有理数加减法法则

合集下载

有理数加减法法则巧记口诀

有理数加减法法则巧记口诀

有理数加减法法则巧记口诀有理数加减法是我们初中数学中的基础知识,掌握好有理数加减法法则,对于我们解决实际问题是非常有帮助的。

下面我为大家介绍一种巧记口诀,帮助大家快速记住有理数加减法法则。

口诀一:正加正得正,负加负得负,正加负看绝对值,大减小方向负。

这个口诀的意思是,当两个正数相加时,结果也是正数;当两个负数相加时,结果也是负数;当一个正数和一个负数相加时,我们需要比较它们的绝对值,绝对值大的减去绝对值小的,结果的符号取决于绝对值大的数的符号。

举个例子来说明,假设我们要计算 3 + 5,根据口诀,两个正数相加,结果也是正数,所以 3 + 5 = 8。

再来看一个例子,-4 + (-6),根据口诀,两个负数相加,结果也是负数,所以-4 + (-6) = -10。

最后一个例子,2 + (-7),根据口诀,我们需要比较2和7的绝对值,7的绝对值大于2的绝对值,所以结果的符号取决于7的符号,即负号,所以2 + (-7) = -5。

接下来,我们来看看巧记口诀的第二部分。

口诀二:减法转化为加法,被减数不变,加上相反数,正数变负,负数变正。

这个口诀的意思是,当我们遇到减法时,可以将减法问题转化为加法问题,即将被减数不变,加上减数的相反数。

对于正数来说,相反数即为它的负数;对于负数来说,相反数即为它的正数。

举个例子来说明,假设我们要计算7 - 5,根据口诀,我们可以将减法转化为加法,即7 + (-5)。

根据口诀的第一部分,我们需要比较7和5的绝对值,7的绝对值大于5的绝对值,所以结果的符号取决于7的符号,即正号,所以7 - 5 = 7 + (-5) = 2。

再来看一个例子,-8 - (-3),根据口诀,我们可以将减法转化为加法,即-8 + 3。

根据口诀的第一部分,两个正数相加,结果也是正数,所以-8 - (-3) = -8 + 3 = -5。

通过这两个口诀,我们可以快速记住有理数加减法的法则,提高我们解决实际问题的效率。

有理数加减法法则

有理数加减法法则

有理数加减法运算法则
1.同号两数相加,取相同符号,并把绝对值相加.
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用加大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.
3一个数同0相加,仍得这个数.
有理数减法法则
例题:
例题1
计算:1、(-3)-(-5)=2
2、0-7=-7
3、7.2-(-4.8)=12
4、0-(-8)=8
例2:数轴上A、B、C、D所表示的有理数分别是+1、+3、-2、-4,用有理数减法的算式分别表示以下两点间的距离。

(1)A、B两点。

(2)C、D两点。

(3)A、D两点。

(4)D、C两点。

例3、世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8844米,吐鲁番盆地的海拔高度大约是-155米.两处高度相差多少米?
解:8844-(-155)=8844+155=8999(米)
答:两处高度相差8999米
(强调解题格式)。

有理数运算法则口诀

有理数运算法则口诀

有理数的运算法则可以通过一些简单的口诀来记忆。

有理数的加法运算法则是“同号相加一边倒;异号相加“大”减 “小”,符号跟着大的跑;绝对值相等“零”正好”。

具体来说,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加,和为0。

有理数的减法运算法则是“减正等于加负,减负等于加正”。

有理数的乘法运算法则是“符号法则:同号得正,异号负,一项为零积是零”。

合并同类项的法则为“只求系数代数和,字母指数留原样”。

去、添括号的法则为“去括号或添括号,关键要看连接号。

扩号前面是正号,去添括号不变号。

括号前面是负号,去添括号都变号”。

有理数加减法则及其应用

有理数加减法则及其应用

有理数加减一、有理数加法法则1.有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加.即若0a,则)>b,0>=+;+(baba+即若0<b,0<a,则)=+.-a+ab(b(2)绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.即若0a,且b,0<>b=a>,则)++;a-a(bb即若0a,且b>b,0<=-+(aa-a<,则)bb(3)一个数同0相加,仍得这个数.2.有理数加法步骤法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:(1)确定和的符号;(2)确定是两个绝对值的和或差.二、加法的运算律(1)两个加数相加,交换加数的位置,和不变.a=+(加法交换bba+律)(2)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.)ba++++(加法结合律)=a()(cbc【规律方法】多个数相加时,灵活运用加法运算律,可使运算简便,通常有以下运算技巧.①互为相反数的两个数先相加.②符号相同的两个数先相加.③分母相同的数先相加.④几个数相加得到整数先相加.⑤整数与整数、小数与小数相加.考点一:有理数加法法则1、计算)9()3(-+-的结果是()A、-12B、-6C、+6D、122、下列计算中,正确的是()A、(+3)+(-8)=-5B、(+3)+(-8)=+11C、(+3)+(-8)=+5D、(+3)+(-8)=-113、计算:=-+)325(0____________.4、若两个有理数的和为正数,那么这两个数()A、都是正数B、都是负数C、至少有一个正数D、至少有一个负数5、已知两个有理数的和比其中任何一个加数都小,那么一定是()A、这两个有理数同为正数B、这两个有理数同为负数C、这两个有理数异号D、这两个有理数中有一个为06、如果三个数的和为零,那么这三个数一定是()A、两个正数、一个负数B、两个负数、一个正数C、三个都是0D、其中两个数之和等于第三个数的相反数7、d c b a ,,,在数轴上的对应点位置如图所示,且b a =,a c d >>,则下列各式中,正确的是()A、0>+c d B、a b c d >>>B、0=+b a D、0>+c b8、415154+--=--的根据是____________.9、计算:)5()71.1()71.3(0--++-+10、计算:511(72(51()73(-+++++-11、足球比赛中,甲队攻入乙队两球,同时被乙队攻入五球,则计算甲队净胜球数的算式为:____________.12、如果四个有理数的和的31是4,其中三个数是9,6,12--,则第四个数是()A、-9B、15C、-18D、2113、一位“粗心”的同学在做加减运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A、少5B、少10C、多5D、多1014、用简便方法计算:9997997977+++.有理数减法一、有理数减法的意义有理数减法的意义与小学学过的减法的意义相同,已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,减法是加法的逆运算.【知识拓展】初中阶段学习了负数,数的范围扩大到了有理数,在有理数范围内的减法运算,其意义没有改变,但是被减数和减数或差既可以是正数,也可以是负数,即被减数可以比减数大,也可以比减数小,但两者之差一定为有理数.二、有理数减法法则减去一个数,等于加这个数的相反数)=-.+(baba-【易错点津】有理数的减法对于小数减大数的运算不能像小学里那样直接减,而是把它转化为加法进行计算,其关键是正确地将减法转化为加法,再按有理数的加法法则和运算律计算.【方法归纳】在进行有理数的减法运算时,关键是如何正确解决符号问题.把减法运算转化为加法运算应同时改变两个符号.考点一、有理数减法法则1、计算:=3____________.(--)12、12--的结果是()A、-1B、-3C、1D、33、下列计算错误的是()A、0---B、122=)2(--=-543-C、10---D、37-=)3(-=1512-4、两数之和是,其中一个加数是,则另一个加数是____________.5、计算:=-94____________.--6、判断题:(1)、两数之差一定小于被减数(2)、若两数的差为正数,则两数都为正数(3)、0减去一个数仍得这个数(4)、一个数减去一个负数,差一定大于被减数7、在下面的数轴上,表示数)5(--的点是()2-A、MB、NC、PD、Q8、)6(----的值是()--)1)9()9(-(A、-25B、7C、5D、23有理数减法应用9、比0小4的数是____________.,比3小4的数是,比-5小-2的数是____________.10、已知m是6的相反数,n比m的相反数大2,n比m大____________.11、某地一天的最高气温是12℃,最低气温是-5℃,则该地这天的温差是____________.12、设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则c-的值是____________.a-b13、北京等5个城市的当地时间(单位:时)可在数轴上表示如下:A、汉城与纽约的时差为13小时B、汉城与多伦多的时差为13小时C、北京与纽约的时差为14小时D、北京与多伦多的时差为14小时14、某支股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“-”表示股票比前一天下跌)(1)周一至周五这支股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了?上涨或下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?有理数的加减混合运算1、运用减法法则将有理数混合运算中的减法转化为加法2、运用加法法则、加法交换律、加法结合律进行简便运算【易错点津】1、在运算中注意运算顺序,同级运算按从左到右的顺序计算,有括号的要先算括号里的,多重括号,应先算小括号,再算中括号,最后算大括号2、在运算中要注意符号的变化,以确保解题的准确性考点:加减混合1、____________与)4(3-+的和为0.2、如果四个数的和的41是8,其中三个数分别是-6,11,12,则第四个数是()A、16B、15C、14D、133、计算:)16()7(1723-+---练习:4234)25()23(32+----+-4、4.654.18)4.6()54.26(+--+-5、计算:2134384145.6-++-练习:2147.4115333.3114.5+--+-+6、计算:735761167230-+--练习:[])81()219(730+--+-7、计算:853145266128313533218+---+-练习:435)213()3210()212(75.4--+++--8、计算:)315(311431432(-+-+-练习:)43315()312(213-------。

有理数加减法法则及重点练习

有理数加减法法则及重点练习

有理数加减法法则及重点练习知识点一:有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。

(-6)+(-3)=-(6+3)=-9(2)异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.(-6)+3=-(6-3);6+(-3)=3(3)互为相反数相加得0. 8+(-8)=0;(-5)+5=0知识点二:有理数减法法则:减去一个数,等于加这个数的相反数。

(把减法转化为加法)a-b=a+(-b);例:-9-(-5)=-9+5=-4知识点三:有理数加法口诀速记法:同号相加一边“倒”;异号相加“大”减“小”,符号跟着“大”的跑;绝对值相等“零”正好;数零相加变不了。

备注:“大”“小”是指加数的绝对值的大小。

知识点四:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得零。

知识点五:有理数除法法则:(一)、除以一个不等于0的数,等于乘这个数的倒数。

(二)、两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.(0不能做除数)知识点六:有理数除法技巧方法:(1)直接应用有理数除法的法则进行计算。

(2)有分数除法,先确定结果的符号,再把除法转化为乘法,使用简便运算更合理。

知识点七:有理数运算时要按照步骤:一观察、二确定、三求和。

(第一步观察两数的符号,是同号还是异号;第二步确定用哪条法则;第三步求出结果)知识点八:有理数加减混合运算几种方法:(1)减法统一转化成加法;(2)省略加号和括号;(3)运用加法运算律进行计算;(一)在计算过程中的技巧:(1)同号结合法(运用运算律将正负数分别相加)(2)同分母结合法(分母相同或哟倍数关系的数结合在一起)(3)凑整法(把某些能相加得整数的结合在一起)(4)相反数结合法(互为相反数的两数可现加)(5)统一法(算式中既有分数又有小数,要把分数统一成小数或把小数统一成分数)(6)拆项法(算式中有带分数时,可先把带分数拆成整数和真分数,拆开后相加,运算就简便)拆项后注意:(1)分开的整数部分与分数部分必须保留原带分数的符号。

有理数的加减法

有理数的加减法

例8 计算
裂项相消法
(1) 1 + 1 + 1 + 1 +…+
1
2 6 12 20
2003 2004
(2)
1+
1 3
1
35+
1
57 + … +
1 99 101
想一想
1-
1 2
1 -
2
4
-…
-
1 2 4 6 … 100
例9 计算:
在1,2,3,… ,100前分别添上“+”或 “-”号,计算这100个数的和,所得的和中:
有理数减法法则
减去一个数等于加上这个数的相反数.
判断正误
(1)两个负数相加绝对值相减; × (2)正数加负数,和为负数; × (3)负数加正数,和为正数; × (4)两个有理数的和为负数时,
这两个有理数都是负数. ×
“算术和”与“代数和”比较
结果 类型
和的符号
算术和 通常是正数或零
和与加数关系
有理数的加减法
有理数加法法则
1.同号两数相加,取相同的符号,并把绝对值相加. 2.绝对值不相等的异号两数相加,取绝对值较大的
加数的符号,并用较大的绝对值减去较小的绝对 值.互为相反数的两个数相加得0. 3.一个数同0相加,仍得这个数.
运算步骤
1.先判断加法类型(同号异号等); 2.再确定和的符号; 3.最后进行绝对值的加减运算.
C.G>M>N>H D. G>N>H>M

--
a
b0
例 计算
如图,把面积为1的矩形等分成两个面积为 1 的矩形,

有理数加减法法则

有理数加减法法则

有理数的加减法法则
一、有理数的加法
(1)有理数的加法法则:
同号相加,取相同符号,并把绝对值相加;
绝对值不等的异号相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.
一个数同0相加,仍得这个数。

(在进行有理数加法运算时,首先判断两个加数符号;是同号还是异号,是否有0,从而确定用哪一条法则,在运算过程中,要记住“先符号,后绝对值”)
(2)相关运算律
交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c);
二、有理数的减法
(1)有理数的减法法则:减去一个数等于加上这个数的相反数,即a-b=a+(-b)
(2)方法指引:
在进行减法运算时,首先弄清减数的符号;
讲有理数转换为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数);
【注意】:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换
律;减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算;。

有理数加减法口诀技巧

有理数加减法口诀技巧

有理数加减法口诀技巧1.同号相加,取相同的符号,绝对值相加。

同号相加永不难,符号相同好判断。

绝对值将其相加,知道答案就不忘。

这个口诀告诉我们,如果两个有理数的符号相同,则直接取相同的符号,把这两个有理数的绝对值相加即可得到结果。

例如:(-3)+(-5)=-82.异号相加,看绝对值,取较大的符号,绝对值相减。

异号相加心绞痛,振作起来取较大。

跌次高者绝对值,值得记忆别分开。

这个口诀告诉我们,如果两个有理数的符号不同,则需要比较它们的绝对值的大小。

取绝对值较大的有理数的符号,然后用较大的绝对值减去较小的绝对值即可得到结果。

例如:5+(-3)=2(-8)+3=-5有理数的减法可以转化为加法来计算。

我们将被减的数加上减数的相反数,即可得到减法的结果。

例如:10-3=10+(-3)=7三、绝对值的计算在进行有理数加减法时,经常会用到绝对值的计算。

绝对值表示一个数离原点的距离,有着一定的规律性。

我们可以使用下面的口诀来帮助计算绝对值。

正命正,负取反,绝对值计得快。

正数的绝对值就是这个数本身,负数的绝对值是去掉负号。

例如:,-4,=42,=2四、应用举例1.计算:-5+,-3,-2+6按照口诀,首先计算绝对值:,-3,=3然后按照加减法的口诀计算:-5+3-2+6=-4+4=0答案为0。

2.计算:-3-,-5,+4按照口诀,首先计算绝对值:,-5,=5然后转化为加法进行计算:-3+(-5)+4=-8+4=-4答案为-4总结有理数加减法是初中数学中的重要内容,掌握口诀技巧能够帮助学生更快、更准确地进行计算。

通过同号相加取相同符号,绝对值相加,异号相加取较大符号,绝对值相减的口诀技巧,可以在实际计算中提供指导。

同时,计算绝对值的口诀也能够加快计算速度。

希望这些口诀技巧能够帮助学生在有理数加减法中更加轻松自如地进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数加减法法则
一、有理数的加法法则
把两个或两个以上的有理数合并成一个有理数的运算,叫做有理数的加法,相加的两个数叫做加数,得到的结果叫做和。

由于有理数分为正有理数、零、负有理数三类,所以两个有理数相加就有以下三种情况:
同号两数相加;异号两数相加;一个数同0相加。

⑴一个数同0相加,仍得这个数。

如:(-2)+0=-2,6+0=6.
⑵借助数轴来探究同号两数相加的情况:(规定向东为正方向,1个单位长度为1米)
同号两数相加,取相同的符号,并把绝对值相加。

⑶借助数轴来探究异号两数相加的情况:(规定向东为正方向,1个单位长度为1米)
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0。

二、有理数加法的运算步骤
进行有理数加法运算时,应按照以下“一判,二定,三加减”的步骤:
第一步:判断加法的类型,并根据加法的类型确定使用
哪一个法则;
第二步:根据加法绝对值的大小及有理数的符号,确定和的符号:
第三步:对绝对值进行加或减,确定和的绝对值。

三、有理数的加法运算律
加法交换律:两个数相加,交换加数的位置和不变。

即a+b=b+a。

交换加数的位置时,各加数应连同其符号一起交换。

加法结合律:三个数相加,先把前两个数相加或先把后两个数相加和不变。

即(a+b)+c=a+(b+c)。

多个数相加时,灵活运用加法运算律,可使运算简便,通常有以下运算技巧。

①凑0,即和为0的几个数先加。

②凑10或凑100,即和为整10或者100的几个数先加。

③凑整,即和为整数的几个数先加。

④同号的几个数先加。

⑤同分母或易通分的分数先加。

四、有理数的减法法则
减法的概念:已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法,减法是加法的逆运算。

在小学时,被减数要大于减数,引入负数后,任何两个数都可以进行减
法运算。

有理数减法法则:
减去一个数等于加这个数的相反数。

即a-b=a+(-b)。

0减去任何数得这个数的相反数。

五、有理数减法的运算步骤
第一步:把减号变为加号(改变运算符号),把减数变为它的相反数;
第二步:按照有理数加法运算法则进行计算。

六、有理数的加减混合运算
⑴因为减法可以转化为加法,于是加减混合运算,可以统一为加法运算,用式子表示:a-b+c-d=a+(-b)+c+(-d),成为a、-b、c、-d这4个数的代数和。

⑵在代数和中加号和括号可以省略。

⑶有理数加减混合运算的步骤:
第一步:用减法法则将有理数混合运算中的减法转化成加法;
第二步:运用加法法则,加法运算律进行运算。

相关文档
最新文档