失效分析案例
金属材料失效分析案例PPT
04
案例四:金属材料脆性断裂 失效
失效现象描述
金属材料在无明显塑性变形的情况下 突然断裂,断口平齐,呈脆性断裂特 征。
断裂发生时,材料内部存在大量微裂 纹和空洞。
断裂前材料未出现明显的塑性变形, 无明显屈服现象。
失效原因分析
材料内部存在缺陷,如微裂纹、夹杂物等,降低 了材料的韧性。
金属材料在加工过程中受到较大的应力集中,如 切割、打孔等操作,导致材料内部产生微裂纹。
失效机理探讨
电化学腐蚀
金属材料与腐蚀介质发生 电化学反应,导致表面氧 化或溶解。
应力腐蚀
金属材料在应力和腐蚀介 质的共同作用下发生脆性 断裂。
疲劳腐蚀
金属材料在交变应力和腐 蚀介质的共同作用下发生 疲劳断裂。
03
案例三:金属材料热疲劳失 效
失效现象描述
金属材料表面出现裂 纹
疲劳断裂,即在交变 应力的作用下发生的 断裂
02
疲劳断裂通常发生在应力集中的 部位,如缺口、裂纹或表面损伤 处。
失效原因分析
金属材料在循环应力作用下,微观结 构中产生微裂纹并逐渐扩展,最终导 致断裂。
应力集中、材料内部缺陷或表面损伤 等因素可加速疲劳裂纹的萌生和扩展 。
失效机理探讨
金属疲劳断裂是一个复杂的过程,涉及微观结构、应力分布、材料缺陷等多个因素。
应力腐蚀开裂
在腐蚀介质和应力的共同作用下,焊接接头 处发生应力腐蚀开裂,裂纹扩展导致断裂。
感谢您的观看
THANKS
金属材料在低温环境下工作,材料的韧性下降, 容易发生脆性断裂。
失效机理探讨
金属材料的脆性断裂通常是由 于材料内部存在缺陷或应力集 中导致的微裂纹扩展。
在低温环境下,金属材料的韧 性下降,容易发生脆性断裂。
fmea失效模式分析案例
fmea失效模式分析案例失效模式分析(Failure Mode and Effects Analysis,简称FMEA)是一种预防性的质量管理工具,旨在通过系统地识别、评估和预防产品或过程中潜在的失效模式,从而减少或消除这些失效对客户或后续过程的影响。
以下是一个FMEA案例的详细内容:在进行FMEA之前,首先需要组建一个跨部门的团队,包括设计、生产、质量控制和客户服务等部门的代表。
团队成员需要对产品或过程有深入的了解,并能够识别潜在的失效模式。
案例背景:假设我们正在分析一款新型智能手机的电池组件。
电池是智能手机的关键部件,其性能直接影响到用户的使用体验和安全。
因此,对电池组件进行FMEA至关重要。
步骤一:定义系统或过程首先,我们需要定义分析的范围。
对于智能手机电池组件,我们将分析从电池设计到最终装配的整个过程。
步骤二:列出所有潜在的失效模式团队成员需要列出所有可能的失效模式,例如电池过热、电池寿命短、电池充电速度慢等。
步骤三:确定失效模式的潜在原因对于每个失效模式,团队需要确定可能导致该失效的原因。
例如,电池过热可能是由于电池设计不当、材料选择错误或制造过程中的缺陷。
步骤四:评估失效模式的严重性使用1到10的评分系统,团队需要评估每个失效模式的严重性。
评分越高,表示失效对客户或后续过程的影响越大。
步骤五:确定失效模式的潜在后果团队需要确定每个失效模式可能导致的后果。
例如,电池过热可能导致设备损坏或用户受伤。
步骤六:评估当前控制措施的有效性团队需要评估现有的控制措施是否能够有效预防或检测到潜在的失效模式。
例如,是否有严格的质量控制流程来检测电池的过热问题。
步骤七:计算风险优先数(RPN)风险优先数是通过将严重性(S)、发生概率(O)和检测难度(D)的评分相乘得到的。
RPN越高,表示该失效模式的风险越大。
步骤八:制定改进措施对于高RPN值的失效模式,团队需要制定改进措施。
这些措施可能包括重新设计电池、改进制造工艺或加强质量控制。
失效案例分析
30
15
b.氢致开裂(HIC)
在钢的内部发生氢鼓 泡区域,当氢的压力 继续增高时,小的鼓 泡裂纹趋向于相互连 接,形成有阶梯特征 的氢致开裂。氢致开 裂发生不需要外加应 力(载荷应力、残余 应力),故从概念讲 不属于应力腐蚀破坏 范畴。
31
32
16
33
c.硫化物应力腐蚀开裂(SSCC)
• 硫化氢在液相水中,由于电化学的作用,在阴极反应时生成氢 原子渗透到钢的内部,溶解于晶格中,导致脆性增加(氢原子 渗透到钢的内部晶格,在亲和力的作用下生成氢分子,钢材晶 格发生变形,材料韧性下降,脆性增加),在外加拉应力或残 余应力的作用下形成开裂。
2、焊接裂纹有不同的特性,要根据不同的裂纹产生机理 及形式选择检测的时机与方法,提高检验的有效性。
• 延迟裂纹 • 液化裂纹
3、对于易产生焊接裂纹的钢种,一旦发现裂纹,应扩大 检验比例。
11
案例1:反应流出物换热器管箱入口不锈钢法兰开裂
某石化炼油厂,2010年大修检验发现,反应流出物换热器管箱入口 不锈钢法兰开裂。 主要原因:
P≤0.008%、Mn≤1.30%,且应进行抗HIC性能试验或恒 负荷拉伸试验。
40
20
在湿硫化氢应力腐蚀环境中使用的其它材料制设备和管 道应符合下列要求:
铬钼钢制设备和管道热处理后母材和焊接接头的硬度应不 大于HB225(1Cr-0.5Mo、1.25Cr-0.5Mo)、HB235 (2.25Cr-1Mo、5Cr-1Mo)或HB248(9Cr-1Mo);
27
湿硫化氢环境分类(NACE 8X196) 一类:不选用抗HIC钢,可不做热处理 二类:可选抗HIC钢,要进行热处理 三类:选用抗HIC钢,要进行热处理
失效分析典型案例分享--镍腐蚀
沉锡
沉银
无铅喷锡
(Immersion Tin) (Immersion silver) (Lead free HASL)
OSP
在电路板裸铜表面 在电路板裸铜表 在电路板裸铜表 在电路板裸铜表面 沉积形成一层平整 面经化学置换反 面经化学置换反 经热风整平形成一 而致密的有机覆盖 应形成一层洁白 应形成一层洁白 层较光亮而致密的 层,厚度约0.2而致密的锡镀层, 而致密的银镀层, 无铅覆盖锡合金层, 0.6um,既可保护 厚度约0.7-1.2um。 厚度约0.15-0.4um。 厚度约1-40um。 铜面,又可保证焊
表面易被污染而 影响焊接性能
表面易被污染,银 面容易变色,从而 影响焊接性能和外 观
表面处理温度高, 可能会影响板材和 阻焊油墨的性能
表面在保存环境差 的情况下易出现 OSP膜变色,焊接 不良等
电镍金后还经 过多道后工序, 表面处理后若 受到污染易产 生焊接不良
成本很高
完成沉锡表面处 理后如再受到高 温烘板或停放时 间较长,则可导 致沉锡层的减少
u
Pu
Pu
Pu
P uP
Pu P
uP
Pu P
u
u
Ni
Ni P
Ni
Ni
Ni
P
Ni
Ni
Ni P
Ni Ni
Ni P
Ni
Ni
Ni
P
Ni
富磷层
Ni
Ni P
Ni
Ni
Ni P
Ni
Ni
Ni
金属材料失效分析案例
3 分析
(1)断裂叶片的金相组织为正常的回火索氏体,材料化学成分 合格,主要性能指标也基本正常。
(2)叶片断裂部位在倒*形槽根部的横断面上,亦即在应力集 中部位,是裂纹源萌生地,断口具有典型的疲劳断裂特征, 裂纹扩展属穿晶走向。
精品文档
(3)叶片根部疲劳断裂与装配质量有关,高压转子叶片安 装时通常要求根部紧配合,但裂断的第+级叶片根部却是 松配合,遂导致叶片在运行过程中产生振动并传至根部, 根部与叶轮槽表面产生摩擦,从而使根部表层晶粒持续滑 移带极易萌生裂纹,即产生疲劳源,随后裂纹不断扩展, 最终造成根部疲劳断裂。
疲劳断裂。
精品文档
材料失效分析
班级:XXX 组员:XXX
精品文档
案例 漳平电厂1号机叶片断裂失效分析
1、背景
2 检查、试验
2.1宏观检查2Biblioteka 2 断口微观检查2.3化学成分
2.4硬度测试
2.5 冲击试验
2.6 金相检查
3 分析
4 结论
精品文档
1、背景 漳平电厂1号机系北京重型电机厂制造的冲动凝汽 式汽轮机,其高压转子第8级叶片材料为2Cr13。1998年4月 大修揭盖后发现该级叶片有一段围带残缺约10cm长,有一 个叶片在根部断裂丢失,部分围带铆钉头有弹起现象。修 复工作由电厂委托北京重型电机厂进行,其修复过程为: 拆除5段围带及43片叶片,更换断裂和受损的2个叶片及损 坏的2段围带,复装后叶片与围带采用焊接固定,并对2段 围带铆钉头弹起的部位进行打磨后焊补,修后机组恢复运 行。2000年5月7日,汽轮机出现异常响声,且振动不断加 剧,揭缸后发现高压转子第8级叶片丢落19个,部分围带脱 落,第9级叶片及8、9、10级部分隔板磨损变形。对照1998 年4月大修记录,发现此次丢落的19个叶片大部分为当时修 复处理过的叶片。由于此次叶片断裂事故对转子损伤较为 严重,故把整个转子送到制造厂修复。为了找出叶片断裂 的原因,我们开展了一系列精的品文失档 效分析工作。
失效分析之经典案例
电子元器件失效分析技术与失效分析经典案例案例1 器件内部缺陷——导致整机批次性失效失效信息:整机是磁盘驱动器,制造过程整机的次品率正常为300ppm,某时起发现次品率波动,次品原因是霍尔器件极间漏电、短路。
图1 引出电极金属化(金)边缘脱落跨接图片析说明:引出电极金属化边两电极之间,在电压作用下漏电、击穿。
案例电极边缘脱落,跨接两电极引起电极之间漏电短路分缘有残边,残边在注塑时被冲开而跨接于这是器件的工艺缺陷,这种缺陷具有批次性的特征,该批器件在使用过程中失效率大,寿命短。
2:静电放电损伤失效图2 射频器件静电击穿照片(金相)图3 数字IC静电击穿照片SEM)分析说明:静电放电击穿典型的特征是能量小、线径小,飞狐、喷射。
主要发生在射频、能量释放时间短,其失效特征是击穿点微波器件,场效应器件、光电器件也常有静电放电击穿的案例。
案例3:外部引入异常电压引起通讯IC 输失效信息:分析说明:通讯芯片通讯端口上的传输线容易引入干扰电压(窄脉冲浪涌),干扰电压多次对通讯案例电流能力下降引起整机失效率异常增大某时起整机的市场维修率异常增大,维修增大是整机中的IGBT 功率器件失效引起的。
另外集成电路、出驱动失效通讯芯片在现场使用时发生失效,表现为通讯端口对地短路。
图4 通讯IC 输出管形貌(SEM )图5 输出管电压击穿形貌(SEM )IC 的通讯端内部电路起损伤作用,最终形成击穿通道。
4:功率器件失效信息:图6 IGBT 芯片呈现过电流失效特征图7 原来IGBT 的内部结构析说明:效样品表现为过电流失效。
整机维修率异常增大发生时更改IGBT 的型号。
IBGT 制造厂家给出新330W ,原来型号的IGBT 的功率指标为,其它指标没有变化。
两只芯片,多了一只反向释放二极管,两个型号的IGBT 芯片的面积一样大,显然,下降,因此,新型号的IGBT 的电流能分失型号的IGBT 的功率指标比为175W 但新型号的IGBT 内部结构(图6)仅有一只芯片,而原来型号的IGBT 有新型号的IGBT 的芯片要有部分面积来完成反向释放二极管的作用,由于IGBT 芯片有效面积的减小,导致其电流能力力不如原来型号的IGBT ,整机中IGBT 的工作电流比较临界,因此,使用过程中由于电流问题的发生大量失效。
fmea失效模式分析案例2篇
fmea失效模式分析案例2篇FMEA失效模式分析案例1:医院输液泵故障一、问题描述在医院使用的输液泵在使用过程中会发生故障,导致输液不正常,对患者造成影响。
二、分析步骤1. 列出可能的失效模式在使用过程中,输液泵可能出现以下失效模式:电源失效、软件出现错误、泵头堵塞、压力不足等。
2. 确定失效后果对于每个可能的失效模式,我们需要确定其产生的影响。
对于输液泵来说,可能导致输液不正常,导致患者的治疗效果受到影响,甚至危及生命。
3. 确定失效频率每个失效模式的出现频率不同,需要根据历史数据、专家评估等方式确定流失频率。
当然,针对不同的失效模式,可能需要采用不同的数据分析方法。
4. 确定探测方式为了及早发现输液泵的故障,需要确定哪些探测方式能够有效捕捉故障信号。
输液泵可能会出现一系列的故障信号,例如声音变化、滴速变慢等,需要通过多种探测方式来进行监测。
5. 确定纠正措施对于每个失效模式,需要确定针对性的纠正措施。
例如,对于电源失效,可以采取备用电源等方法来降低影响;对于软件错误,可以通过更新软件来解决;对于堵塞等问题,可以采取人工处理等方式来纠正。
6. 重新评估并持续改进在确定措施后,需要对整个过程进行重新评估,确保采取的措施有效。
同时,需要建立持续改进机制,不断优化输液泵的故障分析和纠正措施。
三、结论在输液泵的使用过程中,我们需要进行FMEA分析,以有效预防输液泵的故障。
通过对可能失效模式的分析,确定出可能的探测方式和纠正措施,并利用持续改进机制来优化管理。
这样可以最大限度地保证患者安全和治疗效果。
FMEA失效模式分析案例2:汽车刹车系统故障一、问题描述在汽车驾驶过程中,刹车系统出现故障造成车辆无法正常刹车,导致事故发生。
二、分析步骤1. 列出可能的失效模式在汽车刹车系统中,可能出现以下失效模式:制动液泄漏、制动片摩擦力不足、制动鼓磨损、制动蹄变形等。
2. 确定失效后果对于每个失效模式,我们需要进行分析,确定其对车辆行驶的影响。
《失效分析案例》课件
02
失效分析的方法与技术
介绍了各种失效分析的方法和技术,如外观检查、化学分析、金相切片
、扫描电子显微镜等,以及它们在失效分析中的应用。
03
失效分析案例介绍
列举了一些典型的失效分析案例,包括电子产品、机械零件、复合材料
等,详细介绍了这些案例的失效模式、失效机理和失效原因。
失效分析的展望
失效分析技术的发展趋势
案例三:材料失效
总结词
材料检测、工艺优化、热处理
详细描述
针对材料失效,进行材料检测和工艺优化是关键。通过合理的热处理和加工工艺 ,可以改善材料的性能,提高其抗失效能力。同时,加强材料保护和使用合适的 涂层也是预防材料失效的重要手段。
案例四:结构失效
01 总结词
强度不足、失稳、疲劳
02
详细描述
结构失效通常表现为强度不足 、失稳和疲劳等问题。这些失 效原因可能导致建筑物、桥梁 等结构性能下降、功能丧失或 引发安全问题。
在产品维修和保障阶段,FMEA可以用于分析产品在使用过程中可能出现的问题, 预测产品的寿命和可靠性,为维修和保障计划提供依据。
05 预防与纠正措施
电子产品失效预防与纠正措施
总结词
电子产品失效预防与 纠正措施是确保电子 产品可靠性和性能的 关键。
元器件选择
选择质量稳定、可靠 性高的元器件,避免 使用次品或假冒伪劣 产品。
详细失效分析
采用各种技术和方法,深入分 析失效机制和根本原因。
验证与实施
对改进措施进行验证,并在实 际中实施,以改善产品的可靠 性和性能。
02 失效案例选择与 介绍
案例一:电子产品失效
总结词
详细描述
总结词
详细描述
最新失效分析经典案例分享
最新失效分析经典案例分享案例一:某知名手机品牌电池爆炸事件某知名手机品牌近期发生了一起电池爆炸事件,导致用户受伤。
经过详细的失效分析,发现电池在高温环境下,由于内部结构设计不合理,导致电池内部短路,进而引发爆炸。
这一案例提醒我们,在产品设计和生产过程中,必须高度重视电池的安全性,严格把控电池的质量和性能。
案例二:某电动车品牌刹车失灵事件某电动车品牌近期发生了一起刹车失灵事件,导致用户在行驶过程中无法及时停车,造成交通事故。
经过失效分析,发现刹车系统中的传感器存在设计缺陷,导致刹车信号无法正常传输。
这一案例警示我们,在产品设计和生产过程中,必须关注关键部件的可靠性,确保产品的安全性。
案例三:某智能门锁品牌指纹识别失效事件某智能门锁品牌近期发生了一起指纹识别失效事件,导致用户无法正常使用门锁。
经过失效分析,发现指纹识别模块中的芯片存在质量问题,导致识别准确率下降。
这一案例提醒我们,在产品设计和生产过程中,必须关注关键零部件的质量,确保产品的稳定性和可靠性。
最新失效分析经典案例分享案例四:某品牌空调制冷效果不佳事件某品牌空调近期被用户投诉制冷效果不佳,经过详细的失效分析,发现空调制冷系统中的冷凝器存在制造缺陷,导致制冷剂泄漏,影响了空调的制冷效果。
这一案例提醒我们,在产品设计和生产过程中,必须重视冷凝器等关键部件的质量,确保空调的制冷效果。
案例五:某品牌笔记本电脑触摸屏失灵事件某品牌笔记本电脑近期发生了一起触摸屏失灵事件,导致用户无法正常使用触摸屏功能。
经过失效分析,发现触摸屏的传感器存在设计缺陷,导致触摸信号无法正常传输。
这一案例警示我们,在产品设计和生产过程中,必须关注触摸屏等关键部件的可靠性,确保产品的使用体验。
案例六:某品牌洗衣机漏水事件某品牌洗衣机近期发生了一起漏水事件,导致用户家中地面受损。
经过失效分析,发现洗衣机的排水系统存在设计缺陷,导致排水不畅,进而引发漏水。
这一案例提醒我们,在产品设计和生产过程中,必须关注排水系统等关键部件的设计,确保产品的使用安全。
失效分析实例
材料失效分析
材料失效分析
2、实验过程
• 图7 .58是两个断口表面的低倍放大照 片,图7. 59 和这两个端口表面的位 置和方向。在照片中分辨出两个明显 的区域:外表面,即承受载荷时的最 大纤维应力区,没有发生尺寸改变的 迹象,而在中心区域则看到一些尺寸 改变。此外在表面上有一些明显的塑 性变形,应该是发生最后断裂的地点。 • 将钳柄上的塑料套剥掉以曝露钳柄的 区域。钳的前部镀铬,直至塑料套的 边缘。钳柄的表面上有一层乌黑的物 质,该钳必定是要装塑料套后再进行 电镀的。表面上的乌黑层或是塑料套 留下的,或是一种热处理造成的。 • 目视检查后,分三步进行分析以决定 失效的原因。首先评价对改签剪线操 作的设计应力水平,之后对所用材料 及热处理工艺进行金相检验,最后利 用扫SEM对断口进行仔细的检验
材料失效分析
3、实验结果
• 断口形貌
低倍放大的断口形貌如图7.28所示,没有宏观塑性变形的迹 象。裂纹从左边缘向内扩展通过厚度1/4左右,断裂表面粗糙无 规律,而其余的断口表面是光滑的,在光滑的表面上可以看到贝 壳状花纹,故断裂模式是疲劳。粗糙的断口表面显示出这是最后 因超载而分离的区域并向前扩展到一个孔的边缘,表明疲劳裂纹 不是起源于此孔的边缘,而是沿着右边缘的。这一点在观察断口 表面时也就是在切开试样之后得到证实。贝壳状条纹的弯曲部分 表明疲劳裂纹直接起源于另一螺栓孔的下面(图7 .29),与围绕 该螺栓孔的同心圆槽重合 • 在接近末端处偏离开其中之一螺棒孔的断口表面已严重研 磨(但仍能看到有贝壳状花纹)(图7. 28)而另一端则很少的 磨损伤,并发现有疲劳条纹(图7.31)(疲劳条纹在显微组织复 杂的钢中不常出现。本案例中的显微组织主要是晶粒尺寸均匀的 单相铁素体。)试块切开后产生的断口表面如图7 .32所示,且 有韧窝状的形貌,表面这个区域是因空洞聚集而产生的 •
失效分析案例ppt课件
风电塔架的失效分析
ppt精选版
1
失效分析思路
• 调查收集背景资料 • 试样检验分析:材料的化学成分,金相组织,力学性能等 • 深入分析:断口的宏观及微观形貌分析,无损探伤检查等 • 综合分析归纳,确定失效原因 • 结论 • 改进措施
ppt精选版
2
目录
8
2.2 断口形貌
1、宏观形貌分析
图4 塔筒内部裂纹宏观形貌照片
失效风电塔架的塔筒内部裂纹宏观形貌: • 裂纹的早期扩展阶段,裂纹扩展平稳,属于慢应变速率条件下的宏
观脆性断裂。(图4上) • 裂纹扩展的末期(即裂纹末端),裂纹起伏台阶特征明显,表明裂
纹扩展进入复杂应力区p,pt精但选尚版 未进入失稳快速扩展阶段。(图4下)9
ppt精选版
4
图1 失效的风电塔架
图2 环焊缝17#的开裂
经过近三年的运行该塔于2010年1月塔身的第17道环焊缝(自上 而下)发生开裂。经宏观观察,裂纹长2500mm,最大张开处张 开50mm(图2)。随后进行抢修及失效分析。
ppt精选版
5
2、失效分析
2.1材料特性
2.2断口形貌 宏观形貌分析 微观形貌分析
1、宏观形貌分析
图5 塔筒外部裂纹宏观形貌照片
• 在裂纹近中段发现一处调整台阶,即裂纹源,也是重点取样与分析 部位(虚线框所围区域)。
ppt精选版
10
1、宏观形貌分析
• 裂纹源是一个近表面的焊接 缺陷,随后疲劳扩展,断口 上的海滩花样是疲劳扩展的 依据,扩展区断口上的剪切 唇是塑性断裂的基本特征形 貌。
声波。 • 定期检查塔架,及时发现问题,解决问题。
ppt精选版
失效分析案例
失效分析案例1:电浪涌导致器件失效
某产品在用户现场频频出现损坏,经过对返修单板进行分析,发现大部分返修单板均是某接口器件失效,对器件进行解剖后,在金相显微镜下观察,发现器件是由于EOS导致内部铝线融化,导致器件失效,该EOS能量较大。
进一步分析和该铝条相连的管脚电路应用,发现电路设计应用不当,没有采用保护电路,在用户现场带电插拔产生的电浪涌导致该器件失效。
通过模拟试验再现了失效现象。
解决方法:在用户手册中强调该产品不支持带电插拔。
预防措施:在今后的设计中,考虑用户的使用习惯,增加防护电路设计,对产品进行热插拔设计。
案例1
案例2:MSD控制不当导致产品在用户现场大量失效
某产品在用户现场使用半年以后,返修率惊人,达到30%,对产品进行分析,对主要失效器件进行失效分析,在扫描电镜下发现金属丝疲劳断裂导致器件失效。
进一步的原因分析,发现是该产品的生产加工控制出现了问题,对潮湿敏感器件的管理没有按照J-STD-033A 标准进行,导致受潮器件没有按照规定时间进行高温烘烤,在过回流焊时出现“爆米花”效应,对器件造成了损伤,降低了可靠性,导致在用户现场器件失效。
解决措施:对用户现场的所有有问题的批次产品进行召回。
预防措施:在生产加工过程中严格进行MSD的管理和控制。
案例2
案例3:电迁移
某产品在用户现场使用3年以后,返修率开始出现明显异常,进行失效分析发现,主要是某功率器件内部电迁移引起。
该问题属于器件厂家的设计和制造缺陷。
解决措施:和厂家联系,确定有问题的批次,更换有问题批次的器件。
预防措施:对器件可靠性认证体系重新进行设计,减少厂家批次性问题的发生。
案例3。
失效分析案例
案例3 3Cr2W8V钢热锻模具淬火开裂原因分析 1 背景 2 检验内容及结果
2 1 原材料化学成分 2 2 硬度测定 2 3 断口形貌
(1)宏观检查 (2)断口微观检查 2. 4 显微组织分析 3 讨论 4 结论
1、背景 某厂选用3Cr2W8V钢制造热锻模具用于锻造 25钢的齿状零件,模具加工成型后外部尺寸为500mm ×250mm×115mm,模具质量为110kg。在同一模具上
开出预锻和终锻两个型腔,加工时发现模具毛坯锻件硬 度偏高,采用HR150型洛氏硬度计测试硬度为30HRC。 为便于加工,该厂将模具进行了一次降低硬度退火,但温度 和时间已无纪录。加工后的模具由本厂进行热处理,淬火 加热炉采用箱式电阻炉。为防止氧化,在模具周围填充旧 渗碳剂加以保护。模具淬火时先采用500℃、850℃两次 预热,后经1050℃×4h保温,冷却介质选用N15号机油。 淬火过程中听到模具开裂声音,随即停止冷却,并放在 630℃回火炉中回火,回火时裂纹继续扩展使模具成为多个 碎块。由于发现模具开裂, 中止继续回火。
图6的金相组织表明,奥氏体晶粒粗大,马氏体粗大,属于明 显的过热现象。但模具表层细瓷状断口(图2、3)和细小晶 粒(图5),属于正常的淬火组织。分析认为:厂方在加工模具 时,发现锻件的硬度偏高,曾经进行一次降低硬度退火,但退 火保温时间不够,仅使表层重结晶细化,因此出现了表层的 细晶粒和细瓷状断口。
2 3 断口形貌
(1)宏观检查 模具横向多处断裂,裂纹特征有直裂纹、弯 折裂纹和圆弧裂纹,
在模具碎块的横断面表层可观察到有约30mm细瓷状 断口,见图2。断口内部有山脊状扩展形貌,放射线中心朝 向模具心部,表明裂纹源形成于模具心部。心部为粗晶状 断口,有十分明显的金属光泽。上述特征可以判定该模具 的开裂是由心部脆性解理断裂引发的。
fmea失效分析案例
fmea失效分析案例在制造业中,FMEA(失效模式和影响分析)是一种常用的工具,用于识别和评估产品或过程中潜在的失效模式,以及这些失效模式可能对系统造成的影响。
通过对潜在风险的分析和评估,FMEA可以帮助制造企业制定有效的控制措施,从而提高产品质量和生产效率。
本文将通过一个实际案例来介绍FMEA的应用。
本案例涉及一家汽车零部件制造企业的生产线故障。
在生产过程中,某型号零部件的故障率明显高于预期,严重影响了产品质量和客户满意度。
为了解决这一问题,企业决定对该零部件的生产过程进行FMEA分析,以找出潜在的失效模式和影响,并制定相应的改进措施。
首先,我们对零部件的生产过程进行了详细的分析。
通过与生产人员和工程师的讨论,我们确定了可能影响零部件质量的关键工艺步骤,包括原材料采购、加工工艺、装配过程等。
然后,我们针对每个关键工艺步骤,识别了可能的失效模式,例如材料缺陷、加工误差、装配不良等。
接下来,我们评估了每种失效模式对零部件质量和性能可能造成的影响,包括安全性、可靠性、耐久性等方面的影响。
在FMEA分析的过程中,我们发现了一些关键的失效模式和影响。
例如,在原材料采购阶段,存在着供应商提供的材料质量不稳定的问题,这可能导致零部件的材料强度不达标;在加工工艺中,存在着加工误差的风险,可能导致零部件的尺寸偏差过大;在装配过程中,存在着装配工艺不当的问题,可能导致零部件的密封性不达标。
这些失效模式和影响的存在,直接导致了零部件的故障率偏高的问题。
针对上述问题,我们制定了一系列改进措施。
首先,与供应商进行沟通,要求其提供稳定的材料质量,并建立严格的质量控制体系;其次,优化加工工艺,加强对加工过程的监控和调整,以确保零部件的尺寸稳定性;最后,对装配工艺进行调整,加强对装配过程的培训和管理,以确保零部件的装配质量。
经过改进措施的实施,零部件的故障率得到了明显的降低,产品质量和客户满意度得到了显著的提升。
这个案例充分展示了FMEA在制造业中的重要作用,通过对潜在风险的分析和评估,制定有效的控制措施,可以显著提高产品质量和生产效率。
fmea失效分析案例
fmea失效分析案例FMEA失效分析案例。
在产品设计和制造过程中,为了确保产品的质量和可靠性,FMEA(失效模式和影响分析)是一种常用的方法。
它可以帮助企业识别潜在的失效模式,并采取相应的措施来预防和修复这些失效,从而提高产品的质量和可靠性。
下面,我们将通过一个实际的案例来介绍FMEA失效分析的过程和方法。
案例背景。
某汽车零部件制造企业在生产过程中发现,某一批次的产品出现了频繁的故障现象,严重影响了产品的可靠性和客户满意度。
为了解决这一问题,企业决定对该产品进行FMEA失效分析,找出潜在的失效模式和影响,并制定相应的改进措施。
FMEA失效分析过程。
首先,我们对该产品的各个组成部分进行了分解,确定了关键的零部件和工艺环节。
然后,我们收集了相关的设计文件、生产记录和客户投诉信息,对产品的设计和制造过程进行了全面的分析。
在分析过程中,我们发现了几个潜在的失效模式和影响。
首先,产品的某个关键零部件存在设计参数不合理的问题,导致了零部件的寿命较短;其次,生产过程中存在工艺控制不严的情况,导致了零部件的加工质量不稳定;最后,产品的装配过程存在操作不规范的情况,导致了零部件的安装不到位。
针对这些失效模式和影响,我们制定了相应的改进措施。
首先,我们对关键零部件的设计参数进行了优化,确保其满足产品的可靠性要求;其次,我们加强了生产过程中的工艺控制,确保零部件的加工质量稳定;最后,我们对产品的装配过程进行了标准化,确保零部件的安装到位。
改进效果。
经过改进措施的实施,我们再次对产品进行了测试和验证,发现产品的可靠性和稳定性得到了显著提高。
故障率明显下降,客户投诉现象得到了有效控制,企业的产品质量和客户满意度得到了提升。
结论。
通过本次FMEA失效分析案例,我们深刻认识到了FMEA在产品设计和制造过程中的重要性和价值。
只有通过对潜在的失效模式和影响进行全面的分析和评估,才能及时采取相应的措施,确保产品的质量和可靠性。
我们将继续深入推进FMEA方法在企业的应用,不断提升产品质量和客户满意度。
fmea失效模式分析案例
fmea失效模式分析案例FMEA失效模式分析案例。
在现代工业生产中,FMEA(Failure Mode and Effects Analysis)失效模式与效应分析是一种重要的质量管理工具,用于识别和消除产品或过程中的潜在问题,以确保产品质量和生产效率。
本文将通过一个实际案例,介绍FMEA的基本原理和应用方法。
某汽车零部件生产企业在生产过程中,发现了一个持续存在的质量问题,在某一型号零部件的生产线上,出现了一定数量的产品出现裂纹,导致产品无法正常使用。
为了解决这一质量问题,企业决定对该生产线进行FMEA失效模式分析。
首先,企业组织了一个跨部门的团队,包括设计、生产、质量等相关部门的工程师和技术人员。
团队首先对该零部件的生产过程进行了全面的了解和分析,包括材料选择、加工工艺、设备状态等方面的信息收集。
接着,团队成员一起对可能存在的失效模式进行了头脑风暴和讨论,列出了所有可能的失效模式清单。
在列出失效模式清单后,团队对每一种失效模式进行了评估,分别确定了失效的严重程度、发生频率和检测难度等指标。
通过对这些指标的评估,团队确定了每一种失效模式的风险优先级,即RPN值(Risk Priority Number)。
RPN值是根据失效的严重程度、发生频率和检测难度的乘积计算得出的,值越高表示风险越大。
经过对失效模式的评估和风险优先级的确定,团队确定了裂纹失效模式是当前生产线上最严重的问题。
接下来,团队开始对裂纹失效模式进行深入分析,找出了导致裂纹失效的根本原因。
经过分析,团队发现裂纹失效的根本原因是在生产过程中使用的某一种材料的强度不符合要求,导致产品在使用过程中出现了裂纹。
为了解决这一问题,团队提出了一系列的改进措施,包括更换材料、优化加工工艺、加强质量监控等。
经过一段时间的实施和验证,裂纹失效问题得到了有效的解决,产品质量得到了明显的提升。
通过这个案例,我们可以看到FMEA失效模式分析的应用对于解决生产过程中的质量问题具有重要的作用。
失效分析典型案例--焊点质量
小结
引起元件脱落的可能原因 1、焊盘被污染 2、金层质量(污染、太厚/太薄及晶粒粗大) 3、镍层质量(镍腐蚀、P含量:7~11%) 4、IMC太厚/太薄(1~3μm) 5、富P层太厚
案例3.插件孔焊接后吹孔失效分析
NG样品和光板插件孔均发现明显孔破现象,此类现象的存在,在生产及 储存过程中容易储存湿气,在后期焊接中,孔破处存储的湿气在高温下 易膨胀而产生一定气压,往外将孔中灌入的焊锡吹出,形成“吹孔”; 光板孔壁还发现部分铜瘤位置存在铜层褶皱现象,其间隙易存储湿气, 且会降低铜层的连续性和厚度均匀性,大大降低铜层的抗拉伸性能,在 后续焊接高温下,由于板材Z轴方向的膨胀,这些铜层褶皱位置很容易 出现开裂形成孔破,进而诱发“吹孔”现象的产生。
u ASn A Sn A
u A Nui u A uNi u ANi u uNi A uMCu NAi u Nui A Nui u A uNi u ANiu uNi A u u NAi u Nui A Nu i u A u Niu A u u A u
u
u
u
u nI u
u
u
u
u
u
u
u
uNi Ni u
NAi u
小结
引起焊接不良的可能原因 1、焊盘被污染 2、焊盘氧化严重 3、锡层太薄
案例2.元件脱落失效分析
通过表面形貌观察,焊盘发现严重镍腐蚀,进一步通过切片观察发 现存在较多贯穿镍层镍腐蚀和IMC不连续的现象。
通过表面形貌观察光板金面良好,剥金后发现 镍面存在严重镍腐蚀,大量存在细密镍腐蚀。 从沉金后的外观仍然给人良好的假象。当这种 焊盘进行焊接时,作为可焊性保护层的金迅速 溶解到焊料中去,而被腐蚀氧化了的镍则不能 与熔融焊料形成良好的IMC层,导致可焊性及焊 点可靠性严重下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 金相分析
• 材质为3Cr13轴类零件推荐热处理工艺[1,2]为1000~1050℃ 淬火,640~670℃回火,调质后组织为保留马氏体位向的 回火索氏体
1#位置放大倍数为100、200和400是的金相
2#位置不同放大倍数时的金相
3#位置不同放大倍数时的金相
金相3#试样的金相组织为马 氏体+沿奥氏体相析出的网状碳化物;1#、2#、 3#试样中可以明显看到沿奥氏体相析出的网状碳 化物,可能是淬火处理时加热温度过高或保温时 间过长引起碳化物沿晶界析出和组织晶粒粗大, 会降低材料的力学性能;1#、2#、3#试样中可以 看到马氏体,与保留马氏体位向的回火索氏体不 符,推断泵轴调质处理时回火温度偏低,该泵轴 的热处理工艺可能存在问题。
改进建议
• 1)泵轴断裂处为轴径突变的轴肩处,在满足安装 工艺的条件下可适当增大此处的过渡圆角半径, 并注意提高加工表面质量; • 2)对离心泵轴进行无损检测,查看材质内部是否 存在缺陷,防止因内部缺陷引起应力集中; • 3)控制泵轴淬火时的加热温度和保温时间,使泵 轴经调质处理后的显微组织为马氏体位向的回火 索氏体,不允许有碳化物沿晶界网状的形态出现 。
Al 61.45 51.30 18.14 43.63 -
Si 0.86 0.95 3.14 1.65 ≤1.00
Cr 1.95 4.29 9.95 5.40 12.00~1 4.00
Ni 0.55 0.18 ≤0.60
泵轴微裂纹材质中Al和O含量严重偏高,分别为43.63% 和15.60%,化学成不符合GB/T1220-2007《不锈钢棒》 标准中对3Cr13成分的规定。推断裂纹内部物质为氧化 铝,在泵轴断口附近材质内部可能存在裂纹缺陷,这可 能是导致泵轴断裂的主要原因。
拉伸性能
编号 2# 3# 4# 均值 调质处理 σb/MPa 988.0 986.1 987.3 σs/MPa 836.1 850.1 833.8 δ/% 14.3 17.1 16.0 Ψ/% 39.1 40.4 40.2
987.1
≥940
840.0
≥790
15.8
≥16
39.9
≥52
冲击试验
编号 测量值 平均值 标准值 5# 26.7 6# 37.8 35.8 54 7# 42.9
电机设计参数
泵型号 出厂编号 流量(m3/h) 扬程(m) 100AY 转速 2950 120 (r/min) 11312 92 110 介质 轴功率 (KW) 润滑方 式 减二 材料代 中油 号 30.4 壳体 材料 S-6 Zzg230-450 ZG1Cr13Ni
效率(%) 功率 (KW) 电机
离心泵主轴失效分析案例
Failure Analysis of a Motor Spindle : A Case Study
机硕151
魏巍
Y30150559
失效分析的过程
• 失效分析 现象 原因
影响因素
材料 环境 载荷
1 工况调查
该离心泵位于石化常减压装置管路中,泵轴前轴承 轴肩退刀槽处发生断裂,针对此情况进行失效分析。 该泵是沈阳格瑞泵业有限公司生产的离心泵,型号 为100AY120,其设计参数如表所示。该泵主轴材 质为3Cr13,泵主轴全图如图1-1,其中A处为泵轴 断裂部位。在整套常减压装置运行过程中,减二中 泵P208/2作为减一中泵P208/1和减二中泵P209的 公共备泵,泵轴在工作过程中承受交变弯曲载荷作 用。
小裂纹
粗大晶 粒
4 材料成分
• 该离心泵轴的材质为3Cr13,对断裂后的泵轴进行 切割。通过表4中数据对比发现:失效泵轴化学成 分均符合GB/T1220-2007《不锈钢棒》标准中对 3Cr13成分的规定。
元素 1# 2# 3# 平均值 GB/T 1220 C 0.289 0.284 0.307 0.293 0.26~ 0.35 Si 0.56 0.55 0.56 0.56 ≤1.00 Mn 0.53 0.53 0.53 0.53 ≤1.00 P 0.021 0.021 0.024 0.022 ≤0.04 0 S 0.0078 0.0093 0.0085 0.0085 ≤0.03 0 Ni 0.161 0.155 0.170 0.162 ≤0.60 Cr 13.11 13.13 13.13 13.12 12.00~14.0 0
断口形貌
短轴断口
长轴断口
由于泵轴断裂后未立刻停运,离心泵轴的两端面相 互摩擦、挤压,短轴断口全部被磨平,无法判别宏 观断口形貌,长轴断口大部份被磨平,仅保存一部 分断口形貌。
SEM扫描结果
A
• 被磨平的断口
利用SEM扫描电镜对断口进行微观分析,其 截面A处断口微观下断面扫描结果如图3-2所 示。通过对不同倍率下的扫描结果发现:图 (a)中可看到明显的小裂纹,说明泵轴材料内 部可能存在缺陷,或断面两端面相互摩擦、 挤压后也可能出现裂纹。仅从图(a)无法判断 小裂纹出现的原因;图(b)和图(c)中可明显 看到断口微观形貌呈冰糖状,说明泵主轴发 生了沿晶脆性断裂;图(d)中可看到粗大晶粒, 通过Shepherd断口晶粒度测量法,断口晶粒 度等级约为3级,正常晶粒度约为6级,晶粒 明显偏大。
• 对离心泵主轴断口附近进行取样,利用SEM扫描 电镜对打磨后端面进行微观分析,观察到泵轴材 质内部存在小裂纹,对裂纹内三处不同位置进行 取样1#、2#、3#,分别对试样进行EDS能谱分析
1#
2#
小裂纹
3#
元素 1# 2# 3# 平均值 GB/T 1220
O 23.81 17.37 5.61 15.60 -
6 结论与建议
• 通过以上分析,可推断离心泵主轴断裂过程如下:泵轴材 料内部存在小裂纹,且泵轴断裂位置为轴颈退刀槽处,轴 台阶处尺寸突变,在交变弯曲应力作用下,加剧材料缺陷 处应力集中,发生断裂失效。该离心泵轴的金相组织为马 氏体+沿奥氏体相析出的网状碳化物,且断口晶粒粗大。 与正常热处理工艺下组织不符,导致材料韧性偏低且硬度 严重偏高,材质性能的下降进一步加快了断裂过程。该进 料泵主轴断裂的主要原因是:泵轴材料内部小裂纹在交变 弯曲应力作用下引起应力集中,轴颈退刀槽处截面发生突 变,加剧材料缺陷处应力集中,而材质力学性能降低加快 了轴的断裂过程。
型号
喷雾 叶轮 润滑 柔性 叶轮口 传动方 膜片 环 50 式 式联 轴 轴器 L65- 喉部衬 55 60G/ 套 机械密 YBXn TD封型号 壳体口 250MT0R9 环 2W 4/3
3Cr13
1Cr13MoS
现场图片
主轴结构还原 泵轴断裂处A
2 断口分析
对失效的离心泵主轴进行观察:泵主轴断裂成两部分,在 此将断裂后较短的一端称为短轴部分,另一部分为长轴部 分。泵轴的断裂位置为短轴轴承轴肩退刀槽处。由此可以 判断造成轴失效的可能原因是: (1)离心泵主轴材质存在缺陷; (2)泵轴力学性能不合格; (3)短轴轴承轴肩处有台阶(阶梯轴)且存在退刀槽,设 计加工不合理。
6 力学性能测试
• 利用布氏硬度仪、MTS880万能液压试验机和摆 锤冲击试验机,对主轴的硬度、抗拉强度和抗冲 击性能进行测量。 • 材料的力学性能要求
材质 σb/MPa σs/MPa δ/% Ψ/% Ak/J HBW
254~ 3Cr13 940 790 16 52 54
285
硬度
编号 布氏硬度(HBW) 1# 532.0 2# 633.8 3# 618.7 4# 581.8 平均值 591.6 标准硬度 254~285