几种卡尔曼滤波算法理论

合集下载

卡尔曼滤波算法原理

卡尔曼滤波算法原理

卡尔曼滤波算法原理一、引言卡尔曼滤波(Kalman Filtering)是一种数学方法,用于模拟系统的状态并估计它的未来状态。

它在模拟和估计过程中可以融合各种不同类型的信息,使它们变得更准确,同时也可以处理噪声和不确定性。

卡尔曼滤波算法是一种用于处理系统和测量噪声较大的现实世界中的信号的有用工具,其应用范围涵盖了科学,工程和技术,广泛应用于航空、语音处理、图像处理、机器人、控制、通信和其他领域。

二、原理卡尔曼滤波算法基于两个假设:1. 系统的未来状态只取决于它当前的状态。

2. 测量噪声是有规律的,可以用统计方法进行估计。

卡尔曼滤波算法通过利用当前的状态估计和测量结果来更新估计值,从而利用历史数据改善未来状态的估计。

卡尔曼滤波算法通过两个步骤来实现:预测和更新。

预测步骤:预测步骤基于当前的状态估计值,使用模型计算出未来状态的估计值,这一步骤称为预测步骤,是融合当前状态估计值和模型之间的过程。

更新步骤:在更新步骤中,将估计的状态与测量的状态进行比较,并根据测量值对估计值进行调整,从而使估计值更准确。

三、应用卡尔曼滤波算法被广泛应用于航空、语音处理、图像处理、机器人、控制、通信等多个领域,可以用于估计各种复杂的系统状态,如航空器的位置和姿态、机器人的位置和速度、复杂的动力学系统的状态和参数、图像跟踪算法的参数等。

卡尔曼滤波算法也被广泛用于经济分析和金融预测,用于对市场的行为及其影响进行预测,以便更有效地做出决策。

四、结论卡尔曼滤波算法是一种有效的数学方法,可以有效地处理系统和测量噪声较大的现实世界中的信号,并在多个领域得到广泛应用,如航空、语音处理、图像处理、机器人、控制、通信等,也被广泛用于经济分析和金融预测。

卡尔曼滤波器分类及基本公式

卡尔曼滤波器分类及基本公式

式上,卡尔曼滤波器是5条公式。
对于解决很大部分的问题,他是最优,效率最高甚至 是最有用的。他的广泛应用已经超过了30年,包括机器人 导航、控制,传感器数据融合甚至在军事方面的雷达系统 以及导弹追踪等等。而近年来更被应用于计算机图像处理,
例如头脸识别、图像分割、图像边缘检测等等。
卡尔曼滤波的特点
卡尔曼滤波的特点
你从温度计那里得到了 k时刻的温度值,假设是25 度,同时该
值的偏差是 4 度。
卡尔曼滤波的基本方程
例子
现在,我们用于估算K时刻房间的实际温度有两个温度值:估计值
23度和测量值25度。究竟实际温度是多少呢?是相信自己还是相信 温度计?究竟相信谁多一点?我们需要用他们的均方误差来判断。
52 因为, 2 2 H 0.78(*公式三),所以我们可以估算出K时 H 5 4 刻的最优温度值为:23 0.78* (25 23) 24.56 度(*公式四)。
度。
卡尔曼滤波的基本方程
例子
假如我们要估算 k 时刻的实际温度值。首先你要根据 k-1 时刻
的温度值,来预测 k 时刻的温度(K时刻的经验温度)。因为 你相信温度是恒定的,所以你会得到 k 时刻的温度预测值是跟 k-1 时刻一样的,假设是 23 度(*公式一),同时该值(预测 值)的高斯噪声的偏差是 5 度(5 是这样得到的:如果 k-1 时 刻估算出的最优温度值的偏差是 3,你对自己预测的不确定度 是 4 度,他们平方相加再开方,就是 5(*公式二)) 。然后,
Qk
为过程噪声的协方差,其为非负定阵; 为测量噪声的协方差,其为正定阵。
Rk
1 基于离散系统模型的卡尔曼滤波的基本公式 1.3 离散型卡尔曼滤波方程的一般形式

卡尔曼滤波器的五个公式

卡尔曼滤波器的五个公式

卡尔曼滤波器的五个公式
卡尔曼滤波器(Kalman Filter)的五个公式如下:
1. 预测状态:
x̂_k = F_k * x̂_k-1 + B_k * u_k
其中,x̂_k为当前时刻k的状态估计值,F_k为状态转移矩阵,x̂_k-1为上一时刻k-1的状态估计值,B_k为外部输入矩阵,u_k为外部输入。

2. 预测误差协方差:
P_k = F_k * P_k-1 * F_k^T + Q_k
其中,P_k为当前时刻k的状态估计误差协方差矩阵,P_k-1为上一时刻k-1的状态估计误差协方差矩阵,Q_k为系统过程噪声的协方差矩阵。

3. 计算卡尔曼增益:
K_k = P_k * H_k^T * (H_k * P_k * H_k^T + R_k)^-1
其中,K_k为当前时刻k的卡尔曼增益矩阵,H_k为观测矩阵,R_k为观测噪声的协方差矩阵。

4. 更新状态估计值:
x̂_k = x̂_k + K_k * (z_k - H_k * x̂_k)
其中,z_k为当前时刻k的观测值。

5. 更新状态估计误差协方差:
P_k = (I - K_k * H_k) * P_k
其中,I为单位矩阵。

几种卡尔曼滤波算法理论

几种卡尔曼滤波算法理论

自适应卡尔曼滤波卡尔曼滤波发散的原因如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。

但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。

引起滤波器发散的主要原因有两点:(1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。

这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。

(2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。

如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。

这种由于计算舍入误差所引起的发散称为计算发散。

针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。

这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。

自适应滤波在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。

如果所建立的模型与实际模型不符可能回引起滤波发散。

自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。

在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。

自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。

在这里只讨论系统模型参数已知,而噪声统计参数Q和R未知情况下的自适应滤波。

由于Q和R等参数最终是通过增益矩阵K影响滤波值的,因此进行自适应滤波时,也可以不去估计Q和R等参数而直接根据量测数据调整K就可以了。

卡尔曼滤波研究综述

卡尔曼滤波研究综述
E[W(k)] =0,E[V(k)] =02-2-3
E[W(i)W(j)] =Rδij,
E[V(i)V(j)] =Qδij,
E[W(i)V(j)T] =0
初始状态为
a(0|0) = [ (0|0)T0 0]T2-2-4
状态变量为 a(k |k) = [ (k |k)TV(k |k)TW(k |k)T]T2-2-5
D(k/k) = (E-JkBk)Dx(k/k-1),
Jk= Dx(k/k-1)BTk[BkDx(k/k-1)]BTk+DΔ(k)]-1,
(k/k-1) =Φk,k-1 (k-1/k-1),
Dx(k/k-1) =Φk,k-1Dx(k-1/k-1)ΦTk,k-1+Γk,k-1DΔ(k-1)ΓTk,k-1.1-3
E(Ωk) =0;E(Δk) =0;cov(Ωk,Ωj) = DΩ(k)δkj,
cov(Δk,Δj) = Dk(k)δkj;cov(Ωk,Δj) =0;E(X0) =μx(0)
var(X0) = D(X0);cov(X0,Ωk) =0;cov(X0,Δk) =0.1-2
卡尔曼滤波递推公式为
(k/k) = (k/k-1)+Jk(Lk-Bk (k/k-1)),
更新阶段:
K(k+1) =P(k+1|k)HTk+1(Hk+1P(k+1|k)HTk+1+R(k+1))-12-1-8
(k+1) = (k+1|k)+K(k+1)[L(k+1)- (k+1k)]
P(k+1) = (I-K(k+1)Hk+1)P(k+1|k)(I-K(k+1)Hk+1)T+K(k+1)R(k+1)KT(k+1)

卡尔曼滤波器原理详解

卡尔曼滤波器原理详解

卡尔曼滤波器原理详解卡尔曼滤波器是一种用于估计系统状态的滤波算法,其原理基于状态空间模型和观测模型,并结合最小均方误差准则。

它通过使用系统动态方程和观测值,对系统的状态进行估计和预测,实现对噪声和偏差的最优抑制,从而提高状态估计的精度和稳定性。

1.预测步骤:预测步骤是基于系统的动态方程,利用上一时刻的状态估计和控制输入,预测系统的状态。

预测步骤中,通过状态转移矩阵A将上一时刻的状态估计值x(k-1)预测到当前时刻的状态估计值的先验估计值x'(k):x'(k)=A*x(k-1)+B*u(k-1)其中,x(k-1)为上一时刻的状态估计值,u(k-1)为控制输入。

预测步骤还要对状态估计值的协方差矩阵P(k-1)进行更新,通过状态转移矩阵A和系统的过程噪声协方差矩阵Q的关系:P'(k)=A*P(k-1)*A'+Q2.更新步骤:更新步骤是基于观测模型,利用当前时刻的观测值和预测的状态估计值,对状态进行校正和更新。

更新步骤中,首先计算观测残差z(k):z(k)=y(k)-H*x'(k)其中,y(k)为当前时刻的观测值,H为观测模型矩阵。

然后基于观测模型矩阵H、预测的状态估计值x'(k)和状态估计值的协方差矩阵P'(k),计算卡尔曼增益K(k):K(k)=P'(k)*H'*(H*P'(k)*H'+R)^(-1)其中,R为观测噪声协方差矩阵。

最后,利用卡尔曼增益对状态估计值进行校正和更新:x(k)=x'(k)+K(k)*z(k)更新步骤还要对状态估计值的协方差矩阵P'(k)进行更新,通过卡尔曼增益K(k)和观测噪声协方差矩阵R的关系:P(k)=(I-K(k)*H)*P'(k)其中,I为单位矩阵。

卡尔曼滤波器的主要优点在于可以根据系统的动态方程和观测模型进行状态估计,对于动态系统和噪声的建模具有一定的灵活性。

卡尔曼滤波算法-数据同化的经典算法

卡尔曼滤波算法-数据同化的经典算法

在现代科学和工程领域中,我们经常需要处理大量的数据,以便进行预测、估计或控制。

然而,由于各种原因,真实的数据通常是不完整或带有噪声的。

为了更好地利用这些数据,我们需要一些有效的方法来处理这些不完整和带有噪声的数据。

卡尔曼滤波算法就是这样一种能够有效处理不完整和带有噪声数据的经典算法。

二、卡尔曼滤波算法的基本原理卡尔曼滤波算法是一种用于实时估计系统状态的算法,它最初是由Rudolf E. Kálmán在1960年提出的。

该算法通过一系列线性动态系统方程和观测方程,将系统的状态进行更新和校正,从而得到更精确的状态估计。

三、卡尔曼滤波算法的数学模型1. 状态方程在卡尔曼滤波算法中,通常假设系统的状态具有线性动态变化,并且满足高斯分布。

系统的状态方程可以用如下形式表示:x(k+1) = Ax(k) + Bu(k) + w(k)其中,x(k)表示系统在时刻k的状态,A表示状态转移矩阵,B 表示外部控制输入矩阵,u(k)表示外部控制输入,w(k)表示系统状态的噪声,通常假设为高斯分布。

2. 观测方程观测方程用于描述系统的测量值与状态之间的关系,通常可以表z(k) = Hx(k) + v(k)其中,z(k)表示系统在时刻k的观测值,H表示观测矩阵,v(k)表示观测噪声,也通常假设为高斯分布。

四、卡尔曼滤波算法的基本步骤卡尔曼滤波算法的基本步骤包括预测和更新两个步骤:1. 预测步骤预测步骤用于根据上一时刻的状态估计和外部控制输入,预测系统在当前时刻的状态。

预测步骤可以用如下公式表示:x^(k|k-1) = Ax^(k-1|k-1) + Bu(k)P(k|k-1) = AP(k-1|k-1)A^T + Q其中,x^(k|k-1)表示时刻k的状态的预测值,P(k|k-1)表示状态预测值的协方差矩阵,Q表示状态噪声的协方差矩阵。

2. 更新步骤更新步骤用于根据当前时刻的观测值,对预测得到的状态进行校正。

卡尔曼滤波基础知识

卡尔曼滤波基础知识

卡尔曼滤波基础知识卡尔曼滤波(Kalman filtering)是一种常用于估计被测量的物理系统状态的算法。

它最初在20世纪60年代由Rudolf Kalman发明,并被广泛应用于自动控制、导航、机器人、计算机视觉、信号处理等领域。

卡尔曼滤波的基本原理是通过测量系统中的输入和输出信号,得出最优的状态估计。

它利用数学模型来描述系统的动态行为,并从中预测未来状态。

此外,它还使用实际测量的数据来校正预测结果,从而提高估计的准确性。

卡尔曼滤波主要分为两个阶段:预测阶段和更新阶段。

预测阶段通过数学模型预测系统的状态,并计算出其协方差矩阵。

更新阶段则使用实际测量的数据进行校正,进一步提高估计的准确性。

卡尔曼滤波的数学模型通常以状态空间形式表示。

状态空间是一个向量空间,可以将系统的状态表示为该空间中的一个向量。

在状态空间中,系统状态和测量数据可以表示为向量和矩阵的形式,从而简化了卡尔曼滤波的计算。

卡尔曼滤波的估计过程涉及多个概率分布的计算,包括状态先验分布、状态后验分布、观测先验分布和观测后验分布等。

这些分布都可以通过贝叶斯公式进行计算,从而得出最优的状态估计。

卡尔曼滤波具有许多优点,最主要的是它可以通过测量数据自适应地调整估计的精度,因此可以很好地应用于动态和噪声环境下的系统。

此外,它还可以处理多个输入和输出,以及随时间变化的系统参数。

然而,卡尔曼滤波也有一些局限性。

例如,在高噪声环境下,其精度可能会受到限制。

此外,它对测量数据的特性和系统参数的行为做了一些假设,因此可能不适用于某些特殊情况。

在实际应用中,卡尔曼滤波通常需要与其他算法一起使用。

例如,它可以与模糊逻辑、神经网络等算法相结合,以提高估计的精度和鲁棒性。

此外,它还可以与传感器融合技术一起使用,以利用多个传感器的信息,进一步提高估计的准确性。

总之,卡尔曼滤波是一种强大的估计算法,可以应用于各种物理系统,并在自动控制、导航、机器人、计算机视觉、信号处理等领域取得了广泛应用。

卡尔曼滤波算法

卡尔曼滤波算法

卡尔曼滤波器不断的把covariance递归, 从而估算出最优的温度值。其运
行的很快,而且它只保留了上一时刻的covarian2c02e1/3。/28
12
三:卡尔曼滤波引例
2021/3/28
13
四:卡尔曼滤波算法数学推导
引入一个离散控制过程的系统。 该系统可用一个线性随机微分方程来描述:
X(k)=F X(k-1)+B U(k)+W(k) 加上系统的测量值:
五:卡尔曼滤波的典型应用—多传感器数据融合处理
数据融合的模型: (a)集中式融合系统;
(b)无反馈式分布融合系统;
(c)有反馈式分布融合系统; (d)有反馈的全并行系统
(c)有反馈式分布融合系统
融合中心到各传感器有反 馈通道,提高各传感器状态 估计和预测精度。
2021/3/28
27
五:卡尔曼滤波的典型应用—多传感器数据融合处理
• 卡尔曼滤波器源于他的博士论文和1960年 发表的论文《A New Approach to Linear Filtering and Prediction Problems》 (线性滤波与预测问题的新方法)。
卡尔曼将状态变量引入虑波理论,提出了递推滤波算法,建 立了后来被自动控制界称道的“卡尔曼滤波”。
25
五:卡尔曼滤波的典型应用—多传感器数据融合处理
数据融合的模型: (a)集中式融合系统;
(b)无反馈式分布融合系统;
(c)有反馈式分布融合系统; (d)有反馈的全并行系统
(b)无反馈式分布融合系统
各传感器分别滤波,将
各局部状态估计送给 融合中心进行融合,最 后给出融合结果。
2021/3/28
26
四:卡尔曼滤波算法数学推导

卡尔曼滤波器分类及基本公式概要课件

卡尔曼滤波器分类及基本公式概要课件

精确地描述系统的非线性特性。
无迹卡尔曼滤波器的计算较为复杂,但具有更高的估计精度和
03
稳定性,适用于一些高精度要求的非线性系统状态估计。
03
卡尔曼滤波器的基本公 式
状态方程
描述系统状态变化的数学表达式。
状态方程是描述系统状态变化的数学表达式,它基于系统的动态模型和当前状态 ,计算未来状态。在卡尔曼滤波器中,状态方程用于预测系统的下一个状态。
详细描述
卡尔曼增益矩阵的计算基于状态向量和误差 协方差矩阵,通过一系列数学运算得到。它 反映了新获取的测量值对状态估计的贡献程 度,以及旧信息的保留程度。在计算过程中 ,通常采用递推或迭代的方式进行计算,以 降低计算复杂度。
更新状态向量和误差协方差矩阵
总结词
在得到卡尔曼增益矩阵后,需要利用它来更 新状态向量和误差协方差矩阵,以完成一次 滤波过程。0203 Nhomakorabea改进
针对不同应用场景和需求,卡尔曼滤 波器不断有新的改进和优化算法出现 。
滤波器的应用领域
航空航天
卡尔曼滤波器在航空航天领域 中用于导航、姿态估计和卫星
轨道计算等。
无人驾驶
卡尔曼滤波器在无人驾驶汽车 中用于传感器数据处理、路径 规划和障碍物检测等。
机器人
卡尔曼滤波器在机器人领域中 用于定位、地图构建和姿态控 制等。
02
扩展卡尔曼滤波器通过将非线性函数进行线性化处 理,将非线性问题转化为线性问题进行解决。
03
扩展卡尔曼滤波器的计算相对复杂,但适用范围较 广,适用于大多数非线性系统的状态估计。
无迹卡尔曼滤波器
01
无迹卡尔曼滤波器是另一种针对非线性系统的改进型卡尔曼滤 波器。
02
无迹卡尔曼滤波器采用无迹变换方法处理非线性函数,能够更

卡尔曼滤波算法示例解析与公式推导

卡尔曼滤波算法示例解析与公式推导

本文将对卡尔曼滤波算法进行示例解析与公式推导,帮助读者更好地理解该算法的原理和应用。

文章将从以下几个方面展开:一、卡尔曼滤波算法的概念卡尔曼滤波算法是一种用于估计动态系统状态的线性无偏最优滤波算法。

它利用系统的动态模型和观测数据,通过迭代更新状态估计值,实现对系统状态的精确估计。

卡尔曼滤波算法最初是由美国工程师鲁道夫·卡尔曼在20世纪60年代提出,随后得到了广泛的应用和研究。

二、卡尔曼滤波算法的原理1. 状态空间模型在卡尔曼滤波算法中,系统的动态模型通常用状态空间模型表示。

状态空间模型由状态方程和观测方程组成,其中状态方程描述系统的演化规律,观测方程描述观测数据与状态之间的关系。

通过状态空间模型,可以对系统的状态进行预测,并与观测数据进行融合,从而估计系统的状态。

2. 卡尔曼滤波的预测与更新卡尔曼滤波算法以预测-更新的方式进行状态估计。

在预测阶段,利用系统的动态模型和之前时刻的状态估计值,对当前时刻的状态进行预测;在更新阶段,将预测值与观测数据进行融合,得到最优的状态估计值。

通过迭代更新,可以不断优化对系统状态的估计,实现对系统状态的精确跟踪。

三、卡尔曼滤波算法的示例解析以下通过一个简单的例子,对卡尔曼滤波算法进行具体的示例解析,帮助读者更好地理解该算法的应用过程。

假设有一个匀速直线运动的物体,其位置由x和y坐标表示,观测到的位置数据带有高斯噪声。

我们希望利用卡尔曼滤波算法对该物体的位置进行估计。

1. 状态空间模型的建立我们建立物体位置的状态空间模型。

假设物体在x和y方向上的位置分别由状态变量x和y表示,动态模型可以用如下状态方程描述:x(k+1) = x(k) + vx(k) * dty(k+1) = y(k) + vy(k) * dt其中,vx和vy分别为x和y方向的速度,dt表示时间间隔。

观测方程可以用如下形式表示:z(k) = H * x(k) + w(k)其中,z(k)为观测到的位置数据,H为观测矩阵,w(k)为观测噪声。

卡尔曼滤波详解

卡尔曼滤波详解

卡尔曼滤波详解卡尔曼滤波是一种常用的状态估计方法,它可以根据系统的动态模型和观测数据,对系统的状态进行估计。

卡尔曼滤波广泛应用于机器人导航、飞行控制、信号处理等领域。

本文将详细介绍卡尔曼滤波的原理、算法及应用。

一、卡尔曼滤波原理卡尔曼滤波的基本思想是利用系统的动态模型和观测数据,对系统的状态进行估计。

在卡尔曼滤波中,系统的状态被表示为一个向量,每个元素表示系统的某个特定状态量。

例如,一个机器人的状态向量可能包括机器人的位置、速度、方向等信息。

卡尔曼滤波的基本假设是系统的动态模型和观测数据都是线性的,而且存在噪声。

系统的动态模型可以表示为:x(t+1) = Ax(t) + Bu(t) + w(t)其中,x(t)表示系统在时刻t的状态向量,A是状态转移矩阵,B是控制矩阵,u(t)表示外部控制输入,w(t)表示系统的过程噪声。

观测数据可以表示为:z(t) = Hx(t) + v(t)其中,z(t)表示系统在时刻t的观测向量,H是观测矩阵,v(t)表示观测噪声。

卡尔曼滤波的目标是根据系统的动态模型和观测数据,估计系统的状态向量x(t)。

为了达到这个目标,卡尔曼滤波将状态估计分为两个阶段:预测和更新。

预测阶段:根据系统的动态模型,预测系统在下一个时刻的状态向量x(t+1)。

预测的过程可以表示为:x^(t+1|t) = Ax^(t|t) + Bu(t)其中,x^(t|t)表示在时刻t的状态向量的估计值,x^(t+1|t)表示在时刻t+1的状态向量的预测值。

卡尔曼滤波还需要对状态的不确定性进行估计,这个不确定性通常用协方差矩阵P(t)表示。

协方差矩阵P(t)表示状态向量估计值和真实值之间的差异程度。

预测阶段中,协方差矩阵也需要进行更新,更新的过程可以表示为:P(t+1|t) = AP(t|t)A' + Q其中,Q表示过程噪声的协方差矩阵。

更新阶段:根据观测数据,更新状态向量的估计值和协方差矩阵。

更新的过程可以表示为:K(t+1) = P(t+1|t)H'(HP(t+1|t)H' + R)^-1x^(t+1|t+1) = x^(t+1|t) + K(t+1)[z(t+1) - Hx^(t+1|t)]P(t+1|t+1) = (I - K(t+1)H)P(t+1|t)其中,K(t+1)表示卡尔曼增益,R表示观测噪声的协方差矩阵,I是单位矩阵。

卡尔曼滤波器分类及基本公式

卡尔曼滤波器分类及基本公式

xk xˆk/k1 Bk1uk1 Jk1Zk1 Hk Zk Ck xˆk/k1 Ck Bk1uk1
(5)滤波均方误差更新矩阵(K时刻的最优均方误差):
Pk I Hk Ck Pˆk/k1
1 基于离散系统模型的卡尔曼滤波的基本公式 1.4 离散型卡尔曼滤波基本方程使用要点
卡尔曼滤波的由来
卡尔曼滤波的由来
卡尔曼,全名Rudolf Emil Kalman, 匈牙利数学家,1930年出生于匈牙利 首都布达佩斯。1953,1954年于麻省 理工学院分别获得电机工程学士及硕 士学位。1957年于哥伦比亚大学获得 博士学位。我们在现代控制理论中要 学习的卡尔曼滤波器,正是源于他的 博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预 测问题的新方法)。
Pˆk /k1

* k ,k
1

Pk
1

(k*,k
1
)T


k
1Qk
T
1 k 1

Jk
S T T
1 k 1 k 1
(3)滤波增益方程(权重):
Hk

Pˆk /k1 CkT
Ck
Pˆk /k1 CkT
1
Rk
(4)滤波估计方程(K时刻的最优值):
Rk 为测量噪声的协方差,其为正定阵。
1 基于离散系统模型的卡尔曼滤波的基本公式 1.3 离散型卡尔曼滤波方程的一般形式
一般形式的卡尔曼滤波方程
(1)状态的一步预测方程:
xˆk /k1
* k ,k 1

几种卡尔曼滤波算法理论

几种卡尔曼滤波算法理论

几种卡尔曼滤波算法理论卡尔曼滤波(Kalman Filtering)是一种状态估计的方法,用于从不完全和带有噪声的观测数据中,估计出系统的状态。

它的基本思想是结合系统的动态模型和观测数据,通过最小化估计值与观测值之间的误差,实现对系统状态的准确估计。

以下是几种常见的卡尔曼滤波算法理论:1. 离散时间线性卡尔曼滤波(Discrete-Time Linear Kalman Filtering):这是最基本、最常用的卡尔曼滤波算法。

它适用于系统的动态模型和观测模型均为线性的情况。

该算法基于状态方程和观测方程,通过递推的方式估计系统的状态。

2. 扩展卡尔曼滤波(Extended Kalman Filtering):扩展卡尔曼滤波是一种非线性状态估计方法,用于处理非线性系统。

该算法通过在线性化非线性函数,将非线性系统转化为线性系统,然后应用离散时间线性卡尔曼滤波算法进行估计。

3. 无迹卡尔曼滤波(Unscented Kalman Filtering):无迹卡尔曼滤波是对扩展卡尔曼滤波的改进。

与扩展卡尔曼滤波通过线性化非线性函数来估计系统状态不同,无迹卡尔曼滤波通过选择一组特殊的采样点(称为Sigma点),通过这些采样点的传播来逼近非线性函数的统计特性。

4. 无过程噪声卡尔曼滤波(Kalman Filtering with No Process Noise):通常情况下,卡尔曼滤波算法假设系统的状态方程和观测方程中都存在噪声项,即过程噪声和观测噪声。

然而,在一些特殊的应用领域中,系统的状态方程并不包含过程噪声,只存在观测噪声。

无过程噪声卡尔曼滤波算法就是针对这种情况设计的。

5. 卡尔曼平滑(Kalman Smoothing):卡尔曼滤波算法是一种递推算法,只使用当前的观测数据和先前的状态估计,来估计当前的状态。

而卡尔曼平滑算法则是一种回溯算法,根据所有的观测数据来获得更优的对过去状态的估计。

卡尔曼平滑算法一般通过前向-后向过程来实现。

卡尔曼滤波算法

卡尔曼滤波算法

卡尔曼滤波算法卡尔曼滤波算法卡尔曼滤波器是⼀个“最优化⾃回归数据处理算法”。

对于解决⼤部分的问题,它是最优,效率最⾼甚⾄是最有⽤的。

其⼴泛应⽤已经超过30年,包括机器⼈导航,控制,传感器数据融合甚⾄在军事⽅⾯的雷达系统以及导弹追踪等。

近年来更被应⽤于计算机图像处理,列⼊,⾯部识别,图像分割,图像边缘检测等⽅⾯。

卡尔曼滤波原理⾸先要引⼊⼀个离散控制过程的系统,该系统可⽤⼀个线性随机微分⽅程来秒速:X(k)=AX(k-1)+BU(k)+W(k)(1)再加上系统的测量值:Z(k)=HX(k)+V(k)(2)上两式⼦中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。

A和B 是系统参数,对于多模型系统,它们为矩阵。

Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。

W(k)和V(k)分别表⽰过程和测量的噪声。

它们被假设成⾼斯⽩噪声,其协⽅差分别是Q,R,这⾥假设它们不随系统状态变化⽽变化。

由于满⾜上⾯的条件(线性随机微分系统,过程和测量都是⾼斯⽩噪声),卡尔曼滤波器是最优的信息处理器。

下⾯来估算系统的最优化输出。

⾸先利⽤系统的过程模型预测下个状态的系统。

假设现在的系统状态是k,根据系统的模型,可以基于系统的上⼀状态⽽预测出现在状态:X(k|k-1)=AX(k-1|k-1)+BU(k)(3)式(3)中,X(k|k-1)是利⽤上⼀个状态预测的结果,X(k-1|k-1)是上⼀个状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0.到现在为⽌,系统结果已经更新了,可是对应于X(k|k-1)的协⽅差还没有更新。

⽤P 表⽰协⽅差:P(k|k-1)=AP(k|k-1)A’+Q(4)式⼦(4)中P(k|k-1)是X(k|k-1)对应的协⽅差,P(k-1|k-1)是X(k-1|k-1)对应的协⽅差,A’表⽰A的转置矩阵,Q时系统过程的协⽅差。

式(3),式(4)就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。

不同形式的卡尔曼滤波

不同形式的卡尔曼滤波

不同形式的卡尔曼滤波卡尔曼滤波是一种经典的状态估计算法,用于从具有测量误差的传感器数据中估计真实的状态变量。

它在许多领域得到了广泛的应用,例如导航系统、机器人运动控制和金融市场预测等。

卡尔曼滤波的基本原理是通过对系统的预测和观测两个步骤进行迭代,利用系统模型和测量模型之间的权衡,融合实时的传感器数据和先验知识,得到对系统状态的最优估计。

除了基本的卡尔曼滤波,还有一些不同形式的卡尔曼滤波,可以根据特定的问题和需求进行调整和扩展。

以下是几种常见的卡尔曼滤波的不同形式:1.扩展卡尔曼滤波(EKF):当系统的模型是非线性的时候,基本的卡尔曼滤波无法直接应用。

扩展卡尔曼滤波通过在预测和观测步骤中使用线性化技术,将非线性问题转化为线性问题,从而解决了非线性系统的状态估计问题。

2.累积卡尔曼滤波(AEKF):在一些实时应用中,由于各种因素(例如传感器噪声、系统扰动)的累积误差,卡尔曼滤波的性能可能会逐渐下降。

累积卡尔曼滤波通过引入测量的方差信息来自适应地调整状态估计的协方差矩阵,以抵消累积误差的影响,从而提高滤波器的稳定性和性能。

3.无迹卡尔曼滤波(UKF):在一些情况下,对于复杂的非线性系统模型,EKF可能会出现线性化误差的问题,导致估计结果的不准确。

无迹卡尔曼滤波则通过将高斯分布在非线性函数上进行采样,并使用采样点的加权平均来逼近状态分布的均值和协方差矩阵,从而改善了估计的准确性。

4.多模型卡尔曼滤波(MMKF):在一些复杂的系统中,可能存在多个不同的模型来描述系统的行为。

多模型卡尔曼滤波通过使用多个卡尔曼滤波器并结合它们的估计结果,以获得对系统状态的多模型估计。

这种方法适用于系统在不同模式下的快速切换或不确定模型的情况。

总而言之,不同形式的卡尔曼滤波在处理特定问题和具体应用中,根据系统的特性和限制进行了改进和扩展。

这些滤波算法通过利用现有的信息和模型来提高状态估计的准确性、稳定性和鲁棒性,从而帮助我们更好地理解和预测复杂系统的行为。

卡尔曼滤波(Kalman Filter)原理与公式推导

卡尔曼滤波(Kalman Filter)原理与公式推导

一、背景---卡尔曼滤波的意义随着传感技术、机器人、自动驾驶以及航空航天等技术的不断发展,对控制系统的精度及稳定性的要求也越来越高。

卡尔曼滤波作为一种状态最优估计的方法,其应用也越来越普遍,如在无人机、机器人等领域均得到了广泛应用。

对于Kalman Filter的理解,用过的都知道“黄金五条”公式,且通过“预测”与“更新”两个过程来对系统的状态进行最优估计,但完整的推导过程却不一定能写出来,希望通过此文能对卡尔曼滤波的原理及状态估计算法有更一步的理解。

二、卡尔曼滤波的基本模型假设一离散线性动态系统的模型如下所示:x_{k} = A*x_{k-1} + B*u_{k} + w_{k-1}-------(1)z_{k} = H*x_{k} + v_{k} --------------------(2)其中,各变量表征的意义为:———————————————————————————x_{k}\Rightarrow 系统状态矩阵,-------, z_{k}\Rightarrow 状态阵的观测量(实测)A\Rightarrow 状态转移矩阵,-------, B\Rightarrow 控制输入矩阵H\Rightarrow 状态观测矩阵w_{k-1}\Rightarrow 过程噪声,-------,v_{k}\Rightarrow 测量噪声———————————————————————————如果大家学过《现代控制理论》的话,对上述模型的描述形式一定不会陌生,只是多了变量 w_{k-1} 与 v_{k} 。

其中,随机变量w_{k-1} 代表过程噪声(process noise), v_{k} 代表测量噪声(measurement noise),且为高斯白噪声,协方差分别为 Q 和 R ,即 p(w) \in N(0,Q) , p(v) \in N(0,R) 。

为什么要引入这两个变量呢?对于大多数实际的控制系统(如倒立摆系统)而言,它并不是一个严格的线性时变系统(Linear Time System),亦或系统结构参数的不确定性,导致估计的状态值x_{k} 存在偏差,而这个偏差值由过程噪声 w_{k} 来表征。

卡尔曼滤波器分类及基本公式

卡尔曼滤波器分类及基本公式

卡尔曼滤波器分类及基本公式根据其应用领域和实现方式,卡尔曼滤波器可以分为线性卡尔曼滤波器、扩展卡尔曼滤波器和无迹卡尔曼滤波器等。

1. 线性卡尔曼滤波器(Linear Kalman Filter):线性卡尔曼滤波器适用于状态变量和观测变量均为线性的情况。

它基于线性动态系统和高斯噪声的假设。

线性卡尔曼滤波器的基本公式为:预测步骤:$\hat{x}_{k,k-1} = F\hat{x}_{k-1,k-1} + Bu_{k-1}$$P_{k,k-1}=FP_{k-1,k-1}F^T+Q$更新步骤:$y_k = z_k - H\hat{x}_{k,k-1}$$S_k=HP_{k,k-1}H^T+R$$K_k=P_{k,k-1}H^TS_k^{-1}$$\hat{x}_{k,k} = \hat{x}_{k,k-1} + K_ky_k$$P_{k,k}=(I-K_kH)P_{k,k-1}$其中,$\hat{x}$ 表示状态变量的估计值,$P$ 表示状态变量估计值的方差,$F$ 表示状态转移矩阵,$B$ 表示输入矩阵,$u$ 表示系统输入,$Q$ 表示系统模型噪声协方差矩阵,$H$ 表示观测矩阵,$z$ 表示观测值,$y$ 表示观测残差,$R$ 表示观测噪声协方差矩阵,$K$ 表示卡尔曼增益,$I$ 表示单位矩阵。

2. 扩展卡尔曼滤波器(Extended Kalman Filter):扩展卡尔曼滤波器适用于状态变量和观测变量为非线性的情况。

它通过对非线性系统进行线性化,然后应用线性卡尔曼滤波器的思想来进行滤波。

扩展卡尔曼滤波器的基本公式与线性卡尔曼滤波器类似,只是在预测步骤和更新步骤中,将线性化的系统模型和观测模型代替原始非线性模型。

3. 无迹卡尔曼滤波器(Unscented Kalman Filter):无迹卡尔曼滤波器通过使用无迹变换,避免了非线性系统线性化的过程,从而提高了滤波精度,并且对于非线性系统更加稳健。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自适应卡尔曼滤波卡尔曼滤波发散的原因如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。

但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。

引起滤波器发散的主要原因有两点:(1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。

这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。

(2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。

如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。

这种由于计算舍入误差所引起的发散称为计算发散。

针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。

这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。

自适应滤波在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。

如果所建立的模型与实际模型不符可能回引起滤波发散。

自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。

在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。

自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。

在这里只讨论系统模型参数已知,而噪声统计参数Q和R未知情况下的自适应滤波。

由于Q和R等参数最终是通过增益矩阵K影响滤波值的,因此进行自适应滤波时,也可以不去估计Q和R等参数而直接根据量测数据调整K就可以了。

输出相关法自适应滤波的基本途径就是根据量测数据估计出输出函数序列}{C k ,再由}{C k 推算出最佳增益矩阵K ,使得增益矩阵K 不断地与实际量测数据}{C k 相适应。

.Sage-Husa 自适应卡尔曼滤波是在利用量测数据进行递推滤波时,通过时变噪声估计估值器,实时估计和修正系统噪声和量测噪声的统计特性,从而达到降低系统模型误差、抑制滤波发散提高哦滤波精度的目的。

k k k k k w x x +Φ=--11,k k k k v x H z +=⎪⎪⎩⎪⎪⎨⎧=====0)()(,)()(,)(Tj k kjk Tk k k k kj k Tk k k k v w E R v v E r v E Q w w E q w E δδ Sage-Husa 自适应卡尔曼滤波算法可描述为k k k k k z K x x ~ˆˆ1,+=- 111,1,ˆˆˆ----+Φ=k k k k k k q x xk k k k k k r xH z z ˆˆ~1,--=- 11,1,]ˆ[---+=kT k k k k T k k k k R H P H H P K 11,11,1,ˆ-----+ΦΦ=k T k k k k k k k Q P P1,)(--=k k k k k P H K I P.其中,k r ˆ、KR ˆ、k q ˆ和k Q ˆ由以下时变噪声统计估值器获得: )ˆ(ˆ)1(ˆ,1111k k k k k k k k x H z d r d r++++-+-= )~~(ˆ)1(ˆ1,11111T k k k k T k k k k k k H P H z z d R d R ++++++-+-=)ˆ(ˆ)1(ˆ,111k k k k k k k k x x d q d q+++Φ-+-=.)~~(ˆ)1(ˆ,1,1111111T k k k k k k T k T k k k k k k k P P K z z K d Q d Q ++++++++ΦΦ-++-=式中:111+--=k k bbd ,10<<b 为遗忘因子。

如果系统状态变量的维数比较高,而Sage-Husa 自适应滤波算法中又增加了对系统噪声统计特性的计算,计算量将大大增加,实时性也将难以得到保证。

除此之外,对于阶次较高的系统,Sage-Husa 自适应滤波算法中k R 和k Q 的在线估计有时会由于计算发散失去半正定性和正定性而出现滤波发散现象,此时Sage-Husa 自适应滤波算法的稳定性和收敛性不能完全保证。

基于极大似然准则的自适应卡尔曼滤波,通过系统状态方差阵和量测噪声方差阵实时估计系统噪声统计特性的变化,以保证滤波器更好地适应这种变化。

极大似然估计从系统量测量出现概率最大的角度估计,其特点是不仅考虑新息的变化,而且考虑新息协方差矩阵vk C 的变化。

它的量测噪声协方差矩阵Rˆ和系统噪声协方差矩阵Qˆ为: T kk k k vk k H P H C R 1,ˆˆ--= 1,11,11ˆ---+-=ΦΦ-+∆∆=∑k k k T k k k T i kN k i ikP P xx NQk k k k k k v K x xx =-=∆-1,ˆˆ ∑+-==kN k i T ii vk vv NC 11式中:1,ˆ--=k k k k zz v ,N 为平滑窗口的宽度。

扩展卡尔曼滤波最初提出的卡尔曼滤波基本理论只适用于状态方程和量测方程均为线性的随机线性高斯系统。

但是大部分系统是非线性的,其中还有许多事强非线性的。

非线性估计的核心就在于近似,给出非线性估计方法的不同就在于其近似处理的思想和实现手段不同。

近似的本质就是对难以计算的非线性模型施加某种数学变换,变换成线性模型,然后用Bayes 估计原理进行估计。

进一步说,非线性变换到线性变换主要有两种实现手段,一种是Taylor 多项式展开,一种是插值多项式展开。

Bucy 和Y.Sunahara 等人致力于研究将经典卡尔曼滤波理论扩展到非线性随机系统滤波估计中,提出了离散非线性随机系统扩展卡尔曼滤波(Extended kalman filter,以下简称EKF)。

EKF 是传统非线性估计中的代表,其基本思想是将非线性状态函数和量测函数进行局部线性化,即进行一阶Taylor 多项式展开,然后应用线性系统Kalman 滤波公式。

非线性离散系统状态方程和观测方程的一般形式如下所示kk k k k k k k k v u x g z w u x f x +=Γ+=+),(),(1 1-1式中:r k R u ∈为输入向量;p k R w ∈和q k R v ∈均为高斯白噪声,且互不相关,其统计特性为:其中,⎪⎩⎪⎨⎧=====0),(),(,0)(),(,0)(j k kj k j k k kjk j k k v w Cov R v v Cov v E Q w w Cov w E δδ式中,k Q 为过程激励噪声协方差矩阵,k R 为观测噪声协方差矩阵。

),(11--k k u x f 是一个非线性状态转换函数,),(11--k k u x g 是一个非线性量测函数。

每一个时刻点,根据一阶泰勒展开将),(11--k k u x f ,),(11--k k u x g 线性化,即将非线性状态函数)··(,f 和非线性量测函数)··(,g 围绕滤波值展开泰勒级数,并略去二阶以上项,得到)ˆ(),(),ˆ(),(ˆk k xx k k k k k k k xx x u x f u xf u x f k k -∂∂+≈= 1-2 )ˆ(),(),ˆ(),(ˆk k xx kk k k k k k xx x u x g u x g u x g k k -∂∂+≈- 1-3 定义k k xx kk k k x u x f ˆ),(ˆ=∂∂=Φ,k k xx kk k kx u x g H ˆ),(ˆ=∂∂=,根据式(1-1)、式(1-2)和式(1-3)可以得到非线性系统线性化后只与状态变量有关的表达式,如下⎪⎩⎪⎨⎧+-+≈Γ+Φ-+Φ≈+k k k k k k k k k k k k k k k k k v x H u xg x H z w x u x f x x ]ˆ),ˆ([ˆ]ˆ),ˆ([ˆ1 1-4式1-4中,注意到k k k k x u x f Φ-ˆ),ˆ(并非k x 的函数,kk k k x H u x g ˆ),ˆ(-并非k x 的函数,根据1-4近似结果,应用上节的Kalman 滤波器计算可以得到EKF 迭代算法:定义k k xx kk k k x u x f ˆ),(ˆ=∂∂=Φ,k k xx kk k kx u x g H ˆ),(ˆ=∂∂=,可得滤波方程初始条件 )var(),(ˆ0000x P x E x== 状态先验估计值 ),ˆ(ˆ111,---=k k k k u x f x误差协方差先验估计值 Tk k k k k T k k k k k k k Q P P 1,11,1,11,1,-------ΓΓ+ΦΦ= 增益矩阵 11,1,][---+=k T k k k k T k k k k R H P H H P K状态后验估计值)],ˆ([ˆˆ11,k k k k k k k u x g z K x x---+= 误差协方差后验估计值 1,)(--=k k k k k P H K I P无迹卡尔曼滤波(UKF )EKF 是一种次优非线性高斯滤波器,它采用对非线性函数进行线性化近似的方法,来计算状态分布经非线性函数传递之后的特性。

尽管EKF 得到了广泛的应用,但它依然存在自身无法克服的理论局限性:①要求非线性系统状态函数和量测函数必须是连续可微的,这限制了EKF 的应用范围;②对非线性函数的一阶线性化近似精度偏低,特别地,当系统具有强非线性时,EKF 估计精度严重下降,甚至发散;③需要计算非线性函数的雅克比矩阵,容易造成EKF 数值稳定性差和出现计算发散。

为了克服上述EKF 的缺陷,能够以较高的精度和较快的计算速度处理非线性高斯系统的滤波问题,Julier 等人根据确定性采样的基本思路,基于Unscented 变换(UT )提出了Unscented 卡尔曼滤波(UKF )。

与EKF 类似,UKF 仍继承了卡尔曼滤波器的基本结构,不同之处在于UKF 用Unscented 变换取代了EKF 中的局部线性化。

UKF 仍假设随机系统的状态必须服从高斯分布,但取消了对系统模型的限制条件,也就是说,不要求系统是近似线性的,同时,UKF 不需要计算雅克比矩阵,因此不要求状态函数和量测函数必须是连续可微的,它甚至可以应用于不连续系统。

相关文档
最新文档