七年级数学上册5.1相交线1《对顶角》教案(新版)华东师大版

合集下载

华师大版七年级数学上5.1.1《对顶角》教学设计

华师大版七年级数学上5.1.1《对顶角》教学设计
(二)过程与方法
1.通过实际操作,让学生观察、思考、总结对顶角的特点,培养学生的观察能力和逻辑思维能力。
2.运用合作学习的方式,让学生在小组讨论中交流观点,提高沟通能力和团队协作能力。
3.设计丰富的例题和练习,引导学生运用对顶角知识解决问题,培养解决问题的方法和策略。
4.通过对顶角的性质,引导学生发现生活中的数学,提高学生对数学学习的兴趣。
1.学生需独立完成作业,注重作业质量,培养良好的学习习惯。
2.家长要关注学生的学习进度,协助学生完成作业,鼓励学生积极思考、探索。
3.教师要及时批改作业,给予个性化反馈,帮助学生查漏补缺,提高学习效果。
3.教师总结:强调对顶角在几何学习中的重要性,鼓励学生在日常生活中多观察、多思考,发现数学的美。
五、作业布置
1.基础巩固:完成课本第92页的练习题1、2、3,巩固对顶角的性质和识别方法。
-练习题1:判断下列各图中,哪些是对顶角?
-练习题2:填空:对顶角是______的两个角,它们的度数______。
(三)学生小组讨论
1.教学内容:对顶角的识别和应用。
2.教学活动:将学生分成小组,每组讨论以下问题:
(1)如何判断两个角是否为对顶角?
(2)在日常生活中,你能找到哪些对顶角的例子?
(3)如何利用对顶角的性质解决实际问题?
3.教师指导:在学生讨论过程中,教师巡回指导,解答学生的疑问,引导学生深入探讨。
(四)课堂练习
1.教学内容:巩固对顶角的知识,提高解决问题的能力。
2.教学活动:设计具有代表性的练习题,让学生独立完成。
(1)判断题:给出一些角的图形,让学生判断哪些是对顶角。
(2)填空题:给出一些关于对顶角的性质和应用的问题,让学生填空。

_5.1.1对顶角教案2021--2022学年华东师大版七年级上册数学

_5.1.1对顶角教案2021--2022学年华东师大版七年级上册数学

教学设计本节课运用“三环五步”教学模式,主要采用自学、互动、测评的教学方法,根据学生的实际情况有的放矢的进行教学,在教学时注重他们观察能力的训练,激发学生学习的兴趣,培养学生对较复杂图形的认识和学习,逐步加深几何知识,增强学生的逻辑思维能力和逻辑推理、表达能力。

我采用了直观的教具演示和多媒体。

增大了教学的直观性,让学生观察、比较、归纳、总结,使学生经历了从具体到抽象,从感性上升到理性的认识过程五、教学重点及难点教学重点:通过观察思考,了解对顶角的概念及其性质;进一步发展空间观念和有条理的表达能力。

教学难点:从复杂图形中分解出基础图形,提高数学学习能力。

教学重点:对顶角的定义及对顶角的性质教学难点:1.在图形中识别对顶角;2.能用对顶角的性质进行简单的推理和计算。

六、教学方法归纳总结法;观察法; 类比法以“教师为主导,学生为主体”,通过明确的目标和自学指导,让学生自主学习;小组讨论,合作探究学习;通过练习题设置,讲评结合,师生互动学习。

七、教学过程教师活动学生活动设计意图 修改部分 一. 导入新课:思考问题:要测量两堵墙所成的角的度数,但人不能进入围墙,如何测量:可以测∠BOC 或者∠AOD,然后算出它的补角,还可以测量哪个角呢?引出对顶角。

为了增强学生的学习兴趣,使数学学习和实际生活联系起来,加入导入的环节,既可以复习旧知,又可以引出新知。

导入部分是课本前一节的练习题:增加了导入的环节。

二:多媒体出示学习目标和自学指导: 自学课本160页-161页(5分钟) 1.根据图5.1.2完成160页填空;2.找出对顶角的概念; 根据所示的学习目标和自学指导,自学课本160-161页。

自主学习环节,培养学生自主学习能力。

学习目标: 1.理解对顶角的概念,会根据概念识别对顶角。

2.掌握对顶角的性质,能运用3.通过自学例1,了解对顶角的性质;4.自学例2,了解对顶角性质的运用。

对顶角的性质解决问题。

对顶角的概念用自己的话叙述出来。

秋华东师大版七年级数学上册教案5.1.1对顶角

秋华东师大版七年级数学上册教案5.1.1对顶角

第5章订交线与平行线课题对顶角【学习目标】1.让学生理解邻补角与对顶角的观点,能在图形中辨别邻补角与对顶角;2.让学生掌握对顶角相等的性质和推导过程;3.培育学生的识图能力和识图技巧,加强学生学习数学的信心.【学习要点】对顶角的观点和性质.【学习难点】对顶角相等的推导过程和简单的应用.行为提示:创建问题,情境导入,联合生活中的实质例子,充足调换学生的踊跃性,激发学生求知欲念.行为提示:让学生阅读教材,试试达成“自学互研”的全部内容,并合时给学生供给帮助,率先做完的小组内互查,大多数学生达成后,进行小组沟通.知识链接:一条直线上的三个点组合起来能够写成一个平角,这一点应注意.行为提示:两个角是否是对顶角,要点看特色:共端点,双直线.学法指导:等角或余角的性质常用来证明两个角相等,这是一种特别重要的方法.情形导入生成问题问题:我们已经知道,两条直线订交,只有__1__个交点.如图,直线AB与直线CD订交,交点为O,能够说成“直线AB、CD订交于点O”,一共有__4__个角.这几个角又有什么样的关系呢?这就是这节课我们要研究的内容.第1页自学互研生成能力知识模块一对顶角的定义阅读教材P160~P161例1,达成下边的内容.如图,两条直线AB、CD订交于点O,则有:概括:(1)相邻的两个角__互补__,不相邻的两个角的两边互为反向延伸线;(2)在两个角中,有一个公共极点,且此中一个角的两边分别是另一个角的两边的反向延伸线,那么这两个角叫做对顶角.典范:以下图形中,∠1与∠2是对顶角的是(C),A),B),C),D)仿例:以下判断:①假如两个角相等,那么这两个角是对顶角;②假如两个角有公共端点,那么这两个角必定不是对顶角;③假如两个角有公共极点,且角均分线互为反向延伸线,那么这两个角是对顶角;④假如两个角是对顶角,那么这两个角相等.此中正确的选项是(C) A.0个B.1个C.2个D.3个变例:如图,直线AB、CD订交于点O,OE、OF是过点O的射线,此中组成对顶角的是(C)A.∠AOF和∠DOEB.∠EOF和∠BOEC.∠BOC和∠AODD.∠COF和∠BOD知识模块二对顶角的性质阅读教材P161例2,达成下边的内容.如图,两条直线AB、CD订交于点O,求证∠AOC=∠BOD.证明:∵∠AOC+∠BOC=180°,∠BOD+∠BOC=180°(平角的定义)∴∠AOC=∠BOD(等角的余角相等)相同能够获得:∠AOD=∠BOC.学法指导:抓住对顶角相等这一性质,再利用角的和差进行计算.第2页知识链接:角均分线:过角的极点把角分红两个相等的角的射线.行为提示:教师联合各组反应的疑难问题分派任务,各组展现过程中,教师指引其余组进行补充、纠错、释疑,而后进行总结评分.展现目标:知识模块一展现要点在于让学生理解什么是对顶角,并能从复杂的图形中找出对顶角;知识模块二展现要点在于让学生掌握对顶角相等的性质,并能灵巧地运用这一性质进行简单的计算.概括:对顶角相等.典范:如图,直线AB、CD订交于点O,且OF为∠BOD内部一条射线,∠AOC=70°,∠DOF=40°,则∠BOF的度数为(A)A.30°B.35°C.40°D.70°仿例:如图,直线AB、CD、EF订交于点O,则∠1+∠2+∠3的度数为(D)A.90°B.120°C.150°`D.180°变例:如图,直线AB、CD订交于点O,OE均分∠BOD,OF均分∠COB,∠AOD∶∠DOE=4∶1,求∠AOF的度数.解:∵OE均分∠BOD,OF 均分∠COB,∴∠ COF=12∠BOC,∠ DOE=∠BOE,∠ BOD=2∠DOE .∵∠AOD∶∠DOE=4∶1,∴设∠AOD=4x,∠BOE=∠DOE=x.∵∠AOD+∠DOE+∠BOE=180°,即4x+x+x=180°,∴x=30°,即∠AOD=120°,∠BOD=60°,第3页∴∠BOC=∠AOD=120°,∴∠COF=60°,∠AOC=∠BOD=60°,∴∠AOF=∠AOC+∠COF=60°+60°=120°.沟通展现生成新知1.各小组共同商讨“自学互研”部分,将疑难问题板演到黑板上,小组间就上述疑难问题相互释疑;2.组长率领组员参照展现方案,分派好展现任务,同时进行组内小展现,将形成的展现方案在黑板长进行展现.知识模块一对顶角的定义知识模块二对顶角的性质检测反应达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反省查漏补缺1.收获:________________________________________________________________________ 2.存在疑惑:________________________________________________________________________第4页。

新华东师大版七年级数学上册《5章 相交线与平行线 5.1 相交线 对顶角》优质课教案_22

新华东师大版七年级数学上册《5章 相交线与平行线  5.1 相交线  对顶角》优质课教案_22

对顶角教学设计教材分析:本节课主要研究两条直线相交所成的角——邻补角和对顶角,它是图形与几何中的一个基本概念,它的性质是学习平行线的基础,在求解与证明中有着广泛的应用.教材从现实生活中引入本章课题、揭示本节课内容,让学生体会相交线与现实生活的密切联系.教材通过探究活动展开对顶角和邻补角概念的学习,让学生体会知识的形成及探索过程,渗透“分类”思想.在“图形认识初步”,学生已经接触了简单说理,本节课要借助“对顶角性质”的证明,进一步加强说理能力的训练.教学目标:知识目标:1.理解对顶角与邻补角概念,能在图形中辨认对顶角和邻补角.2.掌握对顶角性质及其推证过程,并能运用它进行计算.能力目标:经历对顶角、邻补角的概念及性质的探索过程,体会分类思想,在探究过程中发展学生的抽象概括能力,进一步培养说理能力.情感目标:激发学生求知欲,感受数学与生活的联系,培养学生独立思考与合作交流的能力,让学生享受成功的喜悦,感悟数学学习是一种美的享受.教学重点:对顶角的概念,对顶角的性质及其应用.教学难点:对顶角性质的探索,在复杂图形中找出对顶角和邻补角.教学过程:一、合作探究,形成概念师:取两根木条a、b,用钉子将它们钉在一起,并且能随意张开.生:画出图形,并用几何语言描述所画的图形.师:思考所画的图形中有几个小于平角的角?生:四个.师:为了方便描述,我们用::∠1、∠2、∠3、∠4来表示这四个角,如果把这四个角中任意两个角组成一对,一共可以组成几对呢?生:(互相补充)∠1和∠2,∠1和∠3,∠1和∠4,∠2和∠3,∠2和∠4,∠3和∠4.师:以小组为单位讨论:这六对角按位置特点来分可以分成几类?为什么?生1:一类是相邻的∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4,一类是相对的∠1和∠3,∠2和∠4.生2:一类是有公共边的∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4,另一类是无公共边的……师:把这六对角分成两类,一类是有一条公共边,另一边互为反向延长线(∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4);另一类是没有公共边,两边都互为反向延长线(∠1和∠3,∠2和∠4),这就是今天要学的对顶角和邻补角.【板书】:两条直线相交得到的四个角中:有一个公共顶点,两边互为反向延长线的两个角互为对顶角;有一条公共边,另一边互为反向延长线的两个角互为邻补角.师:强调“相交直线”的前提条件.对顶角:有公共顶点无公共边...........邻补角:有公共顶点且有一公共边“互为”两个字的含义是什么?生:互为是针对两个角而言,如∠1是∠3的对顶角,反过来∠3也是∠1的对顶角.【设计意图】引导学生按位置关系进行分类,并针对分类的原因进行探索和交流,让121212 O121OEDABC学生经历概念的形成过程,真正理解对顶角和邻补角的概念.在探索过程中,渗透分类思想,培养探究意识和合作交流能力,调动学生参与积极性.二、及时巩固,加深理解1、下列各图中,∠l 和∠2是对顶角吗?为什么?(1) (2) (3) (4)【设计意图】本组题目是巩固对顶角概念的,通过练习,使学生掌握在图形中辨认对顶角的要领,同时又用反例印证概念,使学生加深印象. 2、请画出图中的∠l 对顶角3、如图,三条直线相交于点O, 图中有几对对顶角,请写出来。

初中对顶角的教案华东师范大学

初中对顶角的教案华东师范大学

教学目标:1. 知识与技能:理解顶角的概念,掌握顶角的性质,能够识别和计算顶角。

2. 过程与方法:通过观察、比较、操作等活动,培养学生的观察能力和动手操作能力。

3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生严谨的数学思维。

教学重点:1. 顶角的概念和性质。

2. 顶角的识别和计算。

教学难点:1. 顶角的性质的理解。

2. 顶角的计算。

教学准备:1. 多媒体课件。

2. 教学模型或实物。

教学过程:一、导入1. 提问:什么是角?请同学们举例说明。

2. 引入新课题:今天我们学习顶角。

二、新课讲解1. 定义顶角:在平面几何中,一个角的两边如果互相垂直,那么这个角叫做顶角。

2. 展示顶角的性质:a. 顶角的两边互相垂直。

b. 顶角的大小等于90度。

3. 通过观察、比较、操作等活动,让学生进一步理解顶角的性质。

三、课堂练习1. 判断题:下列图形中,哪些是顶角?2. 计算题:求下列图形的顶角大小。

四、课堂小结1. 回顾本节课所学内容:顶角的概念、性质和计算。

2. 强调顶角在实际生活中的应用。

五、布置作业1. 完成课后练习题。

2. 课后思考:顶角在生活中的应用。

教学反思:本节课通过导入、新课讲解、课堂练习、课堂小结等环节,使学生掌握了顶角的概念、性质和计算方法。

在教学过程中,注重培养学生的观察能力和动手操作能力,激发学生对数学学习的兴趣。

但在实际教学过程中,发现部分学生对顶角的性质理解不够深入,因此在今后的教学中,应加强学生对顶角性质的理解和应用。

同时,结合实际生活,引导学生思考顶角的应用,提高学生的数学素养。

新华东师大版七年级数学上册《5章 相交线与平行线 5.1 相交线 对顶角》优质课教案_12

新华东师大版七年级数学上册《5章 相交线与平行线  5.1 相交线  对顶角》优质课教案_12

5.1.1对顶角教学目标:1.知道对顶角和邻补角的意义,能找出图形中一个角的对顶角和邻补角。

2.能说出“对顶角相等”的性质,会用它进行有关的简单推理和计算。

此外,教学过程中使用教具模型并结合图形,培养和锻炼识图能力。

教学重难点:重点:掌握对顶角的性质,会用它进行有关的简单推理和计算。

难点:推理和计算的规范书写。

教学过程:一.导入新课1.引导学生观察教科书本章的章前图,展示向远方延伸的铁轨、电线杆上架设的电线等图片,说明图中的铁轨、电线等都可以想象成直线,分析它们之间的位置关系,引入本节课题。

2.出示教具,用一根钉子将两根木条钉在一起,转动本条,引导学生观察两直线相交的不同情况与它们交角的关系,可适当介绍垂直、重合等概念,使学生领会研究相交线为什么要研究它们相交所成的角。

3.回顾补角的概念及同角(或等角)的补角的性质。

二.新课讲解1.问题1—1:如图,两条直线AB、CD相交于点O,说出图中有几个角?问题1-2:在图2.1-1中找出的四个角,它们的位置关系如何?一方面引导学生从直观上感知角的“对顶”、“相邻”关系,同时训练几何语言的准确表述,说出角与角有“公共顶点”、“公共边”、“一个角的一条边是另一个角的一条边的反向延长线。

”2.问题2—1:再仔细观察图2.1—1,说出∠1和∠3及∠2和∠4有什么特殊的位置关系?(首先让学生充分感知“对顶角”的特殊位置关系,然后再给出定义。

)两条直线相交得到的四个角中,有一个公共顶点而没有公共边的两个角叫对顶角。

3.问题2-2:图2.1—1中有几对对顶角?问题3—1:图2.l—1中的∠1和∠2这样的角有什么位置关系?数量上还有什么特别的关系?(引导学生找出上述两个角的大小关系,说出它们“相邻”并且“互补”。

)4.两条直线相交得到的,不仅有一个公共顶点,还有一条公共边的两个角叫邻补角。

(重点分析互为邻补角的两个角既相邻又互补的关系。

)问题3-2:观察并说出图2.1—1中还有哪些角是邻补角?问题3-3:图2.1-2中的∠AOC和∠BOC是邻补角吗?其中点O为直线AB 上任意一点。

七年级数学上册 第五章 相交线与平行线 5.1.1 对顶角教案 (新版)华东师大版

七年级数学上册 第五章 相交线与平行线 5.1.1 对顶角教案 (新版)华东师大版

5.1.1对顶角教学目标知识与技能1.能准确理解对顶角的概念,会在图形中识别对顶角.2.理解对顶角的性质并能运用对顶角的相关知识进行简单运算.过程与方法经历观察、猜想、说理、交流等过程,进一步发展空间观念和有条理的表达能力.情感态度与价值观在动手实践、自主探索、合作交流中获得成功的体验,建立自信心;感受数学与生活的密切联系,增强用数学的意识.教学重难点重点:对顶角的概念与性质.难点:在复杂图形中找对顶角.教学过程一、情境引入同学们,进入七年级学习以来,大家都有这样的感受:“生活中处处有——数学.”现在老师请各位同学看一组生活中的图片,(多媒体展示X型晾衣架、栅栏、剪刀、小孔成像原理等图片)在这些图形中都出现了两条相交直线,每两条相交直线形成几个角?这些角叫什么角?它们有没有特殊关系?二、探究新知1.问题导读自学教材,回答下列问题:什么是对顶角?对顶角满足什么条件?举出生活中对顶角的例子.2.合作交流(1)互为对顶角的两个角的大小关系是怎样的?可让学生动手画一画,学生两人一组,任取一个角∠2,得出∠2的度数,看这两个角的大小关系有什么特点,得出结论.最后全班汇总,看得出的结论是否相同.(2)这个结论正确吗?学生分组讨论,利用同角的补角相等说明.先通过测量感知对顶角相等,然后再从理论上说明.(3)结论:对顶角相等.3.例题例1:如图,∠1=30°,那么∠2.∠3.∠4各等于多少度?图中存在哪些相等关系?.解:∠2=180°-∠1=180°-30°=150°,∠3=180°-∠2=180°-150°=30°,∠4=180°-∠1=180°-30°=150°,由此,我们得到∠1=∠3,∠2=∠4.例2:已知:直线AB与直线CD相交于E,∠AEC=50°,求∠BED的度数.解:因为直线AB与直线CD相交于E,所以∠AEC和∠BED是对顶角.根据对顶角相等,得,∠BED=∠AEC=50°.三、课后作业1.如图,其中共有对对顶角.第1题图第2题图2.如图,AB.CD相交于点O,∠DOE=90°,∠AOC=70°,求∠BOE的度数.【答案】1.42.20°。

新华师大版七年级上册初中数学 5-1-1 对顶角 教案

新华师大版七年级上册初中数学 5-1-1 对顶角 教案

第五章相交线与平行线5.1 相交线5.1.1 对顶角1.在现实情境中识别对顶角,理解对顶角的性质;能画出对顶角,并能利用对顶角相等的性质进行简单的计算以及解决一些相关的实际问题.2.经历观察、猜想、说理、交流等过程,进一步发展空间观念和有条理的表达能力.3.在动手实践、自主探索、合作交流中获得成功的体验,建立自信心;感受数学与生活的密切联系,增强运用数学的意识.通过观察思考,了解对顶角的概念及其性质;进一步发展空间观念和有条理的表达能力.从复杂图形中分解出基础图形,提高数学学习能力.观察下列图片,你们觉得这些图片有什么共同点吗?【教学说明】通过观察图片,找到相交线的形象,激发探究兴趣,渗透数学来源于生活的理念.1.请同学们画两条相交的直线,观察它们有几个交点?形成几个小于平角的角?2.学生画图,观察后回答,教师画图总结.图1(1)两条直线相交,只有一个交点.(2)形成4个小于平角的角:∠1、∠2、∠3、∠4.【教学说明】学生画图解答,教师小结板书.3.你知道∠1与∠2、∠2与∠3、∠3与∠4、∠1与∠4在位置和数量上有什么关系?请填下表.【教学说明】学生自主探究,通过填表找到这些角的位置和数量关系.4.请你根据上面的探究,观察思考∠1与∠3、∠2与∠4位置和数量上有什么关系?请填下表,并说明理由.5.教师归纳总结:(1)对顶角:如果两个角有一个公共顶点,并且它们的两边分别互为反向延长线,那么这样的两个角叫做对顶角.如图1,∠1与∠3是对顶角.(2)对顶角的性质: 对顶角相等.【教学说明】这是本节课的重点和难点,对于这些角的位置,学生描述可能不准确,教师一定要结合图形,让学生仔细观察,掌握特征.对顶角相等需要通过推理得到,要求学生写出推理的过程,以训练学生推理的能力.例1如图,直线AB、CD相交于点O,∠1=30°,求∠2、∠3、∠4的度数.分析:∠1和∠2有什么关系?∠1和∠3有什么关系?∠2和∠4有什么关系?解:∵∠1+∠2=180°,∴∠2=180°—∠1=180°—30°=150°.∠3=∠1=30°,∠4=∠2=150°.【教学说明】要充分应用对顶角相等来解决问题,注意推理格式的规范性.例2如图,直线AB与CD相交于点O,射线OE是∠BOD的平分线,已知∠AOD=110°,求∠COB,∠AOC, ∠BOE,∠EOD的度数.【教学说明】这个图形比较复杂,教师可做适当的引导,注意过程的规范性和合理性.四、练习反馈,巩固提高1.如图,直线AB,CD相交于点O,∠1的对顶角是,∠4的对顶角是.第1题图第2题图2.如图,直线AB,CD相交于点O,且∠AOC+∠BOD=118°,则∠AOD= .3.如图,直线AB、CD、EF相交于点O,OE是∠AOC的平分线,那么OF 是∠BOD的平分线吗?为什么?【教学说明】学生独立完成,对于第3题,图形比较复杂,教师可以做适当的引导.注意解题过程的规范性.【答案】1.∠3,∠22.121°3.解:OF是∠BOD的平分线.∵OE平分∠AOC,∴∠AOE=∠COE.∵∠AOE=∠BOF,∠COE=∠DOF.∴∠BOF=∠DOF∴OF平分∠BOD1.两条直线相交,只有一个交点.2.对顶角:如果两个角有一个公共顶点,并且它们的两边分别互为反向延长线,那么这样的两个角叫做对顶角.3.对顶角的性质: 对顶角相等.【教学说明】教师引导学生对本节课知识进行总结,加深印象,对出现的疑惑及时予以解答,使学生更好的掌握本节课知识.课本习题1.1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、教学方法
问题情境——探究教学法
四、教具学具准备投影仪或电脑、三角尺.
教学过程
一、创设情境,引入课题
导语:在日常生活中我们可以看到许许多多的相交线,相信同学们对此并不陌生,请看投影打出的图片(投影片),然后引导学生观察,并回答问题.
问题1:请观察后找出图片中的相交直线、平行线。
问题2:你能再举出一些身边的相交直线、平行线的实例吗?
解:由邻补角的定义,可得
∠2=180°-∠1
=180°- 30°
=150°
由对顶角相等,可得
∠3=∠1=30°
∠4=∠2=150°
练习2
变题:若∠1= m°,求各角的度数。
例2、如图,若∠1:∠2=2:7 ,求各角的度数。
解:设∠1=2x°,则∠2=7x °
根据补角的定义,得
2x+7x=180
x=20
则∠1=40°,∠2=140°
根据对顶角相等,得
∠3=40°,∠4=140°
三、巩固练习
课本162页 练习1、2、3
四、归纳小结
对顶角的特征:
①两条直线相交形成的角
②有一个公共顶点
③没有公共边
性质:对顶角相等
五、作业布置
【板书】5.1.1 对顶角
二、探究新知,讲授新课
如果两条直线有一个公共点,就说这两条直线相交,公共点叫做这两条直线的交点。
直线AB、CD相交于点O。
问题:两条相交直线.形成的小于平角的角有几个?
问题:请同学们画出任意两条相交直线,用量角器量一量4个角的度,学生举手回答,教师统一学生观点
第五章 相交线与平行线
5.1.1 对顶角
(一)知识与技能目标
1.理解对顶角的概念,能在图形中辨认对顶角.
2.掌握对顶角相等的性质和它的推证过程.
3.会用对顶角的性质进行有关的推理和计算.
二、教学重点、难点
(一)教学重点: 对顶角的概念,对顶角的性质与应用.
(二)教学难点: 在较复杂的图形中准确辨认对顶角.
对顶角:如果两个角有一个公共顶点,并且他们的两边分别互为反向延长线,那么这样的两个角叫做对顶角。
学生活动:让学生找一找右图中还有没有对顶角,如果有,是哪两个角?
学生口答:∠2和∠4再也是对顶角.
练习1、下列各图中∠1、∠2是对顶角吗?为什么?
对顶角的性质: 对顶角相等.
例1、如图,直线a、b相交,∠1=30°,求∠2、∠3、∠4的度数。
相关文档
最新文档