几种卡尔曼滤波算法理论

合集下载

卡尔曼滤波算法原理

卡尔曼滤波算法原理

卡尔曼滤波算法原理一、引言卡尔曼滤波(Kalman Filtering)是一种数学方法,用于模拟系统的状态并估计它的未来状态。

它在模拟和估计过程中可以融合各种不同类型的信息,使它们变得更准确,同时也可以处理噪声和不确定性。

卡尔曼滤波算法是一种用于处理系统和测量噪声较大的现实世界中的信号的有用工具,其应用范围涵盖了科学,工程和技术,广泛应用于航空、语音处理、图像处理、机器人、控制、通信和其他领域。

二、原理卡尔曼滤波算法基于两个假设:1. 系统的未来状态只取决于它当前的状态。

2. 测量噪声是有规律的,可以用统计方法进行估计。

卡尔曼滤波算法通过利用当前的状态估计和测量结果来更新估计值,从而利用历史数据改善未来状态的估计。

卡尔曼滤波算法通过两个步骤来实现:预测和更新。

预测步骤:预测步骤基于当前的状态估计值,使用模型计算出未来状态的估计值,这一步骤称为预测步骤,是融合当前状态估计值和模型之间的过程。

更新步骤:在更新步骤中,将估计的状态与测量的状态进行比较,并根据测量值对估计值进行调整,从而使估计值更准确。

三、应用卡尔曼滤波算法被广泛应用于航空、语音处理、图像处理、机器人、控制、通信等多个领域,可以用于估计各种复杂的系统状态,如航空器的位置和姿态、机器人的位置和速度、复杂的动力学系统的状态和参数、图像跟踪算法的参数等。

卡尔曼滤波算法也被广泛用于经济分析和金融预测,用于对市场的行为及其影响进行预测,以便更有效地做出决策。

四、结论卡尔曼滤波算法是一种有效的数学方法,可以有效地处理系统和测量噪声较大的现实世界中的信号,并在多个领域得到广泛应用,如航空、语音处理、图像处理、机器人、控制、通信等,也被广泛用于经济分析和金融预测。

卡尔曼滤波器分类及基本公式

卡尔曼滤波器分类及基本公式

式上,卡尔曼滤波器是5条公式。
对于解决很大部分的问题,他是最优,效率最高甚至 是最有用的。他的广泛应用已经超过了30年,包括机器人 导航、控制,传感器数据融合甚至在军事方面的雷达系统 以及导弹追踪等等。而近年来更被应用于计算机图像处理,
例如头脸识别、图像分割、图像边缘检测等等。
卡尔曼滤波的特点
卡尔曼滤波的特点
你从温度计那里得到了 k时刻的温度值,假设是25 度,同时该
值的偏差是 4 度。
卡尔曼滤波的基本方程
例子
现在,我们用于估算K时刻房间的实际温度有两个温度值:估计值
23度和测量值25度。究竟实际温度是多少呢?是相信自己还是相信 温度计?究竟相信谁多一点?我们需要用他们的均方误差来判断。
52 因为, 2 2 H 0.78(*公式三),所以我们可以估算出K时 H 5 4 刻的最优温度值为:23 0.78* (25 23) 24.56 度(*公式四)。
度。
卡尔曼滤波的基本方程
例子
假如我们要估算 k 时刻的实际温度值。首先你要根据 k-1 时刻
的温度值,来预测 k 时刻的温度(K时刻的经验温度)。因为 你相信温度是恒定的,所以你会得到 k 时刻的温度预测值是跟 k-1 时刻一样的,假设是 23 度(*公式一),同时该值(预测 值)的高斯噪声的偏差是 5 度(5 是这样得到的:如果 k-1 时 刻估算出的最优温度值的偏差是 3,你对自己预测的不确定度 是 4 度,他们平方相加再开方,就是 5(*公式二)) 。然后,
Qk
为过程噪声的协方差,其为非负定阵; 为测量噪声的协方差,其为正定阵。
Rk
1 基于离散系统模型的卡尔曼滤波的基本公式 1.3 离散型卡尔曼滤波方程的一般形式

卡尔曼滤波器的五个公式

卡尔曼滤波器的五个公式

卡尔曼滤波器的五个公式
卡尔曼滤波器(Kalman Filter)的五个公式如下:
1. 预测状态:
x̂_k = F_k * x̂_k-1 + B_k * u_k
其中,x̂_k为当前时刻k的状态估计值,F_k为状态转移矩阵,x̂_k-1为上一时刻k-1的状态估计值,B_k为外部输入矩阵,u_k为外部输入。

2. 预测误差协方差:
P_k = F_k * P_k-1 * F_k^T + Q_k
其中,P_k为当前时刻k的状态估计误差协方差矩阵,P_k-1为上一时刻k-1的状态估计误差协方差矩阵,Q_k为系统过程噪声的协方差矩阵。

3. 计算卡尔曼增益:
K_k = P_k * H_k^T * (H_k * P_k * H_k^T + R_k)^-1
其中,K_k为当前时刻k的卡尔曼增益矩阵,H_k为观测矩阵,R_k为观测噪声的协方差矩阵。

4. 更新状态估计值:
x̂_k = x̂_k + K_k * (z_k - H_k * x̂_k)
其中,z_k为当前时刻k的观测值。

5. 更新状态估计误差协方差:
P_k = (I - K_k * H_k) * P_k
其中,I为单位矩阵。

几种卡尔曼滤波算法理论

几种卡尔曼滤波算法理论

自适应卡尔曼滤波卡尔曼滤波发散的原因如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。

但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。

引起滤波器发散的主要原因有两点:(1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。

这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。

(2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。

如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。

这种由于计算舍入误差所引起的发散称为计算发散。

针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。

这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。

自适应滤波在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。

如果所建立的模型与实际模型不符可能回引起滤波发散。

自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。

在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。

自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。

在这里只讨论系统模型参数已知,而噪声统计参数Q和R未知情况下的自适应滤波。

由于Q和R等参数最终是通过增益矩阵K影响滤波值的,因此进行自适应滤波时,也可以不去估计Q和R等参数而直接根据量测数据调整K就可以了。

卡尔曼滤波研究综述

卡尔曼滤波研究综述
E[W(k)] =0,E[V(k)] =02-2-3
E[W(i)W(j)] =Rδij,
E[V(i)V(j)] =Qδij,
E[W(i)V(j)T] =0
初始状态为
a(0|0) = [ (0|0)T0 0]T2-2-4
状态变量为 a(k |k) = [ (k |k)TV(k |k)TW(k |k)T]T2-2-5
D(k/k) = (E-JkBk)Dx(k/k-1),
Jk= Dx(k/k-1)BTk[BkDx(k/k-1)]BTk+DΔ(k)]-1,
(k/k-1) =Φk,k-1 (k-1/k-1),
Dx(k/k-1) =Φk,k-1Dx(k-1/k-1)ΦTk,k-1+Γk,k-1DΔ(k-1)ΓTk,k-1.1-3
E(Ωk) =0;E(Δk) =0;cov(Ωk,Ωj) = DΩ(k)δkj,
cov(Δk,Δj) = Dk(k)δkj;cov(Ωk,Δj) =0;E(X0) =μx(0)
var(X0) = D(X0);cov(X0,Ωk) =0;cov(X0,Δk) =0.1-2
卡尔曼滤波递推公式为
(k/k) = (k/k-1)+Jk(Lk-Bk (k/k-1)),
更新阶段:
K(k+1) =P(k+1|k)HTk+1(Hk+1P(k+1|k)HTk+1+R(k+1))-12-1-8
(k+1) = (k+1|k)+K(k+1)[L(k+1)- (k+1k)]
P(k+1) = (I-K(k+1)Hk+1)P(k+1|k)(I-K(k+1)Hk+1)T+K(k+1)R(k+1)KT(k+1)

卡尔曼滤波器原理详解

卡尔曼滤波器原理详解

卡尔曼滤波器原理详解卡尔曼滤波器是一种用于估计系统状态的滤波算法,其原理基于状态空间模型和观测模型,并结合最小均方误差准则。

它通过使用系统动态方程和观测值,对系统的状态进行估计和预测,实现对噪声和偏差的最优抑制,从而提高状态估计的精度和稳定性。

1.预测步骤:预测步骤是基于系统的动态方程,利用上一时刻的状态估计和控制输入,预测系统的状态。

预测步骤中,通过状态转移矩阵A将上一时刻的状态估计值x(k-1)预测到当前时刻的状态估计值的先验估计值x'(k):x'(k)=A*x(k-1)+B*u(k-1)其中,x(k-1)为上一时刻的状态估计值,u(k-1)为控制输入。

预测步骤还要对状态估计值的协方差矩阵P(k-1)进行更新,通过状态转移矩阵A和系统的过程噪声协方差矩阵Q的关系:P'(k)=A*P(k-1)*A'+Q2.更新步骤:更新步骤是基于观测模型,利用当前时刻的观测值和预测的状态估计值,对状态进行校正和更新。

更新步骤中,首先计算观测残差z(k):z(k)=y(k)-H*x'(k)其中,y(k)为当前时刻的观测值,H为观测模型矩阵。

然后基于观测模型矩阵H、预测的状态估计值x'(k)和状态估计值的协方差矩阵P'(k),计算卡尔曼增益K(k):K(k)=P'(k)*H'*(H*P'(k)*H'+R)^(-1)其中,R为观测噪声协方差矩阵。

最后,利用卡尔曼增益对状态估计值进行校正和更新:x(k)=x'(k)+K(k)*z(k)更新步骤还要对状态估计值的协方差矩阵P'(k)进行更新,通过卡尔曼增益K(k)和观测噪声协方差矩阵R的关系:P(k)=(I-K(k)*H)*P'(k)其中,I为单位矩阵。

卡尔曼滤波器的主要优点在于可以根据系统的动态方程和观测模型进行状态估计,对于动态系统和噪声的建模具有一定的灵活性。

卡尔曼滤波算法-数据同化的经典算法

卡尔曼滤波算法-数据同化的经典算法

在现代科学和工程领域中,我们经常需要处理大量的数据,以便进行预测、估计或控制。

然而,由于各种原因,真实的数据通常是不完整或带有噪声的。

为了更好地利用这些数据,我们需要一些有效的方法来处理这些不完整和带有噪声的数据。

卡尔曼滤波算法就是这样一种能够有效处理不完整和带有噪声数据的经典算法。

二、卡尔曼滤波算法的基本原理卡尔曼滤波算法是一种用于实时估计系统状态的算法,它最初是由Rudolf E. Kálmán在1960年提出的。

该算法通过一系列线性动态系统方程和观测方程,将系统的状态进行更新和校正,从而得到更精确的状态估计。

三、卡尔曼滤波算法的数学模型1. 状态方程在卡尔曼滤波算法中,通常假设系统的状态具有线性动态变化,并且满足高斯分布。

系统的状态方程可以用如下形式表示:x(k+1) = Ax(k) + Bu(k) + w(k)其中,x(k)表示系统在时刻k的状态,A表示状态转移矩阵,B 表示外部控制输入矩阵,u(k)表示外部控制输入,w(k)表示系统状态的噪声,通常假设为高斯分布。

2. 观测方程观测方程用于描述系统的测量值与状态之间的关系,通常可以表z(k) = Hx(k) + v(k)其中,z(k)表示系统在时刻k的观测值,H表示观测矩阵,v(k)表示观测噪声,也通常假设为高斯分布。

四、卡尔曼滤波算法的基本步骤卡尔曼滤波算法的基本步骤包括预测和更新两个步骤:1. 预测步骤预测步骤用于根据上一时刻的状态估计和外部控制输入,预测系统在当前时刻的状态。

预测步骤可以用如下公式表示:x^(k|k-1) = Ax^(k-1|k-1) + Bu(k)P(k|k-1) = AP(k-1|k-1)A^T + Q其中,x^(k|k-1)表示时刻k的状态的预测值,P(k|k-1)表示状态预测值的协方差矩阵,Q表示状态噪声的协方差矩阵。

2. 更新步骤更新步骤用于根据当前时刻的观测值,对预测得到的状态进行校正。

卡尔曼滤波基础知识

卡尔曼滤波基础知识

卡尔曼滤波基础知识卡尔曼滤波(Kalman filtering)是一种常用于估计被测量的物理系统状态的算法。

它最初在20世纪60年代由Rudolf Kalman发明,并被广泛应用于自动控制、导航、机器人、计算机视觉、信号处理等领域。

卡尔曼滤波的基本原理是通过测量系统中的输入和输出信号,得出最优的状态估计。

它利用数学模型来描述系统的动态行为,并从中预测未来状态。

此外,它还使用实际测量的数据来校正预测结果,从而提高估计的准确性。

卡尔曼滤波主要分为两个阶段:预测阶段和更新阶段。

预测阶段通过数学模型预测系统的状态,并计算出其协方差矩阵。

更新阶段则使用实际测量的数据进行校正,进一步提高估计的准确性。

卡尔曼滤波的数学模型通常以状态空间形式表示。

状态空间是一个向量空间,可以将系统的状态表示为该空间中的一个向量。

在状态空间中,系统状态和测量数据可以表示为向量和矩阵的形式,从而简化了卡尔曼滤波的计算。

卡尔曼滤波的估计过程涉及多个概率分布的计算,包括状态先验分布、状态后验分布、观测先验分布和观测后验分布等。

这些分布都可以通过贝叶斯公式进行计算,从而得出最优的状态估计。

卡尔曼滤波具有许多优点,最主要的是它可以通过测量数据自适应地调整估计的精度,因此可以很好地应用于动态和噪声环境下的系统。

此外,它还可以处理多个输入和输出,以及随时间变化的系统参数。

然而,卡尔曼滤波也有一些局限性。

例如,在高噪声环境下,其精度可能会受到限制。

此外,它对测量数据的特性和系统参数的行为做了一些假设,因此可能不适用于某些特殊情况。

在实际应用中,卡尔曼滤波通常需要与其他算法一起使用。

例如,它可以与模糊逻辑、神经网络等算法相结合,以提高估计的精度和鲁棒性。

此外,它还可以与传感器融合技术一起使用,以利用多个传感器的信息,进一步提高估计的准确性。

总之,卡尔曼滤波是一种强大的估计算法,可以应用于各种物理系统,并在自动控制、导航、机器人、计算机视觉、信号处理等领域取得了广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自适应卡尔曼滤波卡尔曼滤波发散的原因如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。

但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。

引起滤波器发散的主要原因有两点:(1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。

这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。

(2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。

如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。

这种由于计算舍入误差所引起的发散称为计算发散。

针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。

这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。

自适应滤波在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。

如果所建立的模型与实际模型不符可能回引起滤波发散。

自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。

在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。

自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。

在这里只讨论系统模型参数已知,而噪声统计参数Q和R未知情况下的自适应滤波。

由于Q和R等参数最终是通过增益矩阵K影响滤波值的,因此进行自适应滤波时,也可以不去估计Q和R等参数而直接根据量测数据调整K就可以了。

输出相关法自适应滤波的基本途径就是根据量测数据估计出输出函数序列}{C k ,再由}{C k 推算出最佳增益矩阵K ,使得增益矩阵K 不断地与实际量测数据}{C k 相适应。

.Sage-Husa 自适应卡尔曼滤波是在利用量测数据进行递推滤波时,通过时变噪声估计估值器,实时估计和修正系统噪声和量测噪声的统计特性,从而达到降低系统模型误差、抑制滤波发散提高哦滤波精度的目的。

k k k k k w x x +Φ=--11,k k k k v x H z +=⎪⎪⎩⎪⎪⎨⎧=====0)()(,)()(,)(Tj k kjk Tk k k k kj k Tk k k k v w E R v v E r v E Q w w E q w E δδ Sage-Husa 自适应卡尔曼滤波算法可描述为k k k k k z K x x ~ˆˆ1,+=- 111,1,ˆˆˆ----+Φ=k k k k k k q x xk k k k k k r xH z z ˆˆ~1,--=- 11,1,]ˆ[---+=kT k k k k T k k k k R H P H H P K 11,11,1,ˆ-----+ΦΦ=k T k k k k k k k Q P P1,)(--=k k k k k P H K I P.其中,k r ˆ、KR ˆ、k q ˆ和k Q ˆ由以下时变噪声统计估值器获得: )ˆ(ˆ)1(ˆ,1111k k k k k k k k x H z d r d r++++-+-= )~~(ˆ)1(ˆ1,11111T k k k k T k k k k k k H P H z z d R d R ++++++-+-=)ˆ(ˆ)1(ˆ,111k k k k k k k k x x d q d q+++Φ-+-=.)~~(ˆ)1(ˆ,1,1111111T k k k k k k T k T k k k k k k k P P K z z K d Q d Q ++++++++ΦΦ-++-=式中:111+--=k k bbd ,10<<b 为遗忘因子。

如果系统状态变量的维数比较高,而Sage-Husa 自适应滤波算法中又增加了对系统噪声统计特性的计算,计算量将大大增加,实时性也将难以得到保证。

除此之外,对于阶次较高的系统,Sage-Husa 自适应滤波算法中k R 和k Q 的在线估计有时会由于计算发散失去半正定性和正定性而出现滤波发散现象,此时Sage-Husa 自适应滤波算法的稳定性和收敛性不能完全保证。

基于极大似然准则的自适应卡尔曼滤波,通过系统状态方差阵和量测噪声方差阵实时估计系统噪声统计特性的变化,以保证滤波器更好地适应这种变化。

极大似然估计从系统量测量出现概率最大的角度估计,其特点是不仅考虑新息的变化,而且考虑新息协方差矩阵vk C 的变化。

它的量测噪声协方差矩阵Rˆ和系统噪声协方差矩阵Qˆ为: T kk k k vk k H P H C R 1,ˆˆ--= 1,11,11ˆ---+-=ΦΦ-+∆∆=∑k k k T k k k T i kN k i ikP P xx NQk k k k k k v K x xx =-=∆-1,ˆˆ ∑+-==kN k i T ii vk vv NC 11式中:1,ˆ--=k k k k zz v ,N 为平滑窗口的宽度。

扩展卡尔曼滤波最初提出的卡尔曼滤波基本理论只适用于状态方程和量测方程均为线性的随机线性高斯系统。

但是大部分系统是非线性的,其中还有许多事强非线性的。

非线性估计的核心就在于近似,给出非线性估计方法的不同就在于其近似处理的思想和实现手段不同。

近似的本质就是对难以计算的非线性模型施加某种数学变换,变换成线性模型,然后用Bayes 估计原理进行估计。

进一步说,非线性变换到线性变换主要有两种实现手段,一种是Taylor 多项式展开,一种是插值多项式展开。

Bucy 和Y.Sunahara 等人致力于研究将经典卡尔曼滤波理论扩展到非线性随机系统滤波估计中,提出了离散非线性随机系统扩展卡尔曼滤波(Extended kalman filter,以下简称EKF)。

EKF 是传统非线性估计中的代表,其基本思想是将非线性状态函数和量测函数进行局部线性化,即进行一阶Taylor 多项式展开,然后应用线性系统Kalman 滤波公式。

非线性离散系统状态方程和观测方程的一般形式如下所示kk k k k k k k k v u x g z w u x f x +=Γ+=+),(),(1 1-1式中:r k R u ∈为输入向量;p k R w ∈和q k R v ∈均为高斯白噪声,且互不相关,其统计特性为:其中,⎪⎩⎪⎨⎧=====0),(),(,0)(),(,0)(j k kj k j k k kjk j k k v w Cov R v v Cov v E Q w w Cov w E δδ式中,k Q 为过程激励噪声协方差矩阵,k R 为观测噪声协方差矩阵。

),(11--k k u x f 是一个非线性状态转换函数,),(11--k k u x g 是一个非线性量测函数。

每一个时刻点,根据一阶泰勒展开将),(11--k k u x f ,),(11--k k u x g 线性化,即将非线性状态函数)··(,f 和非线性量测函数)··(,g 围绕滤波值展开泰勒级数,并略去二阶以上项,得到)ˆ(),(),ˆ(),(ˆk k xx k k k k k k k xx x u x f u xf u x f k k -∂∂+≈= 1-2 )ˆ(),(),ˆ(),(ˆk k xx kk k k k k k xx x u x g u x g u x g k k -∂∂+≈- 1-3 定义k k xx kk k k x u x f ˆ),(ˆ=∂∂=Φ,k k xx kk k kx u x g H ˆ),(ˆ=∂∂=,根据式(1-1)、式(1-2)和式(1-3)可以得到非线性系统线性化后只与状态变量有关的表达式,如下⎪⎩⎪⎨⎧+-+≈Γ+Φ-+Φ≈+k k k k k k k k k k k k k k k k k v x H u xg x H z w x u x f x x ]ˆ),ˆ([ˆ]ˆ),ˆ([ˆ1 1-4式1-4中,注意到k k k k x u x f Φ-ˆ),ˆ(并非k x 的函数,kk k k x H u x g ˆ),ˆ(-并非k x 的函数,根据1-4近似结果,应用上节的Kalman 滤波器计算可以得到EKF 迭代算法:定义k k xx kk k k x u x f ˆ),(ˆ=∂∂=Φ,k k xx kk k kx u x g H ˆ),(ˆ=∂∂=,可得滤波方程初始条件 )var(),(ˆ0000x P x E x== 状态先验估计值 ),ˆ(ˆ111,---=k k k k u x f x误差协方差先验估计值 Tk k k k k T k k k k k k k Q P P 1,11,1,11,1,-------ΓΓ+ΦΦ= 增益矩阵 11,1,][---+=k T k k k k T k k k k R H P H H P K状态后验估计值)],ˆ([ˆˆ11,k k k k k k k u x g z K x x---+= 误差协方差后验估计值 1,)(--=k k k k k P H K I P无迹卡尔曼滤波(UKF )EKF 是一种次优非线性高斯滤波器,它采用对非线性函数进行线性化近似的方法,来计算状态分布经非线性函数传递之后的特性。

尽管EKF 得到了广泛的应用,但它依然存在自身无法克服的理论局限性:①要求非线性系统状态函数和量测函数必须是连续可微的,这限制了EKF 的应用范围;②对非线性函数的一阶线性化近似精度偏低,特别地,当系统具有强非线性时,EKF 估计精度严重下降,甚至发散;③需要计算非线性函数的雅克比矩阵,容易造成EKF 数值稳定性差和出现计算发散。

为了克服上述EKF 的缺陷,能够以较高的精度和较快的计算速度处理非线性高斯系统的滤波问题,Julier 等人根据确定性采样的基本思路,基于Unscented 变换(UT )提出了Unscented 卡尔曼滤波(UKF )。

与EKF 类似,UKF 仍继承了卡尔曼滤波器的基本结构,不同之处在于UKF 用Unscented 变换取代了EKF 中的局部线性化。

UKF 仍假设随机系统的状态必须服从高斯分布,但取消了对系统模型的限制条件,也就是说,不要求系统是近似线性的,同时,UKF 不需要计算雅克比矩阵,因此不要求状态函数和量测函数必须是连续可微的,它甚至可以应用于不连续系统。

相关文档
最新文档