化.如图7,AC 与BD 交于点P ,AB //PH //DC ,如果AB =3,DC =5,那么PH =158.求解过程完全相同,与BC 的长无关,与AB 的斜率无关.图7例 2021年上海市崇明区中考模拟第24题如图1,在平面直角坐标系xOy 中,直线y =x -3分别交x 轴、y 轴于A 、B 两点,抛物线y =x 2+bx +c 经过点A 和B ,且其顶点为D .(1)求抛物线的表达式;(2)求∠BAD 的正切值;(3)设点C 为抛物线与x 轴的另一个交点,点E 为抛物线的对称轴与直线y =x -3的交点,点P 是直线y =x -3上的动点,如果△P AC 与△AED 是相似三角形,求点P 的坐标.图1动感体验请打开几何画板文件名“21崇明24”,拖动点P 在BA 的延长线上运动,可以体验到,△P AC 与△AED 相似存在两种情况.思路点拨1.第(2)题由A 、B 、D 三点的坐标,根据勾股定理的逆定理得到△ABC 是直角三角形.2.第(3)题关键的一步,是寻求一组相等的角,然后根据夹角的两边对应成比例分两种情况列方程求AP 的长,进而求点P 的坐标.图文解析(1)由y =x -3,得A (3, 0),B (0,-3).因为抛物线y =x 2+bx +c 与x 轴交于A 、C 两点,设y =(x -3)(x -x C ).代入点B (0,-3),得-3=-3(-x C ).解得x C =-1.所以y =(x -3)(x +1)=x 2-2x -3,顶点为D (1,-4).(2)如图2,由A (3, 0)、B (0,-3)、D (1,-4),得AB 2=18,BD 2=2,AD 2=20. 所以AB 2+BD 2=AD 2.所以△ABD 是直角三角形,∠ABD =90°.所以tan ∠BAD =BD AB =13.图2(3)如图3,由A (3, 0),B (0,-3),得OA =OB ,∠OAB =45°.抛物线的顶点为D (1,-4),当x =1时,y =x -3=-2.所以E (1,-2).所以ED =2,EA =当点P 在BA 的延长线上时,∠CAP =∠AED =135°,分两种情况讨论△P AC 与△AED 相似.①当AP EA AC ED =时,4AP =AP = 作PH ⊥x 轴于H ,那么PH =AH =4.此时P (7, 4)(如图3所示).②当AP EDAC EA =时,4AP =AP = 此时PH =AH =2,P (5, 2) (如图4所示).图3 图4考点伸展第(2)题也可以用几何计算的方法.如图2,作DF ⊥y 轴于F .由△OAB 和△DFB 都是等腰直角三角形,得到∠ABD =90°.直角三角形ABD 两条直角边的比,就是两个等腰直角三角形斜边的比,等于相似比1∶3.例 2021年上海市崇明区中考模拟第25题如图1,在矩形ABCD中,E是边CD的中点,点F在边AD上,EF⊥BD,垂足为点G.(1)如图2,当矩形ABCD为正方形时,求DGGB的值;(2)如果15=DGGB,AF=x,AB=y,求y与x的函数关系式,并写出函数定义域;(3)如果AB=4cm,以点A为圆心,3cm长为半径的⊙A与以点B为圆心的⊙B外切,以点F为圆心的⊙F与⊙A、⊙B都内切,求DGGB的值.图1 图2 备用图动感体验请打开几何画板文件名“21崇明25”,拖动点D运动,可以体验到,⊙F与⊙A内切的切点是确定的,⊙F与⊙B内切时,Rt△ABF就确定了.思路点拨1.这三个小题都和DG∶GB相关,因此添加辅助线的方法是一致的,延长FE交BC 的延长线于点M,这样就利用了中点E.2.第(3)题中,⊙A、⊙B、⊙F的半径分别为3、1、r,当⊙F与⊙A、⊙B都内切时,用r表示圆心距AF、BF,再利用勾股定理解Rt△ABF,就得到了AF的长.图文解析(1)设正方形ABCD的边长为2a.如图3,延长FE交BC的延长线于点M.因为AD//BM,E是DC的中点,所以DF=CM.因为△DEG是等腰直角三角形,所以△DEF也是等腰直角三角形.所以DF=DE=CE=CM=a.再由AD//BM,得1===33 DG DF aGB BM a.(2)如图4,延长FE交BC延长线于点M.设DF=m.因为AD//BM,E是DC的中点,所以DF=CM=m.再由AD//BM,得15DF DGBM BG==.所以BM=5DF=5m.所以BC=5m-m=4m.所以AF=4m-m=3m=x.所以m=13x.如图5,根据等角的余角相等,得∠1=∠2.由tan ∠1=tan ∠2,得CB CE CD CM=.所以142=y m y m .所以228=y m .因为x >0,y >0,所以3==y x .定义域是x >0.图3 图4 图5(3)如图6,因为⊙A 与⊙B 外切,所以圆心距AB =r A +r B .所以3+r B =4.解得r B =1.设⊙F 的半径为r .因为⊙F 与⊙A 、⊙B 都内切,所以圆心距AF =r F -r A =r -3,圆心距BF =r F -r B =r -1.在Rt △ABF 中,根据勾股定理,得AB 2+AF 2=BF 2.所以42+(r -3)2=(r -1)2. 解得r =6.所以AF =r -3=3.如图7,设DF =CM =m ,那么BC =m +3.由△DCB ∽△ECM ,得=CD CM CB CE .所以432=+m m .整理,得m 2+3m -8=0.解得m .如图8,由AD //BM ,得23==+DG FD m GB BM m .代入=m DG GB .图6 图7 图8考点伸展第(3)题中的⊙F 不存在其他情况,从解题过程可以看到,圆心距AF 不论表示为r -3还是3-r ,圆心距BF 不论表示为r -1还是1-r ,由勾股定理得42+(r -3)2=(r -1)2,这个方程是一元一次方程,解是唯一的.例 2021年上海市奉贤区中考模拟第24题如图1,在平面直角坐标系中,已知B (0, 2)、C 3(1,)2-,点A 在x 轴正半轴上,且OA =2OB ,抛物线y =ax 2+bx (a ≠0)经过点A 、C .(1)求这条抛物线的表达式;(2)将抛物线先向右平移m 个单位,再向上平移1个单位,此时点C 恰好落在直线AB 上的点C ′处,求m的值;(3)设点B 关于原抛物线对称轴的对称点为B ′,联结AC ,如果点F 在直线AB ′上,∠ACF =∠BAO ,求点F的坐标. 图1 动感体验请打开几何画板文件名“21奉贤24”,可以体验到,∠CAO =∠BAO ,按照点F 与直线AC 的位置关系,∠ACF =∠BAO 存在两种情况.思路点拨1.抛物线的平移,归根到底是对应点的平移.第(2)题其实是点C 平移以后落在直线AB 上,抛物线的平移是假象.2.第(3)题中∠ACF =∠BAO ,按照点F 与直线AC 的位置关系,分两种情况. 图文解析(1)由B (0, 2)、OA =2OB ,得OA =4,A (4, 0).因为抛物线与x 轴交于O 、A 两点,设y =ax (x -4).代入点C 3(1,)2-,得31(3)2a -=⨯⨯-.解得12a =. 所以211(4)222y x x x x =-=-. (2)由A (4, 0)、B (0, 2),得直线AB 的解析式为122y x =-+. 如图2,点C 3(1,)2-先向右平移m 个单位,再向上平移1个单位得点C ′1(1,)2m +-. 将点C ′1(1,)2m +-代入直线AB 的解析式122y x =-+,得11(1)222m -=-++. 解得m =4.图2(3)由A (4, 0)、B (0, 2)、C 3(1,)2-,可得tan ∠BAO =24=12,tan ∠CAO =332÷=12. 所以∠BAO =∠CAO (如图3所示).如图3,点B 与点B ′关于OA 的垂直平分线对称,所以直线AB ′是x =4.如果∠ACF =∠BAO ,分两种情况:①点F 在直线AC 的下方.过点C 作x 轴的平行线交直线AB ′于点F .此时F 3(4,)2-. ②点F ′在直线AC 的上方.设F ′C 与x 轴交于点G ,那么GA =GC .设G (m , 0),由GA 2=GC 2,得2223(1)()(4)2m m -+=-.解得178m =.所以G 17(,0)8. 由174'58'38F A GA F F CF -===,得'53F A AF =.所以5535'3322F A AF ==⨯=.此时F ′5(4,)2.图3 图4考点伸展第(3)题求点F ′的坐标,也可以先求tan2α的值.如图4,已知A (4, 0)、B (0, 2),作AB 的垂直平分线交y 轴于点P ,垂足为Q ,那么 ∠APB =2∠BAO =2α.设P (0, n ).由P A 2=PB 2,可得42+n 2=(2-n )2.解得n =-3.所以tan2α=tan ∠APO =OA OP =43. 第(3)题求点F ′的坐标,还可以先说理再计算.如果把△CAF 与△CAF ′看作同高三角形,面积比等于AF ∶AF ′.又因为CA 平分∠FCF ′,所以点A 到CF 、CF ′的距离相等,因此△CAF 与△CAF ′又可以看作等高三角形,面积比等于CF ∶CF ′. 所以''CF AF CF AF =.设F ′(4, y )3322y y==. 整理,得4y 2-4y -15=0.解得52y =,或32y =-(与点F 重合,舍去).例 2021年上海市奉贤区中考模拟第25题如图1,已知扇形AOB 的半径OA =4,∠AOB =90°,点C 、D 分别在半径OA 、OB 上(点C 不与点A 重合),联结CD .点P 是弧AB 上一点,PC =PD .(1)当cot ∠ODC =34,以CD 为半径的圆D 与圆O 相切时,求CD 的长; (2)当点D 与点B 重合,点P 为弧AB 的中点时,求∠OCD 的度数;(3)如果OC =2,且四边形ODPC 是梯形,求PCD OCDS S △△的值.图1 备用图 备用图动感体验请打开几何画板文件名“21奉贤25”,拖动点D 在OB 上运动,可以体验到,⊙O 与 ⊙D 可以内切于点B .点击屏幕左下方的按钮“第(2)题”,可以体验到,△OAP 、△OBP 和△P AC 都是顶角为45°的等腰三角形.点击按钮“第(3)题”,可以体验到,梯形ODPC 存在两种情况.思路点拨1.相切两圆的连心线必过切点,⊙O 与⊙D 可以内切于点B .2.第(2)题把图形中的等腰三角形都标记出来,标记出内角的度数.事实上,PC 与PD 垂直且相等.3.第(3)题根据梯形的一组对边平行,可以先画出准确的示意图,再进行计算.两个三角形的面积比等于底边的比.图文解析(1)如图2,在Rt △OCD 中,cot ∠ODC =34,设OD =3m ,OC =4m ,那么CD =5m . 因为相切两圆的连心线必过切点,所以连心线OD 过切点B .所以⊙O 与⊙D 内切于点B .所以r O -r D =d =OD .所以4-5m =3m .解得m =12.所以CD =5m =52.图2 图3 图4(2)如图3,因为点P为弧AB的中点,所以P A=PD,∠POA=∠POD=45°.又因为OA=OP,所以∠OAP=∠OP A=67.5°.同理可得∠OPD=∠ODP=67.5°.所以∠APD=135°.如图4,因为P A=PD,PC=PD,得P A=PC.所以在△ACP中,∠P AC=∠PCA=67.5°,∠APC=45°.在△PCD中,∠CPD=∠APD-∠APC=90°,所以∠PCD=45°.所以∠OCD=180°-∠ACP-∠PCD=180°-67.5-45°=67.5°.(3)如果四边形ODPC是梯形,按照对边平行,分两种情况.①如图5,当CP//OD时,△PCD与△OCD是等高三角形,面积比等于PC∶OD.作PH⊥OB于H,得矩形OCPH.联结OP.在Rt△OCP中,OC=2,OP=4,所以PC=.在Rt△DPH中,PH=OC=2,PD=PC=,所以DH=所以OD=OH-DH=所以3PCDOCDS PCS OD==+△△图5 图6 图7②如图6,当DP//CO时,△PCD与△OCD是等高三角形,面积比等于PD∶OC.作PG⊥AO于G,得矩形PGOD.联结OP.设PC=PD=m.在Rt△PDO和Rt△PGC中,由OD2=PG2,得22216(2)m m m-=--.整理,得m2+4m-20=0.解得m=2±(舍去负值).所以1PCDOCDS PDS OC===△△.考点伸展第(2)题当点P是弧AB的中点时,这个图形是一个典型图,如图7,PC与PD垂直且相等.例 2021年上海市虹口区中考模拟第24题如图1,在平面直角坐标系中,直线l:34y x b=+与x轴、y轴分别交于点A、B,与双曲线H:kyx=交于点P9(2,)2,直线x=m分别与直线l和双曲线H交于点E、D.(1)求k和b的值;(2)当点E在线段AB上时,如果ED=BO,求m的值;(3)点C是y轴上一点,如果四边形BCDE是菱形,求点C的坐标.图1动感体验请打开几何画板文件名“21虹口24”,拖动点E运动,可以体验到,菱形BCDE存在两种情况,点E分别在点B的左侧和右侧.思路点拨1.第(2)题用m表示E、D两点的坐标,再用m表示ED的长.2.第(3)题根据ED2=EB2列方程,就可以不遗不漏地得到所有可能的菱形.图文解析(1)将点P9(2,)2代入kyx=,得k=xy=9.将点P9(2,)2代入34y x b=+,得93224b=⨯+.解得b=3.所以BO=3.(2)如图2,由E3(,3)4m m+,D9(,)mm,得ED=39(3)4mm+-.如果ED=BO=3,那么39(3)34mm+-=.整理,得34mm=.解得m=(舍去),或m=-(3)如图3,由E3(,3)4m m+、B(0, 3),得EB2=22235()()44m m m+=.由(2)知,ED=39 (3)4mm+-.如果四边形BCDE是菱形,那么EB=ED.由EB2=ED2,得22539 ()(3)44m mm⎡⎤=+-⎢⎥⎣⎦.①方程539(3)44m mm=+-整理,得m2-6m+18=0.此方程无实数根.②方程539(3)44m mm-=+-整理,得2m2+3m-9=0.解得m=-3,或32m=.当m =-3时,EB 2=25()4m =154.所以BC =154. 此时将点B 向下平移个154单位得到点C 3(0,)4-(如图3所示). 当32m =时,EB 2=25()4m =158.所以BC =158. 此时将点B 向上平移个158单位得到点C 39(0,)8(如图4所示).图2 图3 图4考点伸展第(3)题还可以这样构图:如图5,设四边形BCDE 是菱形,边长为5n .作EM ⊥y 轴于M ,作DN ⊥y 轴于N ,那么EM =DN =4n ,BM =CN =3n .将点B (0, 3)向下平移5n 个单位得点C (0, 3-5n ),点C (0, 3-5n )向下平移3n 个单位,再向左平移4n 个单位,得点D (-4n , 3-8n ).将点D (-4n , 3-8n )代入9y x=,得-4n (3-8n )=9. 整理,得32n 2-12n -9=0.解得n =34,或n =38-. 当n =34时,3-5n =34-.此时C 3(0,)4-.当n =38-时,3-5n =398.此时C 39(0,)8.图5例 2021年上海市虹口区中考模拟第25题在Rt△ABC中,∠ABC=90°,tan A=34,AC=5,点M是射线AB上一点,以MC为半径的⊙M交直线AC于点D.(1)如图1,当MC=AC时,求CD的长;(2)当点D在线段AC的延长线上时,设BM=x,四边形CBMD的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)如果直线MD与射线BC相交于点E,且△ECD与△EMC相似,求线段BM的长.图1 备用图动感体验请打开几何画板文件名“21虹口25”,拖动点M在AB的延长线上运动,可以体验到,四边形CBMD的面积等于△CBM与△CDM的面积之和.点击屏幕左下方的按钮“第(3)题”,拖动点M在射线AB上运动,可以体验到,△ECD与△EMC相似存在两种情况.思路点拨1.第(1)题为第(2)题提供了方法依据,第(2)题求不规则四边形的面积,先要用x表示CD的长.2.第(3)题点M的位置在变,点D的位置随之改变,根据点M和点D的位置画出示意图,分三种情况讨论,其中两种情况下,根据相似三角形的对应角相等和等边对等角,等量代换以后都能得到角平分线,从而得到HM=BM.图文解析(1)在Rt△ABC中,由tan A=34,AC=5,可得AB=4,CB=3.如图2,作MH⊥CD于H,那么CD=2CH.因为MC=AC,CB⊥AM,所以AB=BM=4.所以AM=8.在Rt△AMH中,cos A=45,所以AH=AM∙cos A=485⨯=325.所以CH=AH-AC=3255-=75.所以CD=2CH=145.图2 图3 图4(2)如图3,在Rt △AMH 中,cos A =45,AM =4+x ,所以AH =AM ∙cos A =4(4)5+x , MH =3(4)5+x .所以CH =AH -AC =4(4)55+-x =495-x . 所以CD =2CH =2(49)5-x . 如图4,S 四边形CBMD =S △CBM +S △CDM =1122⋅+⋅BM CB CD MH . 所以y =312(49)3(4)2255-+⋅⋅+x x x . 整理,得y =22411721650+-x x .定义域是x >94. 当x =94时,⊙M 与直线AC 相切于点C . (3)以点M 和点D 的位置为分类标准,分三种情况讨论.①如图5,点M 在线段AB 上,点D 在线段CA 的延长线上.由△ECD ∽△EMC ,得∠ECM =∠EDC .又因为MC =MD ,所以∠MCD =∠EDC .等量代换,得∠ECM =∠MCD .所以CM 是∠BCH 的平分线,HM =BM =x .如图6,在Rt △AMH 中,由sin A =HM AM =35,得3(4)5=-x x . 解得x =BM =32.图5 图6②如图7,当点M 在线段AB 的延长线上,点D 在线段AC 上时,△ECD 是锐角三角形,△EMC 是钝角三角形,这两个三角形不可能相似.④如图8,点M 在线段AB 的延长线上,点D 在线段AC 的延长线上.由△ECD ∽△EMC ,得∠EDC =∠ECM .根据等角的补角相等,得∠MDC =∠BCM .图7 图8 图9如图9,因为MC=MD,所以∠MCD=∠MDC.等量代换,得∠BCM=∠MCD.所以CM是∠BCD的角平分线,HM=BM=x.在Rt△AMH中,由sin A=HMAM=35,得3(4)5x x=+.解得x=BM=6.考点伸展第(2)题求四边形CBMD的面积,也可以用△ADM的面积减去△ACB的面积.计算CD和MH的方法相同.如果抛物线C1:y=ax2+bx+c与抛物线C2:y=-ax2+dx+e的开口方向相反,顶点相同,我们称抛物线C2是C1的“对顶”抛物线.(1)求抛物线y=x2-4x+7的“对顶”抛物线的表达式;(2)将y=x2-4x+7的“对顶”抛物线沿其对称轴平移,使所得抛物线与原抛物线y =x2-4x+7形成两个交点M、N,记平移前后两抛物线的顶点分别为A、B,当四边形AMBN 是正方形时,求正方形AMBN的面积;(3)某同学在探究“对顶”抛物线时发现:如果抛物线C1与C2的顶点位于x轴上,那么系数b与d,c与e之间的关系是确定的,请写出它们之间的关系.动感体验请打开几何画板文件名“21 黄浦24”,拖动x轴正半轴上表示实数a的点可以改变a 的值,拖动点A可以平移抛物线,拖动点B可以上下平移抛物线C2,可以体验到,四边形AMBN可以成为正方形.思路点拨1.把一般式化为顶点式,就可以写出“对顶”抛物线的顶点式.2.正方形的对角线互相垂直平分且相等,将点A向上平移m个单位,再向右平移m个单位,就可以表示出点N的坐标.然后将点N代入C1就可以求得平移距离m的值.3.第(3)题直接写出两条抛物线的顶点式,再化为一般式进行比较.图文解析(1)由y=x2-4x+7=(x-2)2+3,得顶点为(2, 3).所以它的“对顶”抛物线的表达式为y=-(x-2)2+3=-x2+4x-1.(2)如图1,已知A(2, 3),设AB=2m,那么B(2, 3+2m).如果四边形AMBN是正方形,那么N(2+m, 3+m).将点N(2+m, 3+m)代入y=(x-2)2+3,得3+m=m2+3.解得m=1,或m=0(舍去).所以AB=2.所以正方形AMBN的面积=2.(3)如果抛物线C1与C2的顶点位于x轴上,设顶点为(n, 0).所以C1为y=a(x-n)2=ax2-2anx+an2,C2为y=-a(x-n)2=-ax2+2anx-an2.所以b=-2an,d=2an,c=an2,e=-an2.所以b=-d,c=-e.也就是说,b与d互为相反数,c与e互为相反数.图1 图2考点伸展第(2)题可以一般化,如图所示2,当1(a>0)时,四边形AMBN是正方形.ma如图1,AD 是△ABC 的角平分线,过点C 作AD 的垂线交边AB 于点E ,垂足为点O ,联结DE .(1)求证:DE =DC ;(2)当∠ACB =90°,且△BDE 与△ABC 的面积比为1∶3时,求CE ∶AD 的值;(3)是否存在△ABC 能使CE 为△ABC 边AB 上的中线,且CE =AD ?如果能,请用∠CAB 的某个三角比的值来表示它此时的大小;若不能,请说明理由.图1 备用图动感体验请打开几何画板文件名“21黄浦25”,拖动点C 落在半圆上,可以体验到,DE ⊥AB .当点E 与圆心重合时,可以体验到,△ADC 、△ADE 和△BDE 全等.点击按钮“CE =AD ,E 是AB 的中点”,观察度量值,可以体验到,这样的△ABC 是存在的.思路点拨1.第(1)题由等腰三角形的“三线合一”可知AD 垂直平分CE .2.第(2)题可以转化为三个直角三角形全等,得到30°角的Rt △ABC .3.第(3)题就是求等腰三角形ACE 的顶角的三角比,如果知道腰和底的比,或者底边与高的比,这个三角形的形状就确定了.图文解析(1)因为∠1=∠2,CE ⊥AD ,AO =AO ,所以△ACO ≌△AEO .所以AC =AE . 根据等腰三角形的“三线合一”,可得AD 垂直平分CE .所以DE =DC .(2)因为S △BDE ∶S △ABC =1∶3,所以S △BDE ∶S 四边形ACDE =1∶2.又因为△ACD ≌△AED ,所以△ADC 、△ADE 和△BDE 面积相等.所以E 是AB 的中点.如果∠ACB =90°,那么DE ⊥AB .所以DE 垂直平分AB .所以DA =DB .所以∠2=∠3.又因为∠1=∠2,所以∠1=∠2=∠3=30°.所以△ACE 是等边三角形.于是cos 2cos302CE AE AD AD ==∠=︒=.图2 图3(3)如图4,作BF //CE 交AD 的延长线于点F .如果CE 是△ABC 的中线,那么E 是AB 的中点.所以O 是AF 的中点.所以OE 是△ABF 的中位线.所以BF =2OE =2OC . 所以2DF BF OD CO==. 设DO =n ,DF =2n ,那么OF =3n .所以AO =OF =3n .所以AD =4n .如果CE =AD ,那么CE =4n .如图5,作CG ⊥AE 于G .在Rt △AEO 中,AO =3n ,EO =12CE =2n ,所以AE .由S △ACE =1122⋅=⋅AE CG CE AO 1432⋅=⋅CG n n .解得CG .在Rt △ACG 中,AC =AE ,CG ,所以sin ∠CAG =CG AC =1213.图4 图5考点伸展在本题情景下,如果△ABC 是等腰直角三角形,∠ACB =90°,如图6所示,这个图形就是我们熟悉的一个典型图,AB =AC +CD .图6 图7第(3)题情景下,把这个图形看作△CEB 被一条直线所截,与三边或延长线分别交于点D 、O 、A ,如图7所示,理论上过C 、E 、B 、D 、O 、A 等六个点的每一个点,都有两种添加平行线的方法,例如图8、图9、图10.图8 图9 图10在平面直角坐标系中,二次函数f (x )=ax 2-2ax +a -1(其中a 是常数,且a ≠0)的图像是开口向上的抛物线.(1)求该抛物线的顶点P 的坐标;(2)我们将横、纵坐标都是整数的点叫做“整点”,将抛物线f (x )=ax 2-2ax +a -1与y 轴的交点记为A ,如果线段OA 上的“整点”的个数小于4,试求a 的取值范围;(3)如果f (-1)、f (0)、f (3)、f (4)这四个函数值中有且只有一个大于0,试写出符合题意的一个函数解析式;结合函数图像,求a 的取值范围.动感体验请打开几何画板文件名“21嘉定24”,拖动点A 在y 轴上运动,可以体验到,f (-1)和f (3)的函数值相等,f (0)对应点A ,只有f (4)这个函数值大于0.思路点拨1.按照点A 在x 轴下方和上方两种情况分类考虑,再综合考虑.2.抛物线的对称轴为x =1,所以f (-1)和f (3)的函数值相等.抛物线开口向上,所以f (0)<f (3),只有f (4)>0.3.第(3)题先探究a 的取值范围,再写出一种具体情况.临界点是f (3)=0和f (4)=0. 图文解析(1)由f (x )=ax 2-2ax +a -1=a (x -1)2-1,得抛物线的顶点P 的坐标为(1,-1).(2)由f (x )=ax 2-2ax +a -1,得A (0, a -1).①因为抛物线的顶点为P (1,-1),当点A 在x 轴下方时,-1<a -1≤0.解得0<a ≤1.②当点A 在x 轴上方时,0<a -1<3.解得1<a <4.③当点A 与点O 重合时,线段OA 不存在.因此a -1≠0.解得a ≠1.综上所述,a 的取值范围是0<a <4且a ≠1.(3)如图1,因为抛物线的对称轴为直线x =1,所以f (-1)和f (3)的函数值相等. 如果f (-1)、f (0)、f (3)、f (4)这四个函数值中有且只有一个大于0,因为抛物线的开口向上,所以只有f (4)的值大于0.由(3)0,(4)0,f f ⎧⎨⎩≤> 得不等式组410,910.a a -⎧⎨-⎩≤> 解得a 的取值范围是1194a <≤. 例如:当18a =时,符合题意的一个函数解析式是21(1)18y x =--. 图1 考点伸展第(3)题如果没有抛物线开口向上的条件,当开口向下时,f (0)>0.已知:⊙O 的半径长是5,AB 是⊙O 的直径,CD 是⊙O 的弦.分别过点A 、B 向直线CD 作垂线,垂足分别为E 、F .(1)如图1,当点A 、B 位于直线CD 同侧,求证:CF =DE ;(2)如图2,当点A 、B 位于直线CD 两侧,∠BAE =30°,且AE =2BF 时,求弦CD 的长;(3)设弦CD 的长为l ,线段AE 的长为m ,线段BF 的长为n ,探究l 与m 、n 之间的数量关系,并用含m 、n 的代数式表示l .图1 图2 备用图动感体验请打开几何画板文件名“21嘉定25”,拖动点A 运动,可以体验到,OH 是△ABK 的中位线,当A 、B 两点在弦CD 的同侧时,OH 等于AE +BE 的一半;点A 、B 两点在弦CD 的两侧时,OH 等于AE -BF 的一半.思路点拨1.作弦心距OH ,求CD 的长先求DH 的长.2.由O 、H 是两个中点,不由得想到中位线.图文解析(1)如图3,作OH ⊥CD 于H .由垂径定理,得CH =DH .因为BF //OH //AE ,OA =OB ,所以FH =EH .所以FH -CH =EH -DH ,即CF =DE .(2)如图4,设AB 与CD 交于点G .由AE //BF ,得2AG AE BG BF ==.所以23AG AB =.所以AG =23AB =203.图3 图4 图5如图5,在Rt △OGH 中,OG =AG -OA =2053-=53,∠GOH =∠A =30°,所以OH =OG ·cos30°=53.在Rt △OCH 中,OC =5,OH ,由勾股定理,得CH所以CD =2OD (3)如图3,点A 、B 位于直线CD 同侧.因为OH 是梯形ABFE 的中位线,所以OH =1()2+BF AE =1()2+m n . 如图5,在Rt △OCH 中,OC =5,OH =1()2+m n ,由勾股定理,得CH .所以l =CD =2CH .如图6,点A 、B 位于直线CD 两侧.延长BH 交AE 于点K .因为BF //AE ,H 是FE 的中点,所以KE =BF =n .因为OH 是△ABK 的中位线,所以OH =12AK =1()2AE BF -=1()2m n -. 如图5,在Rt △OCH 中,OC =5,OH =1()2-m n ,由勾股定理,得CH所以l =CD =2CH .考点伸展如图6、如图7是对立统一的两个图,OH 是△ABK 的中位线.如图6,当A 、B 在CD两侧时,OH =12AK =2AE BF -.如图7,当A 、B 在CD 同侧时,OH =12AK =2AE BF +.图6 图7如图1,已知直线y=kx+b经过A(-2, 0)、B(1, 3)两点,抛物线y=ax2-4ax+b与已知直线交于C、D两点(点C在点D的右侧),顶点为P.(1)求直线y=kx+b的表达式;(2)若抛物线的顶点不在第一象限,求a的取值范围;(3)若直线DP与直线AB所成的夹角等于15°,且点P在直线AB上方,求抛物线y=ax2-4ax+b的表达式.动感体验请打开几何画板文件名“21金山24”,拖动点P在第四象限的对称轴上运动,可以体验到,抛物线与y轴的交点D是确定的.点击屏幕左下方的按钮“第(3)题”,可以体验到,△PDF是60°角的直角三角形.思路点拨1.注意到两个解析式的常数项相同,抛物线与直线左侧的交点D是确定的.2.第(3)题构造60°角的直角三角形,先求顶点P的坐标.图文解析(1)将A(-2, 0)、B(1, 3)两点分别代入y=kx+b,得20,3.k bk b-+=⎧⎨+=⎩解得k=1,b=2.所以直线的表达式为y=x+2.(2)由y=ax2-4ax+2=a(x-2)2+2-4a,可知抛物线的顶点为P(2, 2-4a).如图1所示,如果顶点不在第一象限,那么2-4a<0.解得12 a>.(3)抛物线的对称轴为直线x=2,设对称轴与直线AB交于点E,那么E(2, 4).抛物线与直线的左侧的交点D的坐标为(0, 2).如图2,过点D向对称轴作垂线,垂足为F,那么△DEF是腰长为2的等腰直角三角形.当点P在直线AB上方,∠PDE=15°时,在Rt△PDF中,∠PDF=60°.所以PF=.所以顶点P(2,2+.所以224a+-.解得a=.所以抛物线的表达式为y=ax2-4ax+2=22++.图1 图2考点伸展第(2)题可以数形结合,抛物线开口向上,a>0,由∆=(-4a)2-8>0,解得12 a>.如图1,在△ABC 中,AB =AC=,∠BAC =120°,△ADE 的顶点D 在边BC 上,AE 交BC 边于点F (点F 在点D 的右侧),∠DAE =30°.(1)求证:△ABF ∽△DCA ;(2)若AD =ED .①联结EC ,当点F 是BC 的黄金分割点(FC >BF )时,求ABF FECS S △△. ②联结BE ,当DF =1时,求BE 的长.图1 备用图 备用图动感体验请打开几何画板文件名“21金山25”,拖动点D 在BC 上运动,可以体验到,△ABF 、△DCA 与△DAF 两两相似.点击屏幕左下方的按钮“第(2)题①”,拖动点D 在BC 上运动,可以体验到,CE 与BC 的夹角始终保持30°不变,△ABF 与△ECF 始终保持相似.点击屏幕左下方的按钮“第(2)题②”,观察DF 的度量值,可以体验到,DF =1存在两种情况,分别是AD ⊥BC 和AF ⊥BC 的时刻.思路点拨1.第(1)题也是“三等角”问题,有三个三角形两两相似.2.第(2)题中的四边形AEDC 被对角线分成四个三角形,相对的两个三角形相似.3.第(2)题中AB 与CE 保持平行关系,△ABF 与△ECF 保持相似.图文解析(1)如图2,在△ABC 中,AB =AC ,∠BAC =120°,所以∠B =∠C =30°. 设∠BAD =α,那么∠ADC =α+30°.又因为∠BAF =α+30°,所以∠ADC =∠BAF .所以△ABF ∽△DCA .(2)①因为点F 是BC 的黄金分割点(FC >BF ),所以=BF FC . 如图3,由AD =ED ,得∠AED =∠DAE =30°.等量代换,得∠AED =∠C .又因为∠DFE =∠AFC ,所以△DFE ∽△AFC .所以FD FA FE FC =. 又因为∠DF A =∠EFC ,所以△DF A ∽△EFC .所以∠FCE =∠F AD =30°.如图4,因为∠B =∠FCE ,所以AB //CE .所以△ABF ∽△ECF .所以22=()==ABF FEC S BF S FC △△.。
2021上海二模数学压轴题解答题25几何综合3
难点专题五几何综合(解答题25题)
杨浦
松江
嘉定
奉贤
青浦
黄埔
浦东新区
松江
【2021杨浦二模】
25.如图,已知Q是∠BAC的边AC上一点,AQ=15,cot∠BAC= ,点P是射线AB上一点,联结PQ,⊙O经过点A且与QP相切于点P,与边AC相交于另一点D.
(1)当圆心O在射线AB上时,求⊙O的半径;
∴BC=4,
∵AD∥BC,
∴∠ADG=∠DFC,
∵△ADG和△CDF相似,
∴∠AGD=∠FDC或∠DAG=∠FDC,
①当∠AGD=∠FDC,即△ADG∽△CFD时,有AG∥DC,延长CE交DA的延长线于点M,可得AM=4,
由 得 ,
∴AG=2,
∵△ADG∽△CFD,
∴ ,即 ,
∴CF=3,
∴BF=1;
∴
解得,m= 或﹣3,
经检验,x= 是分式方程的解,且符合题意.
∴AP=3.
如图,当点O在射线AB的下方时,同法可得AP= .
综上所述,满足条件的AP的值为3或 .
(3)如图,当⊙P与⊙O内切时,
由△PHO∽△QKP,可得 ,
∵OH⊥AP,
∴AH=PH,
∴AP=2PH,QK=2PH,
∴PA=QK=12,
∵AD:BC=1:2,
∴AD=2k,
如图:延长CE交DA的延长线于点M,
∵AD∥BC,
∴ ,且 ,
∵点E为边AB中点,
∴AM=BC=4k,
∴DM=DA+AM=2k+4k=6k,
∴ ;
(2)AG∥DC,且 .
上海市各区县二模第25题压轴整理
一、以矩形为背景的压轴题(2009二模)1. 有一张长方形纸片ABCD ,其中AB =3,BC =4,将它折叠后,可使点C 与点A 重合(图1),也可使点C 与AB 上的点E 重合(图2),也可使点C 与AD 上的点E 重合(图3),折痕为线段FG .(1) 如图1,当点C 与点A 重合时,则折痕FG 的长为 . (2) 如图2,点E 在AB 上,且AE =1,当点C 与点E 重合时,则折痕FG 的长为 .(3) 如图3,当C 与AD 上的点E 重合,折痕FG 与边BC 、CD 分别相交于点F 、G ,AE=x ,BF=y ,求y 关于x 的函数解析式,并写出函数定义域.(4) 如果折叠后,使点C 与这张纸的边上点E 重合,且DG =1,那么点E 可以在边上(写出所有可能的情况).2.(本题满分14分,第(1)小题3分,第(2)小题8分,第(3)小题3分) 如图,正方形ABCD 的边长为4,E 是BC 边的中点,点P 在射线AD 上,过P 作PF AE ⊥于F ,设PA x =. (1)求证:PFA ABE △∽△;(2)若以P F E ,,为顶点的三角形也与ABE △相似,试求x 的值;(3)试求当x 取何值时,以D 为圆心,DP 为半径的⊙D 与线段AE 只有一个公共点。
ABCDHFA B C DABCDEF 第25题图备用图H图3G图2图1G(3)如果把条件中的“EG ⊥FH ”改为“EG 与FH 的夹角为45°”,并假设正方形ABCD 254.如图,已知在正方形ABCD 中,AB = 2,P 是边BC 上的任意一点,E 是边BC 延长线上一点,联结AP .过点P 作PF ⊥AP ,与∠DCE 的平分线CF 相交于点F .联结AF ,与边CD 相交于点G ,联结PG .(1)求证:AP = FP ;(2)⊙P 、⊙G 的半径分别是PB 和GD ,试判断⊙P 与⊙G 两圆的位置关系,并说明理由;(3)当BP 取何值时,PG // CF .BA CDEPFG(第25题图)ABC DEO lA ′ABCDEO lF 5.(本题满分14分)在矩形ABCD 中,AB =3,点O 在对角线AC 上,直线l 过点O ,且与AC 垂直交AD 于点E.(1)若直线l 过点B ,把△ABE 沿直线l 翻折,点A 与矩形ABCD 的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F ,且AO =41AC ,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由;二、以三角形为背景的压轴题(2009二模)1、(本题满分14分)已知:等腰△ABC 中,AB=AC=5cm 。
最新上海中考数学二模压轴题(第25题)解析
(2015长宁)如图,已知矩形ABCD ,AB =12 cm ,AD =10 cm ,⊙O 与AD 、AB 、BC 三边都相切,与DC 交于点E 、F 。
已知点P 、Q 、R 分别从D 、A 、B 三点同时出发,沿矩形ABCD 的边逆时针方向匀速运动,点P 、Q 、R 的运动速度分别是1 cm/s 、x cm/s 、1.5 cm/s ,当点Q 到达点B 时停止运动,P 、R 两点同时停止运动.设运动时间为t (单位:s ).(1)求证: DE =CF ; (2)设x = 3,当△P AQ 与△QBR 相似时,求出t 的值;(3)设△P AQ 关于直线PQ 对称的图形是△P A'Q ,当t 和x 分别为何值时,点A'与圆心O 恰好重合,求出符合条件的t 、x 的值.第25题图OFED CBA PQ RAC BE OD 备用图(2015杨浦二模)在Rt △ABC 中,∠BAC=90°,BC=10,3tan 4ABC ∠=,点O 是AB 边上动点,以O 为圆心,OB 为半径的⊙O 与边BC 的另一交点为D ,过点D 作AB 的垂线,交⊙O 于点E ,联结BE 、AE 。
当AE//BC (如图(1))时,求⊙O 的半径长;设BO=x ,AE=y ,求y 关于 x 的函数关系式,并写出定义域;若以A 为圆心的⊙A 与⊙O 有公共点D 、E ,当⊙A 恰好也过点C 时,求DE 的长。
图(1) AB CDE O ABC备用图(第25题图)(2015徐汇)如图,在Rt ABC ∆中,90ACB ∠=,AC=4,1cos 4A =,点P 是边AB 上的动点,以PA 为半径作P ;(1)若P 与AC 边的另一交点为点D ,设AP x =,PCD ∆的面积为y ,求y 关于x 的函数解析式,并直接写出函数的定义域; (2)若P 被直线BC 和直线AC 截得的弦长相等,求AP 的长;(3)若C 的半径等于1,且P 与C 的公共弦长为2,求AP 的长;PDC BACBA(2015松江)如图,已知在直角梯形ABCD 中,AD ∥BC ,∠ABC=90º,AB=4,AD=3,25sin 5BCD ∠=,点P 是对角线BD 上一动点,过点P 作PH ⊥CD ,垂足为H . (1)求证:∠BCD=∠BDC ;(2)如图1,若以P 为圆心、PB 为半径的圆和以H 为圆心、HD 为半径的圆外切时,求DP 的长; (3)如图2,点E 在BC 延长线上,且满足DP=CE ,PE 交DC 于点F ,若△ADH 和△ECF 相似,求DP 的长.ABCHPD (第25题图1)ABCHPD EF(第25题图2)(2015普陀)如图11-1,已知梯形ABCD 中,AD //BC ,90D ∠=,5BC =,3CD =,cot 1B =.P 是边BC 上的一个动点(不与点B 、点C 重合),过点P 作射线PE ,使射线PE 交射线BA 于点E ,BPE CPD ∠=∠.(1)如图11-2,当点E 与点A 重合时,求DPC ∠的正切值;(2)当点E 落在线段AB 上时,设BP x =,BE y =,试求y 与x 之间的函数解析式,并写出x 的取值范围;(3)设以BE 长为半径的⊙B 和以AD 为直径的⊙O 相切,求BP 的长.CBDA 图11-1CBDA 图11备用图(E )P CBDA 图11-2(2015浦东)如图,已知在△ABC 中,射线AM ∥BC ,P 是边BC 上一动点,∠APD =∠B ,PD 交射线AM 于点D ,联结CD .AB =4,BC =6,∠B =60°. (1)求证:BP AD AP ⋅=2;(2)如果以AD 为半径的圆A 与以BP 为半径的圆B 相切,求线段BP 的长度;(3)将△ACD 绕点A 旋转,如果点D 恰好与点B 重合,点C 落在点E 的位置上,求此时∠BEP 的余切值.(2015闵行)如图,已知在梯形ABCD 中,AD // BC ,AB = DC = 5,AD = 4.M 、N 分别是边AD 、BC 上的任意一点,联结AN 、DN .点E 、F 分别在线段AN 、DN 上,且ME // DN ,MF // AN ,联结EF .(1)如图1,如果EF // BC ,求EF 的长;(2)如果四边形MENF 的面积是△ADN 的面积的38,求AM 的长; (3)如果BC = 10,试探索△ABN 、△AND 、△DNC 能否两两相似?如果能,求AN 的长;如果不能,请说明理由.A BCD MNEF(图1)A B C D MNEF (第25题图)(2015静安青浦)在⊙O中,OC⊥弦AB,垂足为C,点D在⊙O上.(1)如图1,已知OA=5,AB=6,如果OD//AB,CD与半径OB相交于点E,求DE的长;(2)已知OA=5,AB=6(如图2),如果射线OD与AB的延长线相交于点F,且△OCD是等腰三角形,求AF的长;(3)如果OD//AB,CD⊥OB,垂足为E,求sin∠ODC的值.(第25题图1)BO A CDE(第25题图2)BOA C(2015金山)如图,已知在ABC ∆中,10==AC AB ,34tan =∠B (1) 求BC 的长; (2) 点D 、E 分别是边AB 、AC 的中点,不重合的两动点M 、N 在边BC 上(点M 、N 不与点B 、C 重合),且点N 始终在点M 的右边,联结DN 、EM ,交于点O ,设x MN =,四边形ADOE 的面积为y .①求y 关于x 的函数关系式,并写出定义域;②当OMN ∆是等腰三角形且1=BM 时,求MN 的长.CB A第25题图CBA备用图(2015黄埔)如图8,Rt △ABC 中,90C ︒∠=,30A ︒∠=,BC =2,CD 是斜边AB 上的高,点E为边AC 上一点(点E 不与点A 、C 重合),联结DE ,作CF ⊥DE ,CF 与边AB 、线段DE 分别交于点F 、G .(1)求线段CD 、AD 的长; (2)设CE x =,DF y =,求y 关于x 的函数解析式,并写出它的定义域;(3)联结EF ,当△EFG 与△CDG 相似时,求线段CE 的长.DCBA(备用图)图8GFDCB A E更多精品文档 (2015奉贤)已知:如图,线段AB =8,以A 为圆心,5为半径作圆A ,点C 在⊙A 上,过点C 作CD //AB 交⊙A 于点D (点D 在C 右侧),联结BC 、AD .(1)若CD=6,求四边形ABCD 的面积;(2)设CD =x ,BC =y ,求y 与x 的函数关系式及自变量x 的取值范围;(3)设BC 的中点为M ,AD 的中点为N ,线段MN 交⊙A 于点E ,联结CE ,当CD 取何值时,CE //AD .DC B (第25题图)AB (备用图)A更多精品文档(2015崇明)如图,在Rt ABC ∆中,90ACB ∠=︒,8AC =,4tan 3B =,点P 是线段AB 上的一个动点, 以点P 为圆心,PA 为半径的P 与射线AC 的另一个交点为点D ,射线PD 交射线BC 于点E , 点Q 是线段BE 的中点.(1)当点E 在BC 的延长线上时,设PA x =,CEy =,求y 关于x 的函数关系式,并写出定义域; (2)以点Q 为圆心,QB 为半径的Q 和P 相切时,求P 的半径; (3)射线PQ 与P 相交于点M ,联结PC 、MC ,当PMC ∆是等腰三角形时,求AP 的长.(第25题图) A P D C E Q B (备用图1)B A C(备用图2)BA C更多精品文档 (2015宝山)在Rt △ABC 中,︒=∠90C ,2=BC ,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE ,过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合如图10,求BAE ∠cot 的值;(2)若点M 在边BC 上如图11,设边长x AC =,y BM =,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若EBM BAE ∠=∠,求斜边AB 的长.AC B (M )ED图10 A C B M E D 图11。
上海中考数学第25题分析(下)
上海中考数学第25题分析(下)——与圆有关的压轴题前言:我们古代数学家刘徽、祖冲之为了研究圆(周长和面积),费尽毕生精力,不管是割圆术还是牟合方盖,不管极限思想还是圆周率的精确,都是古人智慧的结晶,也许正因为古人的智慧铺垫,才有了如今我们学习圆的轻松和方便,今天我们一起来探究下圆的压轴!一、圆的知识梳理及拓展延伸——重要!!!1、圆的定义(轨迹法):平面上的动点到定点的距离等于定长,这样的轨迹称之为圆(定点为圆心,定长为半径)。
2、圆心角和圆周角:顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
3、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4、在同圆或等圆中,如果两个圆心角,两个圆周角,两条弧,两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
5、切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。
6、切线的性质:①经过切点垂直于这条半径的直线是圆的切线。
②经过切点垂直于切线的直线必经过圆心。
③圆的切线垂直于经过切点的半径。
7、直径所对的圆心角为直角。
8、两圆相交,则连心线平分公共弦——注意事连心线,不是圆心之间的线段! 9、①圆的周长及面积公式:r C π2=,2r S π=; ②扇形的周长及面积公式:r n C π2360=,2360r n S π=; 10、圆的割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。
11、圆和圆的位置关系:相交、相离(外离+内含)、相切(外切+内切)。
12、四点共圆:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。
四点共圆有三个性质:①共圆的四个点所连成同侧共底的两个三角形的顶角相等;②圆内接四边形的对角互补;③圆内接四边形的外角等于内对角。
题外话:圆的性质是所有章节最多的一个,还有弦切角+圆心角+圆周角的关系、圆幂定理及逆定理、托勒密定理及其逆定理等等,但可恨的是上海中考这个拿学业水平考当选拨的考试,它根本就不考那么多!二、25题与圆有关的压轴题题型归纳圆的综合在一模试卷中出现的不多,二模中是重点题型。
上海中考数学第25题分析(中)
上海中考第25题分析(中)——由三角形、四边形产生的相似及存在问题前言:近年来,为了“秉承活学活用、切实减轻学生过重的学业负担”,上海市中考数学难度有逐年走低之嫌,甚至连压轴题的区分度也岌岌可危。
逐渐表现为:“综合性若,题型太熟悉,缺乏创新”2016年更是被师生一致冠以上海中考史上最简单的一张中考数学试卷,数学满分的人数达到前所未有的多,也更因为缺少区分度而遭到诟病。
殊不知,中考数学一刀平,数学英寸何处?但不管我如何吐槽,如何发言,中考该咋滴依然还咋滴,三个字概况:“然并卵”。
故,我们今天继续来学习中考数学第25题压轴题的分析吧!一、由三角形、四边形产生的相似及存在问题的解题思想(1)分类思想与讨论方法所谓“分类讨论”就是在研究数学问题时,根据某一标准把研究对象进行分类,然后按类进行讨论。
分类思想是自然科学乃至社会科学中的基本逻辑方法,初中数学中分类思想的教学是培养学生逐步建立逻辑思维能力较为有效的载体。
初中四年,是学生由形象的接受知识到抽象的感知知识的阶段。
学生通过对分类思想的建立和研究,培养了学生思维的条理性和缜密性,提高了学生全面周密地分析问题和解决问题的能力。
分类是讨论的前提,讨论是分类的延续,在建立了合理的分类后,只有找到正确的讨论方法,才能认为是完整的解决了问题。
分类思想是根据数学对象的本质与属性的相同点和差异点,将数学对象区分为不同种类的数学思想方法。
数学分类思想须满足两点要求:(1)对称性,即保证分类的对象既不重复又不遗漏。
(2)同一性,即每次分类必须保持同一的分类标准。
初中数学分类思想的研究主要体现在以下三个基本的层面:1. 数学知识点定义下的分类。
具体的体现在等腰三角形的底角和顶角的分类;等腰三角形的腰和底边的分类;不确定的相似三角形中对应顶点的分类等等。
此类问题的主要特点是由于数学知识点在定义时自身产生了分类,而问题的提问方式没有对该定义的分类内容进行解释,题意本身要求学生在解题的时候,根据定义的分类要求进行合理的分类讨论。
2020上海中考25题解法赏析(二)
2020上海中考25题解法赏析(二)本文将主要介绍2020上海中考25题第(3)小问的20种解法。
25(3)背景:解题思路分析:第(3)题的解题思路如下:由本题的第(1)小题:证明∠BAC=2∠ABD,以及前2问的辅助线“延长AO交BC于H”,经过观察和分析,图中有现成的2个基本图形,同时可以通过添加平行线构造A或X型基本图形。
(1)2个基本图形:共角共边型相似三角形(∠OAD=∠ABD,∠ADO=∠ADB):▲AOD∽▲ABD,以及角分线模型(AO平分∠BAC):BO:DO=AB:AD,通过计算,可以得到半径的长度;(2)利用AD:CD=2:3,通过作平行线,构造A型或X型基本图形,合理设元,利用线段间的比例关系求解;(3)本题的背景是在圆中,因此可以借助垂径定理、圆中四者关系做弦心距,利用勾股定理或锐角三角比等基本方法解决问题。
(4)通过构造全等或等腰三角形,利用等腰三角形的三线合一定理及全等三角形的性质定理,将线段转化到同一个三角形中,进而解决问题。
具体解法流程图如下:解法1:利用AD:CD=2:3,构造平行线,利用A/X型小结:解法1-1~1-5均是借助了AD:CD=2:3这个比例式,找到AO:HO的比例关系,借助AO=BO,进而利用方程思想设元,在Rt△AHC中利用勾股定理最终求出BC的长.解法2:利用勾股定理小结:要得到DO:BO=2:5,除了可以借助△AOD∽△ABD外,还可以利用AO平分∠BAC这一条件,得到AD:AB=DO:BO.解法3:利用锐角三角比小结:利用弦心距及直径所对的圆周角是直角构造直角三角形,利用锐角三角比进行求解。
解法4:构造等腰三角形解法5:构造全等三角形解法6:利用梅涅劳斯定理(链接:梅涅劳斯定理)。
2020上海中考25题解法赏析(一)
2020上海中考25题解法赏析(一)本文先分析25题的第(1)、(2),就具体解法,错误原因进行详细分析。
25(1)背景:解题思路分析:第(1)题的关键在于如何利用条件“AB=AC”,如何综合利用三角形、圆的基本性质。
解法流程图如下:解法1:利用垂径定理小结:若要利用垂径定理及其推论,一定是“2→2”,(链接:垂径定理),本题的易错点①在于“联结AO交于H”后就直接推出了“AH⊥BC”,忽略了还需要一个条件:点A平分弧BAC;易错点②在于“作AH⊥BC”后,就默认AH过圆心了,此处又忽略了一个条件,即AH平分弦BC.因此在使用垂径定理时,注意前提条件。
解法2:利用垂直平分线的逆定理解法3:证明三点共线小结:两种证明三点共线的方法,一种是利用“OH⊥BC,AH⊥BC”证明三点共线,另一种是利用“H、G都为BC”中点,进而证明三点共线。
解法4:利用圆中四者关系构造全等三角形小结:本方法中全等的证明还可以利用“AB=AC→∠AOB=∠AOC”,AO=AO,∠AOB=∠AOC,BO=CO,证明▲AOB≌▲AOC.解法5:利用圆心角和圆周角的倍半关系小结:本方法中圆心角和圆周角的倍半关系是拓展II的内容,综合利用了三角形的内角和定理进行角的转化。
解法6:利用角平分线的逆定理解法7:利用等边对等角及角的和差关系25(2)背景:解题思路分析:第(2)题的解法思路如下:从条件看:由(1)得,∠BAC=2∠ABD,利用方程思想设元;从结论看:由▲BCD是等腰三角形,进行分类讨论:①BC=BD;②BC=CD;③BD=CD.小结:本题的难点在于根据(1)的推理进行设元,然后进行分类讨论。
继而利用三角形的内外角和定理求出∠BCD的度数。
值得注意的是,对于BD=CD不存在的情况说明,要从∠DBC<∠C的角度切入,而不能简单地说“D与A重合”.。
2024上海初三二模数学试卷分类《25题解答压轴题》
图12备用图上海市2024届初三二模数学试卷分类汇编——25题解答压轴题【2024届·宝山区·初三二模·第25题】1.(本题满分14分,第(1)①小题4分,第(1)②小题4分,第(2)小题6分)已知AB 是半圆O 的直径,C 是半圆O 上不与A 、B 重合的点,将弧AC 沿直线AC 翻折,翻折所得的弧交直径AB 于点D ,E 是点D 关于直线AC 的对称点.(1)如图12,点D 恰好落在点O 处.①用尺规作图在图12中作出点E (保留作图痕迹),联结AE 、CE 、CD ,求证:四边形ADCE 是菱形;②联结BE ,与AC 、CD 分别交于点F 、G ,求FGBE的值;(2)如果10AB =,1OD =,求折痕AC 的长.备用图2【2024届·崇明区·初三二模·第25题】2.(本题满分14分,第(1)①小题4分,第(1)②小题5分,第(2)小题5分)如图,已知Rt ABC ∆中,90ACB ∠=︒,6AC =,3sin 5B =,点D 是射线BA 上一动点(不与A 、B 重合),过点D 作//DE AC ,交射线BC 于点E ,点Q 为DE 中点,联结AQ 并延长,交射线BC 于点P .(1)如图1,当点D 在线段AB 上时.①若2AD =,求PC 的长;②当ADQ ∆与ABP ∆相似时,求AD 的长;(2)当ADQ ∆是以AD 为腰的等腰三角形时,试判断以点A 为圆心、AD 为半径的⊙A 与以点C 为圆心、CE 为半径的⊙C 的位置关系,并说明理由.第25题图1备用图1图10备用图【2024届·奉贤区·初三二模·第25题】3.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图10,已知半圆O 的直径为MN ,点A 在半径OM 上,B 为 MN 的中点,点C 在 BN 上,以AB 、BC为邻边作矩形ABCD ,边CD 交MN 于点E .(1)如果6MN =,2AM =,求边BC 的长;(2)联结CN ,当CEN ∆是以CN 为腰的等腰三角形时,求BAN ∠的度数;(3)联结DO 并延长,交AB 于点P ,如果2BP AP =,求BCAB的值.【2024届·虹口区·初三二模·第25题】4.(本题满分14分,第(1)小题4分,第(2)①小题5分,第(2)②小题5分)在梯形ABCD 中,//AD BC ,点E 在射线DA 上,点F 在射线AB 上,联结CE 、DF 相交于点P ,EPF ABC ∠=∠.(1)如图10①,如果AB CD =,点E 、F 分别在边AD 、AB 上.求证:AF DFDE CE=;(2)如图10②,如果AD CD ⊥,5AB =,10BC =,3cos 5ABC ∠=.在射线DA 的下方,以DE 为直径作半圆O ,半圆O 与CE 的另一个交点为点G .设DF 与弧EG 的交点为Q .①当6DE =时,求EG 和AF 的长;②当点Q 为弧EG 的中点时,求AF 的长.图10①图10②图10②备用图图10备用图【2024届·黄浦区·初三二模·第25题】5.(本题满分14分)已知:如图10,ABC ∆是圆O 的内接三角形,AB AC =,弧 AB 、AC 的中点分别为M 、N ,MN 与AB 、OA 、AC 分别交于点P 、T 、Q .(1)求证:OA MN ⊥;(2)当ABC ∆是等边三角形时,求ATOT的值;(3)如果圆心O 到弦BC 、MN 的距离分别为7和15,求线段PQ 的长.图9图10备用图在菱形ABCD 中,60DAB ∠=︒,点E 在射线AB 上,联结CE 、BD .(1)如图9,当点E 是边AB 的中点,求ECD ∠的正切值;(2)如图10,当点E 在线段AB 的延长线上,联结DE 与边BC 交于点F ,如果6AD =,EFC ∆的面积等于33EF 的长;(3)当点E 在边AB 上,CE 与BD 交于点H ,联结DE 并延长DE 与CB 的延长线交于点G ,如果6AD =,BCH ∆与以点E 、G 、B 所组成的三角形相似,求AE 的长.第25题图1第25题图2如图,已知:等腰梯形ABCD 中,//AD BC ,AB DC =,以A 为圆心,AB 为半径的圆与BC 相交于点E ,与CD 相交于点F ,联结AE 、AC 、BF ,设AE 、AC 分别与BF 相交于点G 、H ,其中H 是AC 的中点.(1)求证:四边形AECD 为平行四边形;(2)如图1,如果AE BF ⊥,求ABBC的值;(3)如图2,如果BG GH =,求ABC ∠的余弦值.=第25题图1第25题图2如图1,ABC ∆中,已知6AB =,9BC =,B ∠为锐角,1cos 3ABC ∠=.(1)求sin C 的值;(2)如图2,点P 在边AB 上,点Q 是边BC 的中点,⊙P 经过点A ,⊙P 与⊙Q 外切,且⊙Q 的直径不大于BC ,设⊙P 的半径为x ,⊙Q 的半径为y ,求y 关于x 的函数解析式,并写出定义域;(3)在第(2)小题条件下,联结PQ ,如果BPQ ∆是等腰三角形,求AP 的长.第25题图1第25题图2备用图【2024届·闵行区·初三二模·第25题】9.(本题满分14分,第(1)①小题4分,第(1)②小题5分,第(2)小题5分)如图,OB 是⊙O 的半径,弦AB 垂直于弦BC ,点M 是弦BC 的中点,过点M 作OB 的平行线,交⊙O 于点E 和点F .(1)如图1,当AB BC =时.①求ABO ∠的度数;②联结OE ,求证:30OEF ∠=︒;(2)如图2,联结OE ,当AB BC ≤时,tan OEF x ∠=,ABy BC=,求y 关于x 的函数关系式并直接写出定义域.第25题图1第25题图2第25题图3【2024届·浦东新区·初三二模·第25题】10.(本题满分14分,第(1)小题5分,第(2)小题4分,第(3)小题5分)已知:⊙1O 和⊙2O 相交于A 、B 两点,线段12O O 的延长线交⊙2O 于点C ,CA 、CB 的延长线分别交⊙1O 于点D 、E .(1)联结AB 、DE ,AB 、DE 分别与连心线12O O 相交于点H 、点G .如图1,求证://AB DE ;(2)如果125O O .①如图2,当点G 与1O 重合,⊙1O 的半径为4时,求⊙2O 的半径;②联结2AO 、BD ,BD 与连心线12O O 相交于点F ,如图3,当2//BD AO ,且⊙2O 的半径为2时,求1O G 的长.11.(本题满分14分)如图9,在梯形ABCD 中,//AD BC (AD BC <),90A ∠=︒,6BC CD ==.将梯形ABCD 绕点C 按顺时针方向旋转,使点B 与点D 重合,此时点A 、D 的对应点分别是点E 、F .(1)当点F 正好落在AD 的延长线上时,求BCD ∠的度数;(2)联结AE ,设AD x =,AE y =.①求y 关于x 的函数解析式;②定义:同中心同边数的两个正多边形称为双同正多边形.设BCF ∠是一个正多边形的中心角,联结BD ,请说明以线段BD 、AE 为边的正多边形是双同正多边形的理由.当这两个正多边形的面积比是4:5时,求双同正多边形的边数.图9第25题(1)图第25题(2)图12.(本题满分14分,第(1)①小题4分,第(1)②小题5分,第(2)小题5分)在ABC ∆中,2AB AC ==,以C 为圆心、CB 为半径的弧分别与射线BA 、射线CA 相交于点D 、E ,直线ED 与射线CB 相交于点F .(1)如图,当点D 在线段AB 上时.①设ABC α∠=,求BDF ∠;(用含α的式子表示)②当1BF =时,求cos ABC ∠的值;(2)如图,当点D 在BA 的延长线上时,点M 、N 分别为BC 、DF 的中点,联结MN ,如果//MN CE ,求CB 的长.图9备用图13.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图9,已知矩形ABCD 中,1AB =,2BC =,点P 是边AD 上一动点,过点P 作PE AC ⊥,垂足为点E ,联结BE ,过点E 作EF BE ⊥,交边AD 于点F (点F 与点A 不重合).(1)当F 是AP 的中点时,求证:BA BE =;(2)当AP 的长度取不同值时,在PEF ∆中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由;(3)延长PE 交边BC 于点G ,联结FG ,EFG ∆与AEF ∆能否相似?若能相似,求出此时AP 的长;若不能相似,请说明理由.第25题图14.(本题满分14分,第(1)①小题2分,第(1)②小题3分,第(2)①小题5分,第(2)②小题4分)如图,在扇形OAB 中,62OA OB ==90AOB ∠=︒,点C 、D 是弧AB 上的动点(点C 在点D 的上方,点C 不与点A 重合,点D 不与点B 重合),且45COD ∠=︒.(1)①请直接写出弧AC 、弧CD 和弧BD 之间的数量关系;②分别联结AC 、CD 和BD ,试比较AC BD +和CD 的大小关系,并证明你的结论;(2)联结AB 分别交OC 、OD 于点M 、N .①当点C 在弧AB 上运动过程中,AN BM ⋅的值是否变化?若变化,请说明理由;若不变,请求AN BM ⋅的值;②当5MN =时,求圆心角DOB ∠的正切值.第25题图1备用图15.(本题满分14分,第(1)小题4分,第(2)小题10分)已知以AB 为直径的半圆O 上有一点C ,CD OA ⊥,垂足为点D ,点E 是半径OC 上一点(不与点O 、C 重合),作EF OC ⊥交弧BC 于点F ,联结OF .(1)如图1,当FE 的延长线经过点A 时,求CD AF的值;(2)如图2,作FG AB ⊥,垂足为点G ,联结EG .①试判断EG 与CD 的大小关系,并证明你的结论;②当EFG ∆是等腰三角形,且4sin 5COD ∠=,求OE OD 的值.第25题图1备用图备用图16.(本题满分14分,第(1)小题4分,第(2)①小题5分,第(2)②小题5分)已知在ABC ∆中,CA CB =,6AB =,3cos 5CAB ∠=,点O 为边AB 上一点,以点O 为圆心,OA 为半径作⊙O ,交边AC 于点D (点D 不与点A 、C 重合).(1)当4AD =时,判断点B 与⊙O 的位置关系,并说明理由;(2)过点C 作CE OD ⊥,交OD 延长线于点E .以点E 为圆心,EC 为半径作⊙E ,延长CE ,交⊙E 于点'C .①如图1,如果⊙O 与⊙E 的公共弦恰好经过线段EO 的中点,求CD 的长;②联结'AC 、OC ,如果'AC 与BOC ∆的一条边平行,求⊙E 的半径长.。
上海市二模数学压轴题解析长宁金山25
例 2016年上海市长宁区金山区中考模拟第25题如图1,已知在Rt△ABC中,∠ACB=90°,AB=5,sin∠A=45,P是BC边上的一点,PE⊥AB,垂足为E,以点P为圆心,PC为半径的圆与射线PE相交于点Q,线段CQ 与边AB交于点D.(1)求AD的长;(2)设CP=x,△PCQ的面积为y,求y关于x的函数解析式,并写出定义域;(3)过点C作CF⊥AB,垂足为F,联结PF、QF,如果△PQF是以PF为腰的等腰三角形,求CP的长.图1动感体验请打开几何画板文件名“16长宁金山25”,拖动点P在BC上运动,可以体验到,△PQF 有4个时刻可以成为等腰三角形,其中PF为腰的有2中情况.思路点拨1.把图形中相等的角都标注出来,容易发现AD=AC的理由是等角对等边.2.在△PCQ中,PC边上的高所对的锐角原来是定值,等于∠A啊.3.讨论等腰三角形PQF,利用垂直平分线的性质解题比较简便.4.以PF为腰的等腰三角形PQF分两种情况讨论.满分解答(1)如图2,在Rt△ABC中,AB=5,sin∠A=45,所以BC=4,AC=3.因为PC=PQ,所以∠4=∠Q.因为∠1=∠2,∠2与∠Q互余,∠3与∠4互余,所以∠1=∠3.所以AD=AC=3.(2)如图3,作QH⊥BC于H.因为∠QPB与∠A都是∠B的余角,所以∠QPB=∠A.在Rt△QPH中,PQ=PC=x,sin∠QPH=45,所以QH=45x.所以y=S△PCQ=12PC QH⋅=1425x x⨯=225x.定义域是0<x≤4.图2 图3 图4(3)在Rt △ACF 中,AC =3,sin ∠A =45,所以CF =AC ·sin ∠A =125. ①如图4,如果PF =PQ ,那么PC =PF .所以点P 在CF 的垂直平分线上. 此时1cos 2CF PC BCF =⋅∠.所以1123=255CP ⨯.解得CP =2. ②如图5,如果FP =FQ ,那么FE 垂直平分PD ,所以PE =QE .所以CP =QP =2PE .而PE =33(4)55BP CP =-,所以32(4)5CP CP =⨯-.解得2411CP =. 考点伸展第(3)题的等腰三角形PQF 如何求QP =QF 的情况?因为PQ //CF ,QP =CP ,当QP =QF 时,四边形PCFQ 就是一组对边平行,另一组对边相等的四边形,因此四边形PCFQ 是平行四边形或等腰梯形.(i )如图6,如果四边形PCFQ 是平行四边形,由于邻边相等,所以它是菱形,所以CP =CF =125. (ii )如图7,如果四边形PCFQ 是等腰梯形,那么PC =QF =PQ =x .由CM +MN +NF =CF ,得3312555x x x ++=.解得CP =x =1211.图5 图6 图7。
2021上海二模数学压轴题解答题25几何综合1
(2)如果半径为EG的⊙E与半径为FD的⊙F相切,求这两个圆的半径.
【2021金山二模】
21.(本题满分14分,第(1)题4分,第(2)①题4分,第(2)②题6分)
已知在 中, , , 的顶点 在边 上, 交 于点 (点 在点 的右侧), .
(1)求证: ∽ .
①求圆P的半径长;
②又BC=8,以BC为直径作圆O,试判断圆O与圆P的位置关系,并说明理由.
(2)如果分别以AB、CD为直径的两圆外切,求证:△ABC与△BCD相似.
【举一反三】
(2020·上海)如图,在四边形ABCD中,∠B=90°,AD//BC,AB=4,BC=12,点E在边BA的延长线上,AE=2,点F在BC边上,EF与边AD相交于点G,DF⊥EF,设AG=x, DF=y.
(1)设 ,试建立 关于 的函数关系式,并写出函数定义域;
(2)若 为等腰三角形,求出 的长.
【2021静安二模】
25.(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4分)
如图,已知半圆O的直径AB=4,点P在线段OA上,半圆P与半圆O相切于点A,点C在半圆P上,CO⊥AB,AC的延长线与半圆O相交于点D,OD与BC相交于点E.
(1)求证: ;
(2)若 ,求 关于 的函数关系式并写出定义域;
(3)延长 交 的延长线于点 ,联结 ,若 与 相似,求线段 的长.
【2021宝山二模】
25.如图,已知AB⊥BC,DC⊥BC,垂足分别为点B、点C,AC与BD交于点P.
(1)如果AB=3,CD=5,以点P为圆心作圆,圆P与直线BC相切.
(2)若 .
①联结 ,当点 是 的黄金分割点( )时,求 .
2015年上海各区中考数学二模压轴题24、25题图文解析
《2015年上海各区中考数学二模压轴题图文解析》目录2015年上海各区中考数学二模第24、25题例1 2015年宝山区嘉定区中考数学二模第24、25题图文解析/2例2 2015年奉贤区中考数学二模第24、25题图文解析/6例3 2015年虹口区中考数学二模第24、25题图文解析/10例4 2015年黄浦区中考数学二模第24、25题图文解析14例5 2015年金山区中考数学二模第24、25题图文解析/18例6 2015年静安区青浦区中考数学二模第24、25题图文解析/22例7 2015年闵行区中考数学二模第24、25题图文解析/26例8 2015年浦东新区中考数学二模第24、25题图文解析/30例9 2015年普陀区中考数学二模第24、25题图文解析34例10 2015年松江区中考数学二模第24、25题图文解析38例11 2015年徐汇区中考数学二模第24、25题图文解析42例12 2015年杨浦区中考数学二模第24、25题图文解析/46例13 2015年长宁区中考数学二模第24、25题图文解析/50例14 2015年崇明县中考数学二模第24、25题图文解析/54例15 2015年闸北区中考数学二模第24、25题图文解析/592015年上海各区中考数学二模第18题例1 2015年宝山区嘉定区中考数学二模第18题图文解析/63例2 2015年奉贤区中考数学二模第18题图文解析/64例3 2015年虹口区中考数学二模第18题图文解析/615例4 2015年黄浦区中考数学二模第18题图文解析/66例5 2015年金山区中考数学二模第18题图文解析/67例6 2015年静安区青浦区中考数学二模第18题图文解析/68例7 2015年闵行区中考数学二模第18题图文解析/69例8 2015年浦东新区中考数学二模第18题图文解析/70例9 2015年普陀区中考数学二模第18题图文解析/71例10 2015年松江区中考数学二模第18题图文解析/72例11 2015年徐汇区中考数学二模第18题图文解析/73例12 2015年杨浦区中考数学二模第18题图文解析/74例13 2015年长宁区中考数学二模第18题图文解析/75例14 2015年崇明县中考数学二模第18题图文解析/76例15 2015年闸北区中考数学二模第18题图文解析/77例 2015年上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线kyx=(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.图22所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022CE=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4考点伸展第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图54例 2015年上海市宝山区嘉定区中考模拟第25题在Rt △ABC 中,∠C =90°,BC =2,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE .过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合(如图1),求cot ∠BAE 的值;(2)若点M 在边BC 上(如图2),设边长AC =x ,BM =y ,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若∠BAE =∠EBM ,求斜边AB 的长.图1 图2动感体验请打开几何画板文件名“15宝山嘉定25”,拖动点A 上下运动,可以体验到,△ABE 保持等腰三角形,∠BAE =∠EBM 按照点M 与点B 的位置关系存在两种情况. 思路点拨1.第(1)题的特殊性是∠DEB =∠CAB =∠EBD ,△EDB 是等腰直角三角形.2.第(1)题暗示了第(2)题中蕴含着三个等角,因此寻找相似三角形.3.第(3)题∠BAE =∠EBM 要分两种情况考虑,各有各的特殊性.满分解答(1)如图3,当点M 与点B 重合时,EB //AC .所以∠CAB =∠EBD .又因为旋转前后∠CAB =∠DEB ,所以∠EBD =∠DEB .所以△EDB 和△ACB 是等腰直角三角形.已知BC =2,所以AC =2,AB =22. 在Rt △AED 中,ED =2,AD =222-,所以cot ∠BAE =AD ED=2222-=21-.图3 图4(2)在Rt △ABC 中,BC =2,AC =x ,所以AB =24x +. 如图4,设EM 与AB 交于点F .由FM //AC ,得BM BF BC BA =,即224y BFx =+.所以BF =242y x +. 由于BD =BC =2,所以DF =2422y x +-. 由∠DEB =∠CAB =∠DFE ,∠EDB 是公共角,得△DEB ∽△DFE .所以DE 2=DF ·DB ,即2242(2)2y x x +=-.整理,得2244x y x -=+. 定义域是0<x <2.(3)已知BA =BE ,所以∠BAE =∠BEA .当∠BAE =∠EBM 时,∠BAE =∠BEA =∠EBM .按照M 、B 的位置分两种情况: ①如图5,当M 在B 右侧时,由∠BEA =∠EBM ,得AE //CM .此时∠BAE =∠ABC .又已知∠ABC =∠EBD ,所以∠ABC =∠EBD =∠EBM =60°.在Rt △ABC 中,AB =2BC =4.②如图6,当M 在B 左侧时,在△BAE 中,∠BAE =∠BEA =2∠ABE .所以∠ABE =36°,∠BAE =∠BEA =72°.延长EA 交BC 的延长线于G ,那么∠G =36°,AG =AB ,GE =GB =2CB =4. 由于点A 是GE 的黄金分割点,所以512AG GE -=.所以AB =AG =252-.图5 图6考点伸展第(3)题的第②种情况,我们直接应用了黄金分割数,也可以用相似比来解. 由∠BAE =∠BEA =∠MBE ,容易得到GB =GE =4,AG =AB =BE .由△GBE ∽△BAE ,得到EB 2=EA ·EG .设AB =BE =m .于是得到24(4)m m =-.整理,得m 2+4m -16=0.解得252m =.6例 2015年上海市奉贤区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2+x 的对称轴为直线x =2,顶点为A .(1)求抛物线的表达式及顶点A 的坐标;(2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物线于点B ,联结OB ,当∠OAP =∠OBP 时,求点B 的坐标.图1动感体验请打开几何画板文件名“15奉贤24”,拖动点P 在抛物线的对称轴上运动,可以体验到,△BNP ∽△PMO 保持不变,当∠OAP =∠OBP 时,△BOP ∽△AOH . 思路点拨1.根据等角的余角相等,通过已知的等角寻找未知的等角.2.过直角顶点P 向坐标轴画垂线,可以构造相似的直角三角形,于是通过对应边成比例,可以列方程.满分解答(1)由抛物线的对称轴为122x a =-=,可得14a =-. 所以抛物线的表达式为2211(2)144y x x x =-+=--+. 顶点A 的坐标为(2, 1).(2)①如图2,设AP 与x 轴交于点H .由A (2, 1),可得tan ∠OAH =2.当OA ⊥OP 时,∠POH =∠OAH .所以tan ∠POH =PH OH=2. 因此PH =2OH =4.所以OP =25. 图2②如图3,当∠OAP =∠OBP 时,tan ∠AOH =tan ∠BOP .所以2PO HO PB HA==.如图4,过点P 作PM ⊥y 轴于M ,过点B 作x 轴的垂线交直线PM 于N .由△OMP ∽△PNB ,得2OM MP PO PN NB BP===.所以OM =2PN ,MP =2NB . 设21(,)4B x x x -+,P (2, n ),那么2(2)n x -=-,2122()4x x n =-+-. 将n =4-2x 代入2114x x n -+-=,整理,得x 2-12x +20=0. 解得x =10,或x =2(B 与A 重合,舍去).所以点B 的坐标为(10, -15).图3 图4考点伸展如果应用四点共圆的知识,结合勾股定理,那么第(2)②题可以这样做:如图3,当∠OAP =∠OBP 时,A 、B 、P 、O 四点共圆.此时∠OAB =∠OPB =90°.所以OB 2=OA 2+AB 2.设21(,)4B x x x -+,那么22222211()5(2)(1)44x x x x x x ⎡⎤+-+=+-+-+-⎢⎥⎣⎦. 整理,得x 2-12x +20=0.解得x =10,或x =2.所以B (10, -15).例 2015年上海市奉贤区中考模拟第25题如图1,已知线段AB=8,以A为圆心,5为半径作⊙A,点C在⊙A上,过点C作CD//AB 交⊙A于点D(点D在点C右侧),联结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围;(3)设BC的中点为M,AD的中点为N,线段MN交⊙A于点E,联结CE,当CD取何值时,CE//AD.图1 备用图动感体验请打开几何画板文件名“15奉贤25”,拖动点C在圆上运动,可以体验到,当CE//AD 时,四边形CEND是平行四边形,四边形CEAN是平行四边形,四边形CF AG是矩形.思路点拨1.已知△ABC的三边长分别为5,8,y,构造AB边上的高CK,那么CK为两个直角三角形的公共直角边,根据勾股定理列方程,可以得到y关于x的关系式.2.当CE//AD时,注意到CE与AN、DN的关系都是平行且相等.满分解答(1)如图2,过点A作AH⊥CD,垂足为H.在△ACD中,AC=AD=5,CD=6,所以CH=DH=3.所以AH=4.所以S梯形ABCD=1()2CD AB AH+⨯=1(68)42+⨯=28.图2 图3(2)如图3,作CK⊥AB,垂足为K,那么四边形CKAH为矩形.在△ACD中,AC=AD=5,CH=DH=12 x.8在△ABC 中,BC =y ,AC =5,AK =12x ,BK =182x -. 由CK 2=BC 2-BK 2=AC 2-AK 2,得222211(8)5()22y x x --=-. 整理,得898y x =-.自变量x 的取值范围是0<x <10.(3)如图4,已知MN 是梯形ABCD 的中位线,MN //CD ,当CE //AD 时,四边形CEND 是平行四边形,此时CE =DN =12AD =52. 由CE //NA ,CE =NA ,得四边形CEAN 是平行四边形.所以CN =EA =CA =5.作CG ⊥AN 于G ,那么AG =12AN =14AD =54.所以DG =515544-=. 在Rt △CAG 中,AG =54,CA =5,由勾股定理,得CG =5154. 在Rt △CDG 中,CG =5154,DG =154,由勾股定理,得CD =562.图4 图5考点伸展第(3)题还可以用相似比来解:如图5,设直线AE 与DC 的延长线交于点P ,与⊙A 交于点Q ,那么CE 是△P AD 的中位线,因此PC =CD =x ,PE =EA =AQ =5.由CE //DA ,得∠1=∠3,∠2=∠4.又因为∠1=∠2,所以∠3=∠4.于是可得∠Q =∠5=∠6.由△PCE ∽△PQD ,得PC PQ PE PD =.所以1552x x =.解得562x = 由△PDA ∽△PQD ,得PD PQ PA PD =.所以215102x x =.解得562x =例 2015年上海市虹口区中考模拟第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c过A(-1,0)、B(3,0)、C(2, 3)三点,与y轴交于点D.(1)求该抛物线的解析式,并写出该抛物线的对称轴;(2)分别联结AD、DC、CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD的面积平分时,求m的值;(3)设点F为该抛物线对称轴上一点,当以A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.图1动感体验请打开几何画板文件名“15虹口24”,拖动点P运动,可以体验到,经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.拖动点F在抛物线的对称轴上运动,可以体验到,以A、B、C、F为顶点的梯形有3个.思路点拨1.已知抛物线与x轴的两个交点,设两点式比较简便.2.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.3.过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3).将点C(2, 3)代入,得3=-3a.解得a=-1.所以抛物线的解析式为y=-(x+1)(x-3)=-x2+2x+3.对称轴是直线x=1.(2)如图2,由C(2, 3)、D(0, 3),得CD//x轴.所以四边形ABCD是梯形.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.梯形ABCD的中位线的中点为3(1,)2,将点3(1,)2代入y=4x+m,得m=52.(3)符合条件的点F有3个,坐标分别为(1, 3),(1,-2),(1,-6).10图2 图3考点伸展第(3)题这样解:过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.①如图3,当CF//AB时,点F的坐标是(1, 3).②如图4,当BF//AC时,由tan∠CAM=tan∠FBH,得CM FHAM BH=.所以332FH=.解得FH=2.此时点F的坐标为(1,-2).③如图5,当AF//CB时,由tan∠CBM=tan∠F AH,得CM FHBM AH=.所以312FH=.解得FH=6.此时点F的坐标为(1,-6).图4 图512例 2015年上海市虹口区中考模拟第25题如图1,在Rt △ABC 中,∠ACB =90°,AB =13,CD //AB ,点E 为射线CD 上一动点(不与点C 重合),联结AE 交边BC 于F ,∠BAE 的平分线交BC 于点G .(1)当CE =3时,求S △CEF ∶S △CAF 的值;(2)设CE =x ,AE =y ,当CG =2GB 时,求y 与x 之间的函数关系式;(3)当AC =5时,联结EG ,若△AEG 为直角三角形,求BG 的长.图1动感体验请打开几何画板文件名“15虹口25”,拖动直角顶点C 运动,可以体验到,CG =2GB 保持不变,△ABC 的形状在改变,EA =EM 保持不变.点击屏幕左下角的按钮“第(3)题”,拖动E 在射线CD 上运动,可以体验到,△AEG 可以两次成为直角三角形. 思路点拨1.第(1)题中的△CEF 和△CAF 是同高三角形,面积比等于底边的比.2.第(2)题中的△ABC 是斜边为定值的形状不确定的直角三角形.3.第(3)题中的直角三角形AEG 分两种情况讨论.满分解答(1)如图2,由CE //AB ,得313EF CE AF BA ==. 由于△CEF 与△CAF 是同高三角形,所以S △CEF ∶S △CAF =3∶13.(2)如图3,延长AG 交射线CD 于M . 图2由CM //AB ,得2CM CG AB BG==.所以CM =2AB =26. 由CM //AB ,得∠EMA =∠BAM .又因为AM 平分∠BAE ,所以∠BAM =∠EAM .所以∠EMA =∠EAM .所以y =EA =EM =26-x .图3 图4(3)在Rt△ABC中,AB=13,AC=5,所以BC=12.①如图4,当∠AGE=90°时,延长EG交AB于N,那么△AGE≌△AGN.所以G是EN的中点.所以G是BC的中点,BG=6.②如图5,当∠AEG=90°时,由△CAF∽△EGF,得FC FA FE FG=.由CE//AB,得FC FB FE FA=.所以FA FBFG FA=.又因为∠AFG=∠BF A,所以△AFG∽△BF A.所以∠F AG=∠B.所以∠GAB=∠B.所以GA=GB.作GH⊥AH,那么BH=AH=132.在Rt△GBH中,由cos∠B=BHBG,得BG=132÷1213=16924.图5 图6考点伸展第(3)题的第②种情况,当∠AEG=90°时的核心问题是说理GA=GB.如果用四点共圆,那么很容易.如图6,由A、C、E、G四点共圆,直接得到∠2=∠4.上海版教材不学习四点共圆,比较麻烦一点的思路还有:如图7,当∠AEG=90°时,设AG的中点为P,那么PC和PE分别是Rt△ACG和Rt △AEG斜边上的中线,所以PC=PE=P A=PG.所以∠1=2∠2,∠3=2∠5.如图8,在等腰△PCE中,∠CPE=180°-2(∠4+∠5),又因为∠CPE=180°-(∠1+∠3),所以∠1+∠3=2(∠4+∠5).所以∠1=2∠4.所以∠2=∠4=∠B.所以∠GAB=∠B.所以GA=GB.图7 图814例 2015年上海市黄浦区中考模拟第24题如图1,在平面直角坐标系中,已知点A 的坐标为(a , 3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x =的图像上,且AB //x 轴,AC //y 轴.(1)当点P 的横坐标为6时,求直线AO 的表达式;(2)联结BO ,当AB =BO 时,求点A 的坐标;(3)联结BP 、CP ,试猜想ABP ACP S S △△的值是否随a 的变化而变化?如果不变,求出ABPACPS S △△的值;如果变化,请说明理由.图1 备用图动感体验请打开几何画板文件名“15黄浦24”,拖动点A 在点B 右侧运动,观察度量值,可以体验到,△ABP 与△ACP 的面积保持相等.事实上,四边形ABDC 是矩形,△ABP 与△ACP 是同底等高的两个三角形.思路点拨1.点B 是确定的,点C 、P 随点A 的改变而改变.2.已知a >4隐含了点A 在点B 的右侧这个条件.满分解答(1)如图1,当x =6时,12y x==2.所以点P 的坐标为(6, 2). 由O (0, 0)、P (6, 2),得直线AO 的解析式为13y x =. (2)如图2,因为AB //x 轴,A (a , 3),所以点B 的纵坐标为3.又因为点B 在反比例函数12y x=的图像上,所以B (4, 3).因此OB =5. 所以当AB =BO =5时,点A 的坐标为(9, 3).(3)如图3,过点B 向x 轴作垂线交OA 于点D ,联结CD .由于直线OA 的解析式为3y x a =,所以点D 的坐标为12(4)a,.由于AC //y 轴,所以点C 的坐标为12()a a ,. 所以CD //x 轴.因此四边形ABDC 是矩形. 所以点B 、C 到对角线AP 的距离相等.因此△ABP 与△ACP 是同底等高的两个三角形,它们的面积相等.所以ABP ACPS S △△=1.图2 图3考点伸展第(3)题也可以这样说理:如图3,ABP ABD S S △△=AP AD ,ACP ACD S S △△=AP AD,而S △ABD =S △ACD ,所以ABP ACP S S △△=1. 第(3)题还可以计算说理:如图4,作PM ⊥AB 于M ,作PN ⊥AC 于N .设点P 的坐标为12()m m ,.将点P 12()m m,代入直线OA 的解析式3y x a=,可以得到24m a =. 于是,由A (a , 3)、B (4, 3)、C 12()a a ,、P 12()m m,,可得 S △ABP =12AB PM ⋅=112(4)(3)2a m --=3416(4)2a a m m--+=2316(4)24m m m --+, S △ACP =12AC PN ⋅=112(3)()2a m a --=34(4)2m a m a--+=2316(4)24m m m --+. 所以S △ABP =S △ACP .而事实上,如图5,由于S 1=S 2,所以S △ABO =S △ACO .所以B 、C 到AO 的距离相等.于是△ABP 与△ACP 就是同底等高的三角形.图4 图5例 2015年上海市黄浦区中考模拟第25题如图1,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E 为边AC上一点(点E不与点A、C重合),联结DE,作CF⊥DE,CF与边AB、线段DE 分别交于点F、G.(1)求线段CD、AD的长;(2)设CE=x,DF=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EF,当△EFG与△CDG相似时,求线段CE的长.图1动感体验请打开几何画板文件名“15黄浦25”,拖动点E在AC边上运动,可以体验到,△EFG 与△CDG相似存在两种情况.一种情况是FC垂直平分DE,另一种情况是EF⊥AB.思路点拨1.图形中的垂直关系较多,因此互余的角较多,相等的角较多.把相等的角都标注出来,便于分析题意.2.求y关于x的函数关系式,设法构造相似三角形.3.△EFG与△CDG都是直角三角形,分两种情况讨论相似.按照对应的锐角相等,可以推出相似时的特殊的位置关系.满分解答(1)在Rt△ABC中,∠A=30°,BC=2,所以AB=4,AC=23.在Rt△ACD中,∠A =30°,AC=23,所以CD=3,AD=3.(2)如图2,∠CDE与∠BFC都是∠EDF的余角,所以∠CDE=∠BFC.又因为∠DCE=∠B=60°,所以△CDE∽△BFD.所以CD BFCE BC=,即312yx+=.整理,得23xyx-=.定义域是32≤x<23.图2(3)△EFG与△CDG都是直角三角形,分两种情况讨论相似:①如图3,当∠FEG=∠DCG时,由于∠FDG=∠DCG,所以∠FEG=∠FDG.因此FE=FD.所以FC垂直平分DE.此时CE=CD=3.16②如图4,当∠FEG=∠CDG时,EF//CD.此时EF⊥AB.作EH⊥CD于H,那么四边形EFDH是矩形,DF=HE.所以y=32x.解2332xxx-=,得3393x-±=.此时3933CE-=.图3 图4考点伸展第(2)题也可以这样思考:如图5,过点E作EH⊥CD,垂足为H.在Rt△CEH中,∠CEH=30°,CE=x,所以CH=12x,EH=32x.如图6,由tan∠DEH=tan∠DCF,得13(3)::322x x y-=.整理,得23xyx-=.图5 图6 图7 第(2)题还可以如图6这样,过点C作AB的平行线交DE的延长线于M.由tan∠M=tan∠DCF,得CD DFCM DC=.所以CM=23CDDF y=.由MC//AD,得CM CEAD AE=.所以323xCMx=-.由3323xy x=-,得23xyx-=.定义域的两个临界值,如图8,CE=12CD=32;如图9,CE=CA=23.图8 图9例 2015年上海市金山区中考模拟第24题已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0)、B(4, 0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;(3)直线y=kx+2 与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M的坐标.图1动感体验请打开几何画板文件名“15金山24”,拖动点M在AC上运动,可以体验到,△MNC 与△AOC相似存在两种情况.思路点拨1.用面积法求等腰三角形P AB的腰上的高,进而可以求顶角的正弦值.2.探求△MNC与△AOC相似,可以转化为探求直角三角形MNC.满分解答(1)因为抛物线y=ax2+bx-8与x轴交于A(-2,0)、B(4, 0)两点,设y=a(x+2)(x-4)=ax2-2ax-8a.所以-8a=-8.解得a=1.所以y=x2-2x-8=(x-1)2-9.所以顶点P的坐标为(1,-9).(2)如图2,由A(-2,0)、B(4, 0)、P(1,-9),得AB=6,PB=P A=310.作PG⊥AB,AH⊥PB,垂足分别为G、H.由S△P AB=1122AB PG PB AH⋅=⋅,得699105310AB PGAHPB⋅⨯===.在Rt△APH中,sin∠APB=910331055AHPA=÷=.图2 (3)由y=kx+2,得点N的坐标为(0, 2).由A(-2,0)、C(0, -8),得直线AC的解析式为y=-4x-8.因为△MNC与△AOC有公共的锐角∠ACO,所以分两种情况讨论相似:18①如图3,当∠MNC=90°时,14NM OANC OC==.所以1105442NM NC===.此时点M的坐标为5(,2)2-.②如图4,当∠NMC=90°时,过点M作x轴的垂线,过点N、C分别作y轴的垂线,构造直角三角形NEM和直角三角形MFC,那么△NEM∽△MFC.所以EN FM EM FC=.设点M的坐标为(x, -4x-8),那么(48)(8)2(48)x xx x-----=----.解得4017x=-.此时点M的坐标为4024(,)1717-.图3 图4 图5考点伸展第(3)题也可以这样解:①如图3,当∠MNC=90°时,MN//x轴,所以y M=2.解方程-4x-8=2,得52x=-.此时点M的坐标为5(,2)2-.②如图5,当∠NMC=90°时,设直线NM交x轴于K,那么△NOK≌△AOC.所以OK=OC=8.所以直线NM的解析式为124y x=+.联立y=-4x-8和124y x=+,解得4017x=-,2417y=.此时M4024(,)1717-.例 2015年上海市金山区中考模拟第25题如图1,已知在△ABC中,AB=AC=10,tan∠B=43.(1)求BC的长;(2)点D、E 分别是AB、AC的中点,不重合的两动点M、N在边BC上(点M、N不与点B、C重合),且点N始终在点M的右边,联结DN、EM交于点O.设MN=x,四边形ADOE的面积为y.①求y与x的函数关系式,并写出定义域;②当△OMN是等腰三角形且BM=1时,求MN的长.图1动感体验请打开几何画板文件名“15金山25”,拖动点N在MC上运动,可以体验到,等腰三角形OMN存在两种情况.思路点拨1.把四边形ADOE分割为△ADE和△DOE,△DOE与△NOM是相似的.2.分三种情况讨论等腰三角形OMN,其中NM=NO是不存在的.满分解答(1)如图2,作AF⊥BC,垂足为F.在Rt△ABF中,AB=10,tan∠B=43,设BF=3m,AF=4m,那么AB=5m.所以5m=10.解得m=2.所以BF=6,AF=8.因为AB=AC,AF⊥BC,所以BC=2BF=12.图2(2)①如图3,S△ABC=1112848 22BC AF⋅=⨯⨯=.因为DE是△ABC的中位线,所以DE=12BC=6,S△ADE=14S△ABC=12.过点O作BC的垂线,垂足为H,交DE于G,那么GH=12AF=4.由DE//BC,得DE GONM HO=,即64GOx GO=-.所以246GOx=+.因此S△DOE=11247262266 DE GOx x⋅=⨯⨯=++.所以y=S四边形ADOE=S△ADE+S△DOE=7212144 1266xx x++=++.定义域是0<x<12.②如图4,作EQ⊥BC,垂足为Q.在Rt△ECQ中,EC=5,所以EQ=4,CQ=3.20在Rt△EMQ中,MQ=11-3=8,EQ=4,所以EM=45.如图5,在Rt△DMP中,DP=4,MP=3-1=2,所以DM=25.图3 图4 图5 因为△OMN∽△OED,所以讨论等腰△OMN可以转化为讨论等腰△OED.(I)如图6,当OM=ON时,OE=OD.此时点O在ED的垂直平分线上.所以BN=CM=11.此时MN=22-12=10..(II)如图7,当MO=MN时,EO=ED=6.此时MN=MO=45x(III)如果NM=NO,那么DO=DE=6.如图8,因为DM=25<6,所以以D为圆心,DE为半径的⊙D与线段ME只有一个交点E,因此不存在NM=NO的情况.图6 图7 图8考点伸展我们把图8局部放大,如图9,⊙D与直线ME的两个交点为E、O,此时点O在EM的延长线上,点N与点B重合,在点M的左侧,NO=NM.图922例 2015年上海市静安区青浦区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax +c 与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,它的对称轴与x 轴交于点C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF ⊥OA ,垂足为F ,DF 与线段AB 相交于点G ,且32ADG AFG S S =△△,求点D 的坐标.图1动感体验请打开几何画板文件名“15静安青浦24”,拖动点D 在抛物线上运动,观察度量值,可以体验到,DG 与GF 的比值可以等于1.5,此时点D 的横坐标为3.思路点拨1.抛物线的解析式中待定两个系数,需要代入A 、B 两点的坐标列方程组.2.△ADG 与△AFG 是同高三角形,面积比等于对应的底边的比.3.把DG ∶GF =3∶2转化为GF ∶DF =2∶5,运算就简便一些.满分解答(1)由y =ax 2-2ax +c ,得抛物线的对称轴是直线x =1.因为AC =3,所以点A 的坐标为(4,0).如图2,由∠OBC =∠OAB ,∠BOC =∠AOB ,得△BOC ∽△AOB .于是可得OB 2=OC ·OA =4.所以OB =2,B (0, 2).将A (4,0)、B (0, 2)分别代入y =ax 2-2ax +c ,得1680,2.a a c c -+=⎧⎨=⎩ 解得14a =-,c =2.所以抛物线的表达式是211242y x x =-++.图2 图3(2)如图3,因为△ADG 与△AFG 是同高三角形,所以32ADG AFG S DG S GF ==△△. 所以25GF DF =. 由A (4,0)、B (0, 2),得直线AB 的解析式为122y x =-+. 设D 211(,2)42x x x -++,G 1(,2)2x x -+,那么21222115242x x x -+=-++ 解得x =3,或x =4(与A 重合,舍去).所以点D 的坐标是5(3,)4. 考点伸展第(2)题凭直觉,△ADG 的面积总要比△AFG 的面积小,但是32ADG AFG S S =△△确实是有解的. 我们分析一下方程21222115242x x x -+=-++,等号左边是可以化简、约分的. 因为1(4)222125(2)(4)4x x x x --==+-+-,所以原分式方程总有一个增根x =4,另一个就是一元一次方程的根.24例 2015年上海市静安区青浦区中考模拟第25题 在⊙O 中,OC ⊥弦AB ,垂足为C ,点D 在⊙O 上.(1)如图1,已知OA =5,AB =6,如果OD //AB ,CD 与半径OB 相交于点E ,求DE 的长;(2)已知OA =5,AB =6(如图2),如果射线OD 与AB 的延长线相交于点F ,且 △OCD 是等腰三角形,求AF 的长;(3)如果OD //AB ,CD ⊥OB ,垂足为E ,求sin ∠ODC 的值.图1 备用图动感体验请打开几何画板文件名“15静安青浦25”,拖动点C 运动,观察度量值,可以体验到,当CD ⊥OB 时,sin ∠ODC 的值就是黄金分割数啊.思路点拨1.反反复复的勾股定理和三角比的运算,要仔细哦.2.第(2)题等腰三角形OCD 只存在两种情况,因为OC <OD .3.第(3)题中的所有直角三角形都是相似的.怎样简化错综复杂的线段间的关系呢?设⊙的半径为1,设sin ∠ODC =x ,然后把其他线段用x 表示出来.这个设法不多见哦. 满分解答(1)如图2,因为弦心距OC ⊥弦AB ,所以OC 平分AB .在Rt △OAC 中,OA =5,AC =3,所以OC =4.在Rt △OCD 中,OC =4,OD =5,所以DC =224541+=.由OD//CB ,得53DE OD CE BC ==.所以554188DE DC ==.图2 图3 图4(2)因为OC <OD ,所以等腰三角形OCD 存在两种情况:①如图3,当DO =DC 时,作DH ⊥OC ,那么DH 是△OCF 的中位线.在Rt △ODH 中,OD =5,OH =2,所以DH =225221-=. 所以FC =2DH =221.此时AF =AC +FC =3221+.②如图4,当CO =CD 时,作CM ⊥OD ,那么CM 平分OD .在Rt △OCM 中,OC =4,OM =12OD =52,所以CM =22539422⎛⎫-= ⎪⎝⎭. 由tan ∠COF =CM FC OM OC=,得3954394225CM OC FC OM ⋅==⨯÷=. 此时AF =AC +FC =43935+. (3)设⊙O 的半径为1,设sin ∠ODC =x .如果OD //AB ,CD ⊥OB ,那么∠COD =90°,∠ODC =∠BOC .如图5,在Rt △ODE 中,由sin ∠ODC =OE OD=x ,得OE =x . 如图6,在Rt △OBC 中,由sin ∠BOC =BC OB=x ,得BC =x . 如图7,由OD //CB ,得OD OE BC BE =.所以11x x x =-. 整理,得x 2+x -1=0.解得152x -±=.所以sin ∠ODC =512-.图5 图6 图7考点伸展看到第(3)题的结果,不由得想起了黄金分割数,那么图形中的黄金分割点在哪里? 如图7,因为51DE OE OE DC OB OD -===,所以点E 是线段OB 的黄金分割点,点E 也是线段CD 的黄金分割点.26例 2015年上海市闵行区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -4与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(-3,0),点D 在线段AB 上,AD =AC .(1)求这条抛物线的解析式,并求出抛物线的对称轴;(2)如果以DB 为半径的⊙D 与⊙C 外切,求⊙C 的半径;(3)设点M 在线段AB 上,点N 在线段BC 上,如果线段MN 被直线CD 垂直平分,求BN CN的值.图1动感体验请打开几何画板文件名“15闵行24”,拖动点N 在BC 上运动,可以体验到,当DC 垂直平分MN 时,∠NDC =∠ADC =∠ACD ,此时DN //AC .思路点拨1.准确描绘A 、B 、C 、D 的位置,把相等的角标注出来,利于寻找等量关系.2.第(3)题在图形中模拟比划MN 的位置,近似DC 垂直平分MN 时,把新产生的等角与前面存在的等角对比,思路就有了.满分解答(1)将点A (-3,0)代入y =ax 2-2ax -4,得15a -4=0.解得415a =.所以抛物线的解析式为24841515y x x =--. 抛物线的对称轴为直线x =1. (2)由24844(3)(5)151515y x x x x =--=+-,得B (5, 0),C (0,-4). 由A (-3,0)、B (5, 0)、C (0,-4),得 AB =8,AC =5.当AD =AC =5时,⊙D 的半径DB =3.由D (2, 0)、C (0,-4),得DC =25因此当⊙D 与⊙C 外切时,⊙C 的半径为253(如图2所示).(3)如图3,因为AD =AC ,所以∠ACD =∠ADC .如果线段MN 被直线CD 垂直平分,那么∠ADC =∠NDC .这时∠ACD=∠NDC.所以DN//AC.于是35BN BDCN AD==.图2 图3考点伸展解第(3)题画示意图的时候,容易误入歧途,以为M就是点O.这是为什么呢?我们反过来计算:当DN//AC,35BNCN=时,38DNAC=,因此DM=DN=31588AC=.而DO=2,你看M、O相距是多么的近啊.放大还原事实的真相,如图4所示.图4例 2015年上海市闵行区中考模拟第25题如图1,已知梯形ABCD中,AD//BC,AB=DC=5,AD=4.M、N分别是边AD、BC 上的任意一点,联结AN、DN.点E、F分别在线段AN、DN上,且ME//DN,MF//AN,联结EF.(1)如图2,如果EF//BC,求EF的长;(2)如果四边形MENF的面积是△AND 面积的38,求AM的长;(3)如果BC=10,试探求△ABN、△AND、△DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由.图1 图2动感体验请打开几何画板文件名“15闵行25”,拖动点M在AD上运动,可以体验到,当EF//BC 时,EF是△AND的中位线.还可以体验到,当N是BC的中点时,△ABN、△AND和△DNC 是三个底角相等的等腰三角形.思路点拨1.由平行四边形MENF和平行四边形AEFM,可以得到E是AN的中点.2.第(2)题把四边形MENF与△AND的面积比,转化为△AEM与△MFD的和与△AND的面积比.再根据相似三角形的面积比等于对应边的比的平方列方程.3.第(3)题先探求两个三角形相似,再验证是否与第三个三角形相似.满分解答(1)如图3,由ME//DN,MF//AN,得四边形MENF是平行四边形.所以MF=EN.如果EF//BC,那么四边形AEFM是平行四边形.所以MF=AE.所以E是AN的中点.同理F是DN的中点.所以EF是△AND的中位线,此时EF=12AD=2.图3 图4 (2)如图4,设AM的长为x.28由ME //DF ,得224AEM AND S AM x S AD ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 由MF //AN ,得2244MFD AND S DM x S AD -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 所以22(4)16AEM MFD AND S S x x S ++-=△△△. 如果四边形MENF 的面积是△AND 面积的38,那么22(4)5=168x x +-. 整理,得x 2-4x +3=0.解得x =1,或x =3.(3)如图5,在等腰梯形ABCD 中,保持AB =DC ,∠B =∠C ,∠1=∠2,∠3=∠4. 在△ABN 、△AND 、△DNC 中,保持不变的是∠B =∠C .因此△ABN 与△DCN 相似时,存在两种可能:①如果=BA CD BN CN,那么BN =CN .所以N 是BC 的中点. ②如果=BA CN BN CD ,那么510=5BN BN -.解得BN =5.所以N 也是BC 的中点. 当点N 是BC 的中点时,△ABN 与△DCN 是两个全等的等腰三角形.此时△AND 也是等腰三角形,∠1=∠2=∠4=∠3.因此△ABN 、△AND 、△DNC 两两相似.由=AB AN AN AD ,得5=4AN AN .所以=25AN .图5考点伸展有一种传说叫做数学典型题.这道题目里的3个题目,都是典型图,都有典型结论. 如图3,联结三角形三边中点得到的三角形与原三角形相似,而且与其它三个小三角形全等.第(3)题可以推广为:如果等腰梯形ABCD 的下底BC 等于腰长的2倍,N 是下底BC 的中点,那么△ABN ∽△NCD ∽AND .。
2021黄浦、崇明二模25题解法分析(构造XA基本图形)
2021黄浦、崇明二模25题解法分析(构造XA基本图形)2021黄浦、崇明二模25题主要围绕着构造A/X型,构建两组比例关系,从而助力问题解决。
这类问题中往往隐含着“燕尾模型”,通过合理添加辅助线,构造基本图形,借助线段间的比例关系(一般2组)解决问题。
2021黄浦二模25题解题背景:解法分析:本题的第一问只需要证明两次全等(▲AOC≌▲AOE与▲ACD≌▲AED)即可得到DE=DC.解法分析:本题的第二问由面积比可得▲ACD和▲ADE和▲BDE 的面积均相等,得到∠B=30°,得到CE:AD的比值。
解法分析:本题的第三问由O是CE的中点,E是AB的中点,因此可以考虑过点D或点E构造平行线,构造A型或X型基本图形,得到线段之间的数量关系。
再通过过点C作AB边的垂线,顺利得到∠CAB的正切值。
2021崇明二模25题解题背景:解法分析:本题的第一问是正方形背景的特殊情况,其中E是CD 中点,F是AD中点,欲求DG:GB的值,可以根据E是中点,由旋转对称,延长FE、BC构造2组X型基本图形。
本问也可以过点B作GE的平行线,构造一组A型基本图形。
由于正方形的对角线互相垂直平分,本题也可以联结AC,证明G是中点,同样可以求出DG:GB的值。
解法分析:本题的第二问由第一问的启示,同样可以由旋转对称,延长FE、BC构造2组X型基本图形。
构造基本图形的目的是为了探索DF和AD间的数量关系,继而利用tan∠ADB=tan∠BDC,构造等量关系。
本问也可以过点C构造EF的平行线,利用同样的方法得到y关于x的函数关系式。
解法分析:本题的第三问由圆中的位置关系,得到圆F、圆A和圆B的半径关系,继而再tan∠ADB=tan∠BDC,构造等量关系,得到DG:GB的值。
2021崇明二模25题的辅助线添加方法,以及题设和结论紧紧相扣,是构造A/X型基本图形的典型范例。
相关链接: 2020上海中考25题(3)解法分析 2021普陀一模25题解法分析 2021松江一模25题解法分析与构造A/X型相关的压轴题解析。
上海中考数学第25题分析(上)
上海中考第25题分析(上)——因动态产生的求函数解析式问题一、第25题考什么1、主要知识点:圆、相似三角形的判定与性质、线段与射线(延长线、直线等)、函数解析式与定义域;2、主要数学思想:字母表示数的思想、用字母表示线段和差、图形运动思想、数形结合思想、变量及函数思想、方程思想、分类讨论思想;3、主要数学方法:待定系数法、类比的方法、配方法、消元法、换元法、降次法等等;4、主要一般方法:观察与实验、运动与静止、形象与抽象、分析与综合、归类与猜想、特殊与一般;二、图形运动中的函数关系问题1. 函数是数学的“主干”,它反映变量与变量之间的对应关系;图形运动包含着大量的几何变化关系,通过数形结合,可以用函数来研究这些变化关系。
2. 图形运动本质上是点的运动,点的运动可以用数量(字母)来刻画,常常根据相似三角形的性质或勾股定理或面积计算或圆的相切等来建立函数关系式。
3. 有了函数关系式,往往通过列等式、解方程来求特定位置的几何量,最常见的是在“变”中探求“不变”!4. “图形运动中的动态探究型问题”是以图形中的一些元素的运动变化为载体来探究图形中的某些元素之间在变化过程中相互依存关系的本质特征。
这些本质特征中也包含“变中不变”的这种特殊情况。
5. 所谓“变中不变”,对于一个元素而言,是指该元素虽然处于变化过程中,但它的某些属性不变;对于两个或两个以上的元素而言,是指这些元素虽然处于变化过程中,但它们的某些属性之间的关系不变.6. “图形运动中的动态探究型问题”的根本是探究图形中的某些元素之间在变化过程中的相互依存关系,用数学的眼光来看这些相互依存关系实际上就是函数关系;所以,求图形运动变化过程中某些变量之间的函数解析式是研究这类问题的最常见的手法。
三、求函数解析式的几大类型和方法1、利用勾股定理建立函数关系式——多注意字母表示线段以及线段和差的使用;2、利用直线与圆相切、圆与圆相切建立函数解析式——注意内切和外切的双向讨论;3、利用特殊三角形或四边形的性质及特点来建立函数解析式;4、利用锐角三角比或相似比来建立比例及等式从而求解函数解析式;5、利用运动等时间或等距离S=Vt来建立函数解析式;6、利用等面积法来建立函数解析式;7、利用弧长和扇形面积公式来建立函数解析式;8、利用实际题当中的某些等量关系——比如角相等、边相等建立函数解析式;四、中考第25题解题思想及策略1. 数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。
上海市2019年初三下学期数学二模汇编:25题压轴题
上海市2019年中考数学二模汇编:25题压轴题闵行 25.(本题共3小题,其中第(1)小题各4分,第(2)、(3)小题各5分,满分14分)如图1,点P 为∠MAN 的内部一点.过点P 分别作PB ⊥AM 、PC ⊥AN ,垂足分别为点B 、C .过点B 作BD ⊥CP ,与CP 的延长线相交于点D .BE ⊥AP ,垂足为点E . (1)求证:∠BPD =∠MAN ; (2)如果sin MAN ∠=AB =BE = BD ,求BD 的长; (3)如图2,设点Q 是线段BP 的中点.联结QC 、CE ,QC 交AP 于点F .如果 ∠MAN = 45°,且BE // QC ,求PQF CEFS S ∆∆的值.宝山25.(本题满分14分,第(1)、第(2)小题满分各4分,第(3)小题满分6分)如图已知: AB 是圆O 的直径,AB=10,点C 为圆O 上异于点A 、B 的一点,点M 为弦BC 的中点.(1)如果AM 交OC 于点E ,求OE :CE 的值; (2)如果AM ⊥OC 于点E ,求∠ABC 的正弦值;(3)如果AB :BC=5:4,D 为BC 上一动点,过D 作DF ⊥OC ,交OC 于点H ,与射线BO 交于圆内点F ,请完成下列探究.探究一:设BD=x ,FO=y ,求y 关于x 的函数解析式及其定义域.探究二:如果点D 在以O 为圆心,OF 为半径的圆上,写出此时BD 的长度.MN A BCDP(图1)EE M(图2)AN QFP CDB崇明 25.(本题满分14分,其中第(1)、(2)小题满分各4分,第(3)小题满分6分)如图9,在梯形ABCD 中,AD BC ∥,8AB DC ==,12BC =,3cos 5C =,点E 为AB 边上一点,且2BE =.点F 是BC 边上的一个动点(与点B 、点C 不重合),点G 在射线CD 上,且EFG B ∠=∠.设BF 的长为x ,CG 的长为y .(1)当点G 在线段DC 上时,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当以点B 为圆心,BF 长为半径的⊙B 与以点C 为圆心,CG 长为半径的⊙C 相切时, 求线段BF 的长;(3)当CFG △为等腰三角形时,直接写出线段BF 的长.DAEB FCG图9ABC DE奉贤25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图10,已知△ABC ,AB,3BC,∠B =45°,点D 在边BC 上,联结AD , 以点A 为圆心,AD 为半径画圆,与边AC 交于点E ,点F 在圆A 上,且AF ⊥AD .(1)设BD 为x ,点D 、F 之间的距离为y ,求y 关于x 的函数解析式,并写出定义域; (2)如果E 是DF 的中点,求:BD CD 的值;(3)联结CF ,如果四边形ADCF 是梯形,求BD 的长 . 金山25. 如图,在ABC Rt ∆中,90=∠C ,16=AC cm ,20=AB cm ,动点D 由点C 向点A 以每秒cm 1速度在边AC 上运动,动点E 由点C 向点B 以每秒cm 34速度在边BC 上运动,若点D ,点E 从点C 同时出发,运动t 秒(0>t ),联结DE .(1)求证:DCE ∆∽BCA ∆.(2)设经过点D 、C 、E 三点的圆为⊙P . ①当⊙P 与边AB 相切时,求t 的值.②在点D 、点E 运动过程中,若⊙P 与边AB 交于点F 、G (点F 在点G 左侧),联结CP 并延长CP 交边AB 于点M ,当PFM ∆与CDE ∆相似时,求t 的值.图10B 第25题图普陀25.(本题满分14分)如图12,在Rt△ABC 中,90ACB ∠=︒,5AB =,4cos 5BAC ∠=,点O 是边AC 上一个动点(不与A 、C 重合),以点O 为圆心,AO 为半径作⊙O ,⊙O 与射线AB 交于点D ;以点C 为圆心,CD 为半径作⊙C ,设OA x =. (1)如图13,当点D 与点B 重合时,求x 的值;(2)当点D 在线段AB 上,如果⊙C 与AB 的另一个交点E 在线段AD 上时,设AE y =,试求y 与x 之间的函数解析式,并写出x 的取值范围;(3)在点O 的运动的过程中,如果⊙C 与线段AB 只有一个公共点,请直接写出x 的取值范围 . 杨浦图12AB COD图13AB (D )C O25. 已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点. (1)如图1,联结AC 、OD ,设OAC α∠=,请用α表示∠AOD; (2)如图2,当点B 为AC 的中点时,求点A 、D 之间的距离;(3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.长宁25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)如图7,在ABC Rt ∆中,︒=∠90ACB ,3=AC ,4=BC ,点P 在边AC 上(点P 与点A 不重合),以点P 为圆心,PA 为半径作⊙P 交边AB 于另一点D ,DP ED ⊥,交边BC 于点E . (1) 求证:DE BE =;(2) 若x BE =,y AD =,求y 关于x 的函数关系式并写出定义域;(3) 延长ED 交CA 的延长线于点F ,联结BP ,若BDP ∆与DAF ∆相似,求线段AD 的长.图7BECADP备用图BCA备用图BCA黄浦嘉定静安松江闵行 25.(1)证明:∵ PB ⊥AM ,PC ⊥AN ,∴ ∠PBA =∠PCA = 90°.…………(1分)在四边形ABPC 中,∠BAC +∠PCA +∠BPC +∠PBA = 360°, ………………………(1分) ∴ ∠BAC +∠BPC = 180°. ………………………………………(1分) 又∵ ∠BPD +∠BPC = 180°,∴ ∠BAC =∠BPD . ………………………………………………(1分)(2)解:由 BE ⊥AP ,∠D = 90°,BE = BD ,得 ∠BPD =∠BPE .即得 ∠BPE =∠BAC . ……………………(1分) 在Rt △ABP 中,由 ∠ABP = 90°,BE ⊥AP ,得 ∠APB =∠ABE .即得 ∠BAC =∠ABE .………………………………………………(1分)∴ sin sin AE BAC ABE AB ∠=∠==.又∵ AB =∴ 6AE ==.…………………………………………(1分)∴ 2BE . ………………………(1分) ∴ BD = 2. …………………………………………………………(1分)(3)解:过点B 作BG ⊥AC ,垂足为点G .过点Q 作QH // BD .设BD = 2a ,PC = 2b ,则 CD = 2a + 2b .在Rt △ABG 和Rt △BDP 中,由 ∠BAC =∠BPD = 45°, 得 BG = AG ,DP = BD .∵ QH // BD ,点Q 为BP 的中点.∴ 1PH PQ DH BQ==.即得 PH = a .∴ 12QH BD a ==,CH = PH + PC = a + 2b .……………………(1分) 又∵ BD // AC ,CD ⊥AC ,BG ⊥AC ,∴ BG = DC = 2a + 2b . 即得 AC = 4a +2b .由 BE // QC ,BE ⊥AP ,得 ∠CQP =∠BEP = 90°. 又由 ∠ACP = 90°,得 ∠QCH =∠PAC . ∴ △ACP ∽△QCH .∴ PC ACQH HC=.即得 2422b a b a a b +=+. 解得 a = b .……………………………………………………………(1分)∴ CH = 3a .∴ CQ =.……………………………………(1分) 又∵ ∠QHC =∠PFC = 90°,∠QCH =∠PCF ,∴ △QCH ∽△PFC .∴ HC QCCF PC =.即得3a FC .解得 FC =.…………………………(1分)∴QF QC FC =--=. 又∵ BE // QC ,Q 是PB 的中点,∴ 1PF PQ EF BQ==.即得 PE = EF .于是,△PQF 与△CEF 面积之比等于高之比,即23PQF CEF S QF S FC ∆∆==.…………………………………………………(1分) 宝山25. (1)过点O 作ON ║BC 交AM 于点N , ……………………1分AB 是圆O 的直径,21==AB AO BM ON ……………………1分 点M 为弦BC 的中点21==BM ON CM ON ……………………1分 OE:CE=OE:CE=1:2 ……………………1分 (2)点M 为弦BC 的中点 OM ⊥BC ……………………1分AM ⊥OC 于点E ∠OME=∠MCE △OME ∽△MCE ……………………1分CE OE ME ⋅=2 设OE=x ,则CE=x 2, ME=x 2 ……………………1分在直角△MCE 中,x CM 6=, 33sin =∠ECM ……………………1分 33sin =∠ABC (2)过点D 作DL ⊥BO 于点L ,AB=10,AB :BC=5:4,BC=8, ……………1分设BD=x ,则CD=x -8,BL=DL=x 85,CH=)8(54x -,OH=5754-=-x CH CO FL FO LD OH = x y y x x 855855754-+=-……………………1分73520-=x y (其中2747 x ) ……………………1+1分19112=BD 以O 为圆心,OF 为半径的圆经过D OC 垂直平分DF ,FO=OL ,x y 855-= ……………………1分x x 85573520-=-, 19112=x ……………………1分 此时. 崇明(本题满分14分,其中第(1)、(2)小题满分各4分,第(3)小题满分6分) 解:(1)∵梯形ABCD 中,AD ∥BC ,AB =DC ∴∠B =∠C∵∠EFC =∠B +∠BEF ==∠EFG +∠GFC ,∠EFG =∠B∴∠GFC =∠FEB ……………………………………………………………(1分) ∴△EBF ∽△FCG ……………………………………………………………(1分) ∴EB BF FC CG=,∴212xx y =- ………………………………………………(1分) ∴ 2162=-+y x x ………………………………………………………………(1分)自变量x的取值范围为:06612x x <≤-+≤<……………(1分) (2)当012x G CD CD <<时,无论点在线段上,还是在的延长线上,都有2162=-+y x x①当⊙B 与⊙C 外切时, BF +CG =BC∴216122-+=x x x ,解得x =2或x =12(舍去) ………………………(2分)②当⊙B 与⊙C 内切时, CG -BF =BC∴216122-+-=x x x ,解得x =4或x =6 ……… …… ……………………(2分)综上所述,当⊙B 与⊙C 相切时,线段BF 的长为:2或4或6(3)当△FCG 为等腰三角形时,线段BF 的长为:53或2或125………………(6分)奉贤 25.解:(1)过点A 作AH ⊥BC ,垂足为点H .∵∠B =45°,AB ,∴cos 1BH AH AB B . ··········· (1分)∵BD 为x ,∴1DHx .在Rt △ADH 中,90AHD ,∴22222AD AH DH x x . ···· (1分)联结DF ,点D 、F 之间的距离y 即为DF 的长度.∵点F 在圆A 上,且AF ⊥AD ,∴AD AF =,45ADF ∠=︒. 在Rt △ADF 中,90DAF ,∴2442cos AD DFxx ADF.∴2442yxx .(03)x···················· (2分)(2)∵E 是DF 的中点,∴AE DF ⊥,AE 平分DF . ·········· (1分)∵BC=3,∴312HC =-=.∴AC = ·········· (1分) 设DF 与AE 相交于点Q ,在Rt △DCQ 中,90DQC ,tan DQDCQ CQ. 在Rt △AHC 中,90AHC ,1tan 2AH ACH HC. ∵DCQ ACH ,∴12DQCQ. 设,2DQ k CQk ,AQ DQ k , ∵35k ,53k,∴2253DC DQ CQ . ·········· (2分) ∵43BDBCDC,∴4:5BD CD . ················ (1分) (3)如果四边形ADCF 是梯形则①当AF ∥DC 时,45AFD FDC .∵45ADF ,∴AD BC ,即点D 与点H 重合. ∴1BD . ··· (2分)②当AD ∥FC 时,45ADF CFD . ∵45B ,∴B CFD . ∵B BAD ADF FDC ,∴BAD FDC . ∴ABD ∆∽DFC ∆.∴AB ADDF DC=. ················ (1分)∵DF =,DC BC BD =-.∴2AD BC BD =-.即23x =- ·············· (1分)整理得 210x x --=,解得 x =(负数舍去). ········· (1分)综上所述,如果四边形ADCF 是梯形,BD 的长是1金山25. (1)证明:由题意得:t CE t CD 34,==,∵ 90=∠C ,16=AC ,20=AB ; ∴12162022=-=CB ,∵1212tAC CE t CB CD ==,;(2分) ∴ACCE CB CD = (1分) 又∵ 90=∠=∠C C ∴DCE ∆∽BCA ∆. (1分)(2)①连结CP 并延长CP 交AB 于点H ,∵90=∠ACB ,∴DE 是⊙P 的直径 即P 为DE 中点,∴DE PE DP CP 21===. (1分) ∴PEC PCE ∠=∠,∵DCE ∆∽BCA ∆,∴B CDE ∠=∠, (1分)∵90=∠+∠CED CDE ,∴90=∠+∠HCB B (1分) ∴AB CH ⊥; (1分) ∵⊙P 与边AB 相切,∴点H 为切点, (1分) CH 为⊙P 的直径, ∵AB CB CA CH A ==sin 解得548=CH ,∴548=DEAB CB DE CD CED A ==∠=sin sin 得25144=CD 即25144=t . (1分) ②由题意得⎪⎩⎪⎨⎧≤<≤<1234016t 0t 解得90≤<t ,由①得548=CM ,t DE CP 6521==,AB CM ⊥ ∴t PM 65548-=,t CP PF 65==, 90=∠PMF , ∵90=∠=∠PMF ACB ∴由PFM ∆与CDE ∆相似可得:情况一:CD PM DE PF =得t t t t 655483565-=解得:536=t ; 95360≤< 情况二:CE PM DE PF =得t t t t 34655483565-=解得:523=t ; 95320≤<∴综上所述:当PFM ∆与CDE ∆相似时. 523=t 或536=t (2分+2分) 普陀 25.解:(1)在Rt △ABC 中,90ACB ∠=︒,4cos 5BAC ∠=,∴45AC AB =. ∵5AB =,∴4AC =. ······················ (1分) 由勾股定理得 3BC =. ······················ (1分) ∵OB OA x ==,∴4CO x =-. 在Rt △BCO 中,90C ∠=︒,由勾股定理得 2223(4)x x +-=. ·················· (1分) 解得258x =. ·························· (1分) (2)过点O 、C 分别作OH ⊥AB 、CG ⊥AB ,垂足为点H 、G .∵OH ⊥AB ,∴AH DH =. ···················· (1分) 同理 DG EG =. ∵4cos 5BAC ∠=,∴45AH x =. ∴85AD x =. ··························· (1分) ∵CG ⊥AB ,∴90AGC ∠=︒. ∴90AGC ACB ∠=∠=︒.又∵CAB ∠是公共角,∴△AGC ∽△ACB .∴AG AC AC AB =.∴165AG =. ∵AE y =,∴165GE y =-. ···················· (1分)∴165DG y =-.∴16168555y y y x -+-+=. ∴化简得 32855y x =-(2528≤x <). ················ (2分) (3)708x << ···························· (2分)2x =.······························ (1分)2548x <<. ··························· (2分) 杨浦25.(1)1502AOD α∠=︒-(2)AD =3)1122or 长宁25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)解:(1) ∵DP ED ⊥ ∴ ︒=∠90EDP ∴︒=∠+∠90PDA BDE又∵︒=∠90ACB ∴︒=∠+∠90PAD B(1分) ∵PA PD =∴PAD PDA ∠=∠(1分) ∴B BDE ∠=∠(1分) ∴DE BE =(1分) (2)∵yAD =,yAD BA BD -=-=5(1分)过点E 作 BD EH ⊥垂足为点H ,由(1)知DE BE = , ∴2521y BD BH -== (1分)在EHB Rt ∆中,︒=∠90EHB ∴xyBE BH B 25cos -==在ABC Rt ∆中,︒=∠90ACB ,3=AC ,4=BC ∴5=AB ∴54cos ==AB BC B ∴5425=-x y ∴)82587(5825<≤-=x x y (1分+1分)(2)设a PD =,则a AD 56=,a AD BA BD 565-=-= 在等腰PDA ∆中,53cos =∠PAD ,易得257cos =∠DPA在PDF Rt ∆中,︒=∠90PDF ,257cos ==∠PF PD DPA ∴725a PF =,718aAF= (2分) 若BDP ∆∽DAF ∆又 DAF BDP ∠=∠①当ADF DBP ∠=∠时,PD AF BD AD =即a a a a71856556=-,解得3=a ,此时51856==a AD (2分)②当F DBP ∠=∠时,BD AF PD AD =即a a a a56571856-=,解得117175=a ,此时397056==a AD (2分)综上所述,若BDP ∆∽DAF ∆, 线段AD 的长为518或3970 黄浦嘉定静安松江徐汇。
上海中考数学第25题
上海中考数学第25题
摘要:
1.上海中考数学第25 题的背景和重要性
2.第25 题的题目内容和解题思路
3.题目的难度和考察重点
4.对学生解题能力的要求和提高方法
正文:
上海中考数学第25 题一直以来都是考生们关注的焦点,因为它不仅占据了数学试卷的分值,而且它的难度和复杂程度都是其他题目所不能比的。
这道题目的重要性在于它考察了学生的综合数学能力,包括逻辑思维、分析问题和解决问题的能力。
让我们来看一下第25 题的题目内容。
题目会给出一个复杂的数学问题,需要学生通过阅读题目,理解问题的背景和条件,然后运用所学的数学知识来解决问题。
这种题目的解题思路通常是先通过阅读题目理解问题的背景和条件,然后根据问题的条件和要求来列出方程式或者不等式,最后通过解方程或不等式来得出答案。
虽然第25 题的难度较大,但它的考察重点主要是学生的逻辑思维和分析问题的能力。
这就要求学生在解题时要有足够的耐心和细心,要能够从题目的复杂条件中提炼出关键的信息,然后通过逻辑推理和数学运算来得出答案。
对于学生来说,要提高解题能力,首先要加强对数学基础知识的学习,只有掌握了足够的数学知识,才能在解题时游刃有余。
其次,学生还需要多做一些复杂的数学题目,通过做题来提高自己的逻辑思维和分析问题的能力。
最
后,学生还要注意在做题时的心态,要保持足够的耐心和细心,不要因为题目的难度大而轻易放弃。
总的来说,上海中考数学第25 题虽然难度较大,但它对学生的综合数学能力的考察是非常重要的。
2020届上海市各区初三数学二模试卷压轴题--第25题图文解析汇编
点 A 在正方形 OEGH 的内部,连结 DH.
(1)求证:△HDO≌△EAO;
(2)设 BF=x,正方形 OEGH 的边长为 y,求 y 关于 x 的函数关系式,并写出定义域;
(3)连结 AG,当△AEG 是等腰三角形时,求 BF 的长.
图1
思路点拨
1.△HDO 绕着点 O 逆时针旋转 90°可以与△EAO 重合. 2.先用 x 表示 OE 的长,再根据勾股定理求 OE 的长得到 y. 3.因为 EA<EO,EO=EG,因此不存在 EA=EG 的情况.
5
5
所以 PE=AP-AE= 32n 5n = 7n .
5
5
由 AB=2PE+EA= 14n 5n =12.解得 n= 20 .
5
13
此时 rO=OE=5n= 100 ,圆心距 d=OA= 160 .
13
13
图5
图6
第二步,分两种情况讨论⊙A 与⊙O 相切.
①如图 7,当⊙A 与⊙O 外切时,rO+rA=d.所以 rA=d-rO= 160 100 = 60 . 13 13 13
如图 1,已知半圆 O 的直径 AB=10,弦 CD//AB,且 CD=8,E 为弧 CD 的中点,点 P
在弦 CD 上,连结 PE,过点 E 作 PE 的垂线交弦 CD 于点 G,交射线 OB 于点 F.
(1)当点 F 与点 B 重合时,求 CP 的长;
(2)设 CP=x,OF=y,求 y 与 x 的函数关系式及定义域;
∠BAC 交⊙O 于点 F,OF 交线段 AB 于点 G.
(1)求点 D 到点 B 和直线 AB 的距离;
(2)如果点 F 平分劣弧 BE,求此时线段 AE 的长度;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2015长宁)如图,已知矩形ABCD , AB =12 cm, AD =10 cm, Q O与AD、AB、BC三边都相切,与
DC交于点E、F。
已知点P、Q、R分别从D、A、B三点同时出发,沿矩形ABCD的边逆时针方向匀速运动,点P、Q、R的运动速度分别是1 cm/s、x cm/s、1.5 cm/s,当点Q到达点B时停止运动,P、
R两点同时停止运动.设运动时间为t (单位:s).(1)求证:DE=CF ;
(2)设x = 3,当△ PAQ与厶QBR相似时,求出t的值;
(3)设厶PAQ关于直线PQ对称的图形是△ PA'Q,当t和x分别为何值时,点A'与圆心O恰好重合, 求岀符合条件的t、x的值.
第25题图
3
(2015 杨浦二模)在Rt△ ABC 中,/ BAC=90 °,BC=10,tan ZABC ,点0 是AB 边上动点,
4
以0为圆心,0B为半径的。
O与边BC的另一交点为D,过点D作AB的垂线,交。
O于点E,联结
BE、AE。
当AE//BC (如图(1))时,求。
0的半径长;
设BO=x,AE=y,求y关于x的函数关系式,并写出定义域; 若以A为圆心的。
A与。
0有公共点
D 、E,当。
A恰好也过点C时,求DE的长。
C
1
A B
(2015徐汇)如图,在 Rt ABC 中,/ACB =90:, AC =4 , cosA ,点P 是边AB 上的动
4
点,以PA 为半径作口 p ;
(1 )若[P 与AC 边的另一交点为点D ,设AP =x ,. PCD 的面积为y ,求y 关于x 的函数解 析式,并直接写岀函数的定义域;
(2) 若L P 被直线BC 和直线AC 截得的弦长相等,求 AP 的长; (3) 若口 C 的半径等于1,且L P 与L C 的公共弦长为
2 ,求AP 的长;
(2015 松江)如图,已知在直角梯形ABCD 中,AD // BC , / ABC=90 o, AB=4 , AD=3 ,
(1 )求证:/ BCD= / BDC ;
(2)如图1,若以P为圆心、PB为半径的圆和以H为圆心、HD为半径的圆外切时,求DP的长;
(3)如图2,点E在BC延长线上,且满足DP=CE,PE交DC于点尸,若厶ADH和厶ECF相似,求
DP的长.
sin. BCD
5
,点P是对角线BD上一动点,过点P作PH丄CD,垂足为H .
(2015 普陀)如图11-1,已知梯形ABCD 中,AD // BC,/ D =90:, BC = 5 , CD = 3 , cot B =1.
P是边BC上的一个动点(不与点B、点C重合),过点P作射线PE,使射线PE交射线BA于点E,
N BPE=NCPD .
(1)如图11-2,当点E与点A重合时,求.DPC的正切值;
(2)当点E落在线段AB上时,设BP = X,BE =y,试求y与x之间的函数解析式,并写岀x的取值范围;
(3)设以BE长为半径的。
B和以AD为直径的。
O相切,求BP的长.
B C
图 11-1
A(E) D
B PC
图 11-2
图11
备用图
(2015浦东)如图,已知在厶ABC中,射线AM // BC , P是边BC上一动点,/ APD= / B, PD
交射线AM 于点D,联结CD . AB=4, BC=6,/ B=60°.
(1)求证:AP2 = AD BP ;
(2)如果以AD为半径的圆A与以BP为半径的圆B相切,求线段BP的长度;
(3)将厶ACD绕点A旋转,如果点D恰好与点B重合,点C落在点E的位置上,求此时/ BEP 的余切值.
才____ 6 W
(第25址
(2015闵行)如图,已知在梯形ABCD中,AD // BC , AB = DC = 5 , AD = 4 . M、N分别是边AD、BC 上的任意一点,联结AN、DN.点E、F分别在线段AN、DN上,且ME // DN , MF // AN,联结EF .
(1)如图1,如果EF // BC,求EF的长;
3
(2)如果四边形MENF的面积是厶ADN的面积的上,求AM的长;
8
(3)如果BC = 10,试探索厶ABN、A AND、△ DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由
.
(第25题图) (图
1
(2015静安青浦)在。
O中,OC丄弦AB,垂足为C,点D在。
O 上.
(1)如图1,已知OA= 5, AB = 6,如果OD//AB, CD与半径OB相交于点E,求DE的长;
(2)已知OA =5, AB = 6 (如图2),如果射线OD与AB的延长线相交于点尸,且厶OCD是等
腰三角形,求AF的长;
(3)女口果OD//AB, CD 丄OB,垂足为E, 求sin/ODC 的值
.
4
(2015 金山)如图,已知在:ABC 中,AB 二AC=10, tan. B -
3
(1) 求BC 的长;
(2)
点D 、E 分别是边 AB 、AC 的中点,不重合的两动点 M 、N 在边BC 上(点M 、N 不与 点B 、C 重合),且点
N 始终在点 M 的右边,联结 DN 、EM ,交于点O ,设MN = x ,四 边形ADOE 的面积为y •
① 求y 关于x 的函数关系式,并写岀定义域; ② 当.OMN 是等腰三角形且BM =1时,求MN 的长.
第25
题图备用图
(2015 黄埔)如图8, Rt△ ABC 中,.C =90 , . A = 30 , BC=2, CD 是斜边AB 上的高,点E 为边AC上一点(点E不与点A、C重合),联结DE,作CF丄DE , CF与边AB、线段DE分别交于点F、G .
(1)求线段CD、AD的长;
(2)设CE =x,DF =y,求y关于x的函数解析式,并写出它的定义域;
(3)联结EF,当厶EFG与厶CDG相似时,求线段CE的长
.
(2015奉贤)已知:如图,线段AB=8,以A为圆心,5为半径作圆A,点C在。
A上,过点C作CD//AB 交。
A于点D (点D在C右侧),联结BC、AD .
(1 )若CD=6,求四边形ABCD的面积;
(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围;
.
(3)设BC的中点为M, AD的中点为N,线段MN交。
A于点E,联结CE,当CD取何值时,CE//AD
(备用
(第25题
4
(2015崇明)如图,在BC 中,.ACB =90 , AC =8 , tanB ,点P 是线段AB 上的一个动点,
3
以点P 为圆心,PA 为半径的L P 与射线AC 的另一个交点为点 D ,射线PD 交射线BC 于点E ,
点Q 是线段BE 的中点.
(1) 当点E 在BC 的延长线上时,设PA=x ,CE =y ,求y 关于x 的函数关系式,并写出定义域;
(2) 以点Q 为圆心,QB 为半径的LI Q 和L P 相切时,求L P 的半径;
(3) 射线PQ 与L P 相交于点M ,联结PC 、MC ,当.PMC 是等腰三角形时,求 AP 的长.
(备用图2
)
(2015宝山)在Rt△ ABC中,艺C = 90 , BC =2 , Rt△ ABC绕着点B按顺时针方向旋转,使点C 落在斜边AB上的点D ,设点A旋转后与点E重合,联结AE ,过点E作直线EM与射线CB 垂直,交点为M .
(1)若点M与点B重合如图10,求cot^BAE的值;
(2)若点M在边BC上如图11,设边长AC =x,BM = y,点M与点B不重合,求y与x的函
数关系式,并写岀自变量x的取值范围;
(3)若.BAE二.EBM,求斜边AB的长.。