数控机床原理与结构分析——数控机床的伺服系统
数控机床各个组成部分的工作原理及结构
数控机床各个组成部分的工作原理及结构第一节输入装置输入装置是整个数控系统的初始工作机构,它将准确可靠的接收信息介质上所记录的“工程语言"、运算及操作指令等原始数据,转为数控装置能处理的信息,并同时输送给数控装置。
输入信息的方式分手动输入和自动输入。
手动输入简单、方便但输入速度慢容易出错。
现代数控机床普遍采用自动输入,其输入形式有光电阅读机、磁带阅读机及磁盘驱动器以及无带自动输入方式.其它输入方式:1。
无带自动输入方式在高档数控机床上,设置有自动编程系统和动态模拟显示器(CRT).将这些设备通过计算机接口与机床的数控系统相连接,自动编程所编制的加工程序即可直接在机床上调用,无需经制控制介质后再另行输入。
2。
触针接触式阅读机输入方式又称为程控机头或电报机头,结构简单,阅读速度较慢,但输入可靠、价格低廉故在部分线切割机床加工中仍在用。
3。
磁带、磁盘输入方式磁带输入方式进行信息输入,其信息介质为“录音"磁带,只不过录制的不是声音,而是各种数据。
加工程序等数据信息一方面由微机内的磁盘驱动器“写入”磁盘上进行储存,另外也由磁盘驱动器进行阅读并通过微机接口输入到机床数控装置中去。
第二节数控装置数控装置是数控机床的核心,数控机床几乎所有的控制功能(进给坐标位置与速度,主轴、刀具、冷却及机床强电等多种辅助功能)都由它控制实现。
因此数控装置的发展,在很大程度上代表了数控机床的发展方向。
数控装置的作用是接收加工程序等送来的各种信息,并经处理分配后,向驱动机构发出执行的命令,在执行过程中,其驱动、检测等机构同时将有关信息反馈给数控装置,经处理后,发出新的命令。
一、数控装置的组成1、数字控制的信息1)几何信息——是指通过被加工零件的图样所获得的几何轮廓的信息。
这些信息由数控装置处理后,变为控制各进给轴的指令脉冲,最终形成刀具的移动轨迹。
几何信息的指令,由准备功能G具体规定。
2)工艺信息———通过工艺处理后所获得的各种信息。
数控机床的结构组成及原理
数控机床的结构组成及原理数控机床是一种通过计算机控制的机床,可以实现多种复杂的加工操作。
它的结构组成及原理可以大致分为机床主体部分、控制系统部分和辅助装置部分。
一、机床主体部分1.床身:床身是整个数控机床的基础部分,承载整个机床的各个部件和装置,同时具有足够的刚性和稳定性。
床身通常由大型整体铸件制成,常见的有平面床、斜床和立式床等。
床身上设有导轨、滑块和滚珠丝杠等装置,用于支撑和导向主轴箱、工作台等。
2.主轴箱:主轴箱是数控机床的重要部件之一,通常由主轴、主轴动力装置、主轴箱座、电动机及其驱动装置等组成。
主轴箱用来传递动力,使主轴旋转,是实现机床加工功能的关键部分。
3.工作台:工作台是数控机床上用于夹持工件的装置,它可以沿各个方向进行移动和转动。
工作台通常由工作台体、刀架座、刀具变位装置等组成。
工作台的移动和转动由驱动装置控制,实现对工件的定位和加工。
二、控制系统部分1.数控装置:数控装置是整个机床的控制中心,由硬件部分和软件部分组成。
硬件部分包括主机、输入输出设备、接口电路等,软件部分是指数控机床的控制程序。
数控装置能够根据加工要求,自动生成加工程序,并控制机床的各个动作。
2.伺服系统:伺服系统是数控机床的动力系统,主要由伺服电机、传动机构和测量装置等组成。
伺服电机通过控制系统接收指令,根据要求实现各个轴向的运动。
传动机构将电机运动传递到工作台或刀架等部位,测量装置用于检测轴向运动的位置和速度。
三、辅助装置部分1.刀具变位装置:刀具变位装置是数控机床上用来实现刀具的换刀和夹紧的装置。
它能够实现快速的刀具换向和自动夹紧,提高机床的加工效率。
2.冷却液供给装置:冷却液供给装置是用于给切削过程提供冷却润滑的装置,它能够保持刀具的正常工作温度,延长刀具的使用寿命,并提高加工质量。
3.操作平台:操作平台是供操作人员进行操作和监控的地方,它通常设有显示屏、键盘、手柄等操作设备,用于输入指令、调整参数以及监控加工过程。
数控机床的伺服系统
第七章 数控机床的伺服系统
但直流电机有电刷,限制了转速的提高,而且结构复杂, 价格也高。进入80年代后,由于交流电机调速技术的突破,交 流伺服驱动系统进入电气传动调速控制的各个领域。交流伺服 电机,转子惯量比直流电机小,动态响应好。而且容易维修, 制造简单,适合于在较恶劣环境中使用,易于向大容量、高速 度方向发展,其性能更加优异,已达到或超过直流伺服系统, 交流伺服电机已在数控机床中得到广泛应用。
第七章 数控机床的伺服系统
进给伺服系统的作用:接受数控装臵发出的进给速度和位 移指令信号,由伺服驱动装臵作一定的转换和放大后,经伺服 电机(直流、交流伺服电机、功率步进电机等)和机械传动机 构,驱动机床的工作台等执行部件实现工作进给或快速运动。 数控机床的进给伺服系统能根据指令信号精确地控制执行 部件的运动速度与位臵,以及几个执行部件按一定规律运动所 合成的运动轨迹。如果把数控装臵比作数控机床的“大脑”, 是发布“命令”的指挥机构,那么伺服系统就是数控机床的 “四肢”,是执行“命令”的机构,它是一个不折不扣的跟随 者。
第七章 数控机床的伺服系统
二、步进电机工作原理
步进电机伺服系统是典型的开环控制系统,在此系统中, 步进电机受驱动线路控制,将进给脉冲序列转换成为具有一 定方向、大小和速度的机械转角位移,并通过齿轮和丝杠带 动工作台移动。进给脉冲的频率代表了驱动速度,脉冲的数 量代表了位移量,而运动方向是由步进电机的各相通电顺序 来决定,并且保持电机各相通电状态就能使电机自锁。但由 于该系统没有反馈检测环节,其精度主要由步进电机来决定, 速度也受到步进电机性能的限制。
第七章 数控机床的伺服系统
直线电动机的实质是把旋转电动机沿径向剖开,然后拉直 演变而成,利用电磁作用原理,将电能直接转换成直线运动动 能的一种推力装臵,是一种较为理想的驱动装臵。在机床进给 系统中,采用直线电动机直接驱动与旋转电动机的最大区别是 取消了从电动机到工作台之间的机械传动环节,把机床进给传 动链的长度缩短为零。正由于这种传动方式,带来了旋转电动 机驱动方式无法达到的性能指标和优点。由于直线电动机在机 床中的应用目前还处于初级阶段,还有待进一步研究和改进。 随着各相关配套技术的发展和直线电动机制造工艺的完善,相 信用直线电动机作进给驱动的机床会得到广泛应用。
第4章 数控机床伺服系统
第4章 数控机床伺服系统
第4章 数控机床伺服系统 工作原理:假设是单三拍通电工作方式。 (1)A 相通电时,定子A 相的五个小齿和转子对 齐。此时,B 相和 A 相空间差120,含 1 120/9 = 13 齿 3 2 A 相和 C 相差240,含240/ 9 = 26 个 3 齿。所以,A 相的转子、定子的五个小齿对 齐时,B 相、C 相不能对齐,B相的转子、 定子相差 1/3 个齿(3),C相的转子、定 子相差2/3个齿(6)。
mz2 k
式中:n —转速(r/min); f —控制脉冲频率,即每秒输入步进电动机的脉冲数; 由上式可知:工作台移动的速度由指令脉冲的频率所控制。
第4章 数控机床伺服系统 特点:
(1)来一个脉冲,转一个步距角。
(2)控制脉冲频率,可控制电机转速。
(3)改变脉冲顺序,改变方向。
种类:
有励磁式和反应式两种。两种的区别在于励磁式步进电机的转 子上有励磁线圈,反应式步进电机的转子上没有励磁线圈。
第4章 数控机床伺服系统
计算机数控系统 机床 I/O 电路和装置 操作面板 键盘 输入输出 设备 机 床
PLC
计算机 数 装 控 置
主轴伺服单元
主轴驱动装置
进给伺服单元 测量装置
进给驱动装置
主进辅 运给助 传控 动 动制 机机机 构构构
数控机床的组成
第4章 数控机床伺服系统
第4章
数控机床伺服系统
第4章 数控机床伺服系统
360o s mz2 k
第4章 数控机床伺服系统
每个步距角对应工作台一个位移值,这个位移值称为脉 冲当量。 因此,只要控制指令脉冲的数量即可控制工作台移动的 位移量。步距角越小,它所达到的位置精度越高,因此实际 使用的步进电动机一般都有较小的步距角。 步进电动机的转速公式为:n 60 f
数控机床的组成及基本工作原理
数控机床的组成及基本工作原理数控机床是一种利用数字编程控制工作的机床。
它由三个基本部分组成:机械系统、传动系统和控制系统。
下面将详细介绍数控机床的组成和基本工作原理。
一、机械系统机械系统是数控机床的基础,它由床身、主轴箱、伺服系统等组成。
1.床身:床身是数控机床的基础,主要承载着机床其他部件。
床身通常由铸铁或钢板焊接而成,具有较高的强度和刚性,以保证机床的稳定性。
2.主轴箱:主轴箱包含了主轴系统和进给系统,主轴通过驱动系统将切削工具与工件连接,实现切削加工。
进给系统控制工件在X、Y、Z三个方向上的运动,使切削工具能沿指定路线精确地切削工件。
3.伺服系统:伺服系统负责控制切削工具和工件的相对运动。
它由伺服电机、伺服控制系统、逆变器和编码器等组成。
伺服电机通过接受数控系统发送的控制信号,精确控制机床的位置和速度,从而实现精确的切削加工。
二、传动系统传动系统负责传递电能和运动,将数控机床的控制信号传递给各个运动部件。
主要由电源、变频器、伺服电机、传感器等组成。
1.电源:电源为数控机床提供所需的电能。
通常使用三相交流电源。
2.变频器:变频器将交流电源转换为直流电源,以满足数控机床的要求。
3.伺服电机:伺服电机是数控机床的关键部件,它负责实现机床的精准运动。
伺服电机通常由电动机、编码器和速度控制器组成。
4.传感器:传感器用于检测机床各个部件的状态,将检测到的信号转换为电信号,反馈给数控系统。
三、控制系统控制系统是数控机床的大脑,它由数控装置、软件系统、输入输出设备等组成。
1.数控装置:数控装置是数控机床的核心,主要负责数控程序的编写和生成。
它接收操作员输入的加工参数和控制命令,经过处理之后发送给伺服系统。
3.输入输出设备:输入输出设备用于与数控装置进行交互。
常用的输入设备有键盘、鼠标和触摸屏;输出设备有显示器、打印机和数控机床本身。
基本工作原理:1.数控编程:操作员使用数控装置进行编程,编写出所需的加工程序。
数控机床的伺服系统
第6章 数控机床的伺服系统
伺服驱动装置
位置控制模块 速度控制单元
工作台 位置检测
速度环 速度检测 位置环
伺服电机
测量反馈
图6-1 闭环进给伺服系统结构
数控机床闭环进给系统的一般结构如图,这是一个双闭环系统,内 环为速度环,外环为位置环。速度环由速度控制单元、速度检测装置等构成。 速度控制单元是一个独立的单元部件,它是用来控制电机转速的,是速度控 制系统的核心。速度检测装置有测速发电机、脉冲编码器等。位置环是由 CNC装置中的位置控制模块、速度控制单元、位置检测及反馈控制等部分组 成。
第6章 数控机床的伺服系统
A C1 B4 2 B 3C A
逆时针转30º
C 4 B
A 1 2 3 A
B
C 1 B
A 2
B 3 C
C
逆时针转30º
4 A
第6章 数控机床的伺服系统
采用三相双三拍控制方式,即通电顺序按AB→BC→CA→AB(逆时针 方向)或AC→CB→BA→AC(顺时针方向)进行,其步距角仍为30。由于 双三拍控制每次有二相绕组通电,而且切换时总保持一相绕组通电,所以 工作比较稳定。
第6章 数控机床的伺服系统
设 A 相首先通电,转子齿与定子 A 、 A′ 对齐(图 3a )。然后在 A 相继续通电的情 况下接通 B 相。这时定子 B 、 B′ 极对转子 齿 2 、 4 产生磁拉力,使转子顺时针方向转 动,但是 A 、 A′ 极继续拉住齿 1 、 3 ,因 此,转子转到两个磁拉力平衡为止。这时转 子的位置如图 3b 所示,即转子从图 (a) 位 置顺时针转过了 15° 。接着 A 相断电, B 相继续通电。这时转子齿 2 、 4 和定子 B 、 B′ 极对齐(图 c ),转子从图 (b) 的位置又 转过了 15° 。其位置如图 3d 所示。这样, 如果按 A→A 、 B→B→B 、 C→C→C 、 A→A… 的顺序轮流通电,则转子便顺时针 方向一步一步地转动,步距角 15° 。电流 换接六次,磁场旋转一周,转子前进了一个 齿距角。如果按 A→A 、 C→C→C 、 B→B→B 、 A→A… 的顺序通电,则电机 转子逆时针方向转动。这种通电方式称为六 拍方式。
数控技术 第七章 数控机床的进给伺服系统
三 步进电动机的基本控制方法
(2) 双电压功率放大电路 优点:功耗低,改善了脉冲 优点:功耗低, 前沿。 前沿。 缺点:高低压衔接处电流波 缺点: 形呈凹形, 形呈凹形,使步进电机 输出转矩降低, 输出转矩降低,适用于 大功率和高频工作的步 进电机。 进电机。
三 步进电动机的基本控制方法
(3) 斩波恒流功放电路 优点: 优点:1)R3较小(小 R3较小( 较小 于兆欧) 于兆欧)使整个 系统功耗下降, 系统功耗下降, 效率提高。 效率提高。 2)主回路不串 电阻, 电阻,电流上升 快,即反应快。 即反应快。 3)由于取样绕 组的反馈作用, 组的反馈作用, 绕组电流可以恒定在确定的数值上, 绕组电流可以恒定在确定的数值上,从而保证在很大频率范 围内,步进电机能输出恒定的转矩。 围内,步进电机能输出恒定的转矩。
二 数控机床对伺服系统的基本要求
1 高精度 一般要求定位精度为0.01~0.001mm; ; 一般要求定位精度为 高档设备的定位精度要求达到0.1um以上。 以上。 高档设备的定位精度要求达到 以上 2 快速响应 3 调速范围宽 调速范围指的是 max/nmin 。 调速范围宽:调速范围指的是 调速范围指的是:n 进给伺服系统:一般要求 进给伺服系统 一般要求0~30m/min,有的已达到 一般要求 ,有的已达到240m/min 主轴伺服系统:要求 主轴伺服系统 要求1:100~1:1000恒转矩调速 要求 恒转矩调速 1:10以上的恒功率调速 以上的恒功率调速
一 直流伺服电动机调速原理
7-30 直流电动机的机械特性
二 直流电动机的PWM调速原理 直流电动机的 调速原理
7-24 脉宽调制示意图 脉宽调制示意图
Ud =
τ
T
U = δ T U δ T 称为导通率
数控机床原理与结构分析第5章数控机床的进给系统
contents
目录
• 引言 • 数控机床的进给系统原理 • 数控机床的进给系统结构 • 数控机床的进给系统性能分析 • 数控机床的进给系统维护与保养 • 结论
01 引言
数控机床的进给系统概述
数控机床的进给系统是实现切削加工的重要组成部分,它负 责将主轴的旋转运动传递到工作台或刀具上,以完成工件的 加工。
进给系统的热误差分析
热误差产生原因
热误差是由于进给系统在工作过程中受到热源影响,导致机械部件受热变形和温度升高, 从而影响进给系统的运动精度。热误差主要来源于传动元件、轴承、导轨等部件的受热
变形。
热误差补偿技术
为了减小热误差对进给系统性能的影响,可以采用热误差补偿技术。热误差补偿技术包括温 度检测、误差建模和补偿算法等环节,通过实时监测进给系统的温度变化,建立热误差模型
进给系统由电动机、传动装置、丝杠、工作台等组成,通过 控制电动机的旋转运动,经过一系列的传动装置,最终转化 为工作台或刀具的直线运动。
进给系统在数控机床中的重要性
进给系统是数控机床实现高精度、高效率加工的关键因素之一,其性能直接影响 着加工质量和生产效率。
随着现代制造业的发展,对数控机床的加工精度和效率要求越来越高,因此,对 进给系统的性能要求也越来越高。进给系统的性能优劣直接决定了数控机床的性 能和市场竞争力。
,并采用相应的补偿算法对热误差进行补偿,可以有效提高进给系统的运动精度。
05 数控机床的进给系统维护 与保养
进给系统的日常维护
每日检查
01
检查进给系统各部件是否正常,如导轨、丝杠、轴承等,确保
无异常声音和振动。
润滑保养
02
数控机床的伺服驱动系统
上一页 下一页 返回
6.2 二维数组
6.2.3二维数组的初始化
一维数组初始化也是在类型说明时给各下标变量赋以初值。 一维数组可按行分段赋值,也可按行连续赋值。
6.2 步进电机及其驱动控制系统
4、根据结构分类 步进电机可制成轴向分相式和径向分相式,轴向分相式
又称多段式,径向分相式又称单段式。单段反应式步进电机, 是目前步进电机中使用最多的一种结构形式。还有一种反应 式步进电机是按轴向分相的,这种步进电机也称为多段反应 式步进电机。
上一页 下一页 返回
6.2 步进电机及其驱动控制系统
下一页 返回
6.2 步进电机及其驱动控制系统
6.2.1步进电机的分类
1、根据相数分类 步进电机有二、四、五、六相等几种,相数越多,步距
角越小,而且采用多相通电,可以提高步进电机的输出转矩。
上一页 下一页 返回
6.2 步进电机及其驱动控制系统
2、根据力矩产生的原理分类 分为反应式和永磁反应式(也称混合式)两类。 反应式步进电机的定子有多相磁极,其上有励磁绕组, 而转子无绕组,用软磁材料制成,由被励磁的定子绕组产生 反应力矩实现步进运行。永磁反应式步进电机的定子结构与 反应式相似,但转子用永磁材料制成或有励磁绕组、由电磁 力矩实现步进运行,这样可提高电机的输出转矩,减少定子 绕组的电流。
上一页 下一页 返回
6.2 步进电机及其驱动控制系统
1、三相三拍工作方式 在图6-2中,设A相通电,A相绕组的磁力线为保持磁阻
最小,给转子施加电磁力矩,使磁极A与相邻转子的1、3齿 对齐;接下来若B相通电,A相断电,磁极B又将距它最近的 2、4齿吸引过来与之对齐,使转子按逆时针方向旋转30°; 下一步C相通电,B相断电,
数控机床进给伺服系统的工作原理(共5张PPT)
进给伺服系统的工作原理
进给伺进服系给统伺的工服作系原理统是数控装置和机床主机的联系环节,接收CNC装置插补器发出的进给
数控装置插补信号输送到位置控制模块的位置比较电路,与位置检测反馈电路来的反馈信号相比较后,位置比较电路输出位置移动信号
机床完成进给运动。。 带动传动机构,最后转化为机床的直线或转动位移。
它接受来自数控装置的进给指令信号,经变换、调节和放大后驱动执行件,转化为直线或旋转运动。 进给伺服系统的工作原理 伺服系统 是指以机械位置或角度作为控制对象的自动控制系统。 伺服系统 是指以机械位置或角度作为控制对象的自动控制系统。
进 进给伺服系统的工作原理
它接受来自数控装置的进给指令信号,经变换、调节和放大后驱动执行件,转化为直线或旋转运动。 数控装置插补信号输送到位置控制模块的位置比较电路,与位置检测反馈电路来的反馈信号相比较后,位置比较电路输出位置移动信号
给 ,经位置控制和速度控制单元输出到速度环,直到机床完成进给运动。 比较控制环节 驱动控制单元 执行元件 进给伺服系统(Feed Servo System)——以移动部件的位置和速度作为控制量的自动控制系统,又称位置随动系统、驱动系统、伺服机 指 构或伺服单元。 令 机 进给伺服系统的工作原理 床 数控机床常见故障诊断与排除
,经位脉置控冲制或和速进度给控制位单移元量输出信到息速度,环经,直过到变机换床完和成放进给大运由动伺。 服电机带动传动机构,最后转化为机床的
伺服系统 是指以机械位置或角度作为控制对象的自动控制系统。
进给伺直服系线统或是数转控动装置位和移机。床主机的联系环节,接收CNC装置插补器发出的进给脉冲或进给位移量信息,经过变换和放大由伺服电机
数控机床的工作原理及基本结构
数控机床的工作原理及基本结构数控机床是一种通过数字控制系统实现自动化加工的机床。
其工作原理是通过将加工程序编码为数字信号,由数控系统控制机床进行加工操作。
数控机床的基本结构主要包括数控装置、执行机构和传动机构。
数控装置是数控机床的控制核心,其功能是编程、存储、计算和控制。
编程是将加工过程描述为特定格式的程序代码,存储是将程序代码保存在数控装置中,计算是根据程序代码进行数学运算,控制是通过输出控制信号控制机床执行具体操作。
数控装置通常由数控主轴驱动器、数控伺服驱动器和数控系统组成。
执行机构是数控机床进行加工操作的部分,包括主轴、工作台和刀架。
主轴是主要进行切削加工的部分,可以通过数控主轴驱动器控制主轴转速和进给速度。
工作台是用于装夹和固定工件的部分,可以通过数控伺服驱动器控制工作台的运动。
刀架是用于刀具固定和切削动作的部分,可以通过数控伺服驱动器控制刀架的运动。
传动机构是传递数补百控机床各部分运动的机构,包括伺服驱动系统、传感器、传动装置和工具切换系统。
伺服驱动系统通过输入旋转或直线运动的指令,控制执行机构的运动。
传感器用于测量机床各部分的运动状态,如位置、转速和力等。
传动装置用于传递数控装置的输出信号,驱动执行机构进行运动。
工具切换系统用于更换不同形状或尺寸的切削工具,以适应不同加工需求。
1.编写加工程序:根据零件的尺寸、形状和加工要求,使用专门的编程语言编写加工程序,描述整个加工过程和刀具路径。
2.存储和计算:将编写好的加工程序输入数控装置中,通过数控系统进行存储和计算。
数控系统根据加工程序进行数学运算,计算出每个工序的切削速度、进给速度、切削深度等参数。
3.执行加工操作:数控系统将计算出的加工参数转换为控制信号,发送给数控装置中的伺服驱动器和主轴驱动器。
伺服驱动器通过控制执行机构的运动,使机床的主轴和工作台按照预定程序进行切削和定位。
4.监控和调整:在加工过程中,数控系统通过传感器和编码器实时监测机床的运动状态和切削力。
数控机床的基本组成与工作原理
数控机床的基本组成与工作原理数控机床是一种通过计算机控制的自动化机械设备,它在现代制造业中起着至关重要的作用。
本文将介绍数控机床的基本组成和工作原理。
一、数控机床的基本组成1. 主机部分:数控机床的主机部分由机床本体、主轴和伺服系统组成。
机床本体是数控机床的主体结构,包括床身、工作台、滑枕等。
主轴是机床用来转动刀具或工件的主要部件。
伺服系统则负责控制主轴和工作台的运动。
2. 数控系统:数控机床的核心部分是数控系统,它由硬件和软件两部分组成。
硬件包括数控装置、输入输出设备和传感器等,而软件则是指数控程序和数控编程软件。
数控系统负责接收和处理指令,控制机床的运动。
3. 刀具系统:数控机床的刀具系统包括刀具、刀柄和刀库等。
刀具是用来加工工件的工具,刀柄则负责固定刀具。
刀库是用来存放刀具的地方,可以根据需要自动更换刀具。
4. 辅助设备:数控机床还需要一些辅助设备来完成加工任务。
常见的辅助设备有冷却液系统、夹具和自动送料装置等。
冷却液系统用来冷却刀具和工件,夹具用来固定工件,而自动送料装置则负责将工件送入机床。
二、数控机床的工作原理数控机床的工作原理可以简单概括为以下几个步骤:1. 编写数控程序:操作人员首先需要编写数控程序,该程序包含了加工工件所需的各种指令和参数。
数控程序可以通过专门的数控编程软件编写,然后通过输入设备输入到数控系统中。
2. 加工准备:在开始加工之前,操作人员需要进行加工准备工作。
这包括选择合适的刀具和夹具,调整机床的工作台和主轴位置,以及设置好冷却液系统和自动送料装置等。
3. 启动数控系统:当加工准备完成后,操作人员可以启动数控系统。
数控系统将根据编写的数控程序,控制机床的运动。
它会发送指令给伺服系统,控制主轴和工作台的运动,同时监测加工过程中的各种参数。
4. 加工工件:一旦数控系统启动,机床就会开始自动加工工件。
数控系统会根据编写的数控程序,控制刀具的进给速度、切削深度和切削速度等。
数控机床的进给伺服系统概述
• 当步进电机励磁绕组相数大于3时,多相通电多数 能提高输出转矩。
• 所以功率较大的步进电机多数采用多于三相的励磁 绕组,且多相通电。
3、启动转矩Mq
AB C Mq
e
当电机所带负载ML<Mq时,电机可不失步的启动。
2、最高启动频率和最高工作频率
最高启动频率fg: 步进电机由静止突然启动,并不失步地进 入稳速运行,所允许的启动频率的最高值。 最高启动频率fg与步进电机的惯性负载J有 关。
故电动机的转速n为:
n f (r/s) 60 f (r/min) f ——控制脉冲的频率
mzk
mzk
SB-58-1型五定子轴向分相反应式步进电机。
• 定子和转子都分为5段,呈轴向分布;有16个 齿均匀分布在圆周上,
• 齿距=360º/16=22.5º;各相定子彼此径向错开 1/5个齿的齿距;
如按5相5拍通电,则步距角为:
4)电动机定子绕组每改变一次通电方式——称为一拍 5)每输入一个脉冲信号,转子转过的角度——步距角αº • 上述通电方式称为:三相单三拍。(三相三拍) • 单——每次通电时,只有一相绕组通电; • 双——每次通电时,有两相绕组通电; • 三拍——经过三次切换绕组的通电状态为一个循环; • 除此之外的通电方式还有: • 三相双三拍: AB—BC—CA—AB • 三相单双六拍: A—AB—B—BC—C—CA—A
第三节 数控机床的检测装置
1、检测装置的作用
• 检测装置是数控机床闭环伺服系统的重要组成部分 • 其作用是:检测位移和速度,发送反馈信号,构成
(1) 直线进给系统 已知:进给系统的脉冲当量δmm;步进电机的
步距角αº;滚珠丝杠的导程t mm;
求: 齿轮传动比 i。
数控机床的伺服驱动系统
数控机床的伺服驱动系统
伺服系统是指以机械位置或角度作为控制对象的自动控制系统,而在数控机床中,伺服系
2
统主要指各坐标轴进给驱动的位置控制系统,它由执行组件(如步进电机、交直流电动机
等)和相应的控制电路组成,包括主驱动和进给驱动。伺服系统接收来自CNC装置的进给
脉冲,经变换和放大,再驱动各加工坐标轴按指令脉冲运动。这些轴有的带动工作台,有
(4)步进电动机的主要特点
步进电动机受脉冲信号的 控制,每输入一个脉冲, 就变换一次绕组的通电状 态,电动机就相应转动一 步。因此角位移与输入脉 冲个数成严格的比例关系。
一旦停止送入控制脉冲, 只要维持控制绕组电流不 变,电动机可以保持在其 固定的位置上,不需要机 械制动装置。
输出转角精度高,虽有相 邻齿距误差;但无积累误 差。
4.3.2.2 直流伺服电动机
直流伺服电动机是数控机床伺服系统中应用最早的,也是使用最广泛的 执行组件。直流伺服电动机有永磁式和电磁式两种结构类型。随着磁性 材料的发展,用稀土材料制作的永磁式直流伺服电动机的性能超过了电 磁式直流伺服电动机,目前广泛应用于机床进给驱动。直流伺服电动机 的工作原理与普通直流电动机完全相同,但工作状态和性能差别很大。 机床进给伺服系统中使用的多为大功率直流伺服电动机,如低惯量电动 机和宽调速电动机等。
θb =
从上面的分析可以看 出,步进电动机转动 的角度取决于定子绕 组的相数、转子齿数 及供电的逻辑状态。 若以θb表示步距角, 则有
(4-12)
360
mzK 式中 m—步进电动机相数;z—转子齿数;K—由 步进电动机控制方式确定的拍数和相数的比例系 数,如三相三拍时,K=1;而三相六拍制时,K =2。 为了提高加工精度,一般要求步距角很小,数控 机床中常用的步进电动机步距角为0.36o~3o
数控机床的伺服系统
4.2 步进电动机驱动控制系统
4.2.3 步进电动机的驱动控制
1.步进电动机的工作方式 从一相通电换接到另一相通电称为一拍,每拍转子转过一个
步距角。按A→B → C → A → …的顺序通电时,电动机的转 子便会按此顺序一步一步地旋转;反之,若按A → C → B → A→…的顺序通电,则电动机就会反向转动,这种三相依次 单相通电的方式,称为三相单三拍式运行,“单”是指每次 只有一相绕组通电,“三拍”是指一个循环内换接了三次, 即A、B、C三拍。单三拍通电方式每次只有一相控制绕组通 电吸引转子,容易使转子在平衡位置附近产生振荡,运行稳 定性较差;另外,在切换时一相控制绕组断电而另一相控制绕 组开始
4.2.2 步进电动机的工作原理与主要特 性
1.步进电动机的工作原理
上一页 下一页 返回
4.2 步进电动机驱动控制系统
步进电动机的工作原理实际上是电磁铁的作用原理。下面以 图4-2所示的一个最简单步进电动机结构为例说明步进电动机 的工作原理。其定子上分布有6个齿极,每两个相对齿极装有 一相励磁绕组,构成三相绕组。
也称为数组的长度。
下一页 返回
6.1 一维数组
对数组的定义应注意以下几点。 (1)数组的类型实际上是指数组元素的取值类型。对于同一
个数组,其所有元素的数据类型都是相同的。 (2)数组名的书写规则应符合标识符的书写规定。 (3)数组名不能与其他变量名相同。 (4)不能在方括号中用变量来表示元素的个数,但是可以用
按伺服控制方式不同,数控机床伺服系统可分为开环、闭环 和半闭环系统。开环型采用步进电动机驱动,控制方式简单, 信号单向传递,无位置反馈,所以精度不高,适用于要求不 高的经济型数控机床中。而闭环控制系统采用直流、交流伺 服电动机驱动,位置检测元件安装于机床运动部件上,
数控机床进给伺服系统的基本结构(共7张PPT)
。
速度控制模块
一进给伺服系统的结构
步进伺服系统原理图
伺服电机、速度检测装置、速度反馈比较环节、速度控制模块 数控机床常见故障诊断与排除 位置指令、位置检测装置、位置反馈比较环节、位置控制模块、速度控制环、机械传动装置 位置指令、位置检测装置、位置反馈比较环节、位置控制模块、速度控制环、机械传动装置 伺服电机、速度检测装置、速度反馈比较环节、速度控制模块 伺服系统的结构通常由位置控制环和速度控制环组成。 伺服电机、速度检测装置、速度反馈比较环节、速度控制模块 数控机床进给伺服系统的基本结构 驱动控制单元和驱动元件组成伺服驱动系统,机械传动部件和执行部件组成机械传动系统,检测元件和反馈电路组成检测装置(或称作检测系统) 。 驱动控制单元和驱动元件组成伺服驱动系统,机械传动部件和执行部件组成机械传动系统,检测元件和反馈电路组成检测装置(或称作检测系统) 。 伺服系统的结构通常由位置控制环和速度控制环组成。 位置指令、位置检测装置、位置反馈比较环节、位置控制模块、速度控制环、机械传动装置 驱动控制单元和驱动元件组成伺服驱动系统,机械传动部件和执行部件组成机械传动系统,检测元件和反馈电路组成检测装置(或称作检测系统) 。
数控机床常见故障诊断与排除 数控机床进给伺服系统的基本结构
一进给伺服系统的结构
数控机床的伺服系统一般由驱动元件、机械传动部件、执行部件和检测反馈环 节等组成。驱动控制单元和驱动元件组成伺服驱动系统,机械传动部件和执行部
件组成机械传动系统,检测元件和反馈电路组成检测装置(或称作检测系
统)。)。
一进给伺服系统的结构
制环 数控机床的伺服系统一般由驱动元件、机械传动部件、执行部件和检测反馈环节等组成。
伺服电机、速度检测装置、速度反馈比较环节、速度控制模块
数控加工技术-第五章 数控机床的伺服系统
《数控加工技术》
2. 步进电动机的工作原理 反应式步进电动机又叫可变磁阻式 (Variable Reluctance) 步进电动机, 简称 VR 电动机。 (1) 反应式步进电动机的结构
图 5-5 径向式三相反应式电动机的结构原理 1—绕组 2—定子铁心 3—转子铁心 4—A 相
图 5-6 三相轴向分相式反应式步进电动机的结构原理 1—外壳 2—C 段绕组 3—C 段定子 4—转轴 5—C 段检转子 6—空气隙
《数控加工技术》
1. 步进电动机的分类 步进电动机的种类繁多, 步进电动机按运动方式可分为旋转运动、 直线运动、 平面运 动和滚切运动式步进电动机; 按工作原理可分为反应式 (磁阻式)、 电磁式、 永磁式、 永磁 感应子式步进电动机; 按使用场合可分为功率步进电动机和控制步进电动机; 按结构可分为单 段式 (径向式)、 多段式 (轴向式)、 印刷绕组式步进电动机; 按相数可分为三相、 四相、五 相步进电动机等; 按使用频率可分为高频步进电动机和低频步进电动机。 不同类型的步进电 动机, 其工作原理、 驱动装置也不完全一样。
普通高等教育3D版机械类规划教材
数 控 加 工 技 术(3D版)
2020.8
《数控加工技术》
第五章 数控机床的伺服系统
§5-1 数控机床的伺服系统概述 §5-2 伺服系统的驱动元件 §5-3 伺服系统的位置检测装置
《数控加工技术》 5.1 数控机床的伺服系统概述
5.1.1 伺服系统的组成及工作原理
《数控加工技术》
3) 三相六拍工作方式。 若定子绕组的通电顺序是A→AB→B→BC→C→CA→A→……, 这 种通电方式是单、 双相轮流通电。
《数控加工技术》
5.1.3 数控伺服系统的分类
数控机床的的组成和工作原理
数控机床的的组成和工作原理
一、数控机床的组成
一般由程序载体、输入输出设备、数控(CNC)系统、伺服单元、位置检测(反馈)系统、机床机械部件本体等六个部分组成。
二、数控机床的基本工作原理
一般数控机床加工过程是:
依据被加工零件的图样与工艺方案,用规定的代码和程序格式编写加工程序;所编写的加工程序输入到机床数控装置;数控装置将程序(代码)进行译码、运算之后,向机床各个坐标的伺服机构和帮助装置发出信号,以驱动机床各运动部件,并掌握所需要的帮助动作,最终加工出合格的零件。
各部分分述如下:
1、程序载体(掌握介质)
掌握介质是指将零件加工信息传通过输入装置送到数控装置去的信息载体掌握介质有多种形式,它随着数控装置的类型不同,常用的有穿孔纸带、穿孔卡、磁带、磁盘等。
2、输入装置
将程序载体内有关加工信息读入数控装置
3、数控装置
输出装置将掌握运算器发出的命令送到伺服系统,经功率放大,驱动
机床完成相应的动作。
4、伺服系统
伺服系统是数控机床的执行机构,包括驱动和执行两大部分。
伺服系统接收数控系统的指令信息,并根据指令信息的要求带动机床的移动部件运动或执行部分动作。
5、位置反馈系统
6、机床本体
机床本体是数控机床的主体,用于完成各种切削加工的机部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/6/3
20
2.功率放大
2020/6/3
图7-17 单电压驱动电路原理图
21
2020/6/3
图7-18 高低压驱动电路原理图
22
2020/6/3
图7-19 斩波驱动电路原理图
23
(4)调频调压驱动电路 (5)细分驱动电路
2020/6/3
24
3.提高步进系统精度的措施
2020/6/3
第七章 数控机床的伺服系统
7.1.进给伺服系统的类型 7.2.步进电动机及其驱动系统 7.3.直流伺服驱动系统 7.4.交流伺服驱动系统 7.5.主轴驱动系统 复习与思考题
2020/6/3
1
7.1.进给伺服系统的类型
7.1.1.进给伺服系统的技术要求 7.1.2.开环和闭环进给伺服系统 7.1.3.按电动机分类的伺服系统
40
图7-32 直流主轴驱动系统原理图
2020/6/3
41
7.5.2.交流主轴驱动系统
2020/6/3
42
7.5.3.主轴定向准停的控制
a)使用位置编码器
2020/6/3
43
b)使用磁性传感器 图7-34 主轴定向准停控制示意图
2020/6/3
44
复习与思考题
2020/6/3
45
11
3.步进电动机的结构
图7-5 三相反应式步进电动机结构原理图
图7-6 步进电动机的齿距
2020/6/3
12
图7-7 五定子反应式步进电动机结构原理图 图7-8 一段定子、转子及磁电路
2020/6/3
13
7.2.2.步进电动机的工作原理
三相步进电机的工作方式可分为:三相单三拍、三相单双六 拍、三相双三拍等。
2020/6/3
32
7.4.1.交流伺服系统的特点
2020/6/3
33
7.4.2.模拟式交流伺服控制系统
2020/6/3
图7-27 交流模拟伺服系统原理图
34
7.4.3.数字式交流伺服系统
2020/6/3
35
图7-29 数字伺服系统的简化框图
2020/6/3
36
一种简单实用的数字化无刷直流电动机的控制方案
图7-30 无刷直流电动机的数字化控制方案
2020/6/3
37
图7-31 全数字永磁同步电动机控制系统框图
2020/6/3
38
7.5.主轴驱动系统
7.5.1.直流主轴驱动系统 7.5.2.交流主轴驱动系统 7.5.3.主轴定向准停的控制
2020/6/3
39
7.5.1.直流主轴驱动系统
2020/6/3
图7-9 反应式步进电动机结构原理图
2020/6/3
14
a)
b)
c)
图7-10 三相单三拍的工作过程
2020/6/3
15
a)
b)
图7-11 三相单双六拍的工作过程
2020/6/3
16
2020/6/3
17
7.2.3.反应式步进电机的主要性能指标
1.步距角及步距精度 2.最大静转矩 Tmax与起动转
2020/6/3
5
3.闭环控制系统
Байду номын сангаас
图7-3 闭环伺服驱动结构示意图
2020/6/3
6
4.混合控制系统
图7-4 混合闭环控制的进给驱动系统
2020/6/3
7
7.1.3.按电动机分类的伺服系统
1.步进伺服系统 2.直流伺服系统 3.交流伺服系统 4.直线伺服系统
2020/6/3
8
7.2.步进电动机及其驱动系统
7.2.1.步进电动机的结构类型 7.2.2.步进电动机的工作原理 7.2.3.反应式步进电机的主要性能指标 7.2.4.驱动控制系统组成 7.2.5.步进电动机驱动控制技术 7.2.6.步进电机的应用
2020/6/3
9
7.2.1.步进电动机的结构类型
2020/6/3
10
2020/6/3
25
7.2.6.步进电机的应用
图7-22 选择电机的一般步骤
2020/6/3
26
7.3.直流伺服驱动系统
7.3.1.SCR速度控制系统 7.3.2.PWM 速度控制系统
2020/6/3
27
7.3.1.SCR速度控制系统
图7-23 双环调速系统的原理框图
2020/6/3
28
7.3.2.PWM 速度控制系统
2020/6/3
2
7.1.1.进给伺服系统的技术要求
1.调速范围宽 2.位移精度高 3.定位精度高 4.稳定性好 5.动态响应快 6.低速大转矩
2020/6/3
3
7.1.2.开环和闭环进给伺服系统
1.开环控制系统
图7-1 开环伺服驱动结构示意图
2020/6/3
4
2.半闭环控制系统
图7-2 半闭环伺服驱动结构示意图
矩Tq 3.加减速特性 4.连续运行频率
2020/6/3
18
7.2.4.驱动控制系统组成
(1)工作台位移量的控制 (2)工作台进给速度的控制 (3)工作台运动方向的控制
图7-15 步进式伺服系统原理框图
2020/6/3
19
7.2.5.步进电动机驱动控制技术
1.环形分配器
图7-16 三相六拍环形分配器
图7-24 PWM直流伺服系统原理图
2020/6/3
29
图7-25 PWM速度控制单元原理框图
2020/6/3
30
图 7-26 各信号的波形
2020/6/3
31
7.4.交流伺服驱动系统
7.4.1.交流伺服系统的特点 7.4.2.模拟式交流伺服控制系统 7.4.3.数字式交流伺服系统 7.4.4.交流伺服电动机驱动简介