2019年黑龙江省龙东地区中考数学试题(含答案)
2019年黑龙江省初中升学统一考试数学试题汇总(含5套试题)
2019黑龙江省中考数学试题汇编目录:1.2019年大庆市初中升学统一考试2.哈尔滨市2019年初中升学考试数学试题3.黑龙江省齐齐哈尔市2019年中考数学试卷4.2019年黑龙江省绥化市中考数学试卷5.2019年黑龙江省伊春市中考数学试卷2019年大庆市初中升学统一考试数学试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.有理数-8的立方根为()A.-2 B.2 C.±2 D.±4【答案】A2.在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D3.小明同学在“百度”搜索引擎中输入“中国梦,我的梦”,搜索到与之相关的结果条数为608000,这个数用科学记数法表示为( )A .60.8×104B .6.08×105C .0.608×106D .6.08×107 【答案】B4.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .n m >B .||m n >-C .||n m >-D .||||n m <n m【答案】C5.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )x yO x y O x y O xyOA .B .C .D .【答案】A6.下列说法中不正确的是( )A .四边相等的四边形是菱形B .对角线垂直的平行四边形是菱形C .菱形的对角线互相垂直且相等D .菱形的邻边相等 【答案】C7.某企业1-6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是( )A .1-6月份利润的众数是130万元B .1-6月份利润的中位数是130万元C .1-6月份利润的平均数是130万元D .1-6月份利润的极差是40万元 【答案】D1601501401300120110654321利润/万元月份MEBAC7题图 8题图8.如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是( )A .15°B .30°C .45°D .60°【答案】B9.—个“粮仓”的三视图如图所示(单位:m ),则它的体积是( )A .21πm 3B .30πm 3C .45πm 3D .63πm 3 【答案】C10.如图,在正方形ABCD 中,边长AB =1,将正方形ABCD 绕点A 按逆时针方向旋转180°至正方形AB 1C 1D 1,则线段CD 扫过的面积为( )A .4π B .2π C .πD .π2【答案】B俯视图7左视图646主视图B 1C 1D 1BCA D9题图 10题图二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上) 11.=÷35a a _____. 【答案】2a12.分解因式:=--+b a ab b a 22_______________. 【答案】))(1(b a ab +-13.一个不透明的口袋中共有8个白球、5个黄球、5个绿球、2个红球,这些球除颜色外都相同.从口袋中随机摸出一个球,这个球是白球的概率是____. 【答案】52 14.如图,在△ABC 中,D 、E 分别是BC ,AC 的中点,AD 与BE 相交于点G ,若DG =1,则AD =__________. 【答案】3GD E BCA③②①14题图 15题图15.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n 个“T”字形需要的棋子个数为_________. 【答案】3n +2 16.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a 、b ,那么2)(b a -的值是_________.【答案】117.已知x =4是不等式ax -3a -1<0的解,x =2不是不等式ax -3a -1<0的解,则实数a 的取值范围是_________. 【答案】a ≤-1 18.如图,抛物线241x py =(p >0),点F (0,p ),直线l :y =-p ,已知抛物线上的点到点F 的距离与到直线l 的距离相等,过点F 的直线与抛物线交于A ,B 两点,AA 1⊥l ,BB 1⊥l ,垂足分别为A 1、B 1,连接A 1F ,B 1F ,A 1O ,B 1O .若A 1F =a ,B 1F =b 、则△A 1OB 1的面积=__________.(只用a ,b 表示). 【答案】4abbaxylB 1A 1BF OA16题图 18题图三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题4分)计算:︒--+-60sin |31|)2019(0π.解:︒--+-60sin 31)2019(0π:23131--+=23=.20.(本题4分)已知:ab =1,b =2a -1,求代数式ba 21-的值. 解:∵ab =1,b =2a -1,∴b -2a =-1,∴ab a b b a 221-=-111-=-=.21.(本题5分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450机器所需时间相同,求该工厂原来平均每天生产多少台机器?解:设该工厂原来平均每天生产x 台机器,则现在平均每天生产(x +50)台机器. 根据题意得xx 45050600=+,解得x =150. 经检验知x =150是原方程的根.答:该工厂原来平均每天生产150台机器. 22.(本题6分) 如图,一艘船由A 港沿北偏东60°方向航行10km 至B 港,然后再沿北偏西30°方向航行10km 至C 港.(1)求A ,C 两港之间的距离(结果保留到0.1km ,参考数据:2≈1.414,3≈1.732); (2)确定C 港在A 港的什么方向.东北CABM NP Q解:(1)由题意可得,∠PBC =30°,∠MBB =60°,∴∠CBQ =60°,∠BAN =30°,∴∠ABQ =30°,∴∠ABC =90°. ∵AB =BC =10,∴AC =22BC AB +=210≈14.1.答:A 、C 两地之间的距离为14.1km .(2)由(1)知,△ABC 为等腰直角三角形,∴∠BAC =45°,∴∠CAM =15°, ∴C 港在A 港北偏东15°的方向上. 23.(本题7分)某校为了解七年级学生的体重情况,随机抽取了七年级m 名学生进行调查,将抽取学生的体重情况绘制如下不完整的频数分布表和扇形统计图. 组别 体重(千克) 人数 A 37.5≤x <42.5 10 B 42.5≤x <47.5 n C 47.5≤x <52.5 40 D52.5≤x <57.520E 57.5≤x <62.5 10BE20%DC A请根据图表信息回答下列问题:(1)填空:①m =_____,②n =_____,③在扇形统计图中,C 组所在扇形的圆心角的度数等于__________度;(2)若把每组中各个体重值用这组数据的中间值代替(例如:A 组数据中间值为40千克),则被调查学生的平均体重是多少千克?(3)如果该校七年级有1000名学生,请估算七年级体重低于47.5千克的学生大约有多少人? 解:(1)①100,②20,③144; (2)被抽取同学的平均体重为:5010010602055405020451040=⨯+⨯+⨯+⨯+⨯.答:被抽取同学的平均体重为50千克. (3)300100301000=⨯. 答:七年级学生体重低于47.5千克的学生大约有300人. 24.(本题7分) 如图,反比例函数xmy 2=和一次函数y =kx -1的图象相交于A (m ,2m ),B 两点. (1)求一次函数的表达式;(2)求出点B 的坐标,并根据图象直接写出满足不等式12-<kx xm的x 的取值范围. xyBAO解:(1)∵A (m ,2m )在反比例函数图象上,∴mmm 22=,∴m =1,∴A (1,2). 又∵A (1,2)在一次函数y =kx -1的图象上,∴2=k -1,即k =3, ∴一次函数的表达式为:y =3x -1.(2)由⎪⎩⎪⎨⎧-==132x y xy 解得B (32-,-3) ∴由图象知满足12-<kx x m 的x 取值范围为032<<-x 或x >1. 25.(本题7分)如图,在矩形ABCD 中,AB =3,BC =4.M 、N 在对角线AC 上,且AM =CN ,E 、F 分别是AD 、BC 的中点.(1)求证:△ABM ≌△CDN ;(2)点G 是对角线AC 上的点,∠EGF =90°,求AG 的长.FE NDABCM(1)证明∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠MAB = ∠NCD . 在△ABM 和△CDN 中,⎪⎩⎪⎨⎧=∠=∠=CN AM NCD MAB CD AB ∴△ABM ≌△CDN ;(2)解:如图,连接EF ,交AC 于点O . 在△AEO 和△CFO 中,⎪⎩⎪⎨⎧∠=∠∠=∠=FCO EAO FOC EOA CF AE ∴△AEO ≌△CFO ,∴EO =FO ,AO =CO ,∴O 为EF 、AC 中点. ∵∠EGF =90°,2321==EF OG ,∴AG =OA -OG =1或AG =OA +OG =4, ∴AG 的长为1或4.G GO FENDABCM26.(本题8分)如图,在Rt △ABC 中,∠A =90°.AB =8cm ,AC =6cm ,若动点D 从B 出发,沿线段BA 运动到点A 为止(不考虑D 与B ,A 重合的情况),运动速度为2cm/s ,过点D 作DE ∥BC 交AC 于点E ,连接BE ,设动点D 运动的时间为x (s ),AE 的长为y (cm ). (1)求y 关于x 的函数表达式,并写出自变量x 的取值范围; (2)当x 为何值时,△BDE 的面积S 有最大值?最大值为多少?EABCD解:(1)动点D 运动x 秒后,BD =2x . 又∵AB =8,∴AD =8-2x .∵DE ∥BC ,∴AC AE AB AD =,∴x x AE 2368)28(6-=-=,∴y 关于x 的函数关系式为623+-=x y (0<x <4).(2)解:S △BDE =AE BD ⋅⋅21)623(221--⨯=x x =x x 6232+-(0<x <4).当2)23(26=-⨯-=x 时,S △BDE 最大,最大值为6cm 2.27.(本题9分)如图,⊙O 是△ABC 的外接圆,AB 是直径,D 是AC 中点,直线OD 与⊙O 相交于E ,F 两点,P 是⊙O 外一点,P 在直线OD 上,连接P A ,PC ,AF ,且满足∠PCA =∠ABC . (1)求证:P A 是⊙O 的切线; (2)证明:OP OD EF ⋅=42; (3)若BC =8,tan ∠AFP =32,求DE 的长. EFPDCOABEFPD COAB27题图 27题备用图(1)证明∵D 是弦AC 中点,∴OD ⊥AC ,∴PD 是AC 的中垂线,∴P A =PC ,∴∠P AC =∠PCA . ∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠CAB +∠CBA =90°.又∵∠PCA =∠ABC ,∴∠PCA +∠CAB =90°,∴∠CAB +∠P AC =90°,即AB ⊥P A ,∴P A 是⊙O 的切线;(2)证明:由(1)知∠ODA =∠OAP =90°, ∴Rt △AOD ∽Rt △POA ,∴AODO PO AO =,∴OD OP OA ⋅=2. 又EF OA 21=,∴OD OP EF ⋅=241,即OD OP EF ⋅=42. (3)解:在Rt △ADF 中,设AD =a ,则DF =3a .421==BC OD ,AO =OF =3a -4.∵222AO AD OD =+,即222)43(4-=+a a ,解得524=a ,∴DE =OE -OD =3a -8=532.28.(本题9分)如图,抛物线c bx x y ++=2的对称轴为直线x =2,抛物线与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(-1,0).(1)求抛物线的函数表达式;(2)将抛物线c bx x y ++=2图象x 轴下方部分沿x 轴向上翻折,保留抛物线在x 轴上的点和x 轴上方图象,得到的新图象与直线y =t 恒有四个交点,从左到右四个交点依次记为D ,E ,F ,G .当以EF 为直径的圆过点Q (2,1)时,求t 的值;(3)在抛物线c bx x y ++=2上,当m ≤x ≤n 时,y 的取值范围是m ≤y ≤7,请直接写出x 的取值范围.xy C BAOxyCBAO28题图 28题备用图解:(1)抛物线的对称轴是x =2,且过点A (-1,0)点,∴⎪⎩⎪⎨⎧=+-⨯+-=-0)1()1(222c b b,∴⎩⎨⎧-==54c b ,∴抛物线的函数表达式为:542--=x x y ;(2)解:∵9)2(5422--=--=x x x y ,∴x 轴下方图象翻折后得到的部分函数解析式为:542++-=x x y =9)2(2+--x (-1<x <5),其顶点为(2,9). ∵新图象与直线y =t 恒有四个交点,∴0<t <9. 设E (x 1,y 1),F (x 2,y 2).由⎩⎨⎧++-==542x x y t y 得0542=-+-t x x , 解得t x --=921,t x -+=922∵以EF 为直径的圆过点Q (2,1),∴1212x x t EF -=-=, 即|1|292-=-t t ,解得2331±=t . 又∵0<t <9,∴t 的值为2331+; xyQF E CBAO(3)x 的取值范围是:722-≤≤-x 或62535≤≤+x .哈尔滨市2019年初中升学考试数学试题第I 卷选择题(共30分)(涂卡)一、选择题(每小题3分,共计30分)1、-9的相反数是( )。
2019年黑龙江省龙东地区中考数学试卷
影响的是( )
A. 平均数
B. 中位数
C. 方差
D. 极差
【答案】B
【解析】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中
点”,不受极端值影响,
所以将最低成绩写得更低了,计算结果不受影响的是中位数,
故选:B.
根据中位数的定义解答可得.
本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.
∵分式方程2������������;;3������=1 的解是非正数,x-3≠0,
∴{���(���������−−33≤) −0 3 ≠ 0,
解得,m≤3, 故选:A. 根据解分式方程的方法可以求得 m 的取值范围,本题得以解决. 本题考查分式方程的解、解一元一次不等式,解答本题的关键是明确解分式方程的方法.
3. 如图是由若干个相同的小正方体搭成的一个几何体的 主视图和俯视图,则所需的小正方体的个数最少是
()
A. 6
B. 5
C. 4
D. 3
【答案】B
【解析】解:综合主视图和俯视图,底层最少有 4 个小立方体,第二层最少有 1 个小立
方体,因此搭成这个几何体的小正方体的个数最少是 5 个.
故选:B.
主视图、俯视图是分别从物体正面、上面看,所得到的图形.
7. 已知关于 x 的分式方程2������������;;3������=1 的解是非正数,则 m 的取值范围是( )
A. m≤3
【答案】A
B. m<3
C. m>-3
D. m≥-3
【解析】解:2������������;;3������=1,
方程两边同乘以 x-3,得 2x-m=x-3, 移项及合并同类项,得 x=m-3,
2019年黑龙江省龙东地区中考数学模拟试卷(三) (解析版)
2019年黑龙江省龙东地区中考数学模拟试卷(三)一、填空题.1.用360搜索关键词“一带一路”,为我们找到相关结果约18200000个.将18200000用科学记数法表示为.2.函数y=中自变量x的取值范围是.3.在▱ABCD中,对角线AC,BD相交于点O.使得四边形ABCD成为菱形,需添加一个条件是.4.一个不透明的袋中装有除颜色外均相同的8个红球和m个黄球,从中随机摸出一个,摸到红球的概率为,则m=.5.已知不等式组的解集是2<x<3,则ab的值是.6.如图,在⊙O中,点C在⊙O上,AB是弦,且OC⊥AB,垂足为D,AB=12,CD=2,则⊙O的半径长为.7.某圆锥的底面圆的半径为5,高为12,则圆锥的表面积为.(结果保留π)8.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为.9.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE 并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.10.如图,在直角坐标系中,已知点P0的坐标为(,),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2…如此下去,得到线段OP3,OP4,…,OP n(n为正整数),则点P2019的坐标为.二、选择题(每题3分,满分30分)11.下列计算正确的是()A.a5+a5=2a10B.a3•2a2=2a6C.(a+1)2=a2+1D.(﹣2ab)2=4a2b212.下列四幅图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.13.由m个相同的正方体组成一个立体图形,主视图和俯视图如图所示,则m能取到的最大值为()A.6B.5C.4D.314.某班第一小组共有6名同学,某次数学考试的成绩分别为(单位:分):72,80,77,81,89,81,则这组数据的众数和中位数分别是()A.81分、80.5分B.89分、80.5分C.81分、81分D.89分、81分15.某工厂一月份生产零件100万个,若二、三月份平均每月的增长率为20%,则该工厂第一季度共生产零件()A.300万个B.320万个C.340万个D.364万个16.关于x的分式方程=1的解为负数,则a的取值范围是()A.a>1B.a<1C.a<1且a≠﹣2D.a>1且a≠2 17.如图,点A的反比例函数y=(x>0)的图象上,点B在反比例函数y=(x>0)的图象上,AB∥x轴,BC⊥x轴,垂足为C,连接AC,若△ABC的面积是6,则k的值为()A.10B.12C.14D.1618.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.B.2C.2D.19.小华准备购买单价分别为4元和5元的两种拼装饮料,若小华将50元恰好用完,两种饮料都买,则购买方案共有()A.2种B.3种C.4种D.5种20.如图,在平行四边形中,E、F分别是AD、BC的中点,AC分别交BE、DF于G、H,下列结论:①BE=DF;②AG=GH=HC;③EG=DH;④S△ABE=3S△AGE.其中正确的结论有()A.1个B.2个C.3个D.4个三、解答题(共60分.解答应写出文字说明、证明过程或演算步骤.)21.先化简,再求值:(﹣)÷,其中a=tan60°+2sin30°.22.如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;(3)在(2)的条件下算出线段BC旋转到B2C所经过的扇形的面积.(结果保留π)23.如图,已知抛物线y=ax2+bx的顶点为C(1,﹣1),P是抛物线上位于第一象限内的一点,直线OP交该抛物线的对称轴于点B,对称轴与x轴交于点M,直线CP交x轴于点A.(1)求该抛物线的解析式;(2)如果△ABP的面积等于△ABC的面积,求点P的坐标.24.“校园手机”现象越来越受到社会的关注,“六一”期间,记者随机调查了某校若干名初四学生和家长对中学生带手机现象的看法,统计整理并制作了如下两幅统计图.(1)求这次调查的家长人数,并补全条形图;(2)求扇形图中表示家长“赞成”的圆心角的度数;(3)若南岗区共有初四学生10000名,请估计在这些学生中,对中学生带手机现象持“无所谓”态度的人数是多少?25.小明和爸爸周末步行去游泳馆游泳,爸爸先出发了一段时间后小明才出发,途中小明在离家1400米处的报亭休息了一段时间后继续按原来的速度前往游泳馆.爸爸、小明离家的距离y1(单位:米),y2(单位:米)与小明所走时间x(单位:分钟)之间的函数关系如图所示,请结合图象信息解答下列问题:(1)分别求出爸爸离家的距离y1和小明到达报亭前离家的距离y2与时间x之间的函数关系式;(2)求小明在报亭休息了多长时间遇到姗姗来迟的爸爸?(3)若游泳馆离小明家2000米,请你通过计算说明谁先到达游泳馆?26.在Rt△ABC中,∠BAC=90°,AB=AC,P是直线AC上的一点,连接BP,过点C 作CD⊥BP,交直线BP于点D.(1)当点P在线段AC上时,如图①,求证:BD﹣CD=AD;(2)当点P在直线AC上移动时,位置如图②、图③所示,线段CD,BD与AD之间又有怎样的数量关系?请直接写出你的猜想,不需证明.27.某工厂以每千克200元的价格购进甲种原料360千克,用于生产两种A,B产品,生产1件A产品或1件B产品所需甲.乙两种原料的千克数如表.乙种原料的价格为每千克300元,A产品每件售价3000元,B产品每件售价4200元,现将甲种原料全部用完.设生产A产品x件,B产品m件,公司获得的总利润为y元.产品A B甲原料/千克94乙原料/千克310(1)写出m与x的关系式;(2)求y与x的关系式;(3)若使用乙种原料不超过510千克,生产A种产品多少件时,公司获利最大?最大利润为多少?28.如图,已知直线y=x+b与x轴交于点A(3,0),与y轴交于点B,将△AOB沿x 轴折叠,使点B落在y轴的点C上,设P为线段BC上的一个动点,点P与点B,C不重合,连接AP.以点P为端点作射线PM交线段AB于点M,使∠APM=∠ABC.(1)求点C的坐标;(2)当CP=3时,求直线CM的解析式;(3)是否存在点P,使△PAM为直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案一、填空题:本大题共10个小题,每小题3分,共30分.1.用360搜索关键词“一带一路”,为我们找到相关结果约18200000个.将18200000用科学记数法表示为 1.82×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.10的指数n=原来的整数位数﹣1.解:18 200 000=1.82×107,故答案为:1.82×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.函数y=中自变量x的取值范围是x<3.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解:根据题意得:3﹣x>0,解得:x<3.故答案是:x<3.【点评】本题考查了函数的自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.在▱ABCD中,对角线AC,BD相交于点O.使得四边形ABCD成为菱形,需添加一个条件是AC⊥BD(答案不唯一).【分析】依据菱形的判定定理进行判断即可.解:∵四边形ABCD为平行四边形,∴当AC⊥BD时,四边形ABCD为菱形.故答案为:AC⊥BD(答案不唯一).【点评】本题主要考查的是菱形的判定,熟练掌握菱形的判定定理是解题的关键.4.一个不透明的袋中装有除颜色外均相同的8个红球和m个黄球,从中随机摸出一个,摸到红球的概率为,则m=6.【分析】用红球的个数除以总球的个数得出红球的概率,从而求出n的值.解:由题意得:,解得:m=6;故答案为:6.【点评】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.5.已知不等式组的解集是2<x<3,则ab的值是2.【分析】首先解不等式组进而得出a,b的值,即可得出答案.解:,解①得:x<2a﹣1,解②得:x>1+b,故不等式组的解集为:1+b<x<2a﹣1,∵2<x<3,∴1+b=2,2a﹣1=3,解得:b=1,a=2,∴ab=2.故答案为:2.【点评】此题主要考查了解一元一次不等式组,正确解不等式组是解题关键.6.如图,在⊙O中,点C在⊙O上,AB是弦,且OC⊥AB,垂足为D,AB=12,CD=2,则⊙O的半径长为10.【分析】由垂径定理得出AD=BD=AB=6,在Rt△AOD中,由勾股定理得出方程,解方程即可.解:如图,连接OA,设⊙O的半径长为r,∵AB是弦,且OC⊥AB∴AD=BD=AB=6,OD=OC﹣CD=r﹣2,在Rt△AOD中,由勾股定理得:OA2=AD2+OD2,即r2=62+(r﹣2)2,解得:r=10;即⊙O的半径长为10;故答案为:10.【点评】此题考查了垂径定理以及勾股定理;熟练掌握垂径定理,由勾股定理得出方程是解题的关键.7.某圆锥的底面圆的半径为5,高为12,则圆锥的表面积为90π.(结果保留π)【分析】利用勾股定理易得圆锥的母线长,那么侧面积=π×底面半径×母线长,圆锥的表面积=底面积+侧面积.解:∵圆锥的底面半径为5,高为12,∴圆锥的侧面积为13,∴它的侧面积=π×13×5=65π,它的底面积=π×5×5=25π,圆锥的表面积=90π,故答案为:90π【点评】考查圆锥的计算;用到的知识点为:圆锥的底面半径,高,母线长组成以母线长为斜边的直角三角形.8.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为4.【分析】过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE 即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,∴MN=ME,∴CE=CM+ME=CM+MN的最小值.∵三角形ABC的面积为15,AB=10,∴×10•CE=20,∴CE=4.即CM+MN的最小值为4.故答案为4.【点评】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目9.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE 并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4.【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'E=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.10.如图,在直角坐标系中,已知点P0的坐标为(,),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2…如此下去,得到线段OP3,OP4,…,OP n(n为正整数),则点P2019的坐标为(﹣22020,0).【分析】根据题意,可得,,,,发现规律,即可求出点P2019的坐标.解:由题意,可得,,,,…,,∵每一次都旋转45°,360°÷45°=8,∴每8次变化为一个循环组,2019÷8=252……3,∴点P2019是第253组的第3次变换对应的点,在x轴的负半轴上,∴点P2019的坐标为(﹣22020,0)故答案为(﹣22020,0)【点评】本题考查了坐标与图形变化﹣旋转,规律型﹣点的坐标,解决本题的关键是掌握旋转的性质.二、选择题(每题3分,满分30分)11.下列计算正确的是()A.a5+a5=2a10B.a3•2a2=2a6C.(a+1)2=a2+1D.(﹣2ab)2=4a2b2【分析】根据合并同类项法则、单项式乘以单项式、完全平方公式、幂的乘方和积的乘方分别求出每个式子的值,再进行判断即可.解:A、结果是2a2,故本选项不符合题意;B、结果是2a5,故本选项不符合题意;C、结果是a2+2a+1,故本选项不符合题意;D、结果是4a2b2,故本选项符合题意;故选:D.【点评】本题考查了合并同类项法则、单项式乘以单项式、完全平方公式、幂的乘方和积的乘方等知识点,能正确求出每个式子的值是解此题的关键.12.下列四幅图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.解:A、不是中心对称图形,是轴对称图形,故本选项不合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、不是中心对称图形,是轴对称图形,故本选项不合题意;D、不是中心对称图形,也不是轴对称图形,故本选项不合题意.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.由m个相同的正方体组成一个立体图形,主视图和俯视图如图所示,则m能取到的最大值为()A.6B.5C.4D.3【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解:由题中所给出的主视图知物体共两列,且左侧一列最高两层,右侧一列高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最多5个.故选:B.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.14.某班第一小组共有6名同学,某次数学考试的成绩分别为(单位:分):72,80,77,81,89,81,则这组数据的众数和中位数分别是()A.81分、80.5分B.89分、80.5分C.81分、81分D.89分、81分【分析】根据众数和中位数的概念求解.解:将数据重新排列为72,77,80,81,81,89,所以这组数据的众数为81分,中位数为=80.5(分),故选:A.【点评】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15.某工厂一月份生产零件100万个,若二、三月份平均每月的增长率为20%,则该工厂第一季度共生产零件()A.300万个B.320万个C.340万个D.364万个【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂二、三月份平均每月的增长率为20%,那么可以分别表示二、三月份的产量,然后根据题意可得出方程.解:设该工厂第一季度共生产零件x万个.根据题意,得x﹣100(1+20%)﹣100(1+20%)2=100,解得x=364.答:该工厂第一季度共生产零件364万个.故选:D.【点评】本题考查了增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.16.关于x的分式方程=1的解为负数,则a的取值范围是()A.a>1B.a<1C.a<1且a≠﹣2D.a>1且a≠2【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a的不等式,求出不等式的解集即可确定出a的范围.解:分式方程去分母得:x+1=2x+a,即x=1﹣a,根据分式方程解为负数,得到1﹣a<0,且1﹣a≠﹣1,解得:a>1且a≠2.故选:D.【点评】此题考查了分式方程的解,注意在任何时候都要考虑分母不为0.17.如图,点A的反比例函数y=(x>0)的图象上,点B在反比例函数y=(x>0)的图象上,AB∥x轴,BC⊥x轴,垂足为C,连接AC,若△ABC的面积是6,则k的值为()A.10B.12C.14D.16【分析】延长BA,交y轴于M,作AN⊥x轴于N,根据反比例函数系数k的几何意义得出S四边形ANCB=S四边形OMBC﹣S四边形OMAN=k﹣4=2S△ABC,由已知条件得出k﹣4=2×6,解得k=16.解:延长BA,交y轴于M,作AN⊥x轴于N,∵点A的反比例函数y=(x>0)的图象上,AB∥x轴,BC⊥x轴,∴S四边形OMAN=4,∵点B在反比例函数y=(x>0)的图象上,∴S四边形OMBC=k,∵S四边形ANCB=S四边形OMBC﹣S四边形OMAN=k﹣4=2S△ABC,∴k﹣4=2×6,解得k=16,故选:D.【点评】本题考查了反比例函数系数k的几何意义,明确图中矩形的面积为即为比例系数k的绝对值.18.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.B.2C.2D.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.【点评】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形,属于中考常考题型.19.小华准备购买单价分别为4元和5元的两种拼装饮料,若小华将50元恰好用完,两种饮料都买,则购买方案共有()A.2种B.3种C.4种D.5种【分析】利用二元一次方程的解法进而分别代入正整数求出即可.解:设购买单价为4元的饮料x瓶,购买单价为5元的饮料y瓶,根据题意可得:4x+5y=50,当x=5,y=6,当x=10,y=2,故符合题意的方案有2种.故选:A.【点评】此题主要考查了二元一次方程的应用,正确得出等量关系是解题关键.20.如图,在平行四边形中,E、F分别是AD、BC的中点,AC分别交BE、DF于G、H,下列结论:①BE=DF;②AG=GH=HC;③EG=DH;④S△ABE=3S△AGE.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】由ABCD为平行四边形,根据平行四边形的性质对边平行且相等,得到AD与BC平行且相等,又E和F分别为AD与BC的中点,利用等量代换得到ED与BF相等,且平行,根据一组对边平行且相等的四边形为平行四边形得到DEFB为平行四边形,从而得到对边DF与BE相等,选项①正确;由DF与EB平行得到两对同位角相等,利用两对对应角相等的三角形相似得到三角形AEG与三角形ADH相似,且相似比为1:2,故得到G为AH中点,同理得到H为CG中点,即可得到AG=GH=HC,选项②正确;从而得到EG为三角形ADH的中位线,根据中位线性质得到EG等于DH的一半,选项③正确;由AD与BC平行得到两对内错角相等,从而得到三角形AEG与三角形GCB 相似,且相似比为1:2,得到EG与GB之比为1:2,根据三角形AEG与三角形AGB 底边分别为EG与GB时,高相同,故两三角形面积之比为1:2,从而得到S△ABE=3S△AGE.故选项④正确,从而得到正确选项的个数为4个.解:如右图,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,BE=DF,选项①正确;∵E、F是AD、BC中点,∴DE=AD,BF=BC,∴DE=BF,∵DE∥BF,∴四边形DEBF是平行四边形,∴BE∥DF,BE=DF,∴∠AEG=∠ADH,∠AGE=∠AHD,∴△AEG∽△ADH,又AE:AD=1:2,∴AG:AH=1:2,即G为AH中点,∴EG为△ADH的中位线,∴EG=DH,选项③正确;同理H为CG的中点,HF也为△BCG的中位线,∴AG=GH=CH,选项②正确;又AD∥BC,∴∠EAG=∠BCG,∠AEG=∠GBC,∴△AEG∽△BCG,又AE:BC=1:2,∴EG:GB=1:2,∵△AEG和△AGB分别以EG和GB为底边时,高相同,∴两三角形的面积之比也等于1:2,即2S△ABG=S△AGB,∴S△ABE=3S△AGE,选项④正确,则正确的结论有4个.故选:D.【点评】此题考查了平行四边形的判定与性质,相似三角形的判定与性质,以及三角形的中位线定理,本题属于结论开放型题,由已知一定的条件,需探求问题的结论,解题的方法也多样化,解决此类问题往往采用执因索果,逐步推理的方法.三、解答题(共60分.解答应写出文字说明、证明过程或演算步骤.)21.先化简,再求值:(﹣)÷,其中a=tan60°+2sin30°.【分析】直接将括号里面通分运算进而利用分式的加减运算法则计算,再结合分式的除法运算法则计算即可,结合特殊角的三角函数值得出a的值求出答案.解:原式===,∵a=tan60°+2sin30°=+2×=+1,∴原式=.【点评】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.22.如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;(3)在(2)的条件下算出线段BC旋转到B2C所经过的扇形的面积.(结果保留π)【分析】(1)利用轴对称的性质画出A、B、C的定义点A1、B1、C1,而从得到△A1B1C1;(2)利用旋转的性质和网格特点,画出A、B的定义点A2、B2而从得到△A2B2C;(3)由于线段BC旋转到B2C所经过的扇形的半径为CB,圆心角为90度,然后利用扇形的面积公式可计算它的面积.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C为所作;(3)BC==,所以线段BC旋转到B2C所经过的扇形的面积==π.【点评】本题考查了作图﹣旋转:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称.23.如图,已知抛物线y=ax2+bx的顶点为C(1,﹣1),P是抛物线上位于第一象限内的一点,直线OP交该抛物线的对称轴于点B,对称轴与x轴交于点M,直线CP交x轴于点A.(1)求该抛物线的解析式;(2)如果△ABP的面积等于△ABC的面积,求点P的坐标.【分析】(1)由对称轴公式,以及已知顶点C坐标,利用待定系数法确定出解析式即可;(2)设出P坐标,由两三角形面积相等得到AC=AP,过点P作PQN⊥x轴于点N,证明△ACM≌△APN得PN=CM,由此列出关于t的方程,求出方程的解确定出t的值,即可求出P坐标.解:(1)∵抛物线y=ax2+bx的顶点为C(1,﹣1),∴,解得,∴抛物线的表达式为y=x2﹣2x;(2)设P(t,t2﹣2t).∵△ABP的面积等于△ABC的面积,∴AC=AP.如图,过点P作PN⊥x轴于点N.在△ACM和△APN中,,∴△ACM≌△APN(ASA),∴CM=PN=1.可得t2﹣2t=1.解得(舍去),∴点P的坐标为.【点评】此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,全等三角形的判定与性质,熟练掌握待定系数法和构造全等三角形是解本题的关键.24.“校园手机”现象越来越受到社会的关注,“六一”期间,记者随机调查了某校若干名初四学生和家长对中学生带手机现象的看法,统计整理并制作了如下两幅统计图.(1)求这次调查的家长人数,并补全条形图;(2)求扇形图中表示家长“赞成”的圆心角的度数;(3)若南岗区共有初四学生10000名,请估计在这些学生中,对中学生带手机现象持“无所谓”态度的人数是多少?【分析】(1)利用无所谓的家长的个数除以它所占的百分比即可得到所调查家长的总数;(2)先计算出反对的家长的个数,再补全条形统计图,然后用360°乘以表示“赞成”的所占的百分比得到表示“赞成”的圆心角的度数;(3)用10000乘以在样本中持“无所谓”态度的学生家长所占的百分比即可.解:(1)80÷20%=400,答:这次调查的家长人数为400人.反对的家长的个数为:400﹣40﹣80=280;如图所示:(2)×360°=36°,答:扇形图中表示家长“赞成”的圆心角的为36°.(3)10000×≈2258,答:估计在这些学生中,对中学生带手机现象持“无所谓”态度的人数约为2258人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.25.小明和爸爸周末步行去游泳馆游泳,爸爸先出发了一段时间后小明才出发,途中小明在离家1400米处的报亭休息了一段时间后继续按原来的速度前往游泳馆.爸爸、小明离家的距离y1(单位:米),y2(单位:米)与小明所走时间x(单位:分钟)之间的函数关系如图所示,请结合图象信息解答下列问题:(1)分别求出爸爸离家的距离y1和小明到达报亭前离家的距离y2与时间x之间的函数关系式;(2)求小明在报亭休息了多长时间遇到姗姗来迟的爸爸?(3)若游泳馆离小明家2000米,请你通过计算说明谁先到达游泳馆?【分析】(1)利用待定系数法即可解决问题;(2)把y=1400代入解析式解答即可;(3)根据题意计算解答即可.解:(1)y1=k1x+b,把(0,210)和(7,700)代入,得,解得,∴解析式为y1=70x+210.设y2=k2x,将(7,700)代入,得700=7k2.解得k2=100.∴解析式为y2=100x.(2)把y=1400代入y2=100x,解得x=14将y=1400代入y1=70x+210,解得x=17.17﹣14=3(分钟).答:小明在报亭休息了3分钟遇到姗姗来迟的爸爸.(3)小明到达游泳馆的时间为(2000﹣1400)+100+20=26(分钟).设爸爸到达游泳馆的时间为t分钟.根据题意得70t+210=2000,解得,∵,∴爸爸先到达游泳馆.答:爸爸先到达游泳馆.【点评】本题考查一次函数的应用,待定系数法确定函数解析式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.26.在Rt△ABC中,∠BAC=90°,AB=AC,P是直线AC上的一点,连接BP,过点C 作CD⊥BP,交直线BP于点D.(1)当点P在线段AC上时,如图①,求证:BD﹣CD=AD;(2)当点P在直线AC上移动时,位置如图②、图③所示,线段CD,BD与AD之间又有怎样的数量关系?请直接写出你的猜想,不需证明.【分析】(1)在BD上截取BE=CD,连接AE,可先证得△ABE≌△ACD(SAS),则AE=AD,∠BAE=∠CAD,进而可证得△AED为等腰直角三角形,即可得证;(2)仿照(1)的证明思路,作出相应的辅助线,即可证得对应的CD,BD,与AD之间的数量关系.解:(1)证明:如图1,在BD上截取BE=CD,。
【2019中考数学】黑龙江龙东地区数学中考真题(含解析)【2019中考真题+数学】
2019年黑龙江省龙东地区中考数学试卷一、填空题(每题3分,满分30分)1.(3分)中国政府提出的“一带一路”倡议,近两年来为沿线国家创造了约180000个就业岗位.将数据180000用科学记数法表示为.2.(3分)在函数y=中,自变量x的取值范围是.3.(3分)如图,在四边形ABCD中,AD=BC,在不添加任何辅助线的情况下,请你添加一个条件,使四边形ABCD是平行四边形.4.(3分)在不透明的甲、乙两个盒子中装有除颜色外完全相同的小球,甲盒中有2个白球、1个黄球,乙盒中有1个白球、1个黄球,分别从每个盒中随机摸出1个球,则摸出的2个球都是黄球的概率是.5.(3分)若关于x的一元一次不等式组的解集为x>1,则m的取值范围是.6.(3分)如图,在⊙O中,半径OA垂直于弦BC,点D在圆上且∠ADC=30°,则∠AOB的度数为.7.(3分)若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.8.(3分)如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△PAB=S△PCD,则PC+PD的最小值为.9.(3分)一张直角三角形纸片ABC,∠ACB=90°,AB=10,AC=6,点D为BC边上的任一点,沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,则CD的长为.(3分)如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,10.连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3;再以对角线OA3为边作第四个正方形,连接A2A4,得到△A2A3A4……记△AA1A2、△A1A2A3、△A2A3A4的面积分别为S1、S2、S3,如此下去,则S2019=.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.a2+2a2=3a4B.b10÷b2=b5C.(m﹣n)2=m2﹣n2D.(﹣2x2)3=﹣8x612.(3分)下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是()A.B.C.D.13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是()A.6 B.5 C.4 D.314.(3分)某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现了一处错误:将最低成绩写得更低了,则计算结果不受影响的是()A.平均数B.中位数C.方差D.极差15.(3分)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4 B.5 C.6 D.716.(3分)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数y=上,顶点B在反比例函数y=上,点C在x轴的正半轴上,则平行四边形OABC的面积是()A.B.C.4 D.617.(3分)已知关于x的分式方程=1的解是非正数,则m的取值范围是()A.m≤3 B.m<3 C.m>﹣3 D.m≥﹣3 18.(3分)如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=3:2,过点B作BE∥AC,过点C作CE∥DB,BE、CE交于点E,连接DE,则tan∠EDC=()A.B.C.D.19.(3分)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种20.(3分)如图,在平行四边形ABCD中,∠BAC=90°,AB=AC,过点A作边BC的垂线AF 交DC的延长线于点E,点F是垂足,连接BE、DF,DF交AC于点O.则下列结论:①四边形ABEC是正方形;②CO:BE=1:3;③DE=BC;④S四边形OCEF=S△AOD,正确的个数是()A.1 B.2 C.3 D.4三、解答题(满分60分)21.(5分)先化简,再求值:(﹣)÷,期中x=2sin30°+1.22.(6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).23.(6分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A(3,0)、点B (﹣1,0),与y轴交于点C.(1)求拋物线的解析式;(2)过点D(0,3)作直线MN∥x轴,点P在直线NN上且S△PAC=S△DBC,直接写出点P的坐标.24.(7分)“世界读书日”前夕,某校开展了“读书助我成长”的阅读活动.为了了解该校学生在此次活动中课外阅读书籍的数量情况,随机抽取了部分学生进行调查,将收集到的数据进行整理,绘制出两幅不完整的统计图,请根据统计图信息解决下列问题:(1)求本次调查中共抽取的学生人数;(2)补全条形统计图;(3)在扇形统计图中,阅读2本书籍的人数所在扇形的圆心角度数是;(4)若该校有1200名学生,估计该校在这次活动中阅读书籍的数量不低于3本的学生有多少人?25.(8分)小明放学后从学校回家,出发5分钟时,同桌小强发现小明的数学作业卷忘记拿了,立即拿着数学作业卷按照同样的路线去追赶小明,小强出发10分钟时,小明才想起没拿数学作业卷,马上以原速原路返回,在途中与小强相遇.两人离学校的路程y(米)与小强所用时间t(分钟)之间的函数图象如图所示.(1)求函数图象中a的值;(2)求小强的速度;(3)求线段AB的函数解析式,并写出自变量的取值范围.26.(8分)如图,在△ABC中,AB=BC,AD⊥BC于点D,BE⊥AC于点E,AD与BE交于点F,BH⊥AB于点B,点M是BC的中点,连接FM并延长交BH于点H.(1)如图①所示,若∠ABC=30°,求证:DF+BH=BD;(2)如图②所示,若∠ABC=45°,如图③所示,若∠ABC=60°(点M与点D重合),猜想线段DF、BH与BD之间又有怎样的数量关系?请直接写出你的猜想,不需证明.27.(10分)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?28.(10分)如图,在平面直角坐标系中,矩形ABCD的边AB在x轴上,AB、BC的长分别是一元二次方程x2﹣7x+12=0的两个根(BC>AB),OA=2OB,边CD交y轴于点E,动点P 以每秒1个单位长度的速度,从点E出发沿折线段ED﹣DA向点A运动,运动的时间为t (0≤t<6)秒,设△BOP与矩形AOED重叠部分的面积为S.(1)求点D的坐标;(2)求S关于t的函数关系式,并写出自变量的取值范围;(3)在点P的运动过程中,是否存在点P,使△BEP为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.2019年黑龙江省龙东地区中考数学试卷参考答案与试题解析一、填空题(每题3分,满分30分)1.【解答】解:将180000用科学记数法表示为1.8×105,故答案是:1.8×105.2.【解答】解:在函数y=中,有x﹣2≥0,解得x≥2,故其自变量x的取值范围是x≥2.故答案为x≥2.3.【解答】解:根据平行四边形的判定,可再添加一个条件:AD∥BC.故答案为:AD∥BC(答案不唯一).4.【解答】解:画树状图为:,共有6种等可能的结果数,其中2个球都是黄球占1种,∴摸出的2个球都是黄球的概率=;故答案为:.5.【解答】解:解不等式x﹣m>0,得:x>m,解不等式2x+1>3,得:x>1,∵不等式组的解集为x>1,∴m≤1,故答案为:m≤1.6.【解答】解:∵OA⊥BC,∴=,∴∠AOB=2∠ADC,∵∠ADC=30°,∴∠AOB=60°,故答案为60°.7.【解答】解:∵圆锥的底面圆的周长是45cm,∴圆锥的侧面扇形的弧长为5πcm,∴=5π,解得:n=150故答案为150°.8.【解答】解:∵ABCD为矩形,∴AB=DC又∵S△PAB=S△PCD∴点P到AB的距离与到CD的距离相等,即点P线段AD垂直平分线MN上,连接AC,交MN与点P,此时PC+PD的值最小,且PC+PD=AC=故答案为:29.【解答】解:分两种情况:①若∠DEB=90°,则∠AED=90°=∠C,CD=ED,连接AD,则Rt△ACD≌Rt△AED(HL),∴AE=AC=6,BE=10﹣6=4,设CD=DE=x,则BD=8﹣x,∵Rt△BDE中,DE2+BE2=BD2,∴x2+42=(8﹣x)2,解得x=3,∴CD=3;②若∠BDE=90°,则∠CDE=∠DEF=∠C=90°,CD=DE,∴四边形CDEF是正方形,∴∠AFE=∠EDB=90°,∠AEF=∠B,∴△AEF∽△EBD,∴=,设CD=x,则EF=DF=x,AF=6﹣x,BD=8﹣x,∴=,解得x=,∴CD=,综上所述,CD的长为3或,故答案为:3或.10.【解答】解:∵四边形OAA1B1是正方形,∴OA=AA1=A1B1=1,∴S1==,∵∠OAA1=90°,∴AO12=12+12=,∴OA2=A2A3=2,∴S2==1,同理可求:S3==2,S4=4…,∴S n=2n﹣2,∴S2019=22017,故答案为:22017.二、选择题(每题3分,满分30分)11.【解答】解:A、a2+2a2=3a2,故此选项错误;B、b10÷b2=b8,故此选项错误;C、(m﹣n)2=m2﹣2mn+n2,故此选项错误;D、(﹣2x2)3=﹣8x6,故此选项正确;故选:D.12.【解答】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选:C.13.【解答】解:综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个.故选:B.14.【解答】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最低成绩写得更低了,计算结果不受影响的是中位数,故选:B.15.【解答】解:设这种植物每个支干长出x个小分支,依题意,得:1+x+x2=43,解得:x1=﹣7(舍去),x2=6.故选:C.16.【解答】解:如图作BD⊥x轴于D,延长BA交y轴于E,∵四边形OABC是平行四边形,∴AB∥OC,OA=BC,∴BE⊥y轴,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),根据系数k的几何意义,S矩形BDOE=5,S△AOE=,∴四边形OABC的面积=5﹣﹣=4,故选:C.17.【解答】解:=1,方程两边同乘以x﹣3,得2x﹣m=x﹣3,移项及合并同类项,得x=m﹣3,∵分式方程=1的解是非正数,x﹣3≠0,∴,解得,m≤3,故选:A.18.【解答】解:∵矩形ABCD的对角线AC、BD相交于点O,AB:BC=3:2,∴设AB=3x,BC=2x.如图,过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.∵BE∥AC,CE∥BD,∴四边形BOCE是平行四边形,∵四边形ABCD是矩形,∴OB=OC,∴四边形BOCE是菱形.∴OE与BC垂直平分,∴EF=AD==x,OE∥AB,∴四边形AOEB是平行四边形,∴OE=AB,∴CF=OE=AB=x.∴tan∠EDC===.故选:A.19.【解答】解:设一等奖个数x个,二等奖个数y个,根据题意,得6x+4y=34,使方程成立的解有,,,∴方案一共有3种;故选:B.20.【解答】解:①∵∠BAC=90°,AB=AC,∴BF=CF,∵四边形ABCD是平行四边形,∴AB∥DE,∴∠BAF=∠CEF,∵∠AFB=∠CFE,∴△ABF≌△ECF(AAS),∴AB=CE,∴四边形ABEC是平行四边形,∵∠BAC=90°,AB=AC,∴四边形ABEC是正方形,故此题结论正确;②∵OC∥AD,∴△OCF∽△OAD,∴OC:OA=CF:AD=CF:BC=1:2,∴OC:AC=1:3,∵AC=BE,∴OC:BE=1:3,故此小题结论正确;③∵AB=CD=EC,∴DE=2AB,∵AB=AC,∠BAC=90°,∴AB=BC,∴DE=2×,故此小题结论正确;④∵△OCF∽△OAD,∴,∴,∵OC:AC=1:3,∴3S△OCF=S△ACF,∵S△ACF=S△CEF,∴,∴,故此小题结论正确.故选:D.三、解答题(满分60分)21.【解答】解:原式=[﹣]•(x+1)=•(x+1)=,当x=2sin30°+1=2×+1=1+1=2时,原式=1.22.【解答】解:(1)如右图所示,点A1的坐标是(﹣4,1);(2)如右图所示,点A2的坐标是(1,﹣4);(3)∵点A(4,1),∴OA=,∴线段OA在旋转过程中扫过的面积是:=.23.【解答】解:(1)将点A(3,0)、点B(﹣1,0)代入y=x2+bx+c,可得b=﹣2,c=﹣3,∴y=x2﹣2x﹣3;(2)∵C(0,﹣3),∴S△DBC=6×1=3,∴S△PAC=3,设P(x,3),直线CP与x轴交点为Q,则S△PAC=6×AQ,∴AQ=1,∴Q(2,0)或Q(4,0),∴直线CQ为y=x﹣3或y=x﹣3,当y=3时,x=4或x=8,∴P(4,3)或P(8,3);24.【解答】解:(1)本次调查中共抽取的学生人数为15÷30%=50(人);(2)3本人数为50×40%=20(人),则2本人数为50﹣(15+20+5)=10(人),补全图形如下:(3)在扇形统计图中,阅读2本书籍的人数所在扇形的圆心角度数是360°×=72°,故答案为:72°;(4)估计该校在这次活动中阅读书籍的数量不低于3本的学生有1200×=600(人).25.【解答】解:(1)a=×(10+5)=900;(2)小明的速度为:300÷5=60(米/分),小强的速度为:(900﹣60×2)÷12=65(米/分);(3)由题意得B(12,780),设AB所在的直线的解析式为:y=kx+b(k≠0),把A(10,900)、B(12,780)代入得:,解得,∴线段AB所在的直线的解析式为y=﹣60x+1500(10≤x≤12).26.【解答】(1)证明:连接CF,如图①所示:∵AD⊥BC,BE⊥AC,∴CF⊥AB,∵BH⊥AB,∴CF∥BH,∴∠CBH=∠BCF,∵点M是BC的中点,∴BM=MC,在△BMH和△CMF中,,∴△BMH≌△CMF(ASA),∴BH=CF,∵AB=BC,BE⊥AC,∴BE垂直平分AC,∴AF=CF,∴BH=AF,∴AD=DF+AF=DF+BH,∵在Rt△ADB中,∠ABC=30°,∴AD=BD,∴DF+BH=BD;(2)解:图②猜想结论:DF+BH=BD;理由如下:同(1)可证:AD=DF+AF=DF+BH,∵在Rt△ADB中,∠ABC=45°,∴AD=BD,∴DF+BH=BD;图③猜想结论:DF+BH=BD;理由如下:同(1)可证:AD=DF+AF=DF+BH,∵在Rt△ADB中,∠ABC=60°,∴AD=BD,∴DF+BH=BD.27.【解答】解:(1)设购买一个甲种文具a元,一个乙种文具b元,由题意得:,解得,答:购买一个甲种文具15元,一个乙种文具5元;(2)根据题意得:955≤15x+5(120﹣x)≤1000,解得35.5≤x≤40,∵x是整数,∴x=36,37,38,39,40.∴有5种购买方案;(3)W=15x+5(120﹣x)=10x+600,∵10>0,∴W随x的增大而增大,当x=36时,W最小=10×36+600=960(元),∴120﹣36=84.答:购买甲种文具36个,乙种文具84个时需要的资金最少,最少资金是960元.28.【解答】解:(1)∵x2﹣7x+12=0,∴x1=3,x2=4,∵BC>AB,∴BC=4,AB=3,∵OA=2OB,∴OA=2,OB=1,∵四边形ABCD是矩形,∴点D的坐标为(﹣2,4);(2)设BP交y轴于点F,如图1,当0≤t≤2时,PE=t,∵CD∥AB,∴△OBF∽△EPF,∴=,即=,∴OF=,∴S=OF•PE=••t=;如图2,当2<t<6时,AP=6﹣t,∵OE∥AD,∴△OBF∽△ABP,∴=,即=,∴OF=,∴S=•OF•OA=××2=﹣t+2;综上所述,S=;(3)由题意知,当点P在DE上时,显然不能构成等腰三角形;当点P在DA上运动时,设P(﹣2,m),∵B(1,0),E(0,4),∴BP2=9+m2,BE2=1+16=17,PE2=4+(m﹣4)2=m2﹣8m+20,①当BP=BE时,9+m2=17,解得m=±2,则P(﹣2,2);②当BP=PE时,9+m2=m2﹣8m+20,解得m=,则P(﹣2,);③当BE=PE时,17=m2﹣8m+20,解得m=4±,则P(﹣2,4﹣);综上,P(﹣2,2)或(﹣2,)或(﹣2,4﹣).。
黑龙江龙东地区2019中考[数学]考试真题与答案解析
黑龙江龙东地区2019中考[数学]考试真题与答案解析一、选择题1.下列各运算中,计算正确的是( )A.a2•2a2=2a4B.x8÷x2=x4C.(x﹣y)2=x2﹣xy+y2D.(﹣3x2)3=﹣9x6解析;直接利用完全平方公式以及积的乘方运算法则、单项式乘以单项式、同底数幂的除法运算法则分别化简得出答案.参考答案;解:A、a2•2a2=2a4,正确;B、x8÷x2=x6,故此选项错误;C、(x﹣y)2=x2﹣2xy+y2,故此选项错误;D、(﹣3x2)3=﹣27x6,故此选项错误;故选:A.2.下列图标中是中心对称图形的是( )A.B.C.D.解析;根据轴对称图形与中心对称图形的概念求解.参考答案;解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.是中心对称图形,故本选项符合题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B.3.如图,由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则所需的小正方体的个数最多是( )A.6B.7C.8D.9解析;易得此几何体有2行2列,判断出各行各列最多有几个正方体组成即可.参考答案;解:综合主视图与左视图,第一行第1列最多有2个,第一行第2列最多有1个;第二行第1列最多有3个,第二行第2列最多有1个;所以最多有:2+1+3+1=7(个).故选:B.4.一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,则该组数据的平均数是( )A.3.6B.3.8或3.2C.3.6或3.4D.3.6或3.2解析;先根据从小到大排列的这组数据且x为正整数、有唯一众数4得出x的值,再利用算术平均数的定义求解可得.参考答案;解:∵从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,∴x=2或x=1,当x=2时,这组数据的平均数为=3.6;当x=1时,这组数据的平均数为=3.4;即这组数据的平均数为3.4或3.6,故选:C.5.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2,则实数k的取值范围是( )A.k<B.k≤C.k>4D.k≤且k≠0解析;根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.参考答案;解:∵关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2,∴△=[﹣(2k+1)]2﹣4×1×(k2+2k)≥0,解得:k≤.故选:B.6.如图,菱形ABCD的两个顶点A,C在反比例函数y=的图象上,对角线AC,BD的交点恰好是坐标原点O,已知B(﹣1,1),∠ABC=120°,则k 的值是( )A.5B.4C.3D.2解析;根据题意可以求得点A的坐标,从而可以求得k的值.解:∵四边形ABCD是菱形,∴BA=AD,AC⊥BD,∵∠ABC=120°,∴∠BAD=60°,∴△ABD是等边三角形,∵点B(﹣1,1),∴OB=,∴AO==,∵直线BD的解析式为y=﹣x,∴直线AD的解析式为y=x,∵OA=,∴点A的坐标为(,),∵点A在反比例函数y=的图象上,∴k==3,故选:C.7.已知关于x的分式方程﹣4=的解为正数,则k的取值范围是( )A.﹣8<k<0B.k>﹣8且k≠﹣2C.k>﹣8 且k≠2D.k <4且k≠﹣2解析;表示出分式方程的解,根据解为正数确定出k的范围即可.参考答案;解:分式方程﹣4=,去分母得:x﹣4(x﹣2)=﹣k,去括号得:x﹣4x+8=﹣k,解得:x=,由分式方程的解为正数,得到>0,且≠2,解得:k>﹣8且k≠﹣2.故选:B.8.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为( )A.4B.8C.D.6解析;由菱形的性质得出OA=OC=6,OB=OD,AC⊥BD,则AC=12,由直角三角形斜边上的中线性质得出OH=BD,再由菱形的面积求出BD=8,即可得出答案.参考答案;解:∵四边形ABCD是菱形,∴OA=OC=6,OB=OD,AC⊥BD,∴AC=12,∵DH⊥AB,∴∠BHD=90°,∴OH=BD,∵菱形ABCD的面积=×AC×BD=×12×BD=48,∴BD=8,∴OH=BD=4;故选:A.9.在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用200元钱购买A、B、C三种奖品,A种每个10元,B种每个20元,C种每个30元,在C种奖品不超过两个且钱全部用完的情况下,有多少种购买方案( )A.12种B.15种C.16种D.14种解析;有两个等量关系:购买A种奖品钱数+购买B种奖品钱数+购买C种奖品钱数=200;C种奖品个数为1或2个.设两个未知数,得出二元一次方程,根据实际含义确定解.参考答案;解:设购买A种奖品m个,购买B种奖品n个,当C种奖品个数为1个时,根据题意得10m+20n+30=200,整理得m+2n=17,∵m、n都是正整数,0<2n<17,∴n=1,2,3,4,5,6,7,8;当C种奖品个数为2个时,根据题意得10m+20n+60=200,整理得m+2n=14,∵m、n都是正整数,0<2n<14,∴m=1,2,3,4,5,6;∴有8+6=14种购买方案.故选:D.10.如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC、EF、EG.则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值是a2;⑤当BE=a时,G是线段AD的中点.其中正确的结论是( )A.①②③B.②④⑤C.①③④D.①④⑤解析;①正确.如图1中,在BC上截取BH=BE,连接EH.证明△FAE≌△EHC (SAS)即可解决问题.②③错误.如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH (SAS),再证明△GCE≌△GCH(SAS)即可解决问题.④正确.设BE=x,则AE=a﹣x,AF=x,构建二次函数,利用二次函数的性质解决最值问题.⑤正确.当BE=a时,设DG=x,则EG=x+a,利用勾股定理构建方程可得x=即可解决问题.参考答案;解:如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=BE,∵AF=BE,∴AF=EH,∵∠DAM=∠EHB=45°,∠BAD=90°,∴∠FAE=∠EHC=135°,∵BA=BC,BE=BH,∴AE=HC,∴△FAE≌△EHC(SAS),∴EF=EC,∠AEF=∠ECH,∵∠ECH+∠CEB=90°,∴∠AEF+∠CEB=90°,∴∠FEC=90°,∴∠ECF=∠EFC=45°,故①正确,如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),∴∠ECB=∠DCH,∴∠ECH=∠BCD=90°,∴∠ECG=∠GCH=45°,∵CG=CG,CE=CH,∴△GCE≌△GCH(SAS),∴EG=GH,∵GH=DG+DH,DH=BE,∴EG=BE+DG,故③错误,∴△AEG的周长=AE+EG+AG=AE+AH=AD+DH+AE=AE+EB+AD=AB+AD=2a,故②错误,设BE=x,则AE=a﹣x,AF=x,∴S△AEF=•(a﹣x)×x=﹣x2+ax=﹣(x2﹣ax+a2﹣a2)=﹣(x﹣a)2+a2,∵﹣<0,∴x=a时,△AEF的面积的最大值为a2.故④正确,当BE=a时,设DG=x,则EG=x+a,在Rt△AEG中,则有(x+a)2=(a﹣x)2+(a)2,解得x=,∴AG=GD,故⑤正确,故选:D.二、填空题11.5G信号的传播速度为300000000m/s,将数据300000000用科学记数法表示为 3×108 .解析;科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.参考答案;解:300000000=3×108.故答案为:3×108.12.在函数y=中,自变量x的取值范围是 x>2 .解析;根据被开方数大于等于0,分母不等于0列式计算即可得解.参考答案;解:由题意得,x﹣2>0,解得x>2.故答案为:x>2.13.如图,Rt△ABC和Rt△EDF中,∠B=∠D,在不添加任何辅助线的情况下,请你添加一个条件 AB=ED(BC=DF或AC=EF或AE=CF等) ,使Rt△ABC和Rt△EDF全等.解析;本题是一道开放型的题目,答案不唯一,可以是AB=ED或BC=DF或AC =EF或AE=CF等,只要符合全等三角形的判定定理即可.参考答案;解:添加的条件是:AB=ED,理由是:∵在△ABC和△EDF中,∴△ABC≌△EDF(ASA),故答案为:AB=ED.14.一个盒子中装有标号为1、2、3、4、5的五个小球,这些球除了标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于6的概率为 .解析;首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的两个小球的标号之和大于6的情况,再利用概率公式即可求得答案.参考答案;解:画树状图如图所示:∵共有20种等可能的结果,摸出的两个小球的标号之和大于6的有8种结果,∴摸出的两个小球的标号之和大于6的概率为=,故答案为:.15.若关于x的一元一次不等式组有2个整数解,则a的取值范围是 6<a≤8 .解析;分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再结合不等式组的整数解的个数得出关于a的不等式组,解之可得答案.参考答案;解:解不等式x﹣1>0,得:x>1,解不等式2x﹣a<0,得:x<,则不等式组的解集为1<x<,∵不等式组有2个整数解,∴不等式组的整数解为2、3,则3<≤4,解得6<a≤8,故答案为:6<a≤8.16.如图,AD是△ABC的外接圆⊙O的直径,若∠BAD=40°,则∠ACB= 50 °.解析;连接BD,如图,根据圆周角定理即可得到结论.参考答案;解:连接BD,如图,∵AD为△ABC的外接圆⊙O的直径,∴∠ABD=90°,∴∠D=90°﹣∠BAD=90°﹣40°=50°,∴∠ACB=∠D=50°.故答案为50.17.小明在手工制作课上,用面积为150πcm2,半径为15cm的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为 10 cm.解析;先根据扇形的面积公式:S=l•R(l为弧长,R为扇形的半径)计算出扇形的弧长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,利用圆的周长公式计算出圆锥的底面半径.参考答案;解:∵S=l•R,∴•l•15=150π,解得l=20π,设圆锥的底面半径为r,∴2π•r=20π,∴r=10(cm).故答案为:10.18.如图,在边长为4的正方形ABCD中,将△ABD沿射线BD平移,得到△EGF,连接EC、GC.求EC+GC的最小值为 4 .解析;如图,连接DE,作点D关于直线AE的对称点T,连接AT,ET,CT.首先证明B,A,T共线,求出TC,证明四边形EGCD是平行四边形,推出DE=CG,推出EC+CG=EC+ED=EC+TE,根据TE+EC≥TC即可解决问题.参考答案;解:如图,连接DE,作点D关于直线AE的对称点T,连接AT,ET,CT.∵四边形ABCD是正方形,∴AB=BC═AD=4,∠ABC=90°,∠ABD=45°,∵AE∥BD,∴∠EAD=∠ABD=45°,∵D,T关于AE对称,∴AD=AT=4,∠TAE=∠EAD=45°,∴∠TAD=90°,∵∠BAD=90°,∴B,A,T共线,∴CT==4,∵EG=CD,EG∥CD,∴四边形EGCD是平行四边形,∴CG=EC,∴EC+CG=EC+ED=EC+TE,∵TE+EC≥TC,∴EC+CG≥4,∴EC+CG的最小值为4.故答案为:4.19.在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=a,连接AE,将△ABE沿AE折叠.若点B的对应点B′落在矩形ABCD的边上,则折痕的长为 或 .解析;分两种情况:①当点B'落在AD边上时,证出△ABE是等腰直角三角形,得出AE=AB=;②当点B'落在CD边上时,证明△ADB'∽△B'CE,得出=,求出BE=a=,由勾股定理求出AE即可.参考答案;解:分两种情况:①当点B'落在AD边上时,如图1所示:∵四边形ABCD是矩形,∴∠BAD=∠B=90°,∵将△ABE沿AE折叠.点B的对应点B′落在矩形ABCD的AD边上,∴∠BAE=∠B'AE=∠BAD=45°,∴△ABE是等腰直角三角形,∴AB=BE=1,AE=AB=;②当点B'落在CD边上时,如图2所示:∵四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°,AD=BC=a,∵将△ABE沿AE折叠.点B的对应点B′落在矩形ABCD的CD边上,∴∠B=∠AB'E=90°,AB'=AB=1,BE'=BE=a,∴CE=BC﹣BE=a﹣a=a,B'D==,在△ADB'和△B'CE中,∠B'AD=∠EB'C=90°﹣∠AB'D,∠D=∠C=90°,∴△ADB'∽△B'CE,∴=,即=,解得:a=,或a=0(舍去),∴BE=a=,∴AE===;综上所述,折痕的长为或;故答案为:或.20.如图,直线AM的解析式为y=x+1与x轴交于点M,与y轴交于点A,以OA为边作正方形ABCO,点B坐标为(1,1).过点B作EO1⊥MA交MA 于点E,交x轴于点O1,过点O1作x轴的垂线交MA于点A1,以O1A1为边作正方形O1A1B1C1,点B1的坐标为(5,3).过点B1作E1O2⊥MA交MA于E1,交x轴于点O2,过点O2作x轴的垂线交MA于点A2.以O2A2为边作正方形O2A2B2C2.….则点B2020的坐标 2×32020﹣1,32020 .解析;由B坐标为(1,1)根据题意求得A1的坐标,进而得B1的坐标,继续求得B2,B3,B4,B5的坐标,根据这5点的坐标得出规律,再按规律得结果.参考答案;解:∵点B坐标为(1,1),∴OA=AB=BC=CO=CO1=1,∵A1(2,3),∴A1O1=A1B1=B1C1=C1O2=3,∴B1(5,3),∴A2(8,9),∴A2O2=A2B2=B2C2=C2O3=9,∴B2(17,9),同理可得B4(53,27),B5(161,81),…由上可知,Bn(2×3n﹣1,3n),∴当n=2020时,Bn(2×32020﹣1,32020).故答案为:(2×32020﹣1,32020).三、解答题21.先化简,再求值:(2﹣)÷,其中x=3tan30°﹣3.解析;先根据分式的混合运算顺序和运算法则化简原式,再将特殊锐角的三角函数值代入求出x的值,继而代入计算可得.参考答案;解:原式=(﹣)÷=•=,当x=3tan30°﹣3=3×﹣3=﹣3时,原式===1﹣.22.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC的三个顶点A(5,2)、B(5,5)、C(1,1)均在格点上.(1)将△ABC向左平移5个单位得到△A1B1C1,并写出点A1的坐标;(2)画出△A1B1C1绕点C1顺时针旋转90°后得到的△A2B2C1,并写出点A2的坐标;(3)在(2)的条件下,求△A1B1C1在旋转过程中扫过的面积(结果保留π).解析;(1)依据△ABC向左平移5个单位,即可得到△A1B1C1,进而写出点A1的坐标;(2)依据△A1B1C1绕点C1逆时针旋转90°,即可得到的△A2B2C1,进而写出点A2的坐标;(3)依据扇形面积公式和三角形面积公式,即可得到△A1B1C1在旋转过程中扫过的面积.参考答案;解:(1)如图所示,△A1B1C1即为所求,点A1的坐标为(0,2);(2)如图所示,△A2B2C1即为所求,点A2的坐标为(﹣3,﹣3);(3)如图,∵BC==4,∴△A1B1C1在旋转过程中扫过的面积为:+×3×4=8π+6.23.如图,已知二次函数y=﹣x2+bx+c的图象经过点A(﹣1,0),B (3,0),与y轴交于点C.(1)求抛物线的解析式;(2)抛物线上是否存在点P,使∠PAB=∠ABC,若存在请直接写出点P的坐标.若不存在,请说明理由.解析;(1)运用待定系数法即可求解;(2)先求出点C的坐标,根据抛物线与x轴的两个交点,可求对称轴,找到点C关于对称轴的对应点;先运用待定系数法求出直线BC的解析式,再根据互相平行的两直线的关系求出与BC平行的直线AP2的解析式,联立抛物线解析式即可求解.参考答案;解:(1)根据题意得,解得.故抛物线的解析式为y=﹣x2+2x+3;(2)二次函数y=﹣x2+2x+3的对称轴是x=(﹣1+3)÷2=1,当x=0时,y=3,则C(0,3),点C关于对称轴的对应点P1(2,3),设直线BC的解析式为y=kx+3,则3k+3=0,解得k=﹣1.则直线BC的解析式为y=﹣x+3,设与BC平行的直线AP2的解析式为y=﹣x+m,则1+m=0,解得m=﹣1.则与BC平行的直线AP2的解析式为y=﹣x﹣1,联立抛物线解析式得,解得,(舍去).P2(4,﹣5).综上所述,P1(2,3),P2(4,﹣5).24.为了提高学生体质,战胜疫情,某中学组织全校学生宅家一分钟跳绳比赛,全校跳绳平均成绩是每分钟99次,某班班长统计了全班50名学生一分钟跳绳成绩,列出的频数分布直方图如图所示,(每个小组包括左端点,不包括右端点).求:(1)该班一分钟跳绳的平均次数至少是多少,是否超过全校的平均次数;(2)该班的一个学生说:“我的跳绳成绩是我班的中位数”请你给出该生跳绳成绩的所在范围;(3)从该班中任选一人,其跳绳次数超过全校平均数的概率是多少.解析;(1)观察直方图,根据平均数公式计算平均次数后,比较得答案;(2)根据中位数意义,确定中位数的范围;(3)根据频率的计算方法,可得跳绳成绩达到或超过校平均次数的概率为0.66.参考答案;解:(1)该班一分钟跳绳的平均次数至少是:=100.8,∵100.8>100,∴超过全校的平均次数;(2)这个学生的跳绳成绩在该班是中位数,因为4+13+19=36,所以中位数一定在100~120范围内;(3)该班60秒跳绳成绩大于或等于100次的有:19+7+5+2=33(人),故从该班中任选一人,其跳绳次数超过全校平均数的概率是.25.为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)解析;(1)利用待定系数法求一次函数解析式即可;(2)利用待定系数法分别求出BC与FG的解析式,再联立解答即可;(3)根据题意列式计算即可.参考答案;解:(1)设ME的函数解析式为y=kx+b(k≠0),由ME经过(0,50),(3,200)可得:,解得,∴ME的解析式为y=50x+50;(2)设BC的函数解析式为y=mx+n,由BC经过(4,0),(6,200)可得:,解得,∴BC的函数解析式为y=100x﹣400;设FG的函数解析式为y=px+q,由FG经过(5,200),(9,0)可得:,解得,∴FG的函数解析式为y=﹣50x+450,解方程组得,同理可得x=7h,答:货车返回时与快递车图中相遇的时间h,7h;(3)(9﹣7)×50=100(km),答:两车最后一次相遇时离武汉的距离为100km.26.如图①,在Rt△ABC中,∠ACB=90°,AC=BC,点D、E分别在AC、BC边上,DC=EC,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.(1)BE与MN的数量关系是 BE=NM .(2)将△DEC绕点C逆时针旋转到图②和图③的位置,判断BE与MN有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.解析;(1)如图①中,只要证明△PMN的等腰直角三角形,再利用三角形的中位线定理即可解决问题.(2)如图②中,结论仍然成立.连接AD,延长BE交AD于点H.由△ECB≌△DCA,推出BE=AD,∠DAC=∠EBC,即可推出BH⊥AD,由M、N、P分别为AE、BD、AB的中点,推出PM∥BE,PM=BE,PN∥AD,PN=AD,推出PM=PN,∠MPN=90°,可得BE=2PM=2×MN=MN.参考答案;解:(1)如图①中,∵AM=ME,AP=PB,∴PM∥BE,PM=BE,∵BN=DN,AP=PB,∴PN∥AD,PN=AD,∵AC=BC,CD=CE,∴AD=BE,∴PM=PN,∵∠ACB=90°,∴AC⊥BC,∴∵PM∥BC,PN∥AC,∴PM⊥PN,∴△PMN的等腰直角三角形,∴MN=PM,∴MN=•BE,∴BE=MN,故答案为BE=MN.(2)如图②中,结论仍然成立.理由:连接AD,延长BE交AD于点H.∵△ABC和△CDE是等腰直角三角形,∴CD=CE,CA=CB,∠ACB=∠DCE=90°,∵∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠ACD=∠ECB,∴△ECB≌△DCA(AAS),∴BE=AD,∠DAC=∠EBC,∵∠AHB=180°﹣(∠HAB+∠ABH)=180°﹣(45°+∠HAC+∠ABH)=∠180°﹣(45°+∠HBC+∠ABH)=180°﹣90°=90°,∴BH⊥AD,∵M、N、P分别为AE、BD、AB的中点,∴PM∥BE,PM=BE,PN∥AD,PN=AD,∴PM=PN,∠MPN=90°,∴BE=2PM=2×MN=MN.27.某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.(1)该超市购进甲种蔬菜15千克和乙种蔬菜20千克需要430元;购进甲种蔬菜10千克和乙种蔬菜8千克需要212元,求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克(x为正整数),求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的利润率不低于20%,求a的最大值.解析;(1)根据“购进甲种蔬菜15千克和乙种蔬菜20千克需要430元;购进甲种蔬菜10千克和乙种蔬菜8千克需要212元”,即可得出关于m,n的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量结合投入资金不少于1160元又不多于1168元,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为正整数即可得出各购买方案;(3)求出(2)中各购买方案的总利润,比较后可得出获得最大利润时售出甲、乙两种蔬菜的重量,再根据总利润=每千克利润×销售数量结合捐款后的利润率不低于20%,即可得出关于a的一元一次不等式,解之取其中的最大值即可得出结论.参考答案;解:(1)依题意,得:,解得:.答:m的值为10,n的值为14.(2)依题意,得:,解得:58≤x≤60.又∵x为正整数,∴x可以为58,59,60,∴共有3种购买方案,方案1:购进58千克甲种蔬菜,42千克乙种蔬菜;方案2:购进59千克甲种蔬菜,41千克乙种蔬菜;方案3:购进60千克甲种蔬菜,40千克乙种蔬菜.(3)购买方案1的总利润为(16﹣10)×58+(18﹣14)×42=516(元);购买方案2的总利润为(16﹣10)×59+(18﹣14)×41=518(元);购买方案3的总利润为(16﹣10)×60+(18﹣14)×40=520(元).∵516<518<520,∴利润最大值为520元,即售出甲种蔬菜60千克,乙种蔬菜40千克.依题意,得:(16﹣10﹣2a)×60+(18﹣14﹣a)×40≥(10×60+14×40)×20%,解得:a≤.答:a的最大值为.28.如图,在平面直角坐标系中,矩形ABCD的边AB长是x2﹣3x﹣18=0的根,连接BD,∠DBC=30°,并过点C作CN⊥BD,垂足为N,动点P从B 点以每秒2个单位长度的速度沿BD方向匀速运动到D点为止;点M沿线段DA 以每秒个单位长度的速度由点D向点A匀速运动,到点A为止,点P与点M 同时出发,设运动时间为t秒(t>0).(1)线段CN= 3 ;(2)连接PM和MN,求△PMN的面积s与运动时间t的函数关系式;(3)在整个运动过程中,当△PMN是以PN为腰的等腰三角形时,直接写出点P的坐标.解析;(1)解方程求出AB的长,由直角三角形的性质可求BD,BC的长,CN 的长;(2)分三种情况讨论,由三角形的面积可求解;(3)分两种情况讨论,由等腰三角形的性质和勾股定理可求解.参考答案;解:(1)∵AB长是x2﹣3x﹣18=0的根,∴AB=6,∵四边形ABCD是矩形,∴AD=BC,AB=CD=6,∠BCD=90°,∵∠DBC=30°,∴BD=2CD=12,BC=CD=6,∵∠DBC=30°,CN⊥BD,∴CN=BC=3,故答案为:3.(2)如图,过点M作MH⊥BD于H,∵AD∥BC,∴∠ADB=∠DBC=30°,∴MH=MD=t,∵∠DBC=30°,CN⊥BD,∴BN=CN=9,当0<t<时,△PMN的面积s=×(9﹣2t)×t=﹣t2+t;当t=时,点P与点N重合,s=0,当<t≤6时,△PMN的面积s=×(2t﹣9)×t=t2﹣t;(3)如图,过点P作PE⊥BC于E,当PN=PM=9﹣2t时,∵PM2=MH2+PH2,∴(9﹣2t)2=(t)2+(12﹣2t﹣t)2,∴t=3或t=,∴BP=6或,当BP=6时,∵∠DBC=30°,PE⊥BC,∴PE=BP=3,BE=PE=3,∴点P(3,3),当BP=时,同理可求点P(,),当PN=NM=9﹣2t时,∵NM2=MH2+NH2,∴(9﹣2t)2=(t)2+(t﹣3)2,∴t=3或24(不合题意舍去),∴BP=6,∴点P(3,3),综上所述:点P坐标为(3,3)或(,).。
2019年黑龙江龙东中考数学试题(解析版)_最新修正版
{来源}2019年××中考数学试卷 {适用范围:3. 九年级}{标题}2019年省市中考数学试卷考试时间:分钟 满分:分{题型:1-选择题}一、填空题(每题3分,满分30分){题目}11.(2019年黑友江龙东)下列各运算中,计算正确的是( ) A .22423a a a +=B .1025b b b ÷=C .222()m n m n -=-D .236(2)8x x -=-{答案}D{解析}本题考查了整式的相关计算,因为22223a a a +=;1028b b b ÷=;222()2m n m mn n -=-+;236(2)8x x -=-,因此本题选D .{分值}3{章节:[1-14-2]乘法公式}{考点:积的乘方}{考点:同底数幂的除法}{考点:完全平方公式} {类别:常考题}{类别:易错题} {难度:2-简单}{题目}12.(2019年黑友江龙东)下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是( )A .B .C .D .{答案}C{解析}本题考查了中心对称图形的概念,A 不是中心对称图形;B,D 是轴对称图形;C 是中心对称图形,因此本题选C .{分值}3{章节:[1-23-2-2]中心对称图形} {考点:中心对称图形}{类别:数学文化}{类别:常考题} {难度:2-简单}{题目}13.(2019年黑友江龙东)如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是( )A .6B .5C .4D .3{答案}B{解析}本题考查了由三视图判断几何体的个数,由主视图观察俯视图后面一列最少有3个正方体,所以这个几何体最少需要小正方体的个数是5,因此本题选B.{分值}3{章节:[1-29-2]三视图}{考点:几何体的三视图}{类别:常考题}{类别:易错题}{难度:3-中等难度}{题目}14.(2019年黑友江龙东)某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现了一处错误:将最低成绩写得更低了,则计算结果不受影响的是()A.平均数B.中位数C.方差D.极差{答案}B{解析}本题考查了统计概念的意义,将最低成绩写得更低了,只改变了其中一个成绩,其他统计量不受影响,这个统计量是中位数,平均数、方差与数据中的每个数都有关系,每个数都可能影响这两个统计量,极差只受最小数与最大数影响,因此本题选B.{分值}3{章节:[1-20-2-1]方差}{考点:中位数}{考点:众数}{考点:极差}{考点:方差}{类别:常考题}{难度:3-中等难度}{题目}15.(2019年黑友江龙东)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4B.5C.6D.7{答案}C{解析}本题考查了一元二次方程的增长率问题,设这种植物每个支干长出x个小分支,依题意,得:2143x x++=,解得:17x=-(舍去),26x=,因此本题选C.{分值}3{章节:[1-21-4]实际问题与一元二次方程}{考点:实际问题中的一元二次方程}{类别:发现探究}{类别:常考题}难度:3-中等难度}{题目}16.(2019年黑友江龙东)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数1yx=上,顶点B在反比例函数5yx=上,点C在x轴的正半轴上,则平行四边形OABC的面积是()A .32B .52C .4D .6{答案}C{解析}本题考查了反比例函数的性质及平行四边形的面积,作BD x ⊥轴于D ,延长BA 交y 轴于E ,四边形OABC 是平行四边形,//AB OC ∴,OA BC =,BE y ∴⊥轴,OE BD∴=,Rt AOE Rt CBD(HL)∴∆≅∆,5BDOE S =矩形,12AOE BCD S S ∆∆==,∴四边形OABC 的面积115422=--=,因此本题选C .{分值}3{章节:[1-26-1]反比例函数的图像和性质}{考点:反比例函数的几何意义}{考点:双曲线与几何图形的综合} {类别:常考题}{类别:易错题} {难度:3-中等难度}{题目}17.(2019年黑友江龙东)已知关于x 的分式方程213x mx -=-的解是非正数,则m 的取值范围是( ) A . B .3m <C .3m >-D .3m -…{答案}A{解析}本题考查了由分式方程的特殊解确定分式方程中的字母取值范围,解方程213x mx -=-得,3x m =-,因为分式方程的解是非正数,所以30(3)30m m -⎧⎨--≠⎩…,解得3m …,因此本题选A . {分值}3{章节:[1-15-3]分式方程} {考点:分式方程的解}{类别:常考题}{类别:易错题} {难度:3-中等难度}{题目}18.(2019年黑友江龙东)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,:3:2AB BC =,过点B 作//BE AC ,过点C 作//CE DB ,BE 、CE 交于点E ,连接DE ,则tan (EDC ∠= )A .29B .14CD .310{答案}A{解析}本题考查了矩形的性质、菱形的判定与性质以及三角函数的概念,矩形ABCD 的对角线AC 、BD 相交于点O ,:3:2AB BC =,∴设3AB x =,2BC x =.作EF ⊥直线DC 交线段DC 延长线于点F ,连接OE 交BC 于点G .//BE AC ,//CE BD ,∴四边形BOCE 是平行四边形,四边形ABCD 是矩形,OB OC ∴=,∴四边形BOCE 是菱形.OE ∴与BC 垂直平分,1122EF AD BC x ∴===,//OE AB ,∴四边形AOEB 是平行四边形,OE AB ∴=,113222CF OE AB x ∴===.2tan 3932EF x EDC DF x x ∴∠===+,因此本题选A . {分值}3{章节:[1-28-2-2]非特殊角}{考点:三角函数的关系}{考点:菱形的性质}{考点:菱形的判定} {类别:易错题}{ {难度:4-较高难度}{题目}19.(2019年黑友江龙东)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有( )A .4种B .3种C .2种D .1种 {答案}B{解析}本题考查了二元一次方程组的整数解,设一等奖个数x 个,二等奖个数y 个,根据题意,得6434x y +=,使方程成立的整数解有17x y =⎧⎨=⎩,34x y =⎧⎨=⎩,51x y =⎧⎨=⎩,∴方案一共有3种,因此本题选B . {分值}3{章节:[1-8-1]二元一次方程组} {考点:二元一次方程的解}{类别:思想方法}{类别:常考题} {难度:3-中等难度}{题目}20.(2019年黑友江龙东)如图,在平行四边形ABCD 中,90BAC ∠=︒,AB AC =,过点A 作边BC 的垂线AF 交DC 的延长线于点E ,点F 是垂足,连接BE 、DF ,DF 交AC 于点O .则下列结论:①四边形ABEC 是正方形;②:1:3CO BE =;③DE =;④AOD OCEF S S ∆=四边形,正确的个数是( )A .1B .2C .3D .4{答案}D{解析}本题考查了平行四边形的性质,菱形的判定和性质,相似三角形的判定和性质,三角形面积计算, 90BAC ∠=︒,四边形ABCD 是平行四边形,AB AC =,AF ⊥BC 于F ,∴∠BAF=∠CAF=∠ABC=∠ACB=∠ADC=∠BCE=45°,∴BF=EF, ∴∠FBE=∠FEB=45°, ∴AB=BE=EC=AC, ∴菱形ABEC 为正方形,①正确;AD=2BF=2FC,所以OC :AO=FC:AD=1:2,所以OC:AC=OC:BE=1:3, 所以S △OFC :S △OAD=1:4,因为S △OFC :S △AFC :S △EFC =1:3:3, 所以S △OFC :S四边形OCEF=1:4,②,④正确; AF ⊥BC 于F ,AE=BC=AD, ∴BC, ③正确,因此本题选D .{分值}3{章节:[1-27-1-2]相似三角形的性质}{考点:相似三角形的性质}{考点:由平行判定相似}{考点:菱形的判定} {类别:易错题} {难度:5-高难度}{题型:2-填空题}二、填空题:本大题共10小题,每小题3分,合计30分.{题目}1.(2019年黑友江龙东)中国政府提出的“一带一路”倡议,近两年来为沿线国家创造了约180000个就业岗位.将数据180000用科学记数法表示为 .{答案}51.810⨯{解析}本题考查了用科学记数法表示较大的数,180000=51.810⨯. {分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:2-简单}{题目}2.(2019年黑友江龙东)在函数y =中,自变量x 的取值范围是 .{答案}2x …{解析}本题考查了函数自变量取值范围的确定,由题意知x-2≥0,解得x ≥2。
黑龙江省龙东地区2019年初中毕业学业统一考试数学试卷(农垦森工)
A. B. C. D.
19.某学校计划用17件同样的奖品全部用于奖励在“扫黑除恶宣传”活动中表现突出的班级,一等奖奖励3件,二等奖奖励2件,则分配一、二等奖个数的方案有()
A.1种 B.2种 C.3种 D.4种
20.如图,在平面直角坐标系中,点O为坐标原点,点P在直线
23、(本题满分6分)
如图,在平面直角坐标系中,直线AB与抛物线y= -x2+bx+c交于A(-1,0)和B(2,3)两点,抛物线与y轴交于点C。
(1)求一次函数和二次函数的解析式;
(2)求△ABC的面积。
24、(本题满分7分)
“世界读书日”迁徙,某校开展了“读书助我成长”的阅读活动。为了了解该校学生在此次活动中课外阅读读书记的数量情况,随机抽取了部分学生进行调查,求收集到的数据进行整理,绘制出两幅不完整的统计图,请根据统计图信息解决下列问题:
y=-2x+8上,且点P的横坐标是2,过点P分别向x轴、y轴
作垂线,交反比例函数y= 的图象于点A、点B,则四边形OAPB
的面积是( )
A.4 B. C. D.5
三、解答题(满分60分)
21、(本题满分5分)
先化简,再求值:(1- )÷ ,其中x=6sin30°
22、(本题满分6分)
如图,正方形网格中,每个小正方形的边长都是一个
(1)求本次调查中共抽取的学生人数;
(2)补全条形统计图;
(3)在扇形统计图中,阅读2本书籍的
人数所在扇形的圆心角度数是;
(4)若该校有1200名学生,估计该校在
这次活动中阅读书籍的数量不低于3本的
学生有多少人?
25、(本题满分8分)
【真题】龙东地区中考数学试卷含答案解析(2)
黑龙江省龙东地区中考数学试卷一、填空题(每题3分,满分30分)1.在的“双11”网上促销活动中,淘宝网的交易额突破了3200000000元,将数字3200000000用科学记数法表示 .【答案】3.2×109.【解析】试题解析:3200000000=3.2×109.考点:科学记数法—表示较大的数.2.在函数y =1x -1中,自变量x 的取值范围是 . 【答案】x >1.【解析】3.如图,BC ∥EF ,AC ∥DF ,添加一个条件 ,使得△ABC ≌△DEF .第3题图【答案】AB=DE 或BC=EF 或AC=DF【解析】试题解析:∵BC ∥EF ,∴∠ABC=∠E ,∵AC ∥DF ,∴∠A=∠EDF ,∵在△ABC 和△DEF 中,A EDF AB DEABC E ⎧∠=∠⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF ,同理,BC=EF 或AC=DF 也可求证△ABC ≌△DEF .考点:全等三角形的判定.4.在一个不透明的袋子中装有除颜色外完全相同的3个红球、3个黄球、2个绿球,任意摸出一球,摸到红球的概率是 .【答案】38【解析】5.不等式组⎩⎪⎨⎪⎧x +1>0a - 13x <0的解集是x >-1,则a 的取值范围是 . 【答案】a ≤﹣13 【解析】试题解析:解不等式x+1>0,得:x >﹣1,解不等式a ﹣13x <0,得:x >3a , ∵不等式组的解集为x >﹣1,则3a ≤﹣1,∴a ≤﹣13考点:解一元一次不等式组.6.原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为 .【答案】10%.【解析】试题解析:设这两次的百分率是x,根据题意列方程得100×(1﹣x)2=81,解得x1=0.1=10%,x2=1.9(不符合题意,舍去).答:这两次的百分率是10%.考点:一元二次方程的应用.7.如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD上,EC=1,则PC+PE的最小值是.第7题图【答案】5.【解析】试题解析:连接AC、AE,∴PC+PE的最小值为5.考点:轴对称﹣最短路线问题;正方形的性质.8.圆锥底面半径为3cm,母线长32cm则圆锥的侧面积为cm2.【答案】92π 【解析】考点:圆锥的计算.9.△ABC 中,AB =12,AC =39,∠B =30°则△ABC 的面积是 .【答案】213或153.【解析】试题解析:①如图1,作AD ⊥BC ,垂足为点D ,在Rt △ABD 中,∵AB=12、∠B=30°,∴AD=12AB=6,BD=ABcosB=12323 在Rt △ACD 中,2222(39)6AC AD -=-3,∴333则S △ABC =12×BC ×AD=12×3×3 ②如图2,作AD ⊥BC ,交BC 延长线于点D ,考点:解直角三角形.10.观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;…….则第个图形中有个三角形.第1个第2个第3个第2017个第10题图【答案】8065【解析】试题解析:第1个图形中一共有1个三角形,第2个图形中一共有1+4=5个三角形,第3个图形中一共有1+4+4=9个三角形,…第n个图形中三角形的个数是1+4(n﹣1)=4n﹣3,当n=时,4n﹣3=8065.考点:图形的变化类二、选择题(每题3分,满分30分)11.下列各运算中,计算正确的是()A.(x-2)2=x2-4 B.(3a2)3=9a6C.x6÷x2=x3D.x3·x2=x5【答案】D.【解析】试题解析:A.原式=x2﹣4x+4,故A错误;B.原式=27a6,故B错误;C.原式=x4,故C错误;故选D.考点:整式的混合运算.12.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C.【解析】考点:中心对称图形;轴对称图形13.几个相同的小正方体所搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数最多是()俯视图左视图A.5个B.7个C.8个D.9个【答案】B.【解析】试题解析:由俯视图及左视图知,构成该几何体的小正方形体个数最多的情况如下:故选B .考点:由三视图判断几何体.14.一组从小到大排列的数据:a ,3,4,4,6(a 为正整数),唯一的众数是4,则该组数据的平均数是( )A .3.6B .3.8C .3.6或3.8D .4.2【答案】C .【解析】考点:众数;算术平均数.15.如图,某工厂有两个大小相同的蓄水池,且中间有管道连通。
2019黑龙江龙东地区初中毕业学业考试数学试题(word版,含解析)
2019黑龙江龙东地区初中毕业学业考试数学试题(word版,含解析)【一】填空题〔每题3分共30分〕1、〔3分〕〔2018?黑龙江〕“大美大爱”的龙江人勤劳智慧,2018年全省粮食总产量达到1152亿斤,夺得全国粮食总产第一,广袤的黑土地正成为保障国家粮食安全的大粮仓,1152亿斤用科学记数法表示为 1.152×1011斤、考点:科学记数法—表示较大的数、分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数、确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同、当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数、解答:解:将1152亿用科学记数法表示为 1.152×1011、故〈答案〉为: 1.152×1011、点评:此题考查科学记数法的表示方法、科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值、2、〔3分〕〔2018?黑龙江〕在函数中,自变量x的取值范围是x≥﹣1且x≠0 、考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件、分析:此题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分、根据二次根式的意义,被开方数x+1≥0,根据分式有意义的条件,x≠0、就可以求出自变量x的取值范围、解答:解:根据题意得:x+1≥0且x≠0解得:x≥﹣1且x≠0、故〈答案〉为:x≥﹣1且x≠0点评:函数自变量的范围一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式的分母不能为0;〔3〕当函数表达式是二次根式时,被开方数为非负数、3、〔3分〕〔2018?黑龙江〕如下图,平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件:AD=DC ,使得平行四边形ABCD为菱形、考点:平行四边形的判定;平行四边形的性质、专题:开放型、分析:根据菱形的定义得出〈答案〉即可、解答:解:∵邻边相等的平行四边形是菱形,∴平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件:可以为:AD=DC;故〈答案〉为:AD=DC、点评:此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键、4、〔3分〕〔2018?黑龙江〕风华中学七年级〔2〕班的“精英小组”有男生4人,女生3人,若选出一人担任班长,则组长是男生的概率为、考点:概率公式、分析:由风华中学七年级〔2〕班的“精英小组”有男生4人,女生3人,直接利用概率公式求解即可求得〈答案〉、解答:解:∵风华中学七年级〔2〕班的“精英小组”有男生4人,女生3人,∴选出一人担任班长,则组长是男生的为:=、故〈答案〉为:、点评:此题考查了概率公式的应用、注意概率=所求情况数与总情况数之比、5、〔3分〕〔2018?黑龙江〕若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n= ﹣2 、考点:一元二次方程的解、分析:先把x=1代入x2+3mx+n=0,得到3m+n=﹣1,再把要求的式子进行整理,然后代入即可、解答:解:把x=1代入x2+3mx+n=0得:1+3m+n=0,3m+n=﹣1,则6m+2n=2〔3m+n〕=2×〔﹣1〕=﹣2;故〈答案〉为:﹣2、点评:此题考查了一元二次方程的解,解题的关键是把x的值代入,得到一个关于m,n的方程,不要求m、n的值,要以整体的形式出现、6、〔3分〕〔2018?黑龙江〕二次函数y=﹣2〔x﹣5〕2+3的顶点坐标是〔5,3〕、考点:二次函数的性质分析:因为顶点式y=a〔x﹣h〕2+k,其顶点坐标是〔h,k〕,对照求二次函数y=﹣2〔x﹣5〕2+3的顶点坐标、解答:解:∵二次函数y=﹣2〔x﹣5〕2+3是顶点式,∴顶点坐标为〔5,3〕、故〈答案〉为:〔5,3〕、点评:此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握、7、〔3分〕〔2018?黑龙江〕将半径为4cm的半圆围成一个圆锥,这个圆锥的高为2cm、考点:圆锥的计算、分析:根据扇形的弧长等于圆锥的底面周长,即可求得圆锥的底面半径,底面半径、母线长以及圆锥高满足勾股定理,据此即可求得圆锥的高、解答:解:设圆锥底面的半径是r,则2πr=4π,则r=2、则圆锥的高是:=2cm、故〈答案〉是:2、点评:此题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决此题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长、8、〔3分〕〔2018?黑龙江〕李明组织大学同学一起去看电影《致青春》,票价每张60元,20张以上〔不含20张〕打八折,他们一共花了1200元,他们共买了20或25 张电影票、考点:一元一次方程的应用、专题:分类讨论、分析:此题分票价每张60元和票价每张60元的八折两种情况讨论,根据数量=总价÷单价,列式计算即可求解、解答:解:①1200÷60=20〔张〕;②1200÷〔60×0.8〕1200÷48=25〔张〕、答:他们共买了20或25张电影票、故〈答案〉为:20或25、点评:考查了销售问题,注意分类思想的实际运用,同时熟练掌握数量,总价和单价之间的关系、、9、〔3分〕〔2018?黑龙江〕梯形ABCD中,AB∥CD,AB=3,CD=8,点E是对角线AC上一点,连接DE并延长交直线AB于点F,若=2,则= 或、考点:相似三角形的判定与性质;梯形、专题:分类讨论、分析:根据已知分别根据F在线段AB上后在AB的延长线上,进而利用平行线的分线段成比例定理得出的值、解答:解:如图1:∵AB=3,=2,∴AF=2,BF=1,∵AB∥CD,。
2019年黑龙江省龙东地区中考数学模拟试卷(3)含答案解析
2018 年黑龙江省龙东地域中考数学模拟试卷(三)一、填空题(本大题共10 小题,每题 3 分,共30 分)1.(3 分)据中国新闻网信息,今年高校毕业生人数将达到8200000 人,将数8200000 用科学记数法表示为.2.(3 分)在函数 y=中,自变量x的取值范围是.3.(3 分)如图, AB=DE,∠ B=∠ E,使得△ ABC≌△ DEC,请你增添一个适合的条件(填一个即可).4.(3 分)同时投掷三枚质地均匀的硬币,出现两枚正面向下,一枚正面向上的概率是.5.( 3 分)若对于x 的一元一次不等式组无解,则m 的取值范围为.6.(3 分)某商品经过两次连续的降价,由本来的每件25 元降为每件 16 元,则该商品均匀每次降价的百分率为.7.(3 分)如图,在 Rt△ ABC中,∠ C=90°,∠ A=30°,AC=4,M 是 AB 边上一动点, N 是 AC 边上的一动点,则MN+MC 的最小值为.8.(3 分)已知圆锥底面圆的直径是20cm,母线长 40cm,其侧面睁开图圆心角的度数为.9.(3 分)在 Rt△ ABC中,∠ A=90°, AB=AC= +2,D 是边 AC上的动点, BD 的垂直均分线交 BC于点 E,连结 DE,若△ CDE为直角三角形,则 BE的长为.10.( 3 分)如,正方形 ABCD的 1,次接正方形 ABCD四的中点获得第一个正方形 A1B1C1D1,再次接正方形 A1B1C1D1四的中点获得第二个正方形A2B2C2D2⋯,以此推,第2018 个正方形A2018B2018C2018D2018的周是.二、(本大共10 小,每小 3 分,共 30 分)11.( 3 分)以下运算正确的选项是()A. 4x8÷ 2x4= 3x2 B.2x?3x=6xC. 2x+x= 3x D.( x3)4=x1212.( 3 分)以下形中,既是称形又是中心称形的是()A.B.C.D.13.( 3 分)如是由三个同样小正方体成的几何体的俯,那么个几何体能够是()A.B.C.D.14.(3 分)已知一数据 6,8,10,x 的中位数与均匀数相等,的 x 有()A.1 个 B.2 个 C.3 个 D.4 个以上(含 4 个)15.( 3 分)如,矩形ABCD中, AB=1,BC=2,点 P 从点 B 出,沿 B→ C→D向终点 D 匀速运动,设点P 走过的行程为x,△ ABP 的面积为 S,能正确反应 S 与 x 之间函数关系的图象是()A.B.C.D.16.( 3 分)已知对于 x 的方程=﹣1 有负根,则实数 a 的取值范围是()A.a<0 且 a≠﹣ 3 B. a >0C. a> 3D. a< 3 且 a≠﹣ 317.( 3 分)如图,在 Rt△ABC中,∠ ACB=90°,∠ A=56°.以 BC为直径的⊙ O 交AB 于点 D.E 是⊙ O 上一点,且=,连结OE.过点E作EF⊥OE,交AC的延长线于点 F,则∠ F 的度数为()A.92°B.108°C.112°D.124°18.(3 分)如图,直线 y=﹣x+3 与 y 轴交于点 A,与反比率函数 y= ( k≠ 0)的图象交于点 C,过点 C 作 CB⊥ x 轴于点 B,AO=3BO,则反比率函数的分析式为()A.y= B.y=﹣C. y=D.y=﹣19.( 3 分)小华准备购置单价分别为4 元和 5 元的两种拼装饮料,若小华将50 元恰巧用完,两种饮料都买,则购置方案共有()A.2 种 B.3 种 C.4 种 D.5 种20.( 3 分)如图,在△ ABC中, BC的垂直均分线交AC 于点 E,交 BC于点 D,且 AD=AB,连结 BE交 AD 于点 F,以下结论:()①∠ EBC=∠C;②△ EAF∽△ EBA;③ BF=3EF;④∠ DEF=∠DAE,此中结论正确的个数有A.1 个 B.2 个 C.3 个 D.4 个三、解答题(满分60 分)21.( 5 分)先化简,再求值:(﹣)÷,此中 x=2sin45 .°22.(6 分)如图,在平面直角坐标系中, Rt△ ABC的三个极点分别是A(﹣ 3,2),B(0,4),C(0,2).( 1)将△ ABC 以点 C 为旋转中心旋转 180°,画出旋转后对应的△ A1B1C,平移ABC,若 A 的对应点 A2的坐标为( 0,﹣ 4),画出平移后对应的△ A2 B2C2;( 2)若将△ A1B1C 绕某一点旋转能够获得△A2B2C2,请直接写出旋转中心的坐标.23.( 6 分)如图,抛物线 y=x2+bx+c 与 x 轴交于 A,B 两点,且点 A 在点 B 的左边,直线 y=﹣x﹣1 与抛物线交于 A, C 两点,此中点 C 的横坐标为 2.(1)求二次函数的分析式;(2) P 是线段 AC上的一个动点,过点 P 作 y 轴的平行线交抛物线于点 E,求线段 PE长度的最大值.24.( 7 分)在大课间活动中,同学们踊跃参加体育锻炼,小龙在全校随机抽取了一部分同学就“我最喜欢的体育项目”进行了一次检查(每位同学必选且只选一项).下边是他经过采集的数据绘制的两幅不完好的统计图,请你依据图中供给的信息,解答以下问题:( 1)小龙一共抽取了名学生.(2)补全条形统计图;(3)求“其余”部分对应的扇形圆心角的度数.25.( 8 分)小明从家出发沿滨江路到外滩公园徒步锻炼,到外滩公园后立刻沿原路返回,小明走开家的行程s(单位:千米)与走步时间t (单位:小时)之间的函数关系以下图,此中从家到外滩公园的均匀速度是 4 千米 / 时,依据图形供给的信息,解答以下问题:(1)求图中的 a 值;(2)若在距离小明家 5 千米处有一个地址 C,小明从第一层经过点 C 到第二层经过点 C,所用时间为 1.75 小时,求小明返回过程中,s 与 t 的函数分析式,不必写出自变量的取值范围;( 3)在( 2)的条件下,求小明从出发到回到家所用的时间.26.(8 分)在正方形 ABCD中,过点 B 作直线 l,点 E 在直线 l 上,连结 CE,DE,CE=BC,过点 C 作 CF⊥DE 于点 F,交直线 l 于点 H,当 l 在如图①的地点时,易证: BH+EH=CH(不需证明).(1)当 l 在如图②的地点时,线段 BH, EH,CH 之间有如何的数目关系?写出你的猜想,并赐予证明;(2)当 l 在如图③的地点时,线段 BH,EH, CH 之间有如何的数目关系?写出你的猜想,不用证明.27.(10 分)近几年,全社会对空气污染问题愈来愈重视,空气净化器的销量也在逐年增添.某商场从厂家购进了A、B 两种型号的空气净化器,两种净化器的销售有关信息见下表:A 型销售数目(台)B 型销售数目(台)总收益(元)5 10 200010 5 2500( 1)每台 A 型空气净化器和 B 型空气净化器的销售收益分别是多少?( 2)该企业计划一次购进两种型号的空气净化器共100 台,此中 B 型空气净化器的进货量许多于 A 型空气净化器的 2 倍,为使该企业销售完这100 台空气净化器后的总收益最大,请你设计相应的进货方案;( 3)已知 A 型空气净化器的净化能力为300m3/ 小时, B 型空气净化器的净化能力为 200m3/ 小时,某长方体室内活动场所的总面积为200m2,室内墙高 3m,该场所负责人计划购置 5 台空气净化器每日花销30 分钟将室内空气净化一新,若不考虑空气对流等要素,起码要购置 A 型空气净化器多少台?28.(10 分)如图,在平面直角坐标系xOy 中,矩形 OABC的极点 B 的坐标为(4,2),D 是 OA 的中点, OE⊥ CD交 BC于点 E,点 P 从点 O 出发,以每秒 2 个单位长度的速度沿射线OE运动.(1)求直线 OE的分析式;(2)设以 C, P, D, B 为极点的凸四边形的面积为 S,点 P 的运动时间为 t(单位:秒),求S 对于t 的函数分析式,并写出自变量t 的取值范围;( 3)设点N 为矩形的中心,则在点P 运动过程中,能否存在点P,使以P, C,N 为极点的三角形是直角三角形?若存在,请直接写出t 的值及点P 的坐标;若不存在,请说明原因.2018 年黑龙江省龙东地域中考数学模拟试卷(三)参照答案与试题分析一、填空题(本大题共10 小题,每题 3 分,共 30 分)1.【解答】解: 8200000 用科学记数法表示为×106,故答案为:× 106.2.【解答】解:在函数 y=中,1﹣x>0,即x<1,故答案为: x< 1.3.【解答】解:增添条件是: BC=EC,在△ ABC与△ DEC中,,∴△ ABC≌△ DEC.故答案为: BC=EC.4.【解答】解:画树状图为:共有 8 种等可能的结果数,此中两枚正面向下,一枚正面向上的结果数为3,因此两枚正面向下,一枚正面向上的概率 = .故答案为.5.【解答】解:由不等式①,得x> 2m,由不等式②,得x< m﹣2,∵对于 x 的一元一次不等式组无解,∴2m≥ m﹣2,解得, x≥﹣ 2,故答案为: m≥﹣ 2.6.【解答】解:设均匀每次降价的百分率为x,依据题意列方程得225×( 1﹣x) =16,解得 x1=0., 2, x2(不切合题意,舍去),即该商品均匀每次降价的百分率为20%.故答案是: 20%.7.【解答】解:作点 C 对于 AB 的对称点 C′,过点 C 作 C′N⊥AC于 N,交 AB 于点M,则 C′N的长即为 MN+MC 的最小值,连结 CC′交 AB 于点 H,则 CC′⊥ AB,C′ H=HC,′∵∠ C′MH=∠AMN,∠ A=30°,∴∠ C′=∠A= 30°,∵AC=4,∴HC= AC,∴CC′=4,∴C′N=CC′?cosC′=2.故答案为 28.【解答】解:设圆锥的侧面睁开图圆心角的度数为n°,依据题意得 20π=,解得n=90,因此圆锥的侧面睁开图圆心角的度数为90°.故答案为 90°.9.【解答】解:分两种状况:∵∠ A=90°,AB=AC=+2,∴BC= AB=2+2 ,①当∠ EDC=90°时,如图 1,设BE=x,则 DE=x,∵∠ C=45°,∴△ EDC是等腰直角三角形,∴ EC= x,∴ BC=BE+CE,即2+2 =x+ x,x=2,∴BE=2,②当∠ DEC=90°时,如图 2,设 BE=x,则 DE=x,∵∠ C=45°,∴△ EDC是等腰直角三角形,∴ EC=x,2x=2+2 ,x= +1,∴ BE= +1,(此种状况 D 与 A 重合)综上所述, BE的长为+1 或 2.故答案为:+ 1 或 2.10.【解答】解:按序连结正方形ABCD四边的中点得正方形A1B1C1D1,则得正方形A1B1C1 D1的面积为正方形ABCD面积的一半,即,则周长是本来的;按序连结正方形A1B1C1D1中点得正方形 A2B2C2D2,则正方形 A2B2C2 D2的面积为正方形 A1B1C1D1面积的一半,即,则周长是本来的;按序连结正方形A2B2C2D2得正方形 A3 B3C3D3,则正方形 A3B3C3D3的面积为正方形A2B2C2 D2面积的一半,即,则周长是本来的;按序连结正方形A3B3C3D3中点得正方形 A4B4C4D4,则正方形 A4B4C4 D4的面积为正方形 A3B3C3D3面积的一半,则周长是本来的;以此类推,则第 2018 个正方形 A2018 2018 2018 2018的周长是;B C D故答案是:二、选择题(本大题共10 小题,每题 3 分,共 30 分)11.【解答】解: A、﹣ 4x8÷ 2x4=﹣2x4,此选项错误;B、2x?3x=6x2,此选项错误;C、﹣ 2x+x=﹣x,此选项错误;D、(﹣ x3)4=x12,此选项正确;12.【解答】解: A、是轴对称图形,不是中心对称图形,故本选项不切合题意;B、不是轴对称图形,是中心对称图形,故本选项不切合题意;C、不是轴对称图形,不是中心对称图形,故本选项不切合题意;D、既是轴对称图形又是中心对称图形,故本选项切合题意.应选: D.13.【解答】解:由俯视图知:共 2 列,左边一列有两个正方体,右边一列有 1 个正方体, C 选项切合,应选: C.14.【解答】解:(1)将这组数据从大到小的次序摆列为 10,8,x,6,处于中间地点的数是 8,x,那么由中位数的定义可知,这组数据的中位数是( 8+x)÷ 2,均匀数为( 10+8+x+6)÷ 4,∵数据 10,8,x,6,的中位数与均匀数相等,∴( 8+x)÷ 2=(10+8+x+6)÷ 4,解得 x=8,大小地点与 8 对换,不影响结果,符合题意;(2)将这组数据从大到小的次序摆列后 10,8,6,x,中位数是( 8+6)÷ 2=7,此时均匀数是( 10+8+x+6)÷ 4=7,解得 x=4,切合摆列次序;(3)将这组数据从大到小的次序摆列后 x,10,8,6,中位数是( 10+8)÷ 2=9,均匀数( 10+8+ x+6)÷ 4=9,解得 x=12,切合摆列次序.∴x 的值为 4、 8 或12.应选: C.15.【解答】解:由题意知,点P 从点 B 出发,沿 B→C→D向终点 D 匀速运动,则当0<x≤ 2, s= ,当2<x≤ 3, s=1,由以上剖析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分.应选: C.16.【解答】解:两边都乘以 x﹣3,得: x+a=3﹣x,解得: x=,∵分式方程有负根,∴<0,且≠3,解得: a>3,应选: C.17.【解答】解:∵∠ ACB=90°,∠ A=56°,∴∠ ABC=34°,∴2∠ ABC=∠ COE=68°,又∵∠ OCF=∠OEF=90°,∴∠ F=360°﹣90°﹣90°﹣68°=112°.应选: C.18.【解答】解:∵直线 y=﹣x+3 与 y 轴交于点 A,∴A( 0, 3),即 OA=3,∵AO=3BO,∴ OB=1,∴点 C 的横坐标为﹣ 1,∵点 C 在直线 y=﹣x+3 上,∴点 C(﹣ 1,4),∴反比率函数的分析式为: y=﹣.应选: B.19.【解答】解:设购置单价为 4 元的饮料 x 瓶,购置单价为 5 元的饮料 y 瓶,依据题意可得: 4x+5y=50,当x=5,y=6,当x=10, y=2,故切合题意的方案有 2种.应选: A.20.【解答】解:∵ BC的垂直均分线交AC于点 E,交 BC于点 D,∴CE=BE,∴∠ EBC=∠C,故①正确;∴∠ 8=∠ ABC=∠ 6+∠7,∵∠ 8=∠ C+∠4,∴∠ C+∠ 4=∠6+∠7,∴∠ 4=∠ 6,∵∠ AEF=∠AEB,∴△ EAF∽△ EBA,故②正确;作AG⊥BD 于点 G,交 BE于点H,∵ AD=AB, DE⊥BC,∴∠ 2=∠ 3, DG=BG= BD,DE∥ AG,∴△ CDE∽△ CGA,△ BGH∽△ BDE,DE=AH,∠ EDA=∠3,∠ 5=∠1,∴在△ DEF与△ AHF 中,,∴△ DEF≌△ AHF(AAS),∴AF=DF,EF=HF= EH,且 EH=BH,∴EF:BF=1:3,故③正确;∵∠ 1=∠ 2+∠6,且∠ 4=∠6,∠ 2=∠3,∴∠ 5=∠ 3+∠4,∴∠ 5≠∠ 4,故④错误,综上所述:正确的答案有 3 个,应选: C.三、解答题(满分60 分)21.【解答】解:原式 =[﹣] ?=?=,当 x=2sin45 =2°×=时,原式 = =2.22.【解答】解:(1)△ A1B1C1以下图,△ A2B2C2以下图;( 2)如图,旋转中心为(,﹣1);23.【解答】解:(1)当 y=0 时,有﹣ x﹣ 1=0,解得: x=﹣ 1,∴点 A 的坐标为(﹣ 1,0);当x=2 时, y=﹣x﹣1=﹣3,∴点 C 的坐标为( 2,﹣ 3).将 A(﹣ 1,0)、C(2,﹣ 3)代入 y=x2+bx+c,得:,解得:,∴二次函数的分析式为y=x2﹣2x﹣3.( 2)设点 P 的坐标为( m,﹣ m﹣1)(﹣ 1≤m≤ 2),则点 E 的坐标为( m,m2 ﹣2m﹣ 3),∴PE=﹣m﹣1﹣( m2﹣2m﹣3)=﹣m2+m+2=﹣( m﹣)2+ .∵﹣ 1<0,∴当 m= 时, PE取最大值,最大值为.24.【解答】解:(1)抽取的总人数是: 15÷30%=50(人);故答案为: 50;( 2)踢毽子的人数是:50×20%=10(人),则其余项目的人数是:50﹣ 15﹣16﹣10=9(人),补全条形统计图:( 3)“其余”部分对应的扇形圆心角的度数是× 360° °.25.【解答】解:(1)由题意可得,a=2× 4=8,即a 的值是 8;( 2)由题意可得,小明从家到公园的过程中, C 点到 A 点用的时间为:(8﹣5)÷ 4=0.75 小时,小明从公园到家的过程中, A 点到 C 点用的时间为﹣0.75=1 小时,速度为:(8﹣ 5)÷ 1=3 千米 / 时,故小明从公园到家用的时间为: 8÷ 3= 小时,∴点 A(2,8),点 B(, 0)设小明返回过程中, s 与 t 的函数分析式是s=kt+b,,得即小明返回过程中, s 与 t 的函数分析式是s=﹣3t+14;( 3)当 s=0 时,﹣ 3t+14=0,得 t=,答:小明从出发到回到家所用的时间是小时.26.【解答】解:(1)BH﹣ EH=CH;原因以下:过点 C 作 CG⊥ BH 于 G,如图②所示,∵四边形 ABCD是正方形,∴CB=CD,∠BCD=90°,∵ CE=CB,∴∠ BCG=∠ECG= ∠BCE,∵ CE⊥DE,CD=CB=CE,∴∠ ECF=∠ DCF= ∠DCE,∴∠ GCH=∠GCE﹣∠ ECF= (∠ BCE﹣∠ DCE)=45°∴△ CGH是等腰直角三角形,∴CH= GH,∵CB=CE,CG⊥BE,∴BG=EG= BE,∴BH﹣EH=BG+GH﹣ EH=BG+EG﹣ EH﹣ EH=2GH= CH(2)猜想: EH﹣BH= CH,原因:如图③,过点 C 作 CG⊥BE于 G,同( 1)得,△ CGH是等腰直角三角形,CH= GH,∵CB=CE,CG⊥BE,∴ BG=EG= BE,∴ EH﹣BH=HG+GE﹣( BG﹣ HG) =2HG= CH.27.【解答】解:( 1)设每台 A 型空气净化器的销售收益为 x 元,每台 B 型空气净化器的销售收益为 y 元,依据题意得:,解得:.答:每台 A 型空气净化器的销售收益为200 元,每台 B 型空气净化器的销售利润为 100 元.(2)设购进 A 型空气净化器 m 台,则购进 B 型空气净化器( 100﹣m)台,∵ B 型空气净化器的进货量许多于 A 型空气净化器的 2 倍,∴ 100﹣m≥2m,解得: m≤.设销售完这 100 台空气净化器后的总收益为w 元,依据题意得: w=200m+100( 100﹣m )=100m+10000,∴ w 的值跟着 m 的增大而增大,∴当 m=33 时,w 取最大值,最大值 =100× 33+10000=1 3300,此时 100﹣m=67.答:为使该企业销售完这100 台空气净化器后的总收益最大,应购进 A 型空气净化器 33 台,购进 B 型空气净化器 67 台.(3)设应购置 A 型空气净化器 a 台,则购置 B 型空气净化器( 5﹣a)台,依据题意得: [ 300a+200(5﹣a)] ≥200×3,解得: a≥2.答:起码要购置 A 型空气净化器 2 台.28.【解答】解:(1)由题意得, OD=OC=2,∵OE⊥CD,∴OE均分∠ COD,∴∠COE= ∠AOC=45°,∴OC=CE=2,∴E( 2, 2),设直线 OE的分析式为 y=kx,将点 E 坐标代入得, 2=2k,∴k=1,∴直线 OE的分析式为 y=x;(2)在 Rt△ COE中,依据勾股定理得, OE=2 ,由题意得,以点 C,P, D,B 为极点的图形是四边形,2019年黑龙江省龙东地区中考数学模拟试卷(3)含答案解析 21 / 21∴ t ≠ 且 t , 分三种状况:设 OE 与 CD 的交点为 M ,①当点 P 在 OM 上运动时, 0≤t <, 矩形 OABC ﹣ S △ ﹣S △ ﹣ S △ DAB =8﹣ ﹣ ﹣2=﹣2 t 6; + ②当点 P 在 ME 上运动时,<t < ,以点 C , P , D , B 为极点的四边形为凹 四边形,不切合题意, ③点 P 在 OE 的延伸线上运动时, t >, △ +S △ PCB ==2 t ; S=S CDBS= ;( 3)存在,原因: PC 2=(t )2+( 2﹣ t )2=4t 2﹣4 t+4,PN 2=(2﹣ t )2+( 1﹣ t )2=4t 2﹣6 t+5,NC 2=5,①当∠CPN=90°时,PC 2+PN 2=CN 2, ∴ 4t 2﹣4 t+4+4t 2﹣6 t+5=5,∴ t=或 t= ;∴ P ( , )或( 2,2);22 2 ②当∠ PNC=90°时, CN +PN =PC ,∴ 5+4t 2﹣ 6 t +5=4t 2﹣4 t+4,∴ t= ,点 P (3,3),③当∠ PCN=90°时,PC 2+CN 2=PN 2,4t 2﹣ 4 t +4+5=4t 2﹣ 6 t+5,∴ t=﹣,此时不存在点 P ,即: t=时, P ( , ),t= 时, P (2,2),t= 时, P (3,3).。
黑龙江省龙东地区2019年中考数学试卷(含解析)
2019年黑龙江省龙东地区中考数学试卷一、填空题(每题3分,满分30分)1.(3分)中国政府提出的“一带一路”倡议,近两年来为沿线国家创造了约180000个就业岗位.将数据180000用科学记数法表示为.2.(3分)在函数y=中,自变量x的取值范围是.3.(3分)如图,在四边形ABCD中,AD=BC,在不添加任何辅助线的情况下,请你添加一个条件,使四边形ABCD是平行四边形.4.(3分)在不透明的甲、乙两个盒子中装有除颜色外完全相同的小球,甲盒中有2个白球、1个黄球,乙盒中有1个白球、1个黄球,分别从每个盒中随机摸出1个球,则摸出的2个球都是黄球的概率是.5.(3分)若关于x的一元一次不等式组的解集为x>1,则m的取值范围是.6.(3分)如图,在⊙O中,半径OA垂直于弦BC,点D在圆上且∠ADC=30°,则∠AOB 的度数为.7.(3分)若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.8.(3分)如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB =S△PCD,则PC+PD的最小值为.9.(3分)一张直角三角形纸片ABC,∠ACB=90°,AB=10,AC=6,点D为BC边上的任一点,沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,则CD的长为.10.(3分)如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3;再以对角线OA3为边作第四个正方形,连接A2A4,得到△A2A3A4……记△AA1A2、△A1A2A3、△A2A3A4的面积分别为S1、S2、S3,如此下去,则S2019=.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.a2+2a2=3a4B.b10÷b2=b5C.(m﹣n)2=m2﹣n2D.(﹣2x2)3=﹣8x612.(3分)下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是()A.B.C.D.13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是()A.6B.5C.4D.314.(3分)某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现了一处错误:将最低成绩写得更低了,则计算结果不受影响的是()A.平均数B.中位数C.方差D.极差15.(3分)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4B.5C.6D.716.(3分)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数y=上,顶点B在反比例函数y=上,点C在x轴的正半轴上,则平行四边形OABC的面积是()A.B.C.4D.617.(3分)已知关于x的分式方程=1的解是非正数,则m的取值范围是()A.m≤3B.m<3C.m>﹣3D.m≥﹣3 18.(3分)如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=3:2,过点B作BE∥AC,过点C作CE∥DB,BE、CE交于点E,连接DE,则tan∠EDC=()A.B.C.D.19.(3分)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种20.(3分)如图,在平行四边形ABCD中,∠BAC=90°,AB=AC,过点A作边BC的垂线AF交DC的延长线于点E,点F是垂足,连接BE、DF,DF交AC于点O.则下列结论:①四边形ABEC是正方形;②CO:BE=1:3;③DE=BC;④S四边形OCEF=S△AOD,正确的个数是()A.1B.2C.3D.4三、解答题(满分60分)21.(5分)先化简,再求值:(﹣)÷,期中x=2sin30°+1.22.(6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).23.(6分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A(3,0)、点B (﹣1,0),与y轴交于点C.(1)求拋物线的解析式;(2)过点D(0,3)作直线MN∥x轴,点P在直线NN上且S△P AC=S△DBC,直接写出点P的坐标.24.(7分)“世界读书日”前夕,某校开展了“读书助我成长”的阅读活动.为了了解该校学生在此次活动中课外阅读书籍的数量情况,随机抽取了部分学生进行调查,将收集到的数据进行整理,绘制出两幅不完整的统计图,请根据统计图信息解决下列问题:(1)求本次调查中共抽取的学生人数;(2)补全条形统计图;(3)在扇形统计图中,阅读2本书籍的人数所在扇形的圆心角度数是;(4)若该校有1200名学生,估计该校在这次活动中阅读书籍的数量不低于3本的学生有多少人?25.(8分)小明放学后从学校回家,出发5分钟时,同桌小强发现小明的数学作业卷忘记拿了,立即拿着数学作业卷按照同样的路线去追赶小明,小强出发10分钟时,小明才想起没拿数学作业卷,马上以原速原路返回,在途中与小强相遇.两人离学校的路程y(米)与小强所用时间t(分钟)之间的函数图象如图所示.(1)求函数图象中a的值;(2)求小强的速度;(3)求线段AB的函数解析式,并写出自变量的取值范围.26.(8分)如图,在△ABC中,AB=BC,AD⊥BC于点D,BE⊥AC于点E,AD与BE交于点F,BH⊥AB于点B,点M是BC的中点,连接FM并延长交BH于点H.(1)如图①所示,若∠ABC=30°,求证:DF+BH=BD;(2)如图②所示,若∠ABC=45°,如图③所示,若∠ABC=60°(点M与点D重合),猜想线段DF、BH与BD之间又有怎样的数量关系?请直接写出你的猜想,不需证明.27.(10分)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?28.(10分)如图,在平面直角坐标系中,矩形ABCD的边AB在x轴上,AB、BC的长分别是一元二次方程x2﹣7x+12=0的两个根(BC>AB),OA=2OB,边CD交y轴于点E,动点P以每秒1个单位长度的速度,从点E出发沿折线段ED﹣DA向点A运动,运动的时间为t(0≤t<6)秒,设△BOP与矩形AOED重叠部分的面积为S.(1)求点D的坐标;(2)求S关于t的函数关系式,并写出自变量的取值范围;(3)在点P的运动过程中,是否存在点P,使△BEP为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.2019年黑龙江省龙东地区中考数学试卷参考答案与试题解析一、填空题(每题3分,满分30分)1.【解答】解:将180000用科学记数法表示为1.8×105,故答案是:1.8×105.2.【解答】解:在函数y=中,有x﹣2≥0,解得x≥2,故其自变量x的取值范围是x≥2.故答案为x≥2.3.【解答】解:根据平行四边形的判定,可再添加一个条件:AD∥BC.故答案为:AD∥BC(答案不唯一).4.【解答】解:画树状图为:,共有6种等可能的结果数,其中2个球都是黄球占1种,∴摸出的2个球都是黄球的概率=;故答案为:.5.【解答】解:解不等式x﹣m>0,得:x>m,解不等式2x+1>3,得:x>1,∵不等式组的解集为x>1,∴m≤1,故答案为:m≤1.6.【解答】解:∵OA⊥BC,∴=,∴∠AOB=2∠ADC,∵∠ADC=30°,∴∠AOB=60°,故答案为60°.7.【解答】解:∵圆锥的底面圆的周长是45cm,∴圆锥的侧面扇形的弧长为5πcm,∴=5π,解得:n=150故答案为150°.8.【解答】解:∵ABCD为矩形,∴AB=DC又∵S△P AB=S△PCD∴点P到AB的距离与到CD的距离相等,即点P线段AD垂直平分线MN上,连接AC,交MN与点P,此时PC+PD的值最小,且PC+PD=AC=故答案为:29.【解答】解:分两种情况:①若∠DEB=90°,则∠AED=90°=∠C,CD=ED,连接AD,则Rt△ACD≌Rt△AED(HL),∴AE=AC=6,BE=10﹣6=4,设CD=DE=x,则BD=8﹣x,∵Rt△BDE中,DE2+BE2=BD2,∴x2+42=(8﹣x)2,解得x=3,∴CD=3;②若∠BDE=90°,则∠CDE=∠DEF=∠C=90°,CD=DE,∴四边形CDEF是正方形,∴∠AFE=∠EDB=90°,∠AEF=∠B,∴△AEF∽△EBD,∴=,设CD=x,则EF=DF=x,AF=6﹣x,BD=8﹣x,∴=,解得x=,∴CD=,综上所述,CD的长为3或,故答案为:3或.10.【解答】解:∵四边形OAA1B1是正方形,∴OA=AA1=A1B1=1,∴S1==,∵∠OAA1=90°,∴AO12=12+12=,∴OA2=A2A3=2,∴S2==1,同理可求:S3==2,S4=4…,∴S n=2n﹣2,∴S2019=22017,故答案为:22017.二、选择题(每题3分,满分30分)11.【解答】解:A、a2+2a2=3a2,故此选项错误;B、b10÷b2=b8,故此选项错误;C、(m﹣n)2=m2﹣2mn+n2,故此选项错误;D、(﹣2x2)3=﹣8x6,故此选项正确;故选:D.12.【解答】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选:C.13.【解答】解:综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个.故选:B.14.【解答】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最低成绩写得更低了,计算结果不受影响的是中位数,故选:B.15.【解答】解:设这种植物每个支干长出x个小分支,依题意,得:1+x+x2=43,解得:x1=﹣7(舍去),x2=6.故选:C.16.【解答】解:如图作BD⊥x轴于D,延长BA交y轴于E,∵四边形OABC是平行四边形,∴AB∥OC,OA=BC,∴BE⊥y轴,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),根据系数k的几何意义,S矩形BDOE=5,S△AOE=,∴四边形OABC的面积=5﹣﹣=4,故选:C.17.【解答】解:=1,方程两边同乘以x﹣3,得2x﹣m=x﹣3,移项及合并同类项,得x=m﹣3,∵分式方程=1的解是非正数,x﹣3≠0,∴,解得,m≤3,故选:A.18.【解答】解:∵矩形ABCD的对角线AC、BD相交于点O,AB:BC=3:2,∴设AB=3x,BC=2x.如图,过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.∵BE∥AC,CE∥BD,∴四边形BOCE是平行四边形,∵四边形ABCD是矩形,∴OB=OC,∴四边形BOCE是菱形.∴OE与BC垂直平分,∴EF=AD==x,OE∥AB,∴四边形AOEB是平行四边形,∴OE=AB,∴CF=OE=AB=x.∴tan∠EDC===.故选:A.19.【解答】解:设一等奖个数x个,二等奖个数y个,根据题意,得6x+4y=34,使方程成立的解有,,,∴方案一共有3种;故选:B.20.【解答】解:①∵∠BAC=90°,AB=AC,∴BF=CF,∵四边形ABCD是平行四边形,∴AB∥DE,∴∠BAF=∠CEF,∵∠AFB=∠CFE,∴△ABF≌△ECF(AAS),∴AB=CE,∴四边形ABEC是平行四边形,∵∠BAC=90°,AB=AC,∴四边形ABEC是正方形,故此题结论正确;②∵OC∥AD,∴△OCF∽△OAD,∴OC:OA=CF:AD=CF:BC=1:2,∴OC:AC=1:3,∵AC=BE,∴OC:BE=1:3,故此小题结论正确;③∵AB=CD=EC,∴DE=2AB,∵AB=AC,∠BAC=90°,∴AB=BC,∴DE=2×,故此小题结论正确;④∵△OCF∽△OAD,∴,∴,∵OC:AC=1:3,∴3S△OCF=S△ACF,∵S△ACF=S△CEF,∴,∴,故此小题结论正确.故选:D.三、解答题(满分60分)21.【解答】解:原式=[﹣]•(x+1)=•(x+1)=,当x=2sin30°+1=2×+1=1+1=2时,原式=1.22.【解答】解:(1)如右图所示,点A1的坐标是(﹣4,1);(2)如右图所示,点A2的坐标是(1,﹣4);(3)∵点A(4,1),∴OA=,∴线段OA在旋转过程中扫过的面积是:=.23.【解答】解:(1)将点A(3,0)、点B(﹣1,0)代入y=x2+bx+c,可得b=﹣2,c=﹣3,∴y=x2﹣2x﹣3;(2)∵C(0,﹣3),∴S△DBC=6×1=3,∴S△P AC=3,设P(x,3),直线CP与x轴交点为Q,则S△P AC=6×AQ,∴AQ=1,∴Q(2,0)或Q(4,0),∴直线CQ为y=x﹣3或y=x﹣3,当y=3时,x=4或x=8,∴P(4,3)或P(8,3);24.【解答】解:(1)本次调查中共抽取的学生人数为15÷30%=50(人);(2)3本人数为50×40%=20(人),则2本人数为50﹣(15+20+5)=10(人),补全图形如下:(3)在扇形统计图中,阅读2本书籍的人数所在扇形的圆心角度数是360°×=72°,故答案为:72°;(4)估计该校在这次活动中阅读书籍的数量不低于3本的学生有1200×=600(人).25.【解答】解:(1)a=×(10+5)=900;(2)小明的速度为:300÷5=60(米/分),小强的速度为:(900﹣60×2)÷12=65(米/分);(3)由题意得B(12,780),设AB所在的直线的解析式为:y=kx+b(k≠0),把A(10,900)、B(12,780)代入得:,解得,∴线段AB所在的直线的解析式为y=﹣60x+1500(10≤x≤12).26.【解答】(1)证明:连接CF,如图①所示:∵AD⊥BC,BE⊥AC,∴CF⊥AB,∵BH⊥AB,∴CF∥BH,∴∠CBH=∠BCF,∵点M是BC的中点,∴BM=MC,在△BMH和△CMF中,,∴△BMH≌△CMF(ASA),∴BH=CF,∵AB=BC,BE⊥AC,∴BE垂直平分AC,∴AF=CF,∴BH=AF,∴AD=DF+AF=DF+BH,∵在Rt△ADB中,∠ABC=30°,∴AD=BD,∴DF+BH=BD;(2)解:图②猜想结论:DF+BH=BD;理由如下:同(1)可证:AD=DF+AF=DF+BH,∵在Rt△ADB中,∠ABC=45°,∴AD=BD,∴DF+BH=BD;图③猜想结论:DF+BH=BD;理由如下:同(1)可证:AD=DF+AF=DF+BH,∵在Rt△ADB中,∠ABC=60°,∴AD=BD,∴DF+BH=BD.27.【解答】解:(1)设购买一个甲种文具a元,一个乙种文具b元,由题意得:,解得,答:购买一个甲种文具15元,一个乙种文具5元;(2)根据题意得:955≤15x+5(120﹣x)≤1000,解得35.5≤x≤40,∵x是整数,∴x=36,37,38,39,40.∴有5种购买方案;(3)W=15x+5(120﹣x)=10x+600,∵10>0,∴W随x的增大而增大,当x=36时,W最小=10×36+600=960(元),∴120﹣36=84.答:购买甲种文具36个,乙种文具84个时需要的资金最少,最少资金是960元.28.【解答】解:(1)∵x2﹣7x+12=0,∴x1=3,x2=4,∵BC>AB,∴BC=4,AB=3,∵OA=2OB,∴OA=2,OB=1,∵四边形ABCD是矩形,∴点D的坐标为(﹣2,4);(2)设BP交y轴于点F,如图1,当0≤t≤2时,PE=t,∵CD∥AB,∴△OBF∽△EPF,∴=,即=,∴OF=,∴S=OF•PE=••t=;如图2,当2<t<6时,AP=6﹣t,∵OE∥AD,∴△OBF∽△ABP,∴=,即=,∴OF=,∴S=•OF•OA=××2=﹣t+2;综上所述,S=;(3)由题意知,当点P在DE上时,显然不能构成等腰三角形;当点P在DA上运动时,设P(﹣2,m),∵B(1,0),E(0,4),∴BP2=9+m2,BE2=1+16=17,PE2=4+(m﹣4)2=m2﹣8m+20,①当BP=BE时,9+m2=17,解得m=±2,则P(﹣2,2);②当BP=PE时,9+m2=m2﹣8m+20,解得m=,则P(﹣2,);③当BE=PE时,17=m2﹣8m+20,解得m=4±,则P(﹣2,4﹣);综上,P(﹣2,2)或(﹣2,)或(﹣2,4﹣).。
2019届黑龙江省龙东地区中考数学模拟试卷(解析版)
2019年黑龙江省龙东地区中考数学模拟试卷一、填空题(共10小题,每小题3分,满分30分)1.2015年12月6日第十届全球孔子学院大会在上海召开,截止到会前,网络孔子学院注册用户达800万人,数据800万人用科学记数法表示为人.2.在函数y=中,自变量x的取值范围是.3.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.4.在一个不透明的袋子中装有除颜色外其他均相同的4个红球,3个白球,2个绿球,则摸出绿球的概率是.5.不等式组有3个整数解,则m的取值范围是.6.一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是元.7.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN 上的一个动点,则PA+PB的最小值为.8.小丽在手工制作课上,想用扇形卡纸制作一个圣诞帽,卡纸的半径为30cm,面积为300πcm2,则这个圣诞帽的底面半径为cm.9.已知:在平行四边形ABCD中,点E在直线AD上,AE=AD,连接CE交BD于点F,则EF:FC的值是.10.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C 的坐标为.二、选择题(共10小题,每小题3分,满分30分)11.下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b212.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.如图,由5块完全相同的小正方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,其主视图是()A.B.C.D.14.一次招聘活动中,共有8人进入复试,他们的复试成绩(百分制)如下:70,100,90,80,70,90,90,80.对于这组数据,下列说法正确的是()A.平均数是80 B.众数是90 C.中位数是80 D.极差是7015.如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s (阴影部分),则s与t的大致图象为()A.B.C.D.16.关于x的分式方程=3的解是正数,则字母m的取值范围是()A.m>3 B.m>﹣3 C.m>﹣3 D.m<﹣317.若点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,则△ABC的面积为()A.2+B.C.2+或2﹣D.4+2或2﹣18.已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.619.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1 B.2 C.3 D.420.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()=2S△BGE.①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFGA.4 B.3 C.2 D.1三、解答题(满分60分)21.先化简,再求值:(1+)÷,其中x=4﹣tan45°.22.如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求出在这两次变换过程中,点A经过点A1到达A2的路径总长.23.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C 关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.24.某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:(1)求本次测试共调查了多少名学生?(2)求本次测试结果为B等级的学生数,并补全条形统计图;(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?25.甲、乙两车从A城出发前往B城,在整个行程中,两车离开A城的距离y与t的对应关系如图所示:(1)A、B两城之间距离是多少千米?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车出发多长时间,两车相距20千米.26.已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C 重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.(1)当点P与点O重合时如图1,易证OE=OF(不需证明)(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.27.某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A钟品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?28.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上.∠OAB=90°且OA=AB,OB,OC的长分别是一元二次方程x2﹣11x+30=0的两个根(OB>OC).(1)求点A和点B的坐标.(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR 的长度为m.已知t=4时,直线l恰好过点C.当0<t<3时,求m关于t的函数关系式.(3)当m=3.5时,请直接写出点P的坐标.2019年黑龙江省龙东地区中考数学模拟试卷参考答案与试题解析一、填空题(共10小题,每小题3分,满分30分)1.2015年12月6日第十届全球孔子学院大会在上海召开,截止到会前,网络孔子学院注册用户达800万人,数据800万人用科学记数法表示为8×106人.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将800万用科学记数法表示为:8×106.故答案为:8×106.2.在函数y=中,自变量x的取值范围是x≥2.【考点】函数自变量的取值范围.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得3x﹣6≥0,解得x≥2,故答案为:x≥2.3.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件EB=DC,使四边形DBCE是矩形.【考点】矩形的判定;平行四边形的性质.【分析】利用平行四边形的判定与性质得到四边形DBCE为平行四边形,结合“对角线相等的平行四边形为矩形”来添加条件即可.【解答】解:添加EB=DC.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴DE∥BC,又∵DE=AD,∴DE=BC,∴四边形DBCE为平行四边形.又∵EB=DC,∴四边形DBCE是矩形.故答案是:EB=DC.4.在一个不透明的袋子中装有除颜色外其他均相同的4个红球,3个白球,2个绿球,则摸出绿球的概率是.【考点】概率公式.【分析】由在一个不透明的袋子中装有除颜色外其他均相同的4个红球,3个白球,2个绿球,直接利用概率公式求解即可求得答案.【解答】解:∵在一个不透明的袋子中装有除颜色外其他均相同的4个红球,3个白球,2个绿球,∴摸出绿球的概率是:=.故答案为:.5.不等式组有3个整数解,则m的取值范围是2<x≤3.【考点】一元一次不等式组的整数解.【分析】首先确定不等式组的整数解,然后根据只有这三个整数解即可确定.【解答】解:不等式的整数解是0,1,2.则m的取值范围是2<x≤3.故答案是:2<x≤3.6.一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是180元.【考点】一元一次方程的应用.【分析】设该件服装的成本价是x元.根据“利润=标价×折扣﹣进价”即可得出关于x的一元一次方程,解方程即可得出结论.【解答】解:设该件服装的成本价是x元,依题意得:300×﹣x=60,解得:x=180.∴该件服装的成本价是180元.故答案为:180.7.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为2.【考点】轴对称-最短路线问题;圆周角定理.【分析】过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB 的最小值,由对称的性质可知=,再由圆周角定理可求出∠A′ON的度数,再由勾股定理即可求解.【解答】解:过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴=,∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=2,即PA+PB的最小值2.故答案为:2.8.小丽在手工制作课上,想用扇形卡纸制作一个圣诞帽,卡纸的半径为30cm,面积为300πcm2,则这个圣诞帽的底面半径为10cm.【考点】圆锥的计算.【分析】由圆锥的几何特征,我们可得用半径为30cm,面积为300πcm2的扇形卡纸制作一个圣诞帽,则圆锥的底面周长等于扇形的弧长,据此求得圆锥的底面圆的半径.【解答】解:设卡纸扇形的半径和弧长分别为R、l,圣诞帽底面半径为r,则由题意得R=30,由Rl=300π得l=20π;由2πr=l得r=10cm.故答案是:10.9.已知:在平行四边形ABCD中,点E在直线AD上,AE=AD,连接CE交BD于点F,则EF:FC的值是或.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】分两种情况:①当点E在线段AD上时,由四边形ABCD是平行四边形,可证得△EFD∽△CFB,求出DE:BC=2:3,即可求得EF:FC的值;②当当点E在射线DA上时,同①得:△EFD∽△CFB,求出DE:BC=4:3,即可求得EF:FC的值.【解答】解:∵AE=AD,∴分两种情况:①当点E在线段AD上时,如图1所示∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△EFD∽△CFB,∴EF:FC=DE:BC,∵AE=AD,∴DE=2AE=AD=BC,∴DE:BC=2:3,∴EF:FC=2:3;②当点E在线段DA的延长线上时,如图2所示:同①得:△EFD∽△CFB,∴EF:FC=DE:BC,∵AE=AD,∴DE=4AE=AD=BC,∴DE:BC=4:3,∴EF:FC=4:3;综上所述:EF:FC的值是或;故答案为:或.10.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C 的坐标为.【考点】翻折变换(折叠问题);等边三角形的性质;坐标与图形变化-平移.【分析】据轴对称判断出点A变换后在x轴上方,然后求出点A纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可.【解答】解:解:∵△ABC是等边三角形AB=3﹣1=2,∴点C到x轴的距离为1+2×=+1,横坐标为2,∴A(2,+1),第2016次变换后的三角形在x轴上方,点A的纵坐标为+1,横坐标为2+2016×1=2018,所以,点A的对应点A′的坐标是,故答案为:.二、选择题(共10小题,每小题3分,满分30分)11.下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【考点】整式的混合运算.【分析】分别利用积的乘方运算法则以及同底数幂的除法运算法则、完全平方公式、单项式乘以单项式运算法则化简求出答案.【解答】解:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=2a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.12.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,又是中心对称图形.故此选项正确.故选:D.13.如图,由5块完全相同的小正方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,其主视图是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】由已知条件可知,主视图有2列,每列小正方数形数目分别为3,1,从而确定正确的选项.【解答】解:由分析得该组合体的主视图为:故选B.14.一次招聘活动中,共有8人进入复试,他们的复试成绩(百分制)如下:70,100,90,80,70,90,90,80.对于这组数据,下列说法正确的是()A.平均数是80 B.众数是90 C.中位数是80 D.极差是70【考点】极差;算术平均数;中位数;众数.【分析】根据表中数据,分别利用中位数、众数、极差、平均数的定义即可求出它们,然后就可以作出判断.【解答】解:依题意得众数为90;中位数为(80+90)=85;极差为100﹣70=30;平均数为(70×2+80×2+90×3+100)=83.75.故B正确.故选B.15.如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s (阴影部分),则s与t的大致图象为()A .B .C .D .【考点】动点问题的函数图象.【分析】根据直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形可知,当0≤t ≤时,以及当<t ≤2时,当2<t ≤3时,求出函数关系式,即可得出答案.【解答】解:∵直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t ,正方形与三角形不重合部分的面积为s ,∴s 关于t 的函数大致图象应为:三角形进入正方形以前s 增大,当0≤t ≤时,s=×1×1+2×2﹣=﹣t 2;当<t ≤2时,s=×12=;当2<t ≤3时,s=﹣(3﹣t )2=t 2﹣3t , ∴A 符合要求,故选A .16.关于x 的分式方程=3的解是正数,则字母m 的取值范围是( )A .m >3B .m >﹣3C .m >﹣3D .m <﹣3 【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m 的范围即可. 【解答】解:分式方程去分母得:2x ﹣m=3x+3, 解得:x=﹣m ﹣3,由分式方程的解为正数,得到﹣m ﹣3>0,且﹣m ﹣3≠﹣1, 解得:m <﹣3, 故选D17.若点O 是等腰△ABC 的外心,且∠BOC=60°,底边BC=2,则△ABC 的面积为( )A .2+B .C .2+或2﹣D .4+2或2﹣【考点】三角形的外接圆与外心;等腰三角形的性质.【分析】根据题意可以画出相应的图形,然后根据不同情况,求出相应的边的长度,从而可以求出不同情况下△ABC的面积,本题得以解决.【解答】解:由题意可得,如右图所示,存在两种情况,当△ABC为△A1BC时,连接OB、OC,∵点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,OB=OC,∴△OBC为等边三角形,OB=OC=BC=2,OA1⊥BC于点D,∴CD=1,OD=,∴=2﹣,当△ABC为△A2BC时,连接OB、OC,∵点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,OB=OC,∴△OBC为等边三角形,OB=OC=BC=2,OA1⊥BC于点D,∴CD=1,OD=,∴S△A2BC===2+,由上可得,△ABC的面积为或2+,故选C.18.已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.6【考点】反比例函数的性质.【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在x>0中单调递减,再结合x的取值范围,可得出y的取值范围,取其内的最小整数,本题得解.【解答】解:在反比例函数y=中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y==2;当x=1时,y==6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故选A.19.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1 B.2 C.3 D.4【考点】二元一次方程的应用.【分析】截下来的符合条件的彩绳长度之和刚好等于总长9米时,不造成浪费,设截成2米长的彩绳x根,1米长的y根,由题意得到关于x与y的方程,求出方程的正整数解即可得到结果.【解答】解:截下来的符合条件的彩绳长度之和刚好等于总长5米时,不造成浪费,设截成2米长的彩绳x根,1米长的y根,由题意得,2x+y=5,因为x,y都是正整数,所以符合条件的解为:、、,则共有3种不同截法,故选:C.20.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()=2S△BGE.①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFGA.4 B.3 C.2 D.1【考点】四边形综合题.【分析】首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.【解答】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin=∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,=4S△BGE,故④错误.∴S四边形ECFG故选:B.三、解答题(满分60分)21.先化简,再求值:(1+)÷,其中x=4﹣tan45°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先算括号里面的,再算除法,求出x的值代入进行计算即可.【解答】解:原式=•=,当x=4﹣tan45°=4﹣1=3时,原式==.22.如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求出在这两次变换过程中,点A经过点A1到达A2的路径总长.【考点】作图-旋转变换;作图-平移变换.【分析】(1)由B点坐标和B1的坐标得到△ABC向右平移5个单位,再向上平移1个单位得到△A1B1C1,则根据点平移的规律写出A1和C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点A1的对应点为点A2,点B1的对应点为点B2,点C1的对应点为点C2,从而得到△A2B2C2;(3)先利用勾股定理计算平移的距离,再计算以OA1为半径,圆心角为90°的弧长,然后把它们相加即可得到这两次变换过程中,点A经过点A1到达A2的路径总长.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)OA==4,点A经过点A1到达A2的路径总长=+=+2π.23.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C 关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.【考点】二次函数与不等式(组);待定系数法求一次函数解析式;待定系数法求二次函数解析式.【分析】(1)先利用待定系数法先求出m,再求出点B坐标,利用方程组求出太阳还是解析式.(2)根据二次函数的图象在一次函数的图象上面即可写出自变量x的取值范围.【解答】解:(1)∵抛物线y=(x+2)2+m经过点A(﹣1,0),∴0=1+m,∴m=﹣1,∴抛物线解析式为y=(x+2)2﹣1=x2+4x+3,∴点C坐标(0,3),∵对称轴x=﹣2,B、C关于对称轴对称,∴点B坐标(﹣4,3),∵y=kx+b经过点A、B,∴,解得,∴一次函数解析式为y=﹣x﹣1,(2)由图象可知,写出满足(x+2)2+m≥kx+b的x的取值范围为x<﹣4或x>﹣1.24.某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:(1)求本次测试共调查了多少名学生?(2)求本次测试结果为B等级的学生数,并补全条形统计图;(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)设本次测试共调查了x名学生,根据总体、个体、百分比之间的关系列出方程即可解决.(2)用总数减去A、C、D中的人数,即可解决,画出条形图即可.(3)用样本估计总体的思想解决问题.【解答】解:(1)设本次测试共调查了x名学生.由题意x•20%=10,x=50.∴本次测试共调查了50名学生.(2)测试结果为B等级的学生数=50﹣10﹣16﹣6=18人.条形统计图如图所示,(3)∵本次测试等级为D所占的百分比为=12%,∴该中学八年级共有900名学生中测试结果为D等级的学生有900×12%=108人.25.甲、乙两车从A城出发前往B城,在整个行程中,两车离开A城的距离y与t的对应关系如图所示:(1)A、B两城之间距离是多少千米?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车出发多长时间,两车相距20千米.【考点】一次函数的应用.【分析】(1)根据图象即可得出结论.(2)先求出甲乙两人的速度,再列出方程即可解决问题.(3)根据y甲﹣y乙=20或y乙﹣y甲=20,列出方程即可解决.【解答】解:(1)由图象可知A、B两城之间距离是300千米.(2)设乙车出发x小时追上甲车.由图象可知,甲的速度==60千米/小时.乙的速度==75千米/小时.由题意(75﹣60)x=60解得x=4小时.(3)设y甲=kx+b,则解得,∴y甲=60x﹣300,设y乙=k′x+b′,则,解得,∴y乙=100x﹣600,∵两车相距20千米,∴y甲﹣y乙=20或y乙﹣y甲=20或y甲=20或y甲=280,即60x﹣300﹣=20或100x﹣600﹣(60x﹣300)=20或60x﹣300=20或60x﹣300=280解得x=7或8或或,∵7﹣5=2,8﹣5=3,﹣5=,﹣5=∴甲车出发2小时或3小时或小时或小时,两车相距20千米.26.已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C 重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.(1)当点P与点O重合时如图1,易证OE=OF(不需证明)(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.【考点】四边形综合题.【分析】(1)由△AOE≌△COF即可得出结论.(2)图2中的结论为:CF=OE+AE,延长EO交CF于点G,只要证明△EOA≌△GOC,△OFG是等边三角形,即可解决问题.图3中的结论为:CF=OE﹣AE,延长EO交FC的延长线于点G,证明方法类似.【解答】解:(1)∵AE⊥PB,CF⊥BP,∴∠AEO=∠CFO=90°,在△AEO和△CFO中,,∴△AOE≌△COF,∴OE=OF.(2)图2中的结论为:CF=OE+AE.图3中的结论为:CF=OE﹣AE.选图2中的结论证明如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,在△EOA和△GOC中,,∴△EOA≌△GOC,∴EO=GO,AE=CG,在RT△EFG中,∵EO=OG,∴OE=OF=GO,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=GF,∵OE=OF,∴OE=FG,∵CF=FG+CG,∴CF=OE+AE.选图3的结论证明如下:.....延长EO交FC的延长线于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠AEO=∠G,在△AOE和△COG中,,∴△AOE≌△COG,∴OE=OG,AE=CG,在RT△EFG中,∵OE=OG,∴OE=OF=OG,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=FG,∵OE=OF,∴OE=FG,∵CF=FG﹣CG,∴CF=OE﹣AE.27.某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A钟品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球单价比A种足球贵30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设第二次购买A种足球m个,则购买B中足球(50﹣m)个,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球不小于23个”可得出关于m的一元一次不等式组,解不等式组可得出m的取值范围,由此即可得出结论;(3)分析第二次购买时,A、B种足球的单价,即可得出那种方案花钱最多,求出花费最大值即可得出结论.【解答】解:(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:,解得:.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)设第二次购买A种足球m个,则购买B中足球(50﹣m)个,依题意得:,解得:25≤m≤27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.(3)∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72(元),∴当购买方案中B种足球最多时,费用最高,即方案一花钱最多.∴25×54+25×72=3150(元).。
2013-2019年黑龙江省龙东地区中考数学试题汇编(含参考答案与解析)
【中考数学试题汇编】2013-2019年黑龙江省龙东地区中考数学试题汇编(含参考答案与解析)1、2013年黑龙江省龙东地区中考数学试题及参考答案与解析 (2)2、2014年黑龙江省龙东地区中考数学试题及参考答案与解析 (30)3、2015年黑龙江省龙东地区中考数学试题及参考答案与解析 (57)4、2016年黑龙江省龙东地区中考数学试题及参考答案与解析 (83)5、2017年黑龙江省龙东地区中考数学试题及参考答案与解析 (109)6、2018年黑龙江省龙东地区中考数学试题及参考答案与解析 (136)7、2019年黑龙江省龙东地区中考数学试题及参考答案与解析 (163)2013年黑龙江省龙东地区中考数学试题及参考答案与解析一、填空题(每题3分,共30分)1.“大美大爱”的龙江人勤劳智慧,2012年全省粮食总产量达到1152亿斤,夺得全国粮食总产第一,广袤的黑土地正成为保障国家粮食安全的大粮仓,1152亿斤用科学记数法表示为 斤.2.在函数y =x 的取值范围是 . 3.如图所示,平行四边形ABCD 的对角线AC 、BD 相交于点O ,试添加一个条件: ,使得平行四边形ABCD 为菱形.4.风华中学七年级(2)班的“精英小组”有男生4人,女生3人,若选出一人担任班长,则组长是男生的概率为 .5.若x=1是关于x 的一元二次方程x 2+3mx+n=0的解,则6m+2n= .6.二次函数y=﹣2(x ﹣5)2+3的顶点坐标是 .7.将半径为4cm 的半圆围成一个圆锥,这个圆锥的高为 cm .8.李明组织大学同学一起去看电影《致青春》,票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了 张电影票.9.梯形ABCD 中,AB ∥CD ,AB=3,CD=8,点E 是对角线AC 上一点,连接DE 并延长交直线AB 于点F ,若2AF BF =,则AE EC= . 10.已知等边三角形ABC 的边长是2,以BC 边上的高AB 1为边作等边三角形,得到第一个等边三角形AB 1C 1,再以等边三角形AB 1C 1的B 1C 1边上的高AB 2为边作等边三角形,得到第二个等边三角形AB 2C 2,再以等边三角形AB 2C 2的边B 2C 2边上的高AB 3为边作等边三角形,得到第三个等边AB 3C 3;…,如此下去,这样得到的第n 个等边三角形AB n C n 的面积为 .二、选择题(每题3分,满分30分)11.下列运算中,计算正确的是( )A .(x 3)2=x 5B .x 2+x 2=2x 4C .(﹣2)﹣1=12- D .(a ﹣b )2=a 2﹣b 212.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.4 B.5 C.6 D.714根据表中提供的信息,这43名同学右眼视力的众数和中位数分别是()A.4.9,4.6 B.4.9,4.7 C.4.9,4.65 D.5.0,4.6515.如图,爸爸从家(点O)出发,沿着扇形AOB上OA→AB→BO的路径去匀速散步,设爸爸距家(点O)的距离为S,散步的时间为t,则下列图形中能大致刻画S与t之间函数关系的图象是()A.B.C.D.16.已知关于x的分式方程211ax+=+的解是非正数,则a的取值范围是()A.a≤﹣1 B.a≤﹣1且a≠﹣2 C.a≤1且a≠﹣2 D.a≤117.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A.3 B.C.D.218.如图,Rt△ABC的顶点A在双曲线kyx=的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠ACO=60°,则k的值是()A.B.-C.D.-19.今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱取购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有()A.3种B.4种C.5种D.6种20.如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB 交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1 B.2 C.3 D.4三、简答题(满分60分)21.(5分)先化简,再求值2211121x xx x x-⎛⎫-÷⎪+++⎝⎭,其中x=2sin45°+1.22.(6分)如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标.(2)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A2B2C2,并求点B所经过的路径长(结果保留x)23.(6分)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.24.(7分)在我市开展的“阳光体育”跳绳活动中,为了了解中学生跳绳活动的开展情况,随机抽查了全市八年级部分同学1分钟跳绳的次数,将抽查结果进行统计,并绘制两个不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次共抽查了多少名学生?(2)请补全频数分布直方图空缺部分,直接写出扇形统计图中跳绳次数范围135≤x≤155所在扇形的圆心角度数.(3)若本次抽查中,跳绳次数在125次以上(含125次)为优秀,请你估计全市8000名八年级学生中有多少名学生的成绩为优秀?(4)请你根据以上信息,对我市开展的学生跳绳活动谈谈自己的看法或建议.25.(8分)2012年秋季,某省部分地区遭受严重的雨雪自然灾害,兴化农场34800亩的农作物面临着收割困难的局面.兴华农场积极想办法,决定采取机械收割和人工收割两种方式同时进行抢收,工作了4天,由于雨雪过大,机械收割被迫停止,此时,人工收割的工作效率也减少到原来的23,第8天时,雨雪停止附近的胜利农场前来支援,合作6天,完成了兴化农场所有的收割任务.图1是机械收割的亩数y1(亩)和人工收割的亩数y2(亩)与时间x(天)之间的函数图象.图2是剩余的农作物的亩数w(亩)与时间x天之间的函数图象,请结合图象回答下列问题.(1)请直接写出:A点的纵坐标.(2)求直线BC的解析式.(3)第几天时,机械收割的总量是人工收割总量的10倍?26.(8分)正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN 于点E,过点B作BF⊥MN于点F.(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.27.(10分)为了落实党中央提出的“惠民政策”,我市今年计划开发建设A、B两种户型的“廉租房”共40套.投入资金不超过200万元,又不低于198万元.开发建设办公室预算:一套A型“廉租房”的造价为5.2万元,一套B型“廉租房”的造价为4.8万元.(1)请问有几种开发建设方案?(2)哪种建设方案投入资金最少?最少资金是多少万元?(3)在(2)的方案下,为了让更多的人享受到“惠民”政策,开发建设办公室决定通过缩小“廉租房”的面积来降低造价、节省资金.每套A户型“廉租房”的造价降低0.7万元,每套B户型“廉租房”的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的“廉租房”,如果同时建设A、B两种户型,请你直接写出再次开发建设的方案.28.(10分)如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB=90°,OA、OB的长分别是一元二次方程x2﹣25x+144=0的两个根(OA<OB),点D是线段BC上的一个动点(不与点B、C重合),过点D作直线DE⊥OB,垂足为E.(1)求点C的坐标.(2)连接AD,当AD平分∠CAB时,求直线AD的解析式.(3)若点N在直线DE上,在坐标系平面内,是否存在这样的点M,使得C、B、N、M为顶点的四边形是正方形?若存在,请直接写出点M的坐标;若不存在,说明理由.参考答案与解析一、填空题(每题3分,共30分)1.“大美大爱”的龙江人勤劳智慧,2012年全省粮食总产量达到1152亿斤,夺得全国粮食总产第一,广袤的黑土地正成为保障国家粮食安全的大粮仓,1152亿斤用科学记数法表示为斤.【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:将1152亿用科学记数法表示为1.152×1011.故答案为:1.152×1011.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)求二次函数的解析式。
(3)根据图象直接写出使 一次函数值大于二次函数值
的x的取值范围。
得分
评卷人
24.(本题满分7分)
为了更好地宣传“开车不喝酒,
喝酒不开车”的驾车理念,某市
一家报社设计了如下的调查问卷(单选)。在随机调查了
本市全部5000名司机中的部分司机后,整理相关数据并
28.(本题满分10分)
如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程
x2-7x+12=0的两个根(OA>OB)。
(1)求点D的坐标。
(2)求直线BC的解析式。
(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由。
(2)该市支持选项B的司机大约有多少人?
(3)若要从该市支持选项B的司机中随机抽取100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被抽中的概率是多少?
25.(本题满分8分)
一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发。不久,第二列快车也从甲地发往乙地,速度与第一列快车相同。在第一列快车与慢车相遇30分后,第二列快车与慢车相遇。设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2所示,根据图象信息解答下列问题:
7.小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔能买支。
8.△ABC中,AB=4,BC=3,∠BAC=30°,则△ABC的面积为。
9.如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是。
计算出m=12 ……………………………………………………………1分
(2)27%×5000=1350(人)………………………………………………2分
(3)小李抽中的概率P= = ………………………………………2分
25、(本题满 分8分)
解:(1) 900 ………Байду номын сангаас…………………………………………………1分
∴BD∥CF
∴∠DBM=∠KCM
又∵∠DMB=∠CMK
BM=MC
∴△DBM≌△KCM…………………………………………………………1分
∴DB=CK DM=MK
由易证知:EM= FK………………………………………………………1分
∴ ME= (CF+CK)= (CF+DB) ………………………………2分
图3的结论证明如下:连接DM并延长交FC于K
(2)平移△ABC,使点A 的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形。
(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标。
23.(本题满分6分)
如图,二次函数的图象与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D。
当 =3时…………………………………………………1分
原式= = ………………………………………………………………1分
22、(本题满分6分)
解:(1)正确画出旋转后的图形…………………………………………………2分
(2) 正确画出平移后的图形…………………………………………………2分
(3)旋转中心坐标(0,-2) …………………………………………………2分
23、(本题满分6分)
解:(1)D(-2,3)……………………………………………………………1分
(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),
根据题意得 ………………………………………………………………1分
9a-3b+c=0
a+b+c=0 …………………………………………………………1分
14.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表。关于这10户家庭的月用电量说法正确的是 ()
月用电量(度)
25
30
40
50
60
户数
1
2
4
2
1
A.中 位数是40 B.众数是4C. 平均数是20.5D.极差是3
15.如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是 ()
(2)(方法一)慢车速度为900÷12=75千米/时
快车速度+慢车速度=900÷4=225千米/时…………………………1分
快车速度=225-75=150千米/时
快车走完全程时间为900÷150=6小时
快车到达时慢车与快车相距 6×75=450千米
所以C(6,450) ………………………………………………2分
2.函数 中,自变量 的取值范围是。
3.如图,梯形ABCD中,AD∥BC,点M是AD的中点,不添加辅助线,
梯形满足条件时,有MB=MC(只填一个即可)。
4.三张扑克牌中只有一张黑桃,三位同学依次抽取 ,第一位同学抽到黑桃的概率为。
5. 不等式组2≤3x-7<8的解集为。
6.直径为10cm的⊙O中,弦AB=5cm,则弦AB所对的圆周角是。
二、选择题(每题3分,共30分)
11、C 12、B 13、A 14、A 15、D 16、C 17、B 18、D 19、B 20、C
三、解答题(满分60分)
21、(本题满分5分)
解:原式= ………………………………………1分
= ……………………………………………………………1分
= …………………………………………………………………1分
黑龙江省龙东地区2019年初中毕业学业统一考试
数学试题参考答案及评分标准
一、填空(每题3分,共30分)
1、7.27×1062、x≤3 3、AB=DC(或 ∠ABC=∠DCB、∠A=∠D)等 4、
5、3≤x<5 6、30°或150°(答对1个给2分,多答或含有错误答案不得分)
7、1或2或3 (每答对1个给1分,多答或含有错误答案不得分) 8、 (答对1个给2分,多答或含有错误答案不得分)9、5 10、
沼气池
修建费用(万元/个)
可供使用户数(户/个)
占地面积(平方米/个)
A型
3
20
10
B型
2
15
8
政府土地部门只 批给该村沼气池用地212平方米,设修建A型沼气池x个,修建两种沼气池共需费用y万元。
(1)求y与x之间函数关系式。
(2)试问有哪几种满足上述要求的修建方案。
(3)要想完成这项工程,每户居民平均至少应筹集多少钱?
(1)甲、乙两地之间的距离为千米。
(2)求图1中线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围。
(3)请直接在图2中的( )内填上正确的数。
26.(本题满分8分)
已知△ABC中,M为BC的中点,直线m绕点A旋转,过B、M、C分别作BD⊥m于D,ME⊥m于E,CF⊥m于F。
(1)当直线m经过B点时,如图1,易证EM= CF。(不需证明)
A.10πcmB.10 cmC.5πcmD.5 cm
18.如图,正方形ABCD的边长为2,H在CD的延长线上,四边形CEFH也为正方形,则△DBF的面积为 ( )
A.4B. C. D.2
19.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分。在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有()
A.2B.3C.4D.5
三、解答题(满分60分)
得分
评卷人
21.(本题满分5分)
先化简,再求值: ,其中
得分
评卷人
22.(本题满分6分)
如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2)。
(1) 将△ABC以点C为旋转中心旋转180°,得到△A1B1C, 请画出△A1B1C的图形。
设yCD=kx+b(k≠0,k、b为常数)
把(6,450)(12,900)代入yCD=kx+b 中,有
12k+b=900
6k+b=450
解得 k=75
b=0 …………………………………………………………1分
所以 y=75x (6≤x≤12)………………………………………………1分
(方法二)设yCD=kx+b(k≠0,k、b为常数)…………………………1分
得分
评卷人
二、选择题(每题3分,满分30分)
11.下列各运算中,计算正确的是( )
A. B. C. D.
12.下列交通标志中,成轴对称图形的是()
A B C D
13.由若干个相同的小正方体搭成的一个几何体的俯视图如图所示,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是 ( )
俯视图 A B C D
制作了右侧两个不完整的统计图:
克服酒驾——你认为哪一种方式更好?
A.司机酒驾,乘客有责,让乘客帮助监督
B.在车上张贴“请勿喝酒”的提醒标志
C.签订“永不酒 驾”保证书
D.希望交警加大检查力度
E.查出酒驾,追究就餐饭店的连带责任
根据以上信息解答下列问题:
(1)请补全条形统计图,并直接写出扇形统计图中m=