失效分析案例
失效分析案例课件
图10 裂纹源扫描电镜照片ppt精选版
14
2.3 结果分析
• 塔架用钢的材料组织状态正常, 母材常温拉伸与低温冲击试验结果 表明, 材料的塑性储备良好, 在-40℃以上没有出现冷脆开裂的现象 及风险。
• 根据宏观分析和微观分析找到了塔架焊缝开裂的裂纹源——近表面 的、深约2mm的焊接缺陷。
8
2.2 断口形貌
1.宏观形貌分析
图4 塔筒内部裂纹宏观形貌照片
失效风电塔架的塔筒内部裂纹宏观形貌: 裂纹的早期扩展阶段,裂纹扩展平稳,属于慢应变速率条件下的宏观
脆性断裂。(图4上) 裂纹扩展的末期(即裂纹末端),裂纹起伏台阶特征明显,表明裂纹
扩展进入复杂应力区,p但pt精尚选未版 进入失稳快速扩展阶段。(图4下)9
断口的近表面层发现存在40-50μm深 的全屈服变形层变形层与基体交 界面部分出现平直细小的类似解 理裂纹。
图7 裂纹微观形貌照片 ppt精选版
12
2.微观形扫描电镜照片
(2)断口的扫描电镜分析
失效主裂纹在焊缝的一侧(图 8), 金相裂纹两边存在一个约4050μm的变形组织, 变形层下有显微 开裂, 这些开裂与多次反复挤压变形 有关。
风电塔架的失效分析
ppt精选版
1
失效分析思路
• 调查收集背景资料 • 试样检验分析: 材料的化学成分,金相组织,力学性能等 • 深入分析: 断口的宏观及微观形貌分析,无损探伤检查等 • 综合分析归纳,确定失效原因 • 结论 • 改进措施
ppt精选版
2
目录
1
概况
2
失效分析
3
改进措施
ppt精选版
Contents
1.宏观形貌分析
金属材料失效分析案例PPT
04
案例四:金属材料脆性断裂 失效
失效现象描述
金属材料在无明显塑性变形的情况下 突然断裂,断口平齐,呈脆性断裂特 征。
断裂发生时,材料内部存在大量微裂 纹和空洞。
断裂前材料未出现明显的塑性变形, 无明显屈服现象。
失效原因分析
材料内部存在缺陷,如微裂纹、夹杂物等,降低 了材料的韧性。
金属材料在加工过程中受到较大的应力集中,如 切割、打孔等操作,导致材料内部产生微裂纹。
失效机理探讨
电化学腐蚀
金属材料与腐蚀介质发生 电化学反应,导致表面氧 化或溶解。
应力腐蚀
金属材料在应力和腐蚀介 质的共同作用下发生脆性 断裂。
疲劳腐蚀
金属材料在交变应力和腐 蚀介质的共同作用下发生 疲劳断裂。
03
案例三:金属材料热疲劳失 效
失效现象描述
金属材料表面出现裂 纹
疲劳断裂,即在交变 应力的作用下发生的 断裂
02
疲劳断裂通常发生在应力集中的 部位,如缺口、裂纹或表面损伤 处。
失效原因分析
金属材料在循环应力作用下,微观结 构中产生微裂纹并逐渐扩展,最终导 致断裂。
应力集中、材料内部缺陷或表面损伤 等因素可加速疲劳裂纹的萌生和扩展 。
失效机理探讨
金属疲劳断裂是一个复杂的过程,涉及微观结构、应力分布、材料缺陷等多个因素。
应力腐蚀开裂
在腐蚀介质和应力的共同作用下,焊接接头 处发生应力腐蚀开裂,裂纹扩展导致断裂。
感谢您的观看
THANKS
金属材料在低温环境下工作,材料的韧性下降, 容易发生脆性断裂。
失效机理探讨
金属材料的脆性断裂通常是由 于材料内部存在缺陷或应力集 中导致的微裂纹扩展。
在低温环境下,金属材料的韧 性下降,容易发生脆性断裂。
失效案例分析
30
15
b.氢致开裂(HIC)
在钢的内部发生氢鼓 泡区域,当氢的压力 继续增高时,小的鼓 泡裂纹趋向于相互连 接,形成有阶梯特征 的氢致开裂。氢致开 裂发生不需要外加应 力(载荷应力、残余 应力),故从概念讲 不属于应力腐蚀破坏 范畴。
31
32
16
33
c.硫化物应力腐蚀开裂(SSCC)
• 硫化氢在液相水中,由于电化学的作用,在阴极反应时生成氢 原子渗透到钢的内部,溶解于晶格中,导致脆性增加(氢原子 渗透到钢的内部晶格,在亲和力的作用下生成氢分子,钢材晶 格发生变形,材料韧性下降,脆性增加),在外加拉应力或残 余应力的作用下形成开裂。
2、焊接裂纹有不同的特性,要根据不同的裂纹产生机理 及形式选择检测的时机与方法,提高检验的有效性。
• 延迟裂纹 • 液化裂纹
3、对于易产生焊接裂纹的钢种,一旦发现裂纹,应扩大 检验比例。
11
案例1:反应流出物换热器管箱入口不锈钢法兰开裂
某石化炼油厂,2010年大修检验发现,反应流出物换热器管箱入口 不锈钢法兰开裂。 主要原因:
P≤0.008%、Mn≤1.30%,且应进行抗HIC性能试验或恒 负荷拉伸试验。
40
20
在湿硫化氢应力腐蚀环境中使用的其它材料制设备和管 道应符合下列要求:
铬钼钢制设备和管道热处理后母材和焊接接头的硬度应不 大于HB225(1Cr-0.5Mo、1.25Cr-0.5Mo)、HB235 (2.25Cr-1Mo、5Cr-1Mo)或HB248(9Cr-1Mo);
27
湿硫化氢环境分类(NACE 8X196) 一类:不选用抗HIC钢,可不做热处理 二类:可选抗HIC钢,要进行热处理 三类:选用抗HIC钢,要进行热处理
失效分析案例
5 金相分析
• 材质为3Cr13轴类零件推荐热处理工艺[1,2]为1000~1050℃ 淬火,640~670℃回火,调质后组织为保留马氏体位向的 回火索氏体
1#位置放大倍数为100、200和400是的金相
2#位置不同放大倍数时的金相
3#位置不同放大倍数时的金相
金相3#试样的金相组织为马 氏体+沿奥氏体相析出的网状碳化物;1#、2#、 3#试样中可以明显看到沿奥氏体相析出的网状碳 化物,可能是淬火处理时加热温度过高或保温时 间过长引起碳化物沿晶界析出和组织晶粒粗大, 会降低材料的力学性能;1#、2#、3#试样中可以 看到马氏体,与保留马氏体位向的回火索氏体不 符,推断泵轴调质处理时回火温度偏低,该泵轴 的热处理工艺可能存在问题。
改进建议
• 1)泵轴断裂处为轴径突变的轴肩处,在满足安装 工艺的条件下可适当增大此处的过渡圆角半径, 并注意提高加工表面质量; • 2)对离心泵轴进行无损检测,查看材质内部是否 存在缺陷,防止因内部缺陷引起应力集中; • 3)控制泵轴淬火时的加热温度和保温时间,使泵 轴经调质处理后的显微组织为马氏体位向的回火 索氏体,不允许有碳化物沿晶界网状的形态出现 。
Al 61.45 51.30 18.14 43.63 -
Si 0.86 0.95 3.14 1.65 ≤1.00
Cr 1.95 4.29 9.95 5.40 12.00~1 4.00
Ni 0.55 0.18 ≤0.60
泵轴微裂纹材质中Al和O含量严重偏高,分别为43.63% 和15.60%,化学成不符合GB/T1220-2007《不锈钢棒》 标准中对3Cr13成分的规定。推断裂纹内部物质为氧化 铝,在泵轴断口附近材质内部可能存在裂纹缺陷,这可 能是导致泵轴断裂的主要原因。
失效分析之经典案例
电子元器件失效分析技术与失效分析经典案例案例1 器件内部缺陷——导致整机批次性失效失效信息:整机是磁盘驱动器,制造过程整机的次品率正常为300ppm,某时起发现次品率波动,次品原因是霍尔器件极间漏电、短路。
图1 引出电极金属化(金)边缘脱落跨接图片析说明:引出电极金属化边两电极之间,在电压作用下漏电、击穿。
案例电极边缘脱落,跨接两电极引起电极之间漏电短路分缘有残边,残边在注塑时被冲开而跨接于这是器件的工艺缺陷,这种缺陷具有批次性的特征,该批器件在使用过程中失效率大,寿命短。
2:静电放电损伤失效图2 射频器件静电击穿照片(金相)图3 数字IC静电击穿照片SEM)分析说明:静电放电击穿典型的特征是能量小、线径小,飞狐、喷射。
主要发生在射频、能量释放时间短,其失效特征是击穿点微波器件,场效应器件、光电器件也常有静电放电击穿的案例。
案例3:外部引入异常电压引起通讯IC 输失效信息:分析说明:通讯芯片通讯端口上的传输线容易引入干扰电压(窄脉冲浪涌),干扰电压多次对通讯案例电流能力下降引起整机失效率异常增大某时起整机的市场维修率异常增大,维修增大是整机中的IGBT 功率器件失效引起的。
另外集成电路、出驱动失效通讯芯片在现场使用时发生失效,表现为通讯端口对地短路。
图4 通讯IC 输出管形貌(SEM )图5 输出管电压击穿形貌(SEM )IC 的通讯端内部电路起损伤作用,最终形成击穿通道。
4:功率器件失效信息:图6 IGBT 芯片呈现过电流失效特征图7 原来IGBT 的内部结构析说明:效样品表现为过电流失效。
整机维修率异常增大发生时更改IGBT 的型号。
IBGT 制造厂家给出新330W ,原来型号的IGBT 的功率指标为,其它指标没有变化。
两只芯片,多了一只反向释放二极管,两个型号的IGBT 芯片的面积一样大,显然,下降,因此,新型号的IGBT 的电流能分失型号的IGBT 的功率指标比为175W 但新型号的IGBT 内部结构(图6)仅有一只芯片,而原来型号的IGBT 有新型号的IGBT 的芯片要有部分面积来完成反向释放二极管的作用,由于IGBT 芯片有效面积的减小,导致其电流能力力不如原来型号的IGBT ,整机中IGBT 的工作电流比较临界,因此,使用过程中由于电流问题的发生大量失效。
失效分析案例讲解
原始资料收集及失效件初步检查
枪管加工工艺 枪管材料:30CrNi2WVA 军工钢(GJB) 长:111 mm 内径:9mm 壁厚:115 mm (内壁镀铬,有6条膛线) 原材料由φ42 mm的棒材通过锻造改拔成φ28 mm 的棒材,然后经以下工艺流程制成枪管成品: 下料→调质→深孔钻→电解抛光→挤丝→去应力→ 机加工→热处理→校直→机加工→酸洗(去除氧化膜) → 镀铬→打高压弹→磁粉探伤→检验→入成品库
失效机理分析及模拟验证 模拟验证试验
取20根与断裂枪管同状态的枪管进行校直模拟试验,对 枪管施加约1 t的压力使其变形,然后进行校直(以上工艺与 实际校直工序相同),校直后进行磁粉探伤,没有发现裂纹,因 此断裂不是由于校直裂纹扩展引起的。 探伤后,所有样品放在酸洗液(去除氧化膜酸溶液)中浸 30 min,取出后清洗并放置24 h,然后再次进行探伤, 5根枪 管出现了裂纹,长度在0.5-1cm之间,裂纹源在校直压点截面 的两侧,两侧均有裂纹产生。 对裂纹枪管进行高压试验,枪管马上断裂,其断口的宏观、 微观形貌与失效件基本一致,说明裂纹是由应力腐蚀引起的。
断口分析 断口宏观分析
宏观断口观察发现裂纹源在枪管内表面阴、阳线的交 界线上,裂纹扩展部分有明显的放射条纹,裂纹以裂源为中 心呈弧形向外扩展,最终断裂部位有明显的剪切唇。 用显微镜观察裂纹,发现裂纹源部分有约0.02 mm深 的渗铬层(图5白色部位),明显大于整体渗铬层深度(0.01 mm),说明枪管在内膛镀铬前已经产生了裂纹。
失效件初步检查
断裂枪管的裂纹都出现在管中部(图1),即进行校直时 的压点处。裂纹源在枪管内壁阴线与阳线的交界线上,成曲 线向外扩展,裂纹长度在410cm左右。根据断口的宏观形貌 (图2),可发现断口为脆性断口,裂源区、扩展区和瞬断区分 明。
最新失效分析经典案例分享
最新失效分析经典案例分享案例一:某知名手机品牌电池爆炸事件某知名手机品牌近期发生了一起电池爆炸事件,导致用户受伤。
经过详细的失效分析,发现电池在高温环境下,由于内部结构设计不合理,导致电池内部短路,进而引发爆炸。
这一案例提醒我们,在产品设计和生产过程中,必须高度重视电池的安全性,严格把控电池的质量和性能。
案例二:某电动车品牌刹车失灵事件某电动车品牌近期发生了一起刹车失灵事件,导致用户在行驶过程中无法及时停车,造成交通事故。
经过失效分析,发现刹车系统中的传感器存在设计缺陷,导致刹车信号无法正常传输。
这一案例警示我们,在产品设计和生产过程中,必须关注关键部件的可靠性,确保产品的安全性。
案例三:某智能门锁品牌指纹识别失效事件某智能门锁品牌近期发生了一起指纹识别失效事件,导致用户无法正常使用门锁。
经过失效分析,发现指纹识别模块中的芯片存在质量问题,导致识别准确率下降。
这一案例提醒我们,在产品设计和生产过程中,必须关注关键零部件的质量,确保产品的稳定性和可靠性。
最新失效分析经典案例分享案例四:某品牌空调制冷效果不佳事件某品牌空调近期被用户投诉制冷效果不佳,经过详细的失效分析,发现空调制冷系统中的冷凝器存在制造缺陷,导致制冷剂泄漏,影响了空调的制冷效果。
这一案例提醒我们,在产品设计和生产过程中,必须重视冷凝器等关键部件的质量,确保空调的制冷效果。
案例五:某品牌笔记本电脑触摸屏失灵事件某品牌笔记本电脑近期发生了一起触摸屏失灵事件,导致用户无法正常使用触摸屏功能。
经过失效分析,发现触摸屏的传感器存在设计缺陷,导致触摸信号无法正常传输。
这一案例警示我们,在产品设计和生产过程中,必须关注触摸屏等关键部件的可靠性,确保产品的使用体验。
案例六:某品牌洗衣机漏水事件某品牌洗衣机近期发生了一起漏水事件,导致用户家中地面受损。
经过失效分析,发现洗衣机的排水系统存在设计缺陷,导致排水不畅,进而引发漏水。
这一案例提醒我们,在产品设计和生产过程中,必须关注排水系统等关键部件的设计,确保产品的使用安全。
失效分析实例
材料失效分析
材料失效分析
2、实验过程
• 图7 .58是两个断口表面的低倍放大照 片,图7. 59 和这两个端口表面的位 置和方向。在照片中分辨出两个明显 的区域:外表面,即承受载荷时的最 大纤维应力区,没有发生尺寸改变的 迹象,而在中心区域则看到一些尺寸 改变。此外在表面上有一些明显的塑 性变形,应该是发生最后断裂的地点。 • 将钳柄上的塑料套剥掉以曝露钳柄的 区域。钳的前部镀铬,直至塑料套的 边缘。钳柄的表面上有一层乌黑的物 质,该钳必定是要装塑料套后再进行 电镀的。表面上的乌黑层或是塑料套 留下的,或是一种热处理造成的。 • 目视检查后,分三步进行分析以决定 失效的原因。首先评价对改签剪线操 作的设计应力水平,之后对所用材料 及热处理工艺进行金相检验,最后利 用扫SEM对断口进行仔细的检验
材料失效分析
3、实验结果
• 断口形貌
低倍放大的断口形貌如图7.28所示,没有宏观塑性变形的迹 象。裂纹从左边缘向内扩展通过厚度1/4左右,断裂表面粗糙无 规律,而其余的断口表面是光滑的,在光滑的表面上可以看到贝 壳状花纹,故断裂模式是疲劳。粗糙的断口表面显示出这是最后 因超载而分离的区域并向前扩展到一个孔的边缘,表明疲劳裂纹 不是起源于此孔的边缘,而是沿着右边缘的。这一点在观察断口 表面时也就是在切开试样之后得到证实。贝壳状条纹的弯曲部分 表明疲劳裂纹直接起源于另一螺栓孔的下面(图7 .29),与围绕 该螺栓孔的同心圆槽重合 • 在接近末端处偏离开其中之一螺棒孔的断口表面已严重研 磨(但仍能看到有贝壳状花纹)(图7. 28)而另一端则很少的 磨损伤,并发现有疲劳条纹(图7.31)(疲劳条纹在显微组织复 杂的钢中不常出现。本案例中的显微组织主要是晶粒尺寸均匀的 单相铁素体。)试块切开后产生的断口表面如图7 .32所示,且 有韧窝状的形貌,表面这个区域是因空洞聚集而产生的 •
新华制药内部控制失效案例分析
欣康祺医药被济南市公安局立案侦查,欣康祺医药等 5 家企业欠新华制药子企业 货款6,073.1万元也很有可能就此打了水漂
分析欣康祺医药相关资料发觉,欣康祺医药长久以来一直把医药业做成金融业,其主要盈利 模式是从上游赊购拿货再以低 3%~5%价格现销给下游,同时将赚取现金投入期货市场以获取 收益,这种赢利方式含有很大风险性,也是其最终资金链断裂根本原因。
14/17
3
思索与提议
新华制药内部控制失效案例分析
15/17
三、思索与提议
在企业建立自上而 下稳健企业文化, 尽可能防止因为对 风险疏忽所造成损 失,提升企业控制 风险能力。要未雨 绸缪,重视事先风 险分析。
新华制药内部控制失效案例分析
全过程应收 账款管理应该包 含事前管理、事 中管理和事后管 理。
新华制药内部控制失效案例分析
10/17
二、内部控制缺点分析
欣康祺医药一直是新华 制药大客户, 年为新华 制药第一大客户
截至 年6 月 30 日,新华制 药应收票据中,欣康祺是金 额较大前五名往来客户,包 括金额 300 万元,到期日为 10月21日
新华制药内部控制失效案例分析
新华制药对欣康祺医药及 为其担保淄博华邦医药销 售有限企业应收账款占总 应收账款百分比高达 15.88%。
新华制药 年对欣康祺营 业收入为 1.1039 亿元, 占新华制药全部营业收 入4.22%
11/17
二、内部控制缺点分析
济南市公安局于 12 月 30 日对欣康祺涉嫌非法吸收公众存款案立案侦查,涉案 金额高达 10 亿元。
自 年 8 月以来,欣康祺总经理徐新国等人以该企业名义,以与银行合作开立银 行承兑汇票需要确保金为由,以2.5%~4%月息为诱饵,非法吸收公众资金近 10 亿元。
失效分析案例
失效分析案例1:电浪涌导致器件失效
某产品在用户现场频频出现损坏,经过对返修单板进行分析,发现大部分返修单板均是某接口器件失效,对器件进行解剖后,在金相显微镜下观察,发现器件是由于EOS导致内部铝线融化,导致器件失效,该EOS能量较大。
进一步分析和该铝条相连的管脚电路应用,发现电路设计应用不当,没有采用保护电路,在用户现场带电插拔产生的电浪涌导致该器件失效。
通过模拟试验再现了失效现象。
解决方法:在用户手册中强调该产品不支持带电插拔。
预防措施:在今后的设计中,考虑用户的使用习惯,增加防护电路设计,对产品进行热插拔设计。
案例1
案例2:MSD控制不当导致产品在用户现场大量失效
某产品在用户现场使用半年以后,返修率惊人,达到30%,对产品进行分析,对主要失效器件进行失效分析,在扫描电镜下发现金属丝疲劳断裂导致器件失效。
进一步的原因分析,发现是该产品的生产加工控制出现了问题,对潮湿敏感器件的管理没有按照J-STD-033A 标准进行,导致受潮器件没有按照规定时间进行高温烘烤,在过回流焊时出现“爆米花”效应,对器件造成了损伤,降低了可靠性,导致在用户现场器件失效。
解决措施:对用户现场的所有有问题的批次产品进行召回。
预防措施:在生产加工过程中严格进行MSD的管理和控制。
案例2
案例3:电迁移
某产品在用户现场使用3年以后,返修率开始出现明显异常,进行失效分析发现,主要是某功率器件内部电迁移引起。
该问题属于器件厂家的设计和制造缺陷。
解决措施:和厂家联系,确定有问题的批次,更换有问题批次的器件。
预防措施:对器件可靠性认证体系重新进行设计,减少厂家批次性问题的发生。
案例3。
电子元器件失效分析具体案列
图 1 Pin17 已熔断内引线
图 2 Pin17 已熔断内引线
中国赛宝实验室可靠性研究分析中心
图 3 击穿点及引线损坏形貌
图 4 过电形貌
图 5 内部电路过电形貌
图 6 内部电路击穿点形貌
图 7 内部电路击穿点形貌
图 8 内部电路击穿点形貌
中国赛宝实验室可靠性研究分析中心
案例三:
1 产品名称及型号:通信 IC PMB6850E V2.10
作均正常;
3)内部水汽含量测试:应委托方要求,8#与 12#样品进行内部水汽含量测试,结果符合
要求;
中国赛宝实验室可靠性研究分析中心
4)端口 I-V 特性测试:使用静电放电测试系统剩下的样品进行 I-V 端口扫描测试,发现: 4#样品的 Pin3、Pin4、Pin5、Pin7 对地呈现明显的电阻特性,使用图示仪测试后测得 Pin3 对地呈现约 660Ω阻值、Pin4 与 Pin5 对地呈现约 300Ω阻值、Pin7 对地呈现约 140
___
Ω阻值,且在 1#与 4#样品的 Pin31( EA /Vpp)发现特性曲线异常,但并非每次都能 出现;其他样品的管脚未发现明显异常; 5)开封和内部分析:对 1#~5#样品进行开封,内目检时发现: 芯片的铝键合丝与键合台以外相邻的金属化层(有钝化层覆盖)存在跨接现象。在拉 断铝丝后,可见到铝丝通过超声键合已粘接在相邻的地连线或膜电阻上,并粘附着铝丝被 粘连的铝屑见图 2~图 4。拉断铝丝后均能观察到键合台邻近的工作金属线或膜电阻上存在 铝丝残存的碎屑,说明铝丝存在键合跨接。 统计发现,在 3#与 4#样品中,每只样品的 40 个键合台均有 27 个存在铝丝键合 与其相连的工作金属化铝连线(地线或膜电阻)跨接粘连的问题。
失效分析案例
案例3 3Cr2W8V钢热锻模具淬火开裂原因分析 1 背景 2 检验内容及结果
2 1 原材料化学成分 2 2 硬度测定 2 3 断口形貌
(1)宏观检查 (2)断口微观检查 2. 4 显微组织分析 3 讨论 4 结论
1、背景 某厂选用3Cr2W8V钢制造热锻模具用于锻造 25钢的齿状零件,模具加工成型后外部尺寸为500mm ×250mm×115mm,模具质量为110kg。在同一模具上
开出预锻和终锻两个型腔,加工时发现模具毛坯锻件硬 度偏高,采用HR150型洛氏硬度计测试硬度为30HRC。 为便于加工,该厂将模具进行了一次降低硬度退火,但温度 和时间已无纪录。加工后的模具由本厂进行热处理,淬火 加热炉采用箱式电阻炉。为防止氧化,在模具周围填充旧 渗碳剂加以保护。模具淬火时先采用500℃、850℃两次 预热,后经1050℃×4h保温,冷却介质选用N15号机油。 淬火过程中听到模具开裂声音,随即停止冷却,并放在 630℃回火炉中回火,回火时裂纹继续扩展使模具成为多个 碎块。由于发现模具开裂, 中止继续回火。
图6的金相组织表明,奥氏体晶粒粗大,马氏体粗大,属于明 显的过热现象。但模具表层细瓷状断口(图2、3)和细小晶 粒(图5),属于正常的淬火组织。分析认为:厂方在加工模具 时,发现锻件的硬度偏高,曾经进行一次降低硬度退火,但退 火保温时间不够,仅使表层重结晶细化,因此出现了表层的 细晶粒和细瓷状断口。
2 3 断口形貌
(1)宏观检查 模具横向多处断裂,裂纹特征有直裂纹、弯 折裂纹和圆弧裂纹,
在模具碎块的横断面表层可观察到有约30mm细瓷状 断口,见图2。断口内部有山脊状扩展形貌,放射线中心朝 向模具心部,表明裂纹源形成于模具心部。心部为粗晶状 断口,有十分明显的金属光泽。上述特征可以判定该模具 的开裂是由心部脆性解理断裂引发的。
fmea失效分析案例
fmea失效分析案例在制造业中,FMEA(失效模式和影响分析)是一种常用的工具,用于识别和评估产品或过程中潜在的失效模式,以及这些失效模式可能对系统造成的影响。
通过对潜在风险的分析和评估,FMEA可以帮助制造企业制定有效的控制措施,从而提高产品质量和生产效率。
本文将通过一个实际案例来介绍FMEA的应用。
本案例涉及一家汽车零部件制造企业的生产线故障。
在生产过程中,某型号零部件的故障率明显高于预期,严重影响了产品质量和客户满意度。
为了解决这一问题,企业决定对该零部件的生产过程进行FMEA分析,以找出潜在的失效模式和影响,并制定相应的改进措施。
首先,我们对零部件的生产过程进行了详细的分析。
通过与生产人员和工程师的讨论,我们确定了可能影响零部件质量的关键工艺步骤,包括原材料采购、加工工艺、装配过程等。
然后,我们针对每个关键工艺步骤,识别了可能的失效模式,例如材料缺陷、加工误差、装配不良等。
接下来,我们评估了每种失效模式对零部件质量和性能可能造成的影响,包括安全性、可靠性、耐久性等方面的影响。
在FMEA分析的过程中,我们发现了一些关键的失效模式和影响。
例如,在原材料采购阶段,存在着供应商提供的材料质量不稳定的问题,这可能导致零部件的材料强度不达标;在加工工艺中,存在着加工误差的风险,可能导致零部件的尺寸偏差过大;在装配过程中,存在着装配工艺不当的问题,可能导致零部件的密封性不达标。
这些失效模式和影响的存在,直接导致了零部件的故障率偏高的问题。
针对上述问题,我们制定了一系列改进措施。
首先,与供应商进行沟通,要求其提供稳定的材料质量,并建立严格的质量控制体系;其次,优化加工工艺,加强对加工过程的监控和调整,以确保零部件的尺寸稳定性;最后,对装配工艺进行调整,加强对装配过程的培训和管理,以确保零部件的装配质量。
经过改进措施的实施,零部件的故障率得到了明显的降低,产品质量和客户满意度得到了显著的提升。
这个案例充分展示了FMEA在制造业中的重要作用,通过对潜在风险的分析和评估,制定有效的控制措施,可以显著提高产品质量和生产效率。
内部控制失效案例分析
内部控制失效案例分析内部控制是组织为实现经营目标而采取的一系列管理措施,用于确保资产安全、信息真实准确、业务规范运行和内外部规章制度的遵循。
然而,由于各种原因,内部控制可能会失效,导致各种问题的发生。
本文将从中美两国的案例进行分析,讨论内部控制失效的原因以及应对措施。
1.中兴通讯中兴通讯是一家中国的通信设备制造商,在2024年遭到美国政府的制裁,原因是该公司违反了与伊朗和朝鲜的贸易禁令。
这一事件暴露了中兴通讯的内部控制失效问题。
具体表现为:(1)管理层对合规风险的忽视:中兴通讯未能建立完善的合规管理体系,没有将合规风险纳入到企业经营的全局考虑中。
管理层对于违反贸易禁令的风险认识不足,导致未能及时采取有效的措施来确保企业合规。
(2)内部控制流程不完善:中兴通讯的内部控制流程存在缺陷,未能有效预防和发现违反贸易禁令的行为。
例如,在采购和供应链管理方面,中兴通讯未能建立起有效的控制措施,导致购买被禁止销售给伊朗和朝鲜的产品。
为了应对这一问题,中兴通讯在事件后进行了重组,并加强了内部合规管理。
公司成立了合规与审计委员会,负责监督合规事务,并在全球范围内建立了合规风险管理制度。
此外,公司还加强了对员工的培训,提高了员工对合规风险的认识。
2.美国能源公司美国能源公司(Enron Corporation)是美国一家经营能源市场的公司,于2001年破产,成为当时最大的企业破产事件之一(1)高管腐败行为:美国能源公司高管通过虚假会计手段,掩盖了公司的巨额负债和真实的经营状况。
他们利用特殊目的实体来掩盖公司的债务,并通过合法合规的方式将债务转移给其他实体,使公司的负债表看起来更健康。
(2)审计失效:美国能源公司的审计公司安达信(Arthur Andersen)在审计过程中未能有效发现公司的财务欺诈行为。
安达信未能独立审计公司的财务报表,以及公司关联方实体的财务状况,从而未能提供准确可靠的财务报告。
为了应对这一问题,美国政府通过了《萨班斯- 奥克斯利法案》(Sarbanes-Oxley Act),加强了公司治理和内部控制的要求。
失效模式分析案例
失效模式分析案例失效模式分析(FMEA)是一种系统性的方法,用于识别和评估产品或系统中可能出现的失效模式,以便采取预防措施。
在本文中,我们将通过一个实际案例来说明失效模式分析的应用。
案例背景:某汽车制造公司在生产过程中发现了一款新车型的发动机故障率较高,严重影响了产品质量和客户满意度。
为了解决这一问题,公司决定对发动机的失效模式进行分析,以便采取相应的改进措施。
失效模式分析步骤:1. 确定失效模式,首先,我们需要明确发动机可能出现的失效模式。
这包括发动机无法启动、功率下降、异常噪音等。
通过对历史故障数据和客户投诉进行分析,可以确定发动机的主要失效模式。
2. 评估失效影响,针对每种失效模式,我们需要评估其对产品性能、安全性和可靠性的影响程度。
比如,发动机无法启动可能导致车辆无法行驶,功率下降可能影响车辆加速性能等。
3. 确定失效原因,针对每种失效模式,我们需要进一步分析其可能的原因。
这可能涉及到设计缺陷、制造工艺问题、零部件质量等方面。
通过对失效原因的分析,可以帮助我们找到根本解决问题的方法。
4. 制定改进措施,最后,针对每种失效模式和其原因,我们需要制定相应的改进措施。
比如,针对发动机无法启动的失效模式,我们可以加强电路连接的稳定性;针对功率下降的失效模式,我们可以优化燃烧系统设计等。
案例结论:通过失效模式分析,我们发现发动机故障的主要原因是由于燃油系统设计不当导致的,公司针对这一问题进行了改进,包括优化燃油喷射系统和提高燃油滤清器的过滤效果等措施。
经过改进后,新车型的发动机故障率明显下降,客户满意度得到了提升。
结语:失效模式分析是一种非常有效的质量管理工具,能够帮助企业识别和解决产品或系统中存在的问题。
通过本案例的分析,我们可以看到失效模式分析在汽车制造行业中的应用,为产品质量的提升和客户满意度的改善起到了重要的作用。
希望本文的案例能够对读者有所启发,促使更多的企业重视失效模式分析的应用。
FMEA第五版教材中的潜在失效模式分析实战案例分享
FMEA第五版教材中的潜在失效模式分析实战案例分享近年来,潜在失效模式分析(Failure Mode and Effects Analysis,简称FMEA)在各行业中得到了广泛应用。
作为一种系统性、科学性的分析方法,FMEA帮助企业识别产品或流程中潜在的失效模式,并找出可能导致失效的原因,进而采取相应的措施进行风险管理。
本文将通过教材中的实战案例分享,来介绍FMEA第五版教材中关于潜在失效模式分析的具体应用。
案例一:汽车制造业中的传动轴失效模式分析在汽车制造业中,传动轴是汽车动力传输的重要组成部分。
在FMEA第五版教材中的案例中,以一家汽车制造企业为例,对传动轴进行了失效模式分析。
首先,团队成员收集了大量关于传动轴的信息,包括设计图纸、材料信息、工艺参数等。
然后,通过分析失效模式的可能性和后果,确定了传动轴的失效模式,如碎裂、断裂等。
接下来,团队进一步分析了失效原因,如材料质量、工艺参数等,并评估了每种失效原因对传动轴失效的影响程度。
最后,团队提出了相应的风险控制措施,如提高材料强度、优化工艺参数等,以预防或减少失效的发生。
案例二:医疗设备中的电路板失效模式分析在医疗设备制造领域中,电路板是设备正常运行的关键组成部分。
本案例中,以一家医疗设备制造企业为例,团队运用FMEA方法对电路板进行了失效模式分析。
团队首先收集了电路板的相关信息,包括设计规范、元器件参数、焊接工艺等。
然后,他们通过分析电路板失效的可能性和后果,确定了失效模式,如短路、开路等。
接下来,团队分析了失效的潜在原因,如元器件损坏、焊接接触不良等,并评估了每种原因对失效的影响程度。
最后,团队提出了相应的控制措施,比如加强元器件检测质量、优化焊接工艺等,以提高电路板的可靠性和稳定性。
通过以上两个案例的分享,我们可以看出FMEA方法在实践中的应用价值。
通过分析失效模式和潜在原因,企业可以及早发现隐藏的问题,采取相应的预防措施,以降低风险和提高产品或流程的质量。
失效分析经典案例--BGA焊接不良
DFR-01
一、样品描述
所送检的PCBA样品经电性能测试发现其BGA部位可能有焊接不良(怀疑虚焊)存在,现需分析该问题是该PCBA在SMT制程中造成或是PCB 的(即上锡不良)原因。
委托单位提供了一件PCBA样品与所用的3件PCB 样品。
二、分析过程
1、显微分析
将PCBA上的BGA部分切下,用环氧树脂镶嵌、刨磨、抛光、腐蚀制作BGA焊点的金相剖面或截面,然后用Nikon OPTIPHOT金相显微镜与LEICA MZ6立体显微镜进行观察分析,发现在第一排的第四焊点存在缺陷,锡球与焊盘间有明显的分离现象(图1),其他焊点未检查到类似情况。
图1 BGA焊点(第一排第4个)切片截面显微镜照片(1)
2、PCB焊盘的可焊性分析
图2 BGA焊点缺陷部位放大的显微镜照片(2)
图3 PCB上的BGA焊接部位的润湿不良的焊盘(1)
图4 PCB上的润湿不良的焊盘(2)3、PCB表面状态分析
4、SEM以及EDX分析
图6 不良焊点截面的外观SEM分析照片。
图7 SEM照片中A部位的化学(元素)组成分析结果
图8 SEM照片中B部位的化学(元素)组成分析结果
图9 图5中不良焊盘的表面的化学(元素)组成分析结果
5、焊锡膏的润湿性分析
三、结论
经过以上分析,可以得出这样的结论:
1、送PCBA样品的BGA部位的第一排第4焊点存在不良缺陷,锡球焊点与
焊盘间有明显开路。
2、造成开路的原因为:该PCB的焊盘润湿性(可焊性)不良,焊盘表
面存在不明有机物,该有机物绝缘且阻焊,使BGA焊料球无法与焊盘在焊接时形成金属化层。
失效分析典型案例--焊点质量
小结
引起元件脱落的可能原因 1、焊盘被污染 2、金层质量(污染、太厚/太薄及晶粒粗大) 3、镍层质量(镍腐蚀、P含量:7~11%) 4、IMC太厚/太薄(1~3μm) 5、富P层太厚
案例3.插件孔焊接后吹孔失效分析
NG样品和光板插件孔均发现明显孔破现象,此类现象的存在,在生产及 储存过程中容易储存湿气,在后期焊接中,孔破处存储的湿气在高温下 易膨胀而产生一定气压,往外将孔中灌入的焊锡吹出,形成“吹孔”; 光板孔壁还发现部分铜瘤位置存在铜层褶皱现象,其间隙易存储湿气, 且会降低铜层的连续性和厚度均匀性,大大降低铜层的抗拉伸性能,在 后续焊接高温下,由于板材Z轴方向的膨胀,这些铜层褶皱位置很容易 出现开裂形成孔破,进而诱发“吹孔”现象的产生。
u ASn A Sn A
u A Nui u A uNi u ANi u uNi A uMCu NAi u Nui A Nui u A uNi u ANiu uNi A u u NAi u Nui A Nu i u A u Niu A u u A u
u
u
u
u nI u
u
u
u
u
u
u
u
uNi Ni u
NAi u
小结
引起焊接不良的可能原因 1、焊盘被污染 2、焊盘氧化严重 3、锡层太薄
案例2.元件脱落失效分析
通过表面形貌观察,焊盘发现严重镍腐蚀,进一步通过切片观察发 现存在较多贯穿镍层镍腐蚀和IMC不连续的现象。
通过表面形貌观察光板金面良好,剥金后发现 镍面存在严重镍腐蚀,大量存在细密镍腐蚀。 从沉金后的外观仍然给人良好的假象。当这种 焊盘进行焊接时,作为可焊性保护层的金迅速 溶解到焊料中去,而被腐蚀氧化了的镍则不能 与熔融焊料形成良好的IMC层,导致可焊性及焊 点可靠性严重下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
失效分析案例
• 事实:轴因疲劳而过早断裂 • 问题:车轴在使用中发生故障的风险最高。增加
维修服务成本。 • 研究目标:选择两种加工工艺达到最大抗疲劳断
裂能力的替代方案。 • 诊断:表面残余应力测量试验不同轴点的X射线衍
射(图)其中一种有价值技术制造的车轴大于残 余拉应力,这是最有害的疲劳裂纹的开始和扩展。
图1
图2
图1:螺钉破裂后的状况。 图2:断裂表面显 示疲劳线和最终延性断裂。
失效分析案例
• 事实:表面带有水平划痕的轴(图1)。 • 问题:客户拒收零件。 • 研究目的:确定这些划痕是什么类型的缺陷,
以及他们是怎样发生的? • 诊断:微观结构分析显示车轴无硬化(图2)。
这是一个非常重要的问题(软表面),所以一 切都表明是供应商自己生产装配过程中造成的。 • 建议的解决方案:这些类型的轴在调质的状态, 或与其他处理一起表面硬化。
图1:表面带有划痕的轴 图2:有缺陷区域和无缺陷区域的横截面。
Thank Hale Waihona Puke ou!顺益体系 (集团 )
图:测试轴区域,指示试件的断裂点
失效分析案例
• 事实:阀门轴在使用中断裂(图1)
• 问题:存在制造缺陷和其他阀门 也会出现相同类型制造故障的风 险。
• 构研究目的:确定失败的原因。
• 诊断:分析在轴的微观结构中具 有颗粒结构(图2)。这种脆性似 乎源于调质和轴过热。可能由于 操作过程中温度过高和/或调质时 间过长。
图1
图2
图1:破裂轴的外观 图2:破裂显示材料的粗颗粒结
失效分析案例
• 事实:属于一个坏掉了的螺栓, (图1)
• 问题:这些故障是由于材料缺陷 或过载。
• 研究目的:明确螺钉是否疲劳断 裂,在生命周期结束时是正常的 缺陷或过载。
• 诊断:螺钉明显是机械疲劳断裂 (图2),由于周期性的工作而不 是应变或是在工作时超过额度负 载。在核实原材料缺陷的过程中, 事实可能与破坏有关。