2019-2020年电大考试《经济数学基础》考题及答案

合集下载

国开大学电大《经济数学基础1》2020期末试题及答案

国开大学电大《经济数学基础1》2020期末试题及答案

国开大学电大《经济数学基础1》2020期末试题及答案一、选择题(每题3分,共30分)1. 设函数f(x) = x^3 - 6x^2 + 9x - 1,求f(1)的值。

A. 3B. 0C. -3D. -12. 函数y = 2x^3 - 3x^2 + 4在x = 1处的切线斜率为:A. 1B. 2C. 3D. 43. 设函数f(x) = x^2 - 4x + 3,求f'(x)的值。

A. 2x - 4B. 2x + 4C. 4x - 2D. 4x + 24. 若函数f(x)在区间(a,b)内可导,则下列结论正确的是:A. f'(x)在(a,b)内连续B. f(x)在(a,b)内单调C. f'(x)在(a,b)内可积D. f(x)在(a,b)内可导5. 下列函数中,哪个函数在x = 0处不可导?A. y = x^2B. y = |x|C. y = x^3D. y =x^2 + 3x6. 设函数y = 2x^3 - 3x^2 + 4,求y"的值。

A. 12x - 6B. 12x + 6C. 6x - 12D. 6x + 127. 函数y = x^2e^x在x = 0处的极值为:A. 0B. 1C. 2D. 38. 下列函数中,哪个函数在(-∞,+∞)内单调递增?A. y = x^2B. y = x^3C. y = -x^2D. y =-x^39. 求极限lim(x→0) (sin x)/x的值。

A. 0B. 1C. 2D. 无极限10. 设函数f(x) = 2x^3 - 3x^2 + 4,求f'(1)的值。

A. 1B. 2C. 3D. 4二、填空题(每题3分,共30分)1. 函数y = 3x^2 - 2x + 1在x = 2处的导数y' =_______。

2. 函数y = x^3 - 6x^2 + 9x - 1的导数y' = _______。

3. 函数y = e^x在x = 0处的导数y' = _______。

2020年经济数学基础试卷及答案

2020年经济数学基础试卷及答案

f ——\— dx = tan x + cJ cos 2 X一、单项选择题(每小题3分,共15分) L 下列函数在指定区间-s,+s )上单调减少的是()2,下列极限计算正确的是(试卷代号:2006 国家开放大学2019年秋季学期期末统一考试 经济数学基础12试题 2020年1月 导数基本公式 =0 积分基本公式:O C Z Y = c(a ,)= a x In a(a > 0,且a ¥ 1)f a"dx = —— + c J In a(log, x)=——-——(a > 0, a W1) x In a, 1 (In x)=一 x =Inx + c(sin x)= cos x | cos xdx = sin x + c (cos x)= 一 sin x J sin xdx = - cos x + c(cot x)= 1 sin 2 x —= sirr x 一 cot x +c(tan x)= cos- x A. sinx B. x 1 C. e x D. 3-xLv| x->oc X =0 sinxC 却丁田 = i x->0 X5 .若线性方程组AX-0只有零解.,则线性方程组AX=b ()A.有唯一解B.有无穷多解C.无解D.解不能确定二、填空题(每小题3分,共15分)6 .函蜘=盛的定义域是一7.j(sinx)cZv = 8•若J f(x)dx= F(x) + C,则J f(2x + \)dx =-1 -1 r9 .矩阵4= 2 0 -1的秩是1 -3 410 .线性方程组AX=b 有解的充分必要条件是三、微积分计算题(每小题1。

分,共20分)11 .设),=+ cos2x,求y12 .计算定积句1 yJX四、线性代数计算题(每小题15分,共3。

分) X] — x 2 + 4X 3 = 2-1 o' -3 13.设 4 = 2 -1 ,B = 3 -4 3. 2 10-2 ,求(48)7.1 3.下列等式成立的是( )A. sin xdx = J (cos x)B.2x dx = - In 2 d(2x ) C. In xdx = J(—) D. -^dx = d(yfx) X yJX -2 74 0 4.设矩阵4= 1 -1 -35 32 0 -1 则A 的元由 i =( A.3 B.4 C. 1D. 014.求4为何值时,线性方程飞2修-/-占=1有解,并求一般解3为一2X2+3X3 = 2五、应用题(本题20分)15.设生产某种产品q个单位时的成本函数为C(q)=100+0.25q2+6q (万元). 求:①q=10时的总成本、平均成本和边际成本;②产量q为多少时,平均成本最小.参考答案一、单项选择题(每小题5分,共15分)l.D 2.C 3.B 4.A 5.D二、填空题(每小题5分,共15分)1 —6. (-1,0)U(0J]7.sinx+C 8,—F(2x +1) + C 9.2 10. r(A) = "A)2三、微积分计算题(每小题1。

2020电大经济数学基础试题考试必考重点 (2)

2020电大经济数学基础试题考试必考重点 (2)

(一)填空题 1.___________________sin lim=-→x xx x .答案:0 2.设⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( D ) A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( B )A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim=→x x x D.1sin lim =∞→xxx3. 设,则( B ).A .B .C .D .4. 若函数f (x )在点x 0处可导,则( B )是错误的. A .函数f (x )在点x 0处有定义 B .A x f x x =→)(lim,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.当0→x 时,下列变量是无穷小量的是( C ).A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x2112lim)1)(1()2)(1(lim11-=+-=+---=→→x x x x x x x x 原式 (2)218665lim 222=+-+-→x x x x x 原式=4)-2)(x -(x 3)-2)(x -(x lim2x →2143lim2=--=→x x x(3)2111lim-=--→x x x原式=)11()11)(11(lim 0+-+---→x x x x x=111lim+--→x x=21-(4)3142353lim22=+++-∞→x x x x x 原式=22433531xx x x +++-=31 (5)535sin 3sin lim0=→x x x原式=xxx x x 55sin 33sin lim530→ =53 (6)4)2sin(4lim22=--→x x x 原式=2)2sin(2lim2+++→x x x x=2)2sin(lim )2(lim 22--+→→x x x x x = 42.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.解:(1)1)(lim ,)(lim 00==+-→→x f b x f x x当1f(0)f(x)lim 10x ====→有时,b a(2). 1f(0)f(x)lim 1b a 0x ====→有时,当函数f(x)在x=0处连续.3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x ,求y '答案:2ln 12ln 22x x y x ++='(2)dcx bax y ++=,求y '答案:22)()()()(d cx bcad d cx b ax c d cx a y +-=++-+='(3)531-=x y ,求y '答案:23)53(23---='x y(4)x x x y e -=,求y '答案:)(21xxxe e xy +-='=xx xee x--21(5)bx y ax sin e =,求y d答案:∵)cos (sin cos sin )(sin (sin )(bx b bx e bx be bx ae bx e bx e y axaxax axax+=+='+'='∴dxbx b bx a edy ax)cos sin (+=(6)x x y x+=1e ,求y d答案:∵x e x y x23112+-=' ∴dx e xx dy x )123(12-= (7)2e cos xx y --=,求y d答案:∵)()(sin 22'-⋅-'⋅-='-x e x x y x=222sin xxe xx-+-∴dx xe xxdy x )22sin (2-+-=(8)nx x y n sin sin +=,求y '答案:nx n x x n y n cos cos sin 1+⋅='-(9))1ln(2x x y ++=,求y '答案:)1(1122'++⋅++='x x x x y =)11(1122xx xx ++⋅++=2221111xx x xx +++⋅++ =211x+(10)xxx y x212321cot -++=,求y '答案:531cos 261211cos61211sin 2ln 21)2()1(cos 2ln 2x x x x x x xy x x+-⋅⋅-='-++'⋅⋅='-4.下列各方程中y 是x 的隐函数,试求y '或y d(1) 方程两边对x 求导:0322=+'--'⋅+y x y y y x32)2(--='-x y y x y所以 dx xy x y dy ---=232(2) 方程两边对x 求导:4)()1)(cos(='+⋅+'++y x y e y y x xyxyxyyey x y xe y x -+-='++)cos(4])[cos(所以xyxyxe y x ye y x y ++-+-=')cos()cos(45.求下列函数的二阶导数: (1))1ln(2x y +=,求y ''答案: (1)212x xy +='222222)1(22)1(22)1(2x x x x x x y +-=+⋅-+=''(2)212321212121)(-----='-='x x x xy23254143--+=''x x y14143)1(=+='y作业(二)(一)填空题 1.若c x x x f x ++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2.⎰='x x d )sin (________.答案:c x +sin 3. 若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2 .答案:c x F +--)1(212 4.设函数___________d )1ln(d d e12=+⎰x x x .答案:0 5. 若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-(二)单项选择题1. 下列函数中,( D )是x sin x 2的原函数. A .21cos x 2 B .2cos x 2 C .-2cos x 2 D .-21cos x 2 2. 下列等式成立的是( C ).A .)d(cos d sin x xx =B .)1d(d lnxx x =C .)d(22ln 1d 2x xx =D .x x xd d 1= 3. 下列不定积分中,常用分部积分法计算的是( C ). A .⎰+x x c 1)d os(2, B .⎰-x x x d 12C .⎰x x x d 2sinD .⎰+x xxd 124. 下列定积分计算正确的是( D ). A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x x ππD .0d sin =⎰-x x ππ5. 下列无穷积分中收敛的是( B ). A .⎰∞+1d 1x x B .⎰∞+12d 1x x C .⎰∞+0de x xD .⎰∞+1d sin x x(三)解答题1.计算下列不定积分(1)⎰x x x d e 3原式=⎰dx e x )3( =c e c ee xxx +-=+)13(ln 33ln )3( (2)⎰+x xx d )1(2答案:原式=⎰++-dx x x x )2(2321 =c x x x+++25232152342 (3)⎰+-x x x d 242答案:原式=⎰+-=-c x x dx x 221)2(2 (4)⎰-x x d 211答案:原式=c x x x d +--=---⎰21ln 2121)21(21 (5)⎰+x x x d 22答案:原式=⎰++)2(22122x d x =c x ++232)2(31(6)⎰x xx d sin 答案:原式=⎰+-=c x x d x cos 2sin 2(7)⎰x xx d 2sin答案:∵(+)x 2sinx(-) 12(+) 0 sin 4x - ∴原式=c xx x ++-2sin 42cos 2 (8)⎰+x x 1)d ln(答案:∵ (+))1ln(+x 1 (-) 11+-x x ∴ 原式=⎰+-+dx x xx x 1)1ln(=⎰+--+dx x x x )111()1ln( =c x x x x +++-+)1ln()1ln(2.计算下列定积分(1)x x d 121⎰--答案:原式=⎰⎰-+--2111)1()1(dx x dx x =29252)21(2212=+=-+x x (2)x xxd e 2121⎰答案:原式=⎰-212211)(xdx x e x=21211e e e x -=-(3)x xx d ln 113e 1⎰+答案:原式=⎰++31)ln 1(ln 1e x d xx x=21ln 123=+e x(4)x x x d 2cos 2⎰π答案:∵ (+)x (-)1 (+)0 x 2cos 1-∴ 原式=20)2cos 412sin 21(πx x x + =214141-=--(5)x x x d ln e1⎰答案:∵ (+) x lnx(-)x122x∴ 原式=⎰-e exdx x x 11221ln 21=)1(414122122+=-e x e e (6)x x xd )e1(4⎰-+答案:∵原式=⎰-+44dx xe x又∵ (+)xx e -(-)1 -xe -(+)0 x e -∴⎰-----=44)(x x x e xe dx xe=154+--e故:原式=455--e作业三 (一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:32.设B A ,均为3阶矩阵,且3-==B A ,则TAB 2-=________. 答案:72-3. 设B A ,均为n阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设BA ,均为n阶矩阵,)(B I -可逆,则矩阵XBX A =+的解______________=X .答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( C ). A .若B A ,均为零矩阵,则有B A = B .若AC AB =,且O A ≠,则C B =C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( A )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是(C ). `A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B AC .BA AB = D .BA AB =4. 下列矩阵可逆的是( A ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101C .⎥⎦⎤⎢⎣⎡0011 D .⎥⎦⎤⎢⎣⎡2211 5. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( B ). A .0 B .1 C .2 D .3三、解答题 1.计算 (1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321 (2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000(3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。

2019-2020年电大考试经济数学考题题库及答案

2019-2020年电大考试经济数学考题题库及答案

经济数学基础形成性考核册参考答案部分题目与答案符号在预览界面看不清,下载后再打开就可以看清了 作业一(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =+1在)2,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题1. 当x →+∞时,下列变量为无穷小量的是(D )A .ln(1)x +B .21x x +C .21x e- D .sin xx2. 下列极限计算正确的是(B ) A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =lg2,则d y =(B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.若1()f x x=,()f x '=(B ).A .21x B .21x -C .1xD .1x - (三)解答题1.计算极限(1)21123lim 221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x (3)2111lim0-=--→x x x (4)31423532lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim22=--→x x x 2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。

国开大学电大《经济数学基础1》2020期末试题及答案(试卷号:2441)

国开大学电大《经济数学基础1》2020期末试题及答案(试卷号:2441)

国开大学电大《经济数学基础1》2020期末试题及答案(试卷号:2441)一、选择题(每题2分,共20分)1. 下列函数中,奇函数是()A. f(x) = x^3B. f(x) = x^2C. f(x) = |x|D. f(x) = 1/x答案:A2. 函数f(x) = 2x - 3在区间(-∞,+∞)内是()A. 递增函数B. 递减函数C. 常数函数D. 非单调函数答案:A3. 下列极限中,正确的是()A. lim(x→0) (sinx)/x = 1B. lim(x→∞) (1/x) = 1C. lim(x→0) (1/cosx) = 1D. lim(x→∞) (x^2) = 0答案:A4. 函数y = e^x在x = 0处的导数是()A. 1B. eC. 0D. -1答案:A5. 下列函数中,可导的是()A. f(x) = |x|B. f(x) = |x - 1|C. f(x) = √xD. f(x) = 1/x^2答案:C6. 下列函数在区间(0,+∞)内单调递增的是()A. f(x) = x^2B. f(x) = x^3C. f(x) = 1/xD. f(x) = -x^2答案:B7. 函数y = 2x^3 - 3x^2 + 4x + 5的拐点是()A. (0, 5)B. (1, 3)C. (2, 8)D. (3, 0)答案:B8. 下列积分中,正确的是()A. ∫(x^2)dx = (1/3)x^3 + CB. ∫(1/x)dx = ln|x| + CC. ∫(e^x)dx = e^x + CD. ∫(sinx)dx = -cosx + C答案:B9. 下列行列式中,值为0的是()A. |1 2 3||4 5 6||7 8 9|B. |1 0 1||0 1 0||1 0 0|C. |1 2 3||4 5 6||7 8 9|D. |1 2 3||3 2 1||2 3 1|答案:A10. 下列线性方程组中,有解的是()A. x + y = 22x - y = 3B. x + y = 22x - y = 4C. x + y = 32x - y = 4D. x + y = 12x - y = 3答案:A二、填空题(每题2分,共20分)11. 函数f(x) = x^3 - 3x 在x = 0处的导数f'(0) = _______。

2019-2020年电大考试数学经济基础试题答案及答案

2019-2020年电大考试数学经济基础试题答案及答案

《经济数学基础》真题一、填空题(每题3分,共15分)6.函数()f x =的定义域是 (,2](2,)-∞-+∞ .7.函数1()1xf x e =-的间断点是 0x =.8.若()()f x dx F x C =+⎰,则()x x e f e dx --=⎰()x F e c --+.9.设10203231A a ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,当a = 0 时,A 是对称矩阵。

10.若线性方程组12120x x x x λ-=⎧⎨+=⎩有非零解,则λ= -1 。

6.函数()2x xe ef x --=的图形关于 原点 对称.7.已知sin ()1xf x x=-,当x → 0时,()f x 为无穷小量。

8.若()()f x dx F x C =+⎰,则(23)f x dx -=⎰1(23)2F x c -+ .9.设矩阵A 可逆,B 是A 的逆矩阵,则当1()T A -= TB 。

10.若n 元线性方程组0AX =满足()r A n <,则该线性方程组 有非零解 。

6.函数1()ln(5)2f x x x =++-的定义域是 (5,2)(2,-+∞ . 7.函数1()1xf x e =-的间断点是 0x = 。

8.若2()22x f x dx x c =++⎰,则()f x =2ln 24x x +.9.设111222333A ⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦,则()r A = 1 。

10.设齐次线性方程组35A X O ⨯=满,且()2r A =,则方程组一般解中自由未知量的个数为 3 。

6.设2(1)25f x x x -=-+,则()f x =x2+4 .7.若函数1sin 2,0(),0x x f x xk x ⎧+≠⎪=⎨⎪=⎩在0x =处连续,则k= 2 。

8.若()()f x dx F x c =+⎰,则(23)f x dx -=⎰1/2F(2x-3)+c.9.若A 为n 阶可逆矩阵,则()r A = n 。

2020年电大国开经济数学基础12

2020年电大国开经济数学基础12

2020年电大国开经济数学基础121.函数()是奇函数。

正确答案是:sin(x)2.设需求量对价格的函数为q(p),则需求弹性=()。

正确答案是:-p*q'(p)/q(p)3.下列无穷积分收敛的是()。

无法确定,需要提供选项。

4.若线性方程组无解,则()。

正确答案是:系数矩阵的行列式为05.函数y = lg(x+1)的定义域是(D).正确答案是:x>-16.下列各函数对中,(D)中的两个函数相等。

正确答案是:f(x)=x^2-1,g(x)=(x-1)/(x+1)7.设f(x) = 2/x,g(x) = 1/(2x),则f(f(x))=(C).正确答案是:f(f(x)) = 1/x8.下列函数中为奇函数的是(C).正确答案是:y = ln|x|9.已知f(x) = (2x-x)/(x-1),当x->1时,f(x)为无穷小量.正确答案是:A.x->110.当x->+∞时,下列变量为无穷小量的是(D)。

正确答案是:ln(1+x)/x11.函数f(x) = sin(x),x≠k在x=k处连续,则k= ( C).正确答案是:k = nπ (n为整数)12.曲线y = (x+1)/(x^2+2x+2)在点(0.1)处的切线斜率为(A).正确答案是:-1/213.曲线y = sin(x)在点(0.0)处的切线方程为(A).正确答案是:y = x14.设y = lg2x,则dy=(B).正确答案是:1/(xln10)dx15.下列函数在指定区间(-∞,+∞)上单调增加的是(B).正确答案是:ex16.设需求量q对价格p的函数为q(p) = 3-2p,则需求弹性为E_p =(B).正确答案是:-2p/q(p)1.将“dx=dxD.lnxdx=d(1/x)”改写为“dx=Dlnx,dx=d(1/x)”,并删除明显有问题的段落。

2.将“若∫f(x)dx=−e−x2+c,则f′(x)=().正确答案:D−xxxxA.−e2B.12e−2C.1−14e2D.−4e2”改写为“如果∫f(x)dx=−e−x2+c,则f′(x)=()正确答案:D,即−4e2”。

2020年国家开放大学电大《经济数学基础1》考题库

2020年国家开放大学电大《经济数学基础1》考题库

《经济数学基础12》精编题库小抄(考试必备)一、选择题:1.设xx f 1)(=,则=))((x f f (x ). 2.已知1sin )(-=xx x f ,当( x →0)时,)(x f 为无穷小量. 3. 若)(x F 是)(x f 的一个原函数,则下列等式成立的是( ). B .)()(d )(a F x F x x f xa -=⎰4.以下结论或等式正确的是(对角矩阵是对称矩阵).5.线性方程组⎩⎨⎧=+=+012121x x x x 解的情况是(无解). 6下列函数中为偶函数的是( x x y sin =). 7.下列函数中为奇函数的是( x x y -=3) 8.下列各函数对中,(1)(,cos sin )(22=+=x g x x x f )中 的两个函数相等.9.下列结论中正确的是(奇函数的图形关于坐标原点对称).10.下列极限存在的是( 1lim 22-∞→x x x ). 11.函数⎪⎩⎪⎨⎧=≠+-=0,0,211)(x k x x x x f 在x = 0处连续,则k =(-1). 12.曲线x y sin =在点)0,π((处的切线斜率是(1-).13.下列函数在区间(,)-∞+∞上单调减少的是(x -2).14.下列结论正确的是0x 是)(x f 的极值点,且)(0x f '存在,则必有0)(0='x f ). 15.设某商品的需求函数为2e 10)(p p q -=,则当p =6时,需求弹性为(-3).16.若函数xx x f -=1)(, ,1)(x x g +=则=-)]2([g f ( -2 ). 17.下列函数中为偶函数的是( x x y sin =). 18.函数)1ln(1-=x y 的连续区间是),(),(∞+⋃221 19.曲线11+=x y 在点(0, 1)处的切线斜率为( 21- ). 20.设c x x x x f +=⎰ln d )(,则)(x f =( 2ln 1x x - ).21.下列积分值为0的是( ⎰--11-d 2e e x xx ). 22.设)21(=A ,)31(-=B ,I 是单位矩阵, 则I B A -T =( ⎥⎦⎤⎢⎣⎡--5232 ). 23.设B A ,为同阶方阵,则下列命题正确的是( ).B.若O AB ≠,则必有O A ≠,O B ≠24.当条件( O b = )成立时,n 元线性方程组b AX =有解.25.设线性方程组b AX =有惟一解,则相应的齐次方程组O AX =(只有0解 ).二、填空题:1.函数)1ln(42+-=x x y 的定义域是]2,1(-. 2.函数1142++-=x x y 的定义域是]2,1()1,2[--- 3.若函数62)1(2+-=-x x x f ,则=)(x f 52+x 4.若函数x x f +=11)(,则=-+hx f h x f )()()1)(11h x x +++-( 5.设21010)(x x x f -+=,则函数的图形关于 y 轴 对称.6.已知需求函数为p q 32320-=,则收入函数)(q R =:22310q q -. 7.=+∞→xx x x sin lim 1 、 . 8.已知⎪⎩⎪⎨⎧=≠--=0011)(2x a x x x x f ,若)(x f 在),(∞+-∞内连续,则=a 2 .9.曲线1)(2+=x x f 在)2,1(处的切线斜率是:21 10.过曲线x y 2e -=上的一点(0,1)的切线方程为12+-=x y . 11.函数3)2(-=x y 的驻点是2=x .12.需求量q 对价格p 的函数为2e 80)(pp q -⨯=,则需求弹性为2p-13.函数1142++-=x x y 的定义域是写:]2,1()1,2[--- 14.如果函数)(x f y =对任意x 1, x 2,当x 1 < x 2时,有)()(21x f x f >, 则称)(x f y =是单调减少的.15.已知x xx f tan 1)(-=,当0→x 时,)(x f 为无穷小量.16.过曲线x y 2e -=上的一点(0,1)的切线方程为:12+-=x y 17.若c x F x x f +=⎰)(d )(,则x f x x )de (e --⎰=c F x +--)e ( 18.x x d e 03⎰∞-=31 19.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=13230201a A ,当a = 0 时,A 是对称矩阵. 20. 设D C B A ,,,均为n 阶矩阵,其中C B ,可逆,则矩阵方程 D BXC A =+的解=X 11)(---C A D B .21.设齐次线性方程组11⨯⨯⨯=m n n m O X A ,且)(A r = r < n ,则其一般解中的自由未知量的个数等于 n – r .22.线性方程组AX b =的增广矩阵A 化成阶梯形矩阵后⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→110000012401021d A 则当d = -1 时,方程组AX b =有无穷多解.23.设21010)(x x x f -+=,则函数的图形关于 y 轴 对称.24.函数2)1(3-=x y 的驻点是x =1. 25.若c x F x x f +=⎰)(d )(,则⎰=--x f x x d )e (e c F x +--)e (.26.设矩阵⎥⎦⎤⎢⎣⎡-=3421A ,I 为单位矩阵,则T )(A I -=⎥⎦⎤⎢⎣⎡--2240. 27.齐次线性方程组0=AX 的系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=000020103211A 则 此方程组的一般解为⎩⎨⎧=--=4243122x x x x x ,(x 3,.三、微积分计算题。

2019-2020年电大考试经济基础形考答案大全及答案

2019-2020年电大考试经济基础形考答案大全及答案

形考任务一题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调减少的是().答案:题目3:设,则().答案:题目3:设,则().答案:题目3:设,则=().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目6:().答案:0题目6:().答案:-1题目6:().答案:1题目7:().答案:题目7:().答案:().题目7:().答案:-1题目8:().答案:题目8:().答案:题目8:().答案:().题目9:().答案:4题目9:().答案:-4题目9:().答案:2题目10:设在处连续,则().答案:1题目10:设在处连续,则().答案:1题目10:设在处连续,则().答案:2题目11:当(),()时,函数在处连续.答案:题目11:当(),()时,函数在处连续.答案:题目11:当(),()时,函数在处连续.答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目13:若函数在点处可导,则()是错误的.答案:,但题目13:若函数在点处可微,则()是错误的.答案:,但题目13:若函数在点处连续,则()是正确的.答案:函数在点处有。

2019年最新电大《经济数学基础》形成性考核册及参考答案(全面效果好)

2019年最新电大《经济数学基础》形成性考核册及参考答案(全面效果好)

最新电大《经济数学基础》形成性考核册及参考答案电大《经济数学基础》形成性考核册1及参考答案 (一)填空题1.___________________sin lim 0=-→xxx x .答案:0 2.设⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线xy =+1在)2,1(的切线方程是 .答案:032=+-y x4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题1. 当+∞→x 时,下列变量为无穷小量的是( D ).A . )1ln(x +B .12+x x C 21x e - D .xx sin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx xC.11sin lim 0=→xx x D.1sin lim =∞→xx x 3. 设y x =l g 2,则d y =( B ). A .12d xx B .1d x x ln10 C .ln 10xx d D .1d xx4. 若函数f (x )在点x 0处可导,则( B )是错误的. A .函数f (x )在点x 0处有定义 B .A x f xx =→)(lim,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.若,)1(x xf =,则=')(x f ( B ).A .21x B .21x - C . x 1 D .x1-(三)解答题1.计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim1+-→x x x = 21-(2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim2----→x x x x x = )4(3lim 2--→x x x = 21 (3)x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x =)11(lim 0+--→x x xx=21)11(1lim-=+--→x x (4)=+++-∞→423532lim 22x x x x x 32423532lim 22=+++-∞→xx x x x(5)=→x x x 5sin 3sin lim535sin 33sin 5lim 0x x x x x →=53(6)=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x 2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。

2019-2020年电大考试经济基础形考答案大全及答案

2019-2020年电大考试经济基础形考答案大全及答案

形考任务一题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调减少的是().答案:题目3:设,则().答案:题目3:设,则().答案:题目3:设,则=().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目6:().答案:0题目6:().答案:-1题目6:().答案:1题目7:().答案:题目7:().答案:().题目7:().答案:-1题目8:().答案:题目8:().答案:题目8:().答案:().题目9:().答案:4题目9:().答案:-4题目9:().答案:2题目10:设在处连续,则().答案:1题目10:设在处连续,则().答案:1题目10:设在处连续,则().答案:2题目11:当(),()时,函数在处连续.答案:题目11:当(),()时,函数在处连续.答案:题目11:当(),()时,函数在处连续.答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目13:若函数在点处可导,则()是错误的.答案:,但题目13:若函数在点处可微,则()是错误的.答案:,但题目13:若函数在点处连续,则()是正确的.答案:函数在点处有定义题目14:若,则().答案:题目14:若,则().答案:1题目14:若,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目16:设函数,则().答案:题目16:设函数,则().答案:题目16:设函数,则().答案:题目17:设,则().答案:题目17:设,则().答案:题目17:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目20:设,则().答案:题目20:设,则().答案:题目20:设,则().答案:题目21:设,则().答案:题目21:设,则().答案:题目21:设,则().答案:题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得().答案:题目23:设,则().答案:题目23:设,则().答案:题目23:设,则().答案:-2题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目25:设某商品的需求函数为,则需求弹性().答案:形考任务二题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目2:若,则().答案:题目2:若,则().答案:题目2:若,则().答案:题目3:().答案:题目3:().答案:题目3:().答案:题目4:().答案:题目4:().答案:题目4:().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目6:若,则().答案:题目6:若,则().答案:题目6:若,则().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目10:().答案:0题目10:().答案:0题目10:().答案:题目11:设,则().答案:题目11:设,则().答案:题目11:设,则().答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目14:计算定积分,则下列步骤中正确的是().答案:题目14:().答案:题目14:().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:形考任务三题目1:设矩阵,则的元素().答案:3题目1:设矩阵,则的元素a32=().答案:1题目1:设矩阵,则的元素a24=().答案:2题目2:设,,则().答案:题目2:设,,则()答案:题目2:设,,则BA =().答案:题目3:设A为矩阵,B为矩阵,且乘积矩阵有意义,则为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目4:设,为单位矩阵,则()答案:题目4:设,为单位矩阵,则(A - I )T =().答案:题目4:,为单位矩阵,则A T–I =().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目6:下列关于矩阵的结论正确的是().答案:对角矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:数量矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:若为可逆矩阵,且,则题目7:设,,则().答案:0题目7:设,,则().答案:0题目7:设,,则().答案:-2, 4题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目12:矩阵的秩是().答案:2题目12:矩阵的秩是().答案:3题目12:矩阵的秩是().答案:3题目13:设矩阵,则当()时,最小.答案:2题目13:设矩阵,则当()时,最小.答案:-2题目13:设矩阵,则当()时,最小.答案:-12题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.选择一项:A.B.C.D.答案:题目15:设线性方程组有非0解,则().答案:-1题目15:设线性方程组有非0解,则().答案:1题目15:设线性方程组有非0解,则().答案:-1题目16:设线性方程组,且,则当且仅当()时,方程组有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组没有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组有无穷多解.答案:题目17:线性方程组有无穷多解的充分必要条件是().答案:题目17线性方程组有唯一解的充分必要条件是().:答案:题目17:线性方程组无解,则().答案:题目18:设线性方程组,则方程组有解的充分必要条件是().答案:题目18:设线性方程组,则方程组有解的充分必要条件是().答案:题目18:设线性方程组,则方程组有解的充分必要条件是()答案:题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组无解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有无穷多解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有唯一解.答案:题目20:若线性方程组只有零解,则线性方程组()答案:解不能确定题目20:若线性方程组有唯一解,则线性方程组().答案:只有零解题目20:若线性方程组有无穷多解,则线性方程组().答案:有无穷多解形考任务四一、计算题(每题6分,共60分)1.解:综上所述,2.解:方程两边关于求导:′′,3.解:原式=。

2019年电大经济数学基础12期末考试题库及答案

2019年电大经济数学基础12期末考试题库及答案

2019年电大经济数学基础12期末考试题库及答案一、单项选择题1.下列函数中为偶函数的是( ).(A) sin y x x = (B) 2y x x =+(C) 22x x y -=- (D) cos y x x =正确答案:A2.下列函数中为奇函数的是( ).(A) sin y x x = (B) 1ln 1x y x -=+ (C) e e x x y -=+ (D) 2y x x =-正确答案:B3.下列各函数对中,( )中的两个函数相等.A.2(),()f x g x x ==B. 21(),()11x f x g x x x -==+- C. 2()ln ,()2ln f x x g x x ==D. 22()sin cos ,()1f x x x g x =+= 正确答案:D4.下列结论中正确的是( ).(A) 周期函数都是有界函数(B) 基本初等函数都是单调函数(C) 奇函数的图形关于坐标原点对称(D) 偶函数的图形关于坐标原点对称正确答案:C5.下列极限存在的是( ).A .22lim 1x x x →∞- B .01lim 21x x →- C .lim sin x x →∞ D .10lim e x x → 正确答案:A6.已知()1sin x f x x=-,当( )时,)(x f 为无穷小量. A. 0x → B. 1x → C. x →-∞ D. x →+∞ 正确答案:A7.当x →+∞时,下列变量为无穷小量的是( )A .ln(1)x +B .21x x +C .1e x - D .x x sin 正确答案: D8.函数0(),0x f x k x ≠=⎪=⎩ 在x = 0处连续,则k = ( ).A .-2B .-1C .1D .2正确答案:B9.曲线sin y x =在点)0,π(处的切线斜率是( ).(A) 1 (B) 2 (C) 21(D) 1-正确答案:D10.曲线y =0, 1)处的切线斜率为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《经济数学基础(综合)》作业1 参考答案
第一篇 微分学
一、单项选择题
1. 下列等式中成立的是(D).
A . e x x x =+

→2)11(lim B .e x
x x =+∞→)2
1(lim
C .e x x x =+

→)211(lim D . e x
x x =++∞→2)1
1(lim
2. 下列各函数对中,( B )中的两个函数相等.
A .2)(,)(x x g x x f =
= B .x x g x x f ln 5)(,ln )(5==
C .x x g x x f ln )(,)(==
D .2)(,2
4
)(2-=+-=
x x g x x x f 3. 下列各式中,( D )的极限值为1 .
A .x x x 1sin
lim 0
→ B .x x x sin lim ∞→ C .x x x sin lim 2
π→
D . x x x 1
sin lim ∞→
4. 函数的定义域是5arcsin 9
x 1
y 2x
+-=
( B ).
A .[]5,5-
B .[)(]5,33,5U --
C .()()+∞-∞-,33,U
D .[]5,3-
5. ()==⎪⎩⎪
⎨⎧=≠=a ,0x 0x
a 0 x 3x tan )(则处连续在点x x f ( B )
. A .
3
1
B . 3
C . 1
D . 0 6. 设某产品的需求量Q 与价格P 的函数关系为则边际收益函数为,2
p -3e Q =( C ).
A .2p -e 2
3- B .23p Pe - C .2)233(p e P -- D .2)33(p
e P -+
7. 函数2
4
)(2--=x x x f 在x = 2点( B ).
A. 有定义
B. 有极限
C. 没有极限
D. 既无定义又无极限 8. 若x x f 2cos )(=,则='')2

f ( C ).
A .0
B .1
C . 4
D .-4 9. 曲线x x y -=3
在点(1,0)处的切线是( A ).
A . 22-=x y
B . 22+-=x y
C . 22+=x y
D . 22--=x y
10. 设某产品的需求量q 与价格p 的函数关系为bp -a q =)为常数0b (a, >,则需求量Q 对价格
的弹性是( D ). A. b - B.
b -a b - C. %b
-a b
- D.
bp -a bp 11. 已知函数⎩⎨⎧>≤=0
x e x x -1x f x -0
)(,则f(x)在点0x =处( C ).
A . 间断
B . 导数不存在
C . 导数()1-=0f '
D . 导数()1=0f '
12. 若函数)1()1(-=-x x x f ,则=)(x f ( B ).
A . )1(-x x
B . x (x+1)
C . )1)(1(+-x x
D . 2
)1(-x 13. 设函数()()
=--+→h
h x f h x f x f 22lim
,x )(000
h 0则可导在( D ).
A .
()0x f 41 B .()0'x f 2
1
C .()0'x f
D .()0'x 4f 14. 设函数,x
lnx
y =
则下列结论正确的是( A ). A .在(0,e)内单调增加 B .在(0,e)内单调减少 C .在(1,+∞)内单调增加 D .在(e,+∞)内单调增加 15. 设方程=-==1
12x '3
y
, x y y xy 则的函数是确定 ( D )
A . 0
B . 2
C . 1
D . -1
二、填空题
1. 函数x
x x f --
+=21)5ln()(的定义域是)2,5(-.
2. 已知某产品的成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品的平均成本为
3.6 .
3. 函数⎪⎩⎪
⎨⎧+=2
)
1ln(x
ax f(x) 00=≠x x 在0=x 处连续,则常数a 的值为2a =. 4. 抛物线)0(22
>=p px y ,在点M ),2
(p p 的切线方程是
2p x y +=. 5. 设函数)sin(ln 3
x y =,则
=dx dy )cos(ln 3
3x x
.
6. 已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数 R (q ) = 45q – 0.25q 2.
7. 设)1ln()(x x x f +-=有极值,则其极值是极小值0.
8. 设)0(1)1(2
>++=x x x x
f ,则f (x )= x x 112++.
9. 设x x
y ln =,则==1
22x dx y d -3 .
10. =-→1
x 1)-sin(x lim
1
x 2.
三、解答题
1. 求下列极限:
⑴ )4421(lim 22---→x x x ⑵ 1)211(lim +∞→-x x x ⑶ 625)
32)(1()13()21(lim --++-∞→x x x x x x 解:⑴ 原极限=)44)2)(2(2(
lim 22
--+-+→x x x x x =)2)(2(2lim 2-+-→x x x x =4
1
)2(1lim
2=+→x x ⑵ 原极限=)211(lim )211(lim x
x x x x --∞→∞→=1e 2
1
⨯-=21
e -
⑶ 原极限=2
3)32)(11()1
13()21(lim
6
25-=--++-∞→x
x x x x x
2. 求下列函数的导数y ':
⑴ y x
x x
--
=1cos 2 ⑵ y =32ln 1x + ⑶ )cos (sin e x x y x
-= 解:⑴ y '(x ) =2)1(cos )1(sin )1(2ln 2x x x x x
------
=2
)
1(sin )1(cos 2ln 2x x x x x
---- ⑵ )ln 1()ln 1(31232
2'++='-x x y =x x x ln 2)ln 1(3132
2-+=
x x x
ln )ln 1(3232
2-+ ⑶ )cos (sin )cos (sin )(])cos (sin e ['-+-'='-='x x e x x e x x y x
x x
x e x x e x x e x x x sin 2)sin (cos )cos (sin =++-=。

相关文档
最新文档