扩展卡尔曼滤波原理及其应用

合集下载

扩展卡尔曼滤波 调参

扩展卡尔曼滤波 调参

扩展卡尔曼滤波调参1. 什么是卡尔曼滤波?卡尔曼滤波(Kalman Filter)是一种用于估计系统状态的递归滤波器。

它能够通过融合来自传感器的测量数据和系统模型的预测值,提供对系统状态的最优估计。

卡尔曼滤波器的核心思想是通过不断迭代的方式,根据当前的观测值和先验估计值,计算出最优的后验估计值。

它的优点在于对于线性系统,能够得到最优解,并且具有较低的计算复杂度。

2. 扩展卡尔曼滤波(Extended Kalman Filter,EKF)扩展卡尔曼滤波是卡尔曼滤波的一种扩展,用于非线性系统的状态估计。

与传统的卡尔曼滤波相比,扩展卡尔曼滤波能够通过线性化非线性系统模型,将其转化为线性系统模型,从而实现状态的估计。

在扩展卡尔曼滤波中,通过使用泰勒级数展开,将非线性函数线性化为一阶导数的形式。

然后,使用线性卡尔曼滤波的方法进行状态估计。

这样一来,扩展卡尔曼滤波能够处理一些非线性系统,并提供对系统状态的最优估计。

3. 扩展卡尔曼滤波调参在使用扩展卡尔曼滤波进行状态估计时,需要对滤波器进行一些参数的调整,以获得更好的估计结果。

下面介绍一些常用的调参方法。

3.1 系统模型在使用扩展卡尔曼滤波进行状态估计时,首先需要定义系统的状态方程和观测方程。

系统的状态方程描述了系统状态的演化规律,而观测方程描述了观测值与系统状态之间的关系。

在调参时,需要根据实际情况对系统模型进行调整。

对于非线性系统,可以通过改变状态方程和观测方程的形式,使其更好地与实际系统相匹配。

3.2 过程噪声和观测噪声在卡尔曼滤波中,过程噪声和观测噪声是用来描述系统模型和观测模型中的不确定性的参数。

过程噪声表示系统状态的演化过程中的不确定性,观测噪声表示观测值的不确定性。

在调参时,需要根据实际情况对过程噪声和观测噪声进行调整。

过程噪声和观测噪声的大小与系统的动态特性和传感器的性能有关。

通过调整这两个参数,可以使滤波器更好地适应实际情况。

3.3 初始状态和协方差在卡尔曼滤波中,初始状态和协方差用来表示对系统状态的初始估计。

扩展Kalman滤波(EKF)和无迹卡尔曼滤波(ukf)

扩展Kalman滤波(EKF)和无迹卡尔曼滤波(ukf)

Pkk_1 = Phikk_1*Pk_1*Phikk_1' + Qk;
Pxz = Pkk_1*Hk'; Pzz = Hk*Pxz + Rk;
Pxz*Pzz^-1;
Kk =
Xk = fXk_1 + Kk*Zk_hfX;
Pk = Pkk_1 - Kk*Pzz*Kk';
二、扩展Kalman滤波(EKF)算法
[Xk, Pk, Kk] = ekf(eye(4)+Ft*Ts, Qk, fX, Pk, Hk, Rk, Z(k,:)'-hfX);
X_est(k,:) = Xk';
Hale Waihona Puke end二、扩展Kalman滤波(EKF)算法
figure(1), plot(X_est(:,1),X_est(:,3), '+r')
EKF与UKF
一、背景
普通卡尔曼滤波是在线性高斯情况下利用最小均方误差准则获得 目标的动态估计,适应于过程和测量都属于线性系统, 且误差符 合高斯分布的系统。 但是实际上很多系统都存在一定的非线性, 表现在过程方程 (状态方程)是非线性的,或者观测与状态之间 的关系(测量方程)是非线性的。这种情况下就不能使用一般的卡 尔曼滤波了。解决的方法是将非线性关系进行线性近似,将其转化 成线性问题。 对于非线性问题线性化常用的两大途径: (1) 将非线性环节线性化,对高阶项采用忽略或逼近措施;(EKF) (2)用采样方法近似非线性分布. ( UKF)
三、无迹卡尔曼滤波算法(UKF)
UKF是用确定的采样来近似状态的后验PDF,可以 有效解决由系统非线性的加剧而引起的滤波发散问 题,但UKF仍是用高斯分布来逼近系统状态的后验概 率密度,所以在系统状态的后验概率密度是非高斯 的情况下,滤波结果将有极大的误差。

扩展卡尔曼粒子滤波优化

扩展卡尔曼粒子滤波优化

扩展卡尔曼粒子滤波优化扩展卡尔曼粒子滤波优化扩展卡尔曼粒子滤波(Extended Kalman Particle Filter)是一种常用的非线性滤波器,用于在测量数据包含噪声的情况下对系统状态进行估计。

在本文中,我们将逐步介绍扩展卡尔曼粒子滤波的优化方法。

1. 了解卡尔曼滤波:在深入研究扩展卡尔曼粒子滤波之前,首先需要了解卡尔曼滤波的基本原理。

卡尔曼滤波是一种递归滤波器,通过使用系统模型和测量模型来估计系统状态,其中系统模型和测量模型通常是线性的。

然而,实际应用中,我们经常遇到非线性问题,这就需要使用扩展卡尔曼滤波。

2. 扩展卡尔曼滤波:扩展卡尔曼滤波通过在线性化非线性系统模型和测量模型来处理非线性问题。

具体而言,它使用泰勒级数展开来近似非线性函数,并通过计算雅可比矩阵来线性化系统模型和测量模型。

然后,通过应用卡尔曼滤波来处理线性化的系统和测量模型。

3. 粒子滤波:粒子滤波是一种基于蒙特卡洛方法的滤波器,用于处理非线性和非高斯的系统。

它通过使用一组粒子来表示系统的状态分布,并通过对每个粒子进行重采样和更新来更新状态分布。

这使得粒子滤波能够更好地适应非线性和非高斯分布的系统。

4. 扩展卡尔曼粒子滤波:扩展卡尔曼粒子滤波是将扩展卡尔曼滤波和粒子滤波相结合的一种方法。

它使用粒子滤波来近似状态分布,并通过在线性化非线性系统模型和测量模型来处理非线性问题。

具体而言,它使用粒子滤波来生成一组粒子,然后通过计算每个粒子的权重来更新状态分布。

最后,通过对具有较高权重的粒子进行重采样来更新粒子集合。

5. 优化方法:为了进一步优化扩展卡尔曼粒子滤波,可以采取以下方法:- 调整粒子数目:增加粒子的数量可以提高滤波器的精度,但也会增加计算复杂度。

因此,需要权衡精度和计算复杂度之间的关系,选择适当的粒子数目。

- 选择合适的重采样方法:重采样是粒子滤波的关键步骤,可以通过对低权重粒子进行更多采样来提高滤波器的性能。

常用的重采样方法包括系统性重采样、残差重采样和分层重采样等。

扩展Kalman滤波算法原理及应用

扩展Kalman滤波算法原理及应用

扩展Kalman滤波算法原理及应用随着科技的发展,各种传感器和控制系统的应用越来越广泛,很多智能化的设备需要使用滤波算法,提高其精度和鲁棒性。

在滤波算法中,扩展Kalman滤波(EKF)算法是一种非常常用的算法,可以广泛应用于各种工程领域,如自动控制、机器人导航、图像处理等,本文将介绍EKF算法的原理、特点以及应用。

一、Kalman滤波算法简介Kalman滤波算法是一种常用的状态估计算法,具有优秀的滤波效果。

它是由R.E. Kalman于1960年提出的,主要用于随机信号的滤波和估计。

Kalman滤波是一种基于线性系统和高斯噪声模型的最优估计算法。

它通过对样本点之间的关系建立一个能够描述它们在时间上的演变的状态模型,并根据观测值推算出状态量的概率分布,然后利用这个分布,根据Bayes公式进行矫正,得到最终的估计值。

二、扩展Kalman滤波算法原理扩展Kalman滤波算法是对Kalman滤波算法的一种改进,主要应用于非线性系统的估计。

与Kalman滤波相比,EKF基本思想是通过在预测和更新阶段线性化非线性系统模型来解决非线性系统问题。

EKF的步骤如下:1.定义状态变量向量:通过时间t来定义系统状态x(t),包含系统的全部状态信息。

2.建立状态转移方程:利用状态向量和噪声过程,建立状态转移方程,描述系统在各时间点的演变规律。

3.定义观测变量向量:通过时间t来定义系统的观测值Y(t),包含应用于系统的观测传感器的测量信息。

4.建立系统量测方程:通过状态转移方程和状态向量,以及观测传感器测量值,建立系统量测方程。

5.系统预测:预测状态的无偏估计值和方差。

6.状态更新:利用观测数据校正预测状态的无偏估计值和方差。

以上步骤在线性系统中都是可直接实现的,但非线性系统由于噪声,量测误差和模型误差等原因,使得状态转移方程和系统量测方程无法直接用之前的线性方程来解决。

因此,EKF在预测和更新过程中,均采用泰勒展开式对非线性芯片进行线性化处理,通过对状态转移和系统量测方程进行一阶泰勒展开,将非线性函数在某点的值近似为线性函数的值,从而得到线性化的状态转移方程和系统量测方程。

扩展卡尔曼滤波原理及其应用

扩展卡尔曼滤波原理及其应用
扩展卡尔曼滤波原理及其应用
A
引入:室内温度测量
假设当前室内温度仅跟上一时刻有关 温度计观测(摄氏-〉华氏) 根据连续的观测值来推算实际温度变化
A
引入:室内温度测量
假设当前室内温度仅跟上一时刻有关
◎但变化中可能有误差
温度计观测(摄氏-〉华氏)
◎读数可能有误差
两种噪声互不相关 根据连续的观测值来推算实际温度变化
A
经典卡尔曼滤波
现在我们有了现在状态的预测结果,然后我们再收集现 在状态的测量值。结合预测值和测量值,我们可以得到 现在状态(k) 的最优化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-
1))
……… (3)
其中Kg为卡尔曼增益(Kalman Gain): Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) ……… (4)
A
经典卡尔曼滤波
到现在为止,我们已经得到了k 状态下最优的估算值 X(k|k)。但是为了要另卡尔曼滤波器不断的运行下去直到 系统过程结束,我们还要更新k状态下X(k|k)的covariance:
P(k|k)=(I-Kg(k) H)P(k|k-1)
……… (5)
其中I 为1的矩阵,对于单模型单测量,I=1。当系统进入 k+1状态时,P(k|k)就是式子(2) 的P(k-1|k-1)。这样,算 法就可以自回归的运算下去。
x odo
y
odo
im u
odo
A
1 0 0 t0 0 1 0 0 0
0 1
((aaxx__kkcsoisnaayyscions))tt
0 0 0 0

扩展卡尔曼滤波(EKF)理论讲解与实例(matlab、python和C++代码)

扩展卡尔曼滤波(EKF)理论讲解与实例(matlab、python和C++代码)

扩展卡尔曼滤波(EKF)理论讲解与实例(matlab、python和C++代码)扩展卡尔曼滤波(EKF)理论讲解与实例(matlab、python和C++代码)⽂章⽬录我们上篇提到的 (参见我的另⼀篇⽂章: )是⽤于线性系统,预测(运动)模型和观测模型是在假设⾼斯和线性情况下进⾏的。

简单的卡尔曼滤波必须应⽤在符合⾼斯分布的系统中,但是现实中并不是所有的系统都符合这样 。

另外⾼斯分布在⾮线性系统中的传递结果将不再是⾼斯分布。

那如何解决这个问题呢?扩展卡尔曼滤波就是⼲这个事的。

理论讲解扩展卡尔曼滤波(Extended Kalman Filter,EKF)通过局部线性来解决⾮线性的问题。

将⾮线性的预测⽅程和观测⽅程进⾏求导,以切线代替的⽅式来线性化。

其实就是在均值处进⾏⼀阶泰勒展开。

数学中,泰勒公式是⼀个⽤函数在某点的信息描述其附近取值的公式( ⼀句话描述:就是⽤多项式函数去逼近光滑函数 )。

如果函数⾜够平滑的话,在已知函数在某⼀点的各阶导数值的情况之下,泰勒公式可以⽤这些导数值做系数构建⼀个多项式来近似函数在这⼀点的邻域中的值。

泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

表⽰ 在第 阶导数的表达式,带⼊⼀个值计算后得到的结果(注意,它是个值)是⼀个系数(⼀个值),每⼀项都不同,第⼀项 ,第⼆项 …… 依此类推是⼀个以为⾃变量的表达式 。

是泰勒公式的余项,是 的⾼阶⽆穷⼩KF 和EKF 模型对⽐⾸先,让卡尔曼先和扩展卡尔曼滤波做⼀个对⽐。

在对⽐过程中可以看出,扩展卡尔曼是⼀个简单的⾮线性近似滤波算法,指运动或观测⽅程不是线性的情况,在预测模型部分,扩展卡尔曼的预测模型和量测模型已经是⾮线性了。

为了简化计算,EKF 通过⼀阶泰勒分解线性化运动、观测⽅程。

KF 与EKF 具有相同的算法结构,都是以⾼斯形式描述后验概率密度的,通过计算贝叶斯递推公式得到的。

最⼤的不同之处在于,计算⽅差时,EKF 的状态转移矩阵(上⼀时刻的状态信息)和观测矩阵(⼀步预测)都是状态信息的雅克⽐矩阵( 偏导数组成的矩阵)。

卡尔曼滤波器的原理与应用

卡尔曼滤波器的原理与应用

卡尔曼滤波器的原理与应用1. 什么是卡尔曼滤波器?卡尔曼滤波器(Kalman Filter)是一种用于估计系统状态的数学算法,它通过将系统的测量值和模型预测值进行加权平均,得到对系统状态的最优估计。

卡尔曼滤波器最初由卡尔曼(Rudolf E. Kálmán)在20世纪60年代提出,广泛应用于航天、航空、导航、机器人等领域。

2. 卡尔曼滤波器的原理卡尔曼滤波器的原理基于贝叶斯滤波理论,主要包括两个步骤:预测步骤和更新步骤。

2.1 预测步骤预测步骤是根据系统的动力学模型和上一时刻的状态估计,预测出当前时刻的系统状态。

预测步骤的过程可以用以下公式表示:x̂k = Fk * x̂k-1 + Bk * ukP̂k = Fk * Pk-1 * Fk' + Qk其中,x̂k为当前时刻的状态估计,Fk为状态转移矩阵,x̂k-1为上一时刻的状态估计,Bk为输入控制矩阵,uk为输入控制量,Pk为状态协方差矩阵,Qk为过程噪声的协方差矩阵。

2.2 更新步骤更新步骤是根据系统的测量值和预测步骤中的状态估计,通过加权平均得到对系统状态的最优估计。

更新步骤的过程可以用以下公式表示:Kk = P̂k * Hk' * (Hk * P̂k * Hk' + Rk)^-1x̂k = x̂k + Kk * (zk - Hk * x̂k)Pk = (I - Kk * Hk) * P̂k其中,Kk为卡尔曼增益矩阵,Hk为测量矩阵,zk为当前时刻的测量值,Rk 为测量噪声的协方差矩阵,I为单位矩阵。

3. 卡尔曼滤波器的应用卡尔曼滤波器广泛应用于以下领域:3.1 导航与定位卡尔曼滤波器在导航与定位领域的应用主要包括惯性导航、GPS定位等。

通过融合惯性测量单元(Inertial Measurement Unit)和其他定位信息,如GPS、罗盘等,卡尔曼滤波器可以提高导航与定位的准确性和鲁棒性。

3.2 机器人控制卡尔曼滤波器在机器人控制领域的应用主要包括姿态估计、移动定位、目标跟踪等。

扩展卡尔曼滤波器原理

扩展卡尔曼滤波器原理

扩展卡尔曼滤波器原理一、引言扩展卡尔曼滤波器(Extended Kalman Filter,EKF)是一种常用的非线性滤波器,其原理是对非线性系统进行线性化处理,从而利用卡尔曼滤波器的优势进行状态估计和滤波。

本文将介绍扩展卡尔曼滤波器的原理及其应用。

二、卡尔曼滤波器简介卡尔曼滤波器是一种基于最优估计理论的滤波算法,广泛应用于估计系统状态。

卡尔曼滤波器通过对系统状态和观测数据进行加权平均,得到对系统状态的估计值。

其基本原理是通过系统的动力学方程和观测方程,利用贝叶斯概率理论计算系统状态的后验概率分布。

三、非线性系统的滤波问题在实际应用中,许多系统都是非线性的,而卡尔曼滤波器是基于线性系统模型的。

因此,当系统模型非线性时,传统的卡尔曼滤波器无法直接应用。

扩展卡尔曼滤波器就是为了解决这个问题而提出的。

四、扩展卡尔曼滤波器原理扩展卡尔曼滤波器通过对非线性系统进行线性化处理,将非线性系统转化为线性系统,然后利用卡尔曼滤波器进行状态估计。

其基本思想是通过一阶泰勒展开将非线性系统进行线性逼近。

具体步骤如下:1. 系统模型线性化:将非线性系统的动力学方程和观测方程在当前状态下进行一阶泰勒展开,得到线性化的系统模型。

2. 预测步骤:利用线性化的系统模型进行状态预测,得到预测的状态和协方差矩阵。

3. 更新步骤:利用观测方程得到的测量值与预测的状态进行比较,计算卡尔曼增益。

然后利用卡尔曼增益对预测的状态和协方差矩阵进行更新,得到最终的状态估计和协方差矩阵。

五、扩展卡尔曼滤波器的应用扩展卡尔曼滤波器广泛应用于各个领域,包括机器人导航、目标跟踪、航天器姿态估计等。

以机器人导航为例,机器人在未知环境中通过传感器获取的信息是非线性的,而机器人的运动模型也是非线性的。

因此,利用扩展卡尔曼滤波器可以对机器人的位置和姿态进行估计,从而实现导航功能。

六、总结扩展卡尔曼滤波器是一种处理非线性系统的滤波算法,通过对非线性系统进行线性化处理,利用卡尔曼滤波器进行状态估计和滤波。

卡尔曼滤波器原理详解课件

卡尔曼滤波器原理详解课件
利用卡尔曼滤波器对机器人进行路径规 划,通过传感器数据和运动模型对机器 人进行最优路径规划。
VS
机器人避障
通过卡尔曼滤波器对机器人进行避障控制, 实现机器人在复杂环境中的安全导航。
06
卡尔曼滤词
详细描述
无迹卡尔曼滤波器
总结词 详细描述
自适应卡尔曼滤波器
缺点分析
假设限制
01
初值问题
02
计算复杂度
03
改进方向
扩展到非线性系统 优化算法 融合其他方法
05
卡尔曼滤波器的应用实例
无人机定位与控制
无人机定位
无人机控制
通过卡尔曼滤波器对无人机进行控制, 实现无人机的稳定飞行和精确控制。
航天器轨道确定
航天器轨道估计
航天器导航
机器人导航与避障
机器人路径规划
状态方程和观测方程
状态方程 观测方程
卡尔曼滤波器的递推算法
预测步骤
根据当前状态和输入预测下一个状态。
更新步骤
根据观测值和预测值更新状态估计。
递推算法
通过重复执行预测步骤和更新步骤,逐步更新状态估计。
卡尔曼滤波器的最优估计
最优估计
在给定观测数据和模型的情况下,使用某种准则(如最小方差)找到的最佳估计。
卡尔曼滤波器的基本原理
01
02
数学模型
递归估计
03 最优估计
02
卡尔曼滤波器的数学模型
线性动态系统
线性系统
如果系统的状态变量可以表示为输入和输出的 线性组合,则该系统是线性的。
动态系统
如果系统的状态随时间变化,则该系统是动态的。
线性动态系统
如果一个系统既是线性的又是动态的,则该系统被称为线性动态系统。

deepsort 拓展卡尔曼滤波

deepsort 拓展卡尔曼滤波

deepsort 拓展卡尔曼滤波拓展卡尔曼滤波(Extended Kalman Filter, EKF)是一种常见的目标跟踪算法,而DeepSORT则是在EKF基础上进行的拓展,用于更加准确地实现目标跟踪。

下面将从EKF的基本原理开始,介绍DeepSORT 算法的原理以及其在目标跟踪领域的应用。

1.卡尔曼滤波(Kalman Filter)的基本原理卡尔曼滤波是一种递归滤波算法,用于估计在不完整和有噪声的测量数据下的状态变量。

简而言之,卡尔曼滤波算法通过结合先验信息和观测结果来实现对目标状态的最优估计。

卡尔曼滤波算法包括两个主要步骤:预测(Predict)和更新(Update)。

预测步骤中,根据上一时刻的状态估计和系统模型,通过状态转移方程得到当前时刻的状态预测。

预测的结果包括状态估计和状态协方差矩阵。

更新步骤中,利用预测的状态估计和观测模型,将测量结果与预测结果进行比对,得到当前时刻的最优状态估计。

更新的结果也包括状态估计和状态协方差矩阵。

通过不断迭代预测和更新步骤,卡尔曼滤波算法可以实现对目标状态的最优估计。

2. DeepSORT的原理DeepSORT是一种将深度学习与卡尔曼滤波相结合的目标跟踪算法,旨在提升目标跟踪的准确性与鲁棒性。

DeepSORT的核心思想是利用深度学习网络(如卷积神经网络)来提取目标特征,然后将这些特征作为观测值输入到卡尔曼滤波器中进行状态估计。

DeepSORT算法的主要步骤如下:(1)特征提取:利用预训练的深度学习网络,如ResNet、VGG等,对目标进行特征提取。

通过将目标图像输入到网络中,可以得到代表目标特征的向量。

(2)目标匹配:根据特征向量计算目标之间的相似度,并利用匈牙利算法或最小权重匹配算法来建立观测与目标的对应关系。

(3)卡尔曼滤波:对每个目标的运动进行预测,并将预测的结果作为观测值输入到卡尔曼滤波器中进行状态估计。

利用卡尔曼滤波器的预测步骤和更新步骤,可以得到每个目标的最优状态估计。

初学者的卡尔曼滤波——扩展卡尔曼滤波(一)

初学者的卡尔曼滤波——扩展卡尔曼滤波(一)

初学者的卡尔曼滤波——扩展卡尔曼滤波(⼀)简介 已经历经了半个世纪的卡尔曼滤波⾄今仍然是研究的热点,相关的⽂章不断被发表。

其中许多⽂章是关于卡尔曼滤波器的新应⽤,但也不乏改善和扩展滤波器算法的研究。

⽽对算法的研究多着重于将卡尔曼滤波应⽤于⾮线性系统。

为什么学界要这么热衷于将卡尔曼滤波器⽤于⾮线性系统呢?因为卡尔曼滤波器从⼀开始就是为线性系统设计的算法,不能⽤于⾮线性系统中。

但是事实上多数系统都是⾮线性的,所以如果卡尔曼滤波器不能⽤在⾮线性系统中的话,那么它的应⽤范围就⾮常有限了。

如果真的是这样,卡尔曼滤波器可能早就寿终正寝或者过很久很久才会被⼈注意到。

幸运的是早期的学者们对这个问题理解的⾮常深刻,⽽且也找到了解决⽅法,就是扩展卡尔曼滤波(EKF)。

事实上世界上的第⼀个卡尔曼滤波也是扩展卡尔曼滤波,⽽不是线性卡尔曼滤波器。

扩展卡尔曼滤波有很久远的历史,如果说有⼀个⾮线性系统需要⽤到卡尔曼滤波的话,不必怀疑,先试试扩展卡尔曼滤波准没错。

因为他有很久远的历史,所以可以轻松的找到许多这⽅⾯的资料。

不过扩展卡尔曼滤波也不是⽆懈可击的,它有⼀个很严重的短板——发散。

使⽤扩展卡尔曼滤波的时候请务必记在⼼上,时刻提醒⾃⼰,这样设计滤波器其结果会发散吗?毫不夸张地说相对于线性卡尔曼滤波设计扩展卡尔曼滤波器的就是在解决发散问题。

发散问题解决了剩下的都是⼩事。

⼩结:扩展卡尔曼滤波器主要⽤于⾮线性系统;扩展卡尔曼滤波器会发散。

线性化的卡尔曼滤波器 在讨论扩展卡尔曼滤波之前,⾸先要了解⼀下线性化卡尔曼滤波。

它和线性卡尔曼滤波器在滤波器的算法⽅⾯有同样的算法结构,⼀样⼀样的。

不⼀样的地⽅在于这两者的系统模型不同。

线性卡尔曼滤波器的系统本⾝就是线性系统,⽽线性化卡尔曼滤波器的系统本⾝是⾮线性系统,但是机智的⼤神们将⾮线性的系统进⾏了线性化,于是卡尔曼滤波就可以⽤在⾮线性系统中了。

对于⼀个卡尔曼滤波器的设计者,就不要去管你的模型到底是⼀开始就是线性系统还是⾮线性系统线性化得到的线性系统,反正只要是线性系统就好了。

卡尔曼滤波及其应用

卡尔曼滤波及其应用

卡尔曼滤波及其应用在现代科学技术中,卡尔曼滤波已经成为了非常重要的一种估计算法,被广泛应用于各种领域。

本文将介绍卡尔曼滤波的原理及其在实际中的应用。

一、卡尔曼滤波的原理卡尔曼滤波最初是由美国数学家卡尔曼(R.E.Kalman)在1960年提出的一种状态估计算法,用于估计动态系统中某一参数的状态。

该算法基于传感器采集的实际数据,通过数学模型来估计一个已知的状态变量,同时也通过统计学方法进行补偿,使得所估计的状态变量更加接近真实值。

卡尔曼滤波的主要思想是:首先对系统的状态变化进行建模,并运用贝叶斯原理,将观测数据和模型预测进行加权平均,得到对当前状态变量的最优估计值。

该算法适用于动态系统中的状态变量为连续变化的情况下,能够快速稳定地对状态变量进行估计,从而达到优化系统性能的目的。

二、卡尔曼滤波的应用卡尔曼滤波在实际中的应用非常广泛,下面将介绍其几个经典的应用案例。

1、导航和控制卡尔曼滤波在导航和控制中的应用非常常见,尤其是在航空航天、船舶、汽车和无人机等领域。

通过卡尔曼滤波算法,可以把传感器收集到的数据进行滤波处理,从而提高定位精度和控制性能,实现更加准确和稳定的导航和控制。

2、图像处理卡尔曼滤波也可以用于图像处理中,如追踪系统、视频稳定、去噪和分割等。

通过卡尔曼滤波算法,可以对传感器的噪声和干扰进行有效削弱,从而提高图像的质量和分辨率。

3、机器人技术在机器人技术中,卡尔曼滤波可以用于机器人的运动控制和姿态估计,以及机器人的感知和决策等领域。

通过卡尔曼滤波算法,可以对机器人的位置、速度和加速度等参数进行实时估计和精确控制,从而提高机器人的自主性和灵活性。

三、结语卡尔曼滤波作为一种状态估计算法,已经成为了现代科学技术不可或缺的一部分。

通过卡尔曼滤波算法,在实际应用中可以有效地处理系统中的各种噪声和干扰,实现更加准确和稳定的状态估计。

相信在未来的科学技术领域中,卡尔曼滤波还将发挥更加重要的作用。

卡尔曼滤波、扩展卡尔曼滤波、无迹卡尔曼滤波以及粒子滤波原理

卡尔曼滤波、扩展卡尔曼滤波、无迹卡尔曼滤波以及粒子滤波原理

卡尔曼滤波、扩展卡尔曼滤波、无迹卡尔曼滤波以及粒子滤波原理所有滤波问题其实都是求感兴趣的状态的后验概率分布,只是由于针对特定条件的不同,可通过求解递推贝叶斯公式获得后验概率的解析解(KF、EKF、UKF),也可通过大数统计平均求期望的方法来获得后验概率(PF)。

1 KF、EKF、UKF1.1 定义KF、EKF、UKF 都是一个隐马尔科夫模型与贝叶斯定理的联合实现。

是通过观测信息及状态转移及观测模型对状态进行光滑、滤波及预测的方法。

而KF、EKF及UKF的滤波问题都可以通过贝叶斯估计状态信息的后验概率分布来求解。

Kalman在线性高斯的假设下,可以直接获得后验概率的解析解;EKF是非线性高斯模型,通过泰勒分解将非线性问题转化为线性问题,然后套用KF的方法求解,缺陷是线性化引入了线性误差且雅克比、海塞矩阵计算量大;而UKF也是非线性高斯模型,通过用有限的参数来近似随机量的统计特性,用统计的方法计算递推贝叶斯中各个积分项,从而获得了后验概率的均值和方差。

1.2 原理KF、EKF、UKF滤波问题是一个隐马尔科夫模型与贝叶斯定理的联合实现。

一般的状态模型可分为状态转移方程和观测方程,而状态一般都是无法直接观测到的,所以时隐马尔科夫模型。

然后,它将上一时刻获得的状态信息的后验分布作为新的先验分布,利用贝叶斯定理,建立一个贝叶斯递推过程,从而得到了贝叶斯递推公式,像常用的卡尔曼滤波、扩展卡尔曼滤波、不敏卡尔曼滤波以及粒子滤波都是通过不同模型假设来近似最优贝叶斯滤波得到的。

这也是滤波问题的基本思路。

所有贝叶斯估计问题的目的都是求解感兴趣参数的后验概率密度。

并且后验概率的求解是通过递推计算目标状态后验概率密度的方法获得的。

在贝叶斯框架下,通过状态参数的先验概率密度和观测似然函数来求解估计问题;在目标跟踪背景下(隐马尔科夫模型),目标动态方差决定状态转移概率,观测方程决定释然函数。

一般化的整个计算过程可以分为3步:01. 一步状态预测:通过状态转移概率及上一时刻的后验概率算出一步预测概率分布。

卡尔曼滤波算法原理及应用

卡尔曼滤波算法原理及应用

卡尔曼滤波算法原理及应⽤卡尔曼滤波是⼀种⾼效率的递归滤波器,它能够从⼀系列的不完全及包含噪声的测量中,估计动态系统的状态。

卡尔曼滤波在技术领域有许多的应⽤,常见的有飞机及太空船的导引、导航及控制。

卡尔曼算法主要可以分为两个步骤进⾏:预测和更新。

基于最⼩均⽅误差为最佳估计准则,利⽤上⼀时刻的估计值和状态转移矩阵进⾏预测,⽤测量值对预测值进⾏修正,得到当前时刻的估计值。

卡尔曼算法公式预测:1. ˆs(n |n −1)=A ˆs (n −1|n −1)2. P (n )=A ξ(n −1)A T +Q 更新:3. G (n )=P (n )C T [CP (n )C T +R ]−14. ξ(n )=(I −G (n )C )P (n )5. ˆs(n |n )=ˆs (n |n −1)+G (n )[x (n )−C ˆs (n |n −1)]利⽤上⾯五个式⼦可以递推得到状态的估计值ˆs (n |n )。

⽂章的组织如下:1.基本模型及假设2.卡尔曼算法原理及推导3.卡尔曼滤波算法举例4.Matlab 程序1.基本模型与假设状态⽅程(描述物体运动状态)s (n )=As (n −1)+w (n )测量⽅程(利⽤探测器等器件获取物体状态参数)x (n )=Cs (n )+v (n )其中w (n )为过程噪声,v (n )为测量噪声。

假设:w (n ),v (n ),为独⽴零均值的⽩噪声过程,即E [w (n )w T (k )]=Q (n ),n =k 0,n ≠k E [v (n )v T (k )]=R (n ),n =k 0,n ≠kv (n )和s (n )、w (n )不相关,即E [v (n )s (n )]=0E [v (n )w (n )]=02.卡尔曼算法原理及推导基于最⼩均⽅误差准则,通过观测值x (n )求真实信号s (n )的线性⽆偏最优估计。

已知上⼀时刻的估计值ˆs(n −1|n −1)利⽤状态⽅程对s (n )进⾏预测,最佳预测为{{ˆs(n|n−1)=Aˆs(n−1|n−1)利⽤测量⽅程对x(n)进⾏预测,最佳预测为ˆx(n|n−1)=Cˆs(n|n−1)=CAˆs(n−1|n−1)噪声不参与预测。

卡尔曼滤波原理及应用

卡尔曼滤波原理及应用

卡尔曼滤波原理及应用
卡尔曼滤波是一种用于估计系统状态的有效方法,它可以通过对系统的动态模型和测量数据进行融合,提供对系统状态的最优估计。

本文将介绍卡尔曼滤波的基本原理和其在实际应用中的一些案例。

首先,我们来了解一下卡尔曼滤波的基本原理。

卡尔曼滤波是一种递归算法,它通过不断地更新状态估计和协方差矩阵来提供对系统状态的最优估计。

其核心思想是利用系统的动态模型和测量数据,通过加权融合的方式来不断修正对系统状态的估计,从而实现对系统状态的准确跟踪。

在实际应用中,卡尔曼滤波被广泛应用于导航、目标跟踪、信号处理等领域。

以导航为例,卡尔曼滤波可以通过融合GPS测量数据和惯性测量数据,提供对车辆位置和速度的准确估计,从而实现精准导航。

在目标跟踪领域,卡尔曼滤波可以通过融合雷达测量数据和视觉测量数据,提供对目标位置和速度的最优估计,从而实现对目标的准确跟踪。

除了上述应用之外,卡尔曼滤波还被广泛应用于信号处理领域。

例如,在通信系统中,卡尔曼滤波可以通过融合接收信号和信道模型,提供对信号的最优估计,从而实现对信号的准确恢复。

在图像处理领域,卡尔曼滤波可以通过融合不同时间点的图像信息,提供对目标位置和运动轨迹的最优估计,从而实现对目标的准确跟踪。

总的来说,卡尔曼滤波是一种非常有效的状态估计方法,它通过对系统的动态模型和测量数据进行融合,提供对系统状态的最优估计。

在实际应用中,卡尔曼滤波被广泛应用于导航、目标跟踪、信号处理等领域,为这些领域的应用提供了重要的技术支持。

希望本文能够帮助读者更好地理解卡尔曼滤波的原理和应用,并为相关领域的研究和应用提供一些参考。

拓展卡尔曼滤波原理

拓展卡尔曼滤波原理

拓展卡尔曼滤波原理一、引言卡尔曼滤波是一种用于估计系统状态的优化滤波方法,广泛应用于控制系统、导航系统、信号处理等领域。

然而,在某些实际应用中,标准的卡尔曼滤波可能无法满足需求。

因此,拓展卡尔曼滤波(Extended Kalman Filter,EKF)应运而生。

本文将介绍拓展卡尔曼滤波的原理和应用。

二、传统卡尔曼滤波传统的卡尔曼滤波适用于线性系统,其核心思想是通过状态转移方程和观测方程来更新系统状态的估计值。

然而,实际系统往往是非线性的,因此传统卡尔曼滤波无法直接应用。

三、拓展卡尔曼滤波原理拓展卡尔曼滤波通过利用泰勒级数展开来近似非线性函数,从而使非线性系统也可以使用卡尔曼滤波进行状态估计。

其基本思想是在线性化的系统模型上运用卡尔曼滤波,通过线性化的方式来逼近非线性系统的真实行为。

具体而言,拓展卡尔曼滤波通过在非线性系统的状态转移方程和观测方程中引入雅可比矩阵(Jacobian matrix)来近似非线性函数。

雅可比矩阵是非线性函数在某一点的一阶偏导数矩阵,用于描述非线性函数的局部线性化。

在拓展卡尔曼滤波中,状态转移方程和观测方程的线性化可以分为两个步骤:预测步骤和更新步骤。

1. 预测步骤:预测步骤通过状态转移方程进行状态预测,并利用预测误差协方差矩阵来估计预测误差的不确定性。

在拓展卡尔曼滤波中,状态转移方程被线性化为一阶泰勒级数展开形式。

通过对非线性函数进行一阶泰勒级数展开,可以得到一个线性状态转移方程。

2. 更新步骤:更新步骤通过观测方程来更新状态估计值和预测误差协方差矩阵。

观测方程同样需要进行线性化,通过对非线性函数进行一阶泰勒级数展开来得到一个线性观测方程。

利用预测误差协方差矩阵和观测噪声协方差矩阵,可以计算卡尔曼增益,进而更新状态估计值和预测误差协方差矩阵。

四、拓展卡尔曼滤波应用拓展卡尔曼滤波在很多领域都有广泛的应用。

其中,最典型的应用之一是在导航系统中的位置和姿态估计。

由于导航系统中的传感器往往具有非线性特性,传统的卡尔曼滤波无法准确估计位置和姿态。

卡尔曼滤波的原理及应用自己总结

卡尔曼滤波的原理及应用自己总结

卡尔曼滤波的原理及应用自己总结卡尔曼滤波的原理以及应用滤波,实质上就是信号处理与变换的过程。

目的是去除或减弱不想要成分,增强所需成分。

卡尔曼滤波的这种去除与增强过程是基于状态量的估计值和实际值之间的均方误差最小准则来实现的,基于这种准则,使得状态量的估计值越来越接近实际想要的值。

而状态量和信号量之间有转换的关系,所以估计出状态量,等价于估计出信号量。

所以不同于维纳滤波等滤波方式,卡尔曼滤波是把状态空间理论引入到对物理系统的数学建模过程中来,用递归方法解决离散数据线性滤波的问题,它不需要知道全部过去的数据,而是用前一个估计值和最近一个观察数据来估计信号的当前值,从而它具有运用计算机计算方便,而且可用于平稳和不平稳的随机过程(信号),非时变和时变的系统的优越性。

卡尔曼滤波属于一种软件滤波方法,概括来说其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。

其所得到的解是以估计值的形式给出的。

卡尔曼滤波过程简单来说主要包括两个步骤:状态变量的预估以及状态变量的校正。

预估过程是不考虑过程噪声和量测噪声,只是基于系统本身性质并依靠前一时刻的估计值以及系统控制输入的一种估计;校正过程是用量测值与预估量测值之间的误差乘以一个与过程噪声和量测噪声相关的增益因子来对预估值进行校正的,其中增益因子的确定与状态量的均方误差有关,用到了使均方误差最小的准则。

而这一过程中体现出来的递归思想即是:对于当前时刻的状态量估计值以及均方误差预估值实时进行更新,以便用于下一时刻的估计,使得系统在停止运行之前能够源源不断地进行下去。

下面对于其数学建模过程进行详细说明。

1.状态量的预估(1)由前一时刻的估计值和送给系统的可控制输入来预估计当前时刻状态量。

X(k|k-1)=A X(k-1|k-1)+B U(k)其中,X(k-1|k-1)表示前一时刻的估计值,U(k)表示系统的控制输入,X(k|k-1)表示由前一时刻估计出来的状态量的预估计值,A表示由k-1时刻过渡到k时刻的状态转移矩阵,B表示控制输入量与状态量之间的一种转换因子,这两个都是由系统性质来决定的。

卡尔曼滤波起源发展原理及应用

卡尔曼滤波起源发展原理及应用

附录:kalman滤波(起源、发展、原理、应用)1、Kalman滤波起源及发展1960年,匈牙利数学家卡尔曼发表了一篇关于离散数据线性滤波递推算法的论文,这意味着卡尔曼滤波的诞生。

斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器,卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。

关于这种滤波器的论文由Swerling (1958)、Kalman (1960)与Kalman and Bucy (1961)发表.卡尔曼滤波是一种有着相当广泛应用的滤波方法,但它既需要假定系统是线性的,又需要认为系统中的各个噪声与状态变量均呈高斯分布,而这两条并不总是确切的假设限制了卡尔曼滤波器在现实生活中的应用。

扩展卡尔曼滤波器(EKF)极大地拓宽了卡尔曼滤波的适用范围。

EKF的基本思路是,假定卡尔曼滤滤对当前系统状态估计值非常接近于其真实值,于是将非线性函数在当前状态估计值处进行台劳展开并实现线性化。

另一种非线性卡尔曼滤波叫线性化卡尔曼滤波。

它与EKF的主要区别是前者将非线函数在滤波器对当前系统状态的最优估计值处线性化,而后者因为预先知道非线性系统的实际运行状态大致按照所要求、希望的轨迹变化,所以这些非线性化函数在实际状态处的值可以表达为在希望的轨迹处的台劳展开式,从而完成线性化。

不敏卡尔曼滤波器(UKF)是针对非线性系统的一种改进型卡尔曼滤波器。

UKF处理非线性系统的基本思路在于不敏变换,而不敏变换从根本上讲是一种描述高斯随机变量在非线性化变换后的概率分布情况的方法。

不敏卡尔曼滤波认为,与其将一个非线性化变换线性化、近似化,还不如将高斯随机变量经非线性变换后的概率分布情况用高斯分布来近似那样简单,因而不敏卡尔曼滤波算法没有非线性化这一步骤。

在每一定位历元,不敏卡尔曼滤波器按照一套公式产生一系列样点,每一样点均配有一个相应的权重,而这些带权的样点被用来完整地描述系统状态向量估计值的分布情况,它们替代了原先卡尔曼滤波器中的状态向量估计值及协方差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

k 1 k t
1 0 F 0 0 0
0 0 t 1 0 0 1 0 0 0 0 0 0 1 0
t ( ax _ k sin ay cos ) t ( ax _ k cos ay sin ) t 1 0
现在我们有了现在状态的预测结果,然后我们再收集现 在状态的测量值。结合预测值和测量值,我们可以得到 现在状态(k) 的最优化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1))
其中Kg为卡尔曼增益(Kalman Gain): Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R)
由于我们用于估算k时刻的实际温度有两个温度值,分别是23 度和25度。究竟实际温度是多少呢?相信自己还是相信温度计 呢?究竟相信谁多一点,我们可以用他们的协方差来判断。 Kg^2=5^2/(5^2+4^2),所以Kg=0.78 ,我们可以估算出k 时刻 的实际温度值是:23+0.78* (25-23)=24.56度。可以看出,因为 温度计的协方差比较小(比较相信温度计),所以估算出的最 优温度值偏向温度计的值。
扩展卡尔曼滤波原理及其应用
假设当前室内温度仅跟上一时刻有关 温度计观测(摄氏-〉华氏)
根据◎但变化中可能有误差
温度计观测(摄氏-〉华氏)
◎读数可能有误差
两种噪声互不相关 根据连续的观测值来推算实际温度变化
根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟 的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单 位)。 假设你对你的经验不是 100%的相信,可能会有上下偏差几度。我 们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是 这些偏差跟前后时间是没有关系的而且符合高斯分配( Gaussian Distribution)。 我们在房间里放一个温度计,但是这个温度计也不准确的,测量 值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。
xodo y odo imu odo
1 0 H 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 1
角真实值:164度
IMU数据
编码器数据
融合数据
位置坐标记录
里程计数据
融合数据
对于某一分钟我们有两个有关于该房间的温度值:根据经验的 预测值(系统的预测值)和温度计的值(测量值)。 假如我们要估算k 时刻的是实际温度值。首先要根据k-1 时刻的 温度值,来预测k 时刻的温度。因为相信温度是恒定的,所以 得到k 时刻的温度预测值是跟k-1 时刻一样的,假设是23度,同 时该值的高斯噪声的偏差是5度 (5是这样得到的:如果k-1 时刻估算出的最优温度值的偏差是 3,你对自己预测的不确定度是4度,他们平方相加再开方,就 是5)。 从温度计那里得到了k 时刻的温度值,假设是25度,同时该值 的偏差是4度。
1. 首先我们要利用系统的过程模型,来预测下一状态的系 统。假设现在的系统状态是k ,根据系统的模型,可以基 于系统的上一状态而预测出现在状态: X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1) 式(1) 中,X(k|k-1) 是利用上一状态预测的结果,X(k-1|k-1) 是上一状态最优的结果,U(k)为现在状态的控制量,如果 没有控制量,它可以为0。
f ( xk 1 ) F x h ( xk / k 1 ) Hk x
xk 1 xk vx _ k t yk 1 yk v y _ k t vx _ k 1 vx _ k (ax _ k cos ay sin ) t v y _ k 1 v y _ k (ax _ k sin ay cos ) t
……… (3)
……… (4)
到现在为止,我们已经得到了k 状态下最优的估算值X(k|k)。 但是为了要另卡尔曼滤波器不断的运行下去直到系统过程 结束,我们还要更新k状态下X(k|k)的covariance: P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)
其中I 为1的矩阵,对于单模型单测量,I=1。当系统进入 k+1状态时,P(k|k)就是式子(2) 的P(k-1|k-1)。这样,算法就 可以自回归的运算下去。
现在我们已经得到k时刻的最优温度值了,下一步就 是要进入k+1时刻,进行新的最优估算。
在进入k+1时刻之前,我们还要算出k 时刻那个最优值(24.56度)的 偏差。算法如下:((1-Kg)*5^2) ^0.5=2.35。这里的5就是上面的k时刻 你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k 时刻估算出的最优温度值的偏差(对应于上面的3)。
2. 到现在为止,我们的系统结果已经更新了,可是,对应 于X(k|k-1) 的covariance还没更新。我们用P表示covariance:
P(k|k-1)=A P(k-1|k-1) A’+Q ……… (2)
式(2) 中,P(k|k-1) 是X(k|k-1) 对应的covariance,P(k-1|k-1) 是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是 系统过程激励噪声协方差。式子1,2就是卡尔曼滤波器 5个公式当中的前两个,也就是对系统的预测。
相关文档
最新文档