10-06-数理统计的基本概念-知识点讲解

合集下载

概率论与数理统计各章重点知识整理

概率论与数理统计各章重点知识整理

概率论与数理统计各章重点知识整理 第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,.六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1)(3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2 )参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度.2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-d x d y y x f . (3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=∙i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律.同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛),}{},{jji j j i p p y Y P y Y x X P ∙=====,}{},{∙=====i j i i j i p p x X P y Y x X P函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w+---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。

根据数理统计知识点归纳总结(精华版)

根据数理统计知识点归纳总结(精华版)

根据数理统计知识点归纳总结(精华版)
1. 引言
本文旨在对数理统计的基本知识点进行归纳总结,帮助读者快速了解数理统计的核心概念和方法。

2. 概率论基础
- 概率的基本定义和性质
- 随机事件的运算规则
- 条件概率和独立性
- 贝叶斯定理
3. 随机变量和分布
- 随机变量的定义和分类
- 离散型随机变量和连续型随机变量
- 常见离散型分布(如伯努利分布、二项分布、泊松分布)
- 常见连续型分布(如均匀分布、正态分布、指数分布)
4. 数理统计的基本概念
- 总体和样本的概念
- 估计与抽样分布
- 统计量和抽样分布
5. 参数估计
- 点估计的定义和性质
- 常见的点估计方法(如最大似然估计、矩估计)
- 区间估计的基本原理和方法
6. 假设检验
- 假设检验的基本思想和步骤
- 单侧检验和双侧检验
- 假设检验中的错误类型和显著性水平
- 常见的假设检验方法(如正态总体均值的检验、两样本均值的检验)
7. 相关分析
- 相关系数的定义和计算方法
- 相关分析的假设检验
- 线性回归分析的基本原理和方法
8. 统计软件的应用
- 常见的统计软件介绍(如SPSS、R、Python)
- 统计软件的基本操作(如数据导入、数据处理、统计分析)
9. 结语
本文对数理统计的核心知识点进行了简要的概括,供读者参考和研究。

通过研究数理统计,读者可以更好地理解和应用统计学在实际问题中的作用,提高数据分析和决策能力。

以上是根据数理统计知识点的归纳总结,希望有助于您对数理统计的理解和学习。

如需深入了解各个知识点的具体内容,请参考相关教材或课程。

数理统计知识点总结

数理统计知识点总结

数理统计知识点总结一、概述数理统计是一门研究收集、整理、分析和解释数据的学科。

它在各个领域中发挥着重要作用,包括科学研究、经济学、社会学等。

二、基本概念1. 数据:指收集到的观察结果或实验结果,是进行统计分析的基础。

2. 总体和样本:总体指研究对象的全体,样本是从总体中选取的一部分。

3. 变量:指研究对象的性质或特征,分为定性变量和定量变量。

4. 频数和频率:频数是某一数值在样本中出现的次数,频率是某一数值在样本中出现的相对次数。

三、数据的整理与描述1. 数据的收集:可以通过实验、调查或观察等方式获取数据。

2. 数据的整理:包括数据的分类、排序和归纳等处理。

3. 数据的描述:使用统计指标如均值、方差、标准差等来描述数据分布的中心趋势和变异程度。

四、概率与概率分布1. 概率:指事件发生的可能性,可通过频率或理论推导计算得到。

2. 概率分布:描述随机变量取值与其概率之间的关系,包括离散概率分布和连续概率分布。

五、统计推断1. 参数估计:根据样本数据估计总体的参数,如均值、比例等。

2. 假设检验:根据样本数据判断总体参数是否符合某个假设。

3. 置信区间:给出总体参数的估计范围。

六、相关性与回归分析1. 相关性:描述两个变量之间的关联程度,可以通过相关系数来度量。

2. 简单线性回归:通过一条直线描述两个变量之间的函数关系。

3. 多元线性回归:通过多个变量来描述一个变量的线性关系。

七、抽样与实验设计1. 抽样方法:包括随机抽样、分层抽样等,确保样本具有代表性。

2. 实验设计:设计合理的实验方案,控制其他因素对结果的影响。

以上是数理统计的一些基本知识点总结,希望对您有所帮助。

数理统计的基础知识

数理统计的基础知识

第4章数理统计的基础知识数理统计与概率论是两个有密切联系的学科, 它们都以随机现象的统计规律为研究对象.但在研究问题的方法上有很大区别:概率论——已知随机变量服从某分布,寻求分布的性质、数字特征、及其应用;数理统计——通过对实验数据的统计分析, 寻找所服从的分布和数字特征, 从而推断整体的规律性. 数理统计的核心问题——由样本推断总体从本章开始,我们将讨论另一主题:数理统计。

数理统计是研究统计工作的一般原理和方法的科学,它主要阐述搜集、整理、分析统计数据,并据以对研究对象进行统计推断的理论和方法,是统计学的核心和基础。

本章将介绍数理统计的基本概念:总体、样本、统计量与抽样分布。

由于大量随机现象必然呈现出它的规律性,因而从理论上讲,只要对随机现象进行足够多次观察,被研究的随机现象的规律性一定能清楚地呈现出来。

但客观上只允许我们对随机现象进行次数不多的观察试验,也就是说, 我们获得的只是局部观察资料。

数理统计就是在概率论的基础上研究怎样以有效的方式收集、整理和分析可获的有限的, 带有随机性的数据资料,对所考察问题的统计性规律尽可能地作出精确而可靠的推断或预测,为采取一定的决策和行动提供依据和建议.§4.1 总体与样本一、 总体与总体分布1.总体:具有一定的共同属性的研究对象全体。

总体中每个对象或成员称为个体。

研究某批灯泡的质量,该批灯泡寿命的全体就是总体;考察国产 轿车的质量,所有国产轿车每公里耗油量的全体就是总体;某高校学习“高等数学”的全体一年级学生。

个体与总体的关系,即集合中元素与集合之间的关系。

统计学中关心的不是每个个体的所有具体特性,而是它的某一项或某几项数量指标。

某高校一年级学生“高等数学”的期末考试成绩。

对于选定的数量指标 X (可以是向量)而言,每个个体所取的值是不同的,这一数量指标X 就是一个随机变量(或向量);X 的概率分布就完全描述了总体中我们所关心的这一数量指标的分布情况。

第五节数理统计的基础知识

第五节数理统计的基础知识

第五章数理统计的基础知识在前四章的概率论部分中,我们讨论了概率论的基本概念、思想和方法。

知道随机变量的统计规律性是通过随机变量的概率分布来全面描述的。

在概率论的许多问题中,概率分布通常是已知的或假设为已知的,在这一前提下我们去研究它的性质、特点和规律性,即讨论我们关心的某些概率、数字特征的计算以及对某些问题的判断、推理等。

但在许多实际问题中,所涉及到的某个随机变量服从什么分布我们可能完全不知道,或有时我们能够根据某些事实推断出分布的类型,但却不知道其分布函数中的某些参数。

例如:1、某种电子元件的寿命服从什么分布是完全不知道的。

2、检测一批灯泡是否合格,则每个灯泡可能合格,也可能不合格,则服从(0-1)分布,但其中的参数p未知。

对这类问题要深入研究,就必须知道与之相应的分布或分布中的参数。

数理统计要解决的首要问题就是:确定一个随机变量的分布或分布中的参数。

数理统计学是研究随机现象规律性的一门学科,它以概率论为理论基础,研究如何以有效的方式收集、整理和分析受到随机因素影响的数据,并对所考察的问题作出推理和预测,直至为采取某种决策提供依据和建议。

数理统计研究的内容非常广泛,可分为两大类:一是:怎样有效地收集、整理有限的数据资料。

二是:怎样对所得的数据资料进行分析和研究,从而对所考察对象的某些性质作出尽可能精确可靠的判断—本书中参数估计和假设检验。

第一节数理统计的基本概念一、总体与总体的分布在数理统计中,我们将研究对象的全体称为总体或母体,而把组成总体的每个元素称为个体。

总体中所包含的个体的个数称为总体的容量.容量为有限的总体称为有限总体;容量为无限的总体称为无限总体. 总体和个体之间的关系就是集合与元素之间的关系.在实际问题中,研究对象往往是很具体的事物或现象,而我们所关心的不是每一个个体的种种具体的特征,而是其中某项或某几项数量指标,记为X。

例如:研究一批灯泡的平均寿命时,该批灯泡的全体构成了研究的总体,其中每个灯泡就是个体。

第一节数理统计的基本概念-

第一节数理统计的基本概念-

某批 灯泡的寿命
国产轿车每公里 的耗油量
该批灯泡寿命的全 体就是总体
国产轿车每公里耗油量 的全体就是总体
一、总体和样本
数理统计
1. 总体——研究对象全体元素组成的集合.
所研究的对象的某个(或某些)数量指标的全体, 它是一个随机变量(或多维随机变量), 记为 X.
总体有三层含义: 研究对象的全体;全部数据; 分布.
(1) 当总体X是离散型时, 其分布律为: P (X x i) p (x i)(i 1 ,2 , ) 样本的联合分布律为:
p (x 1 ,x 2 , ,x n ) P (X 1 x 1 ,X 2 x 2 , ,X nn x n )
P (X 1 x 1 )P (X 2 x 2 ) P (X n x n ) p ( x i ) i1
数理统计
总体
寿命 X 可用概率(指数)分布来刻划
寿命总体是指数分布总 体
某批 灯泡的寿命 常用随机变量或用其分布函数表示总体,
比如说总体 X 或总体 F (x) .
类似地, 在研究某地区中学生的营养状况时, 若关心的数量指标是身高和体重, 我们用 X 和 Y 分别表示身高和体重, 那么此总体就可用二维随机变量 (X, Y) 或其联合分布函数 F (x, y)来表示.
解: P(X x)x e, x0,1,2,
x!
n
P (X 1t1,X 2t2, ,X ntn ) P (X ti)
i 1
n
n ti e
i1 ti !
ti
i1

e n
t1 !t2 ! tn !
例5: 设某批产品共有N个,其中的次品数为M, 其次品率为: p=M/N,

数理统计主要知识点

数理统计主要知识点

数理统计主要知识点数理统计是统计学的重要分支,旨在通过对概率论和数学方法的研究和应用,解决实际问题上的不确定性和随机性。

本文将介绍数理统计中的主要知识点,包括概率分布、参数估计、假设检验和回归分析。

一、概率分布概率分布是数理统计的基础。

它描述了一个随机变量所有可能的取值及其对应的概率。

常见的概率分布包括:1. 均匀分布:假设一个随机变量在某一区间内取值的概率是相等的,则该随机变量服从均匀分布。

2. 正态分布:正态分布是最常见的连续型概率分布,其概率密度函数呈钟形曲线,具有均值和标准差两个参数。

3. 泊松分布:泊松分布描述了在一定时间内发生某个事件的次数的概率分布,例如在一天内发生交通事故的次数。

4. 二项分布:二项分布描述了进行一系列独立实验,每次实验成功的概率为p时,实验成功的次数在n次内取特定值的概率。

二、参数估计参数估计是根据样本数据来推断随机变量的参数值。

常见的参数估计方法包括:1. 最大似然估计:假设数据服从某种分布,最大似然估计方法寻找最能“解释”数据的那个分布,计算出分布的参数值。

2. 矩估计:矩估计方法利用样本矩来估计分布的参数值,例如用样本均值估计正态分布的均值,样本方差估计正态分布的方差。

三、假设检验假设检验是为了判断一个统计假设是否成立而进行的一种统计方法。

它包括假设、检验统计量和显著性水平三个重要概念。

1. 假设:假设指的是要进行验证的观察结果,分为零假设和备择假设两种。

2. 检验统计量:检验统计量是为了检验零假设而构造的统计量,其值代表目标样本符合零假设的程度。

3. 显著性水平:显著性水平是用来决定是否拒绝零假设的标准,通常为0.01或0.05。

四、回归分析回归分析是用来研究和描述两个或多个变量之间关系的统计方法。

它可以帮助人们了解因果关系,做出预测和控制因素的效果。

1. 简单线性回归:简单线性回归是一种简单的回归分析方法,它描述一个因变量和一个自变量之间的线性关系。

2. 多元线性回归:多元线性回归描述多个自变量和一个因变量之间的关系,通过多元回归模型可以找到最佳的回归系数,从而用来预测未来的结果。

数理统计的基本概念ppt课件

数理统计的基本概念ppt课件

体。 灯泡的寿命检验是一个破坏性试验,即当得知一个灯
泡寿命时,该灯泡的使用价值也就消失了.因此,不可能抽 检每个灯泡!
可以逐一测量每个工大男生的身高,但工作量大.而我 们仅需对工大男生身高情况有个大致了解,因此,不必要抽 测每个工大男生!
河南理工大学精品课程
.
概率论与数理统计
做法 从总体中随机地抽取若干个体(灯泡、工大男 生),测试其所需数据(寿命、身高),最后对所得数据通过 整理加工和分析来推断总体(这批灯泡寿命、工大男生身 高)的分布情况,从而了解整体情况.
x)2
ak
1 n ni1
xik(k1,2,)
bk 1 ni n1(xi x)k(k1,2,)
.
河南理工大学精品课程
概率论与数理统计
重要结论:样本矩(的连续函数)依概率收敛
于总体矩(的连续函数)[矩估计的理论基础]。
一般,我们所研究的总体的某项数量指标X是一个随 机变量,其取值在客观上有一定的分布.因此,对总体的研 究,就是对相应的随机变量X的研究。
今后,我们称X的分布函数和数字特征分别为总体的
分布函数和数字特征,并不再区分总体与相应的随机变量
X.对总体的称呼:总体,总体X与总体F.
河南理工大学精品课程
.
概率论与数理统计
数理统计的基本任务就是通过对样本的研究来对总 体的未知参数或分布类型作出估计,对有关总体的假设 作出推断。
后面介绍的内容仅限于有关总体参数的估计与推断, 称为参数估计与参数假设检验。
河南理工大学精品课程
.
概率论与数理统计
总体X
随机抽样 获得样本
样本X1,X2,…,Xn
完成试验 获得数据
样本值x1,x2,…,xn

数理统计的基本概念课件

数理统计的基本概念课件

离散程度
通过方差、标准差等指标 来描述数据的离散程度, 反映数据的变化程度。
数据的中位数、均值和众数
中位数
将数据按照大小顺序排列,处于 中间位置的数值即为中位数。中 位数可以反映数据的集中趋势和
离散程度。
均值
将所有数据相加后除以数据个数 ,得到的数值即为均值。均值可 以反映数据的集中趋势和离散程
度。
拟合优度
决定于所选择的非线性函数形式,常 用的有R²和SSPE(残差平方和)。
显著性检验
一般采用基于参数的假设检验和似然 比检验。
THANKS FOR WATCHING
感谢您的观看
05
假设检验
假设检验的基本思想
统计假设
假设检验的核心是对提出的问题(即假设)进行统计推断,先假设所要考察的 总体参数按某种规律或分布(即统计模型)分布,然后根据样本信息对原假设 进行检验。
假设检验的基本步骤
首先提出假设,然后收集样本数据,接着根据样本数据对原假设进行检验,最 后根据检验结果做出结论。
多元线性回归分析
• β0: 截距 • β1, β2, ...: 斜率
• ε: 误差项
多元线性回归分析
拟合优度
R²,表示模型解释因变量的方差的比例 。
VS
显著性检验
整体显著性检验(F检验)和单个变量的 显著性检验(t检验)。
非线性回归分析
定义
非线性回归分析是研究非线性关系的 统计方法。
模型
Y = f(X) (其中 f 是非线性函数)
• β0: 截距
一元线性回归分析
01
• β1: 斜率
02
• ε: 误差项
03
04
拟合优度:R²,表示模型解 释因变量的方差的比例。

概率论与数理统计知识点总结(超详细版)

概率论与数理统计知识点总结(超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)())(()( C A B A C B A ⋂⋂=⋃⋂徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk knk kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P (v ))(1)(A P A P -=(逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

数理统计的基本概念

数理统计的基本概念
第二章 数理统计的基本概念
概率论与数理统计的区别: 在概率论中,假设随机变量的分布列或者分布函数已知,然 后描述随机变量的统计规律. 数理统计首先解决,如何知道 随机变量的分布规律,如何知道分布中所含的参数.
数理统计研究问题:它研究怎样有效地收集整理和分析带有随 机性的数据,以对所考察的问题作出推断或预测,直至为采取一 定的决策和行动提供依据和建议.
概率统计的基本问题:依据有限个观测或试验如何对整体所作 出推论的问题.这种伴随有一定概率的推断称为统计推断.
母体与子样、经验分布函数
1、母体:把研究对象的全体所构成的一个集合称为母体或总体; 组成母体的每一个成员称为个体. 注:10、实际应用中总体往往指研究对象的某项数值指标的全体。 20、总体的某个数值指标是一个具有分布函数F(x)随机变量,称 总体为具有分布函数F(x)的总体。 30、也可能是一个随机向量,相应的分布函数就为多元函数.
(i
n! 1)!(n
i)![F (
y)]i1[1
F(
y )] n1
f
(
y),
0 ,
a yb 其它
证明 第 i个次序统计量(i)落入无穷小区间 [ y , y y)
内这一事件等价于”容量为n的子样1 ,2 , n 中有(i 1)
个分量落入区间[a , y)内,1个分量落入区间[ y , y y)内,
n
F ( x1 ,, xn ) F ( xi ) i 1
例1 设总体 X 服从参数为 ( 0)的指数分布, ( X1, X2 ,, Xn )
是来自总体的样本, 求样本( X1, X2 ,, Xn )的概率密度.

总体 X 的概率密度为
ex ,
f (x)

数理统计的基本概念

数理统计的基本概念
一类是如何科学地安排试验,以获取有效的随机数据。 此部分内容称为描述统计学如:试验设计、抽样方法。
另一类是研究如何分析所获得的随机数据,对所研究 的问题进行科学的、合理的估计和推断,尽可能地为 采取一定的决策提供依据,作出精确而可靠的结论. 这部分的内容称为推断统计学,如:参数估计、假设 检验等。
我们主要讨论有关推断统计学中几个最基本的 问题。
在数理统计中总体X的分布永远是未知的,即使 有足够的理由可以认为总体X服从某种类型的分布, 但这个分布的参数还是未知的。
例如本市家庭的月收入X是个随机变量,X服从什么
分布事先是不清楚的,根据资料可确信 X ~ N , 2 .
但 , 2 究竟取什么值还是未知的,
由于总体X的分布是未知的,因此X的数字特征如 均值、方差等往往也是一个未知的值。对于这些未知
不过在统计研究中,人们关心总体仅仅是关心
其每个个体的一项(或几项)数量指标和该数量指标在总体中的分布
情况. 这时,每个个体具有的数量指标的全体就是总体.
称总体中所含个体的数目为总体容量, 总体容量有限的称为有 限总体, 总体容量无限的称为无限总体.
当个体个数很大时通常把有限总体看作无限总体。
从另一方面看: 统计的任务,是根据从总体中抽取的样本, 去推断总体的性质. 由于我们关心的是总体中的个体的某项指标(如人的身高、体重, 灯泡的寿命,汽车的耗油量…), 所谓总体的性质,无非就是这 些指标值集体的性质. 概率分布是刻划这种集体性质最适当的工具. 因此在理论上可 以把总体与概率分布等同起来. 如研究某批灯泡的寿命时, 关心的数量指标就是寿命, 那么, 此 总体就可用描述其寿命的随机变量 X 或用其分布函数 F(x)表示.
一个统计量.
ex1.设 X1, X 2, X3 是取自正态总体 X ~( , 2) 的一个样本,

数理统计知识点总结(总22页)

数理统计知识点总结(总22页)

数理统计知识点总结(总22页)一、基本概念1、统计学:统计学是一门研究人群或事物特性及变化规律的学科,是应用数理统计方法研究某种规律的学科,是整理、综合和分析统计资料的学科。

2、统计资料:统计资料是从实际中收集的有关统计对象的数据,也可以称为实验资料。

3、变量:历史的发展过程中,统计中的变量可分为定量变量和定性变量。

前者是指可以用数字表示的变量,又被称为被观察变量或解释变量;后者多由文字描述,不能量化,又被称为因变量或行为变量。

4、分类变量:又称为分类统计数据,是指按照一定的范围将变量等分,主要用于描述变量的构成状况。

5、样本:样本是用于做统计分析的一部分数据,它按照一定的要求从某种群体中抽取出来,它是统计资料的简写总结。

样本本身并非具有代表性,但在发现规律方面与总体相比,它有许多独特的优势。

二、数理统计方法1、数据描述:数据描述是指用定量和定性的方式把统计对象描述出来,也就是用汇总统计和分类统计的方法研究统计资料的特征。

2、分布类型:经过研究的统计资料各变量的分布可分为三种基本形式:正态分布、对数分布和正玄分布。

3、抽样技术:抽样是指在随机或不完全随机的情况下,从一个总体中抽出一定数量的抽样单位,用它们反映整体的一般特性的科学方法。

4、统计推断:统计推断是指借助于统计技术去评价样本资料与总体资料之间的联系,并借以判断在一定概率水平上总体参数的取值情况,并对总体参数做出推断。

5、回归分析:回归分析是利用统计方法,探索两个或多个变量之间存在的关系,及掌握这种关系的参数。

三、统计推断1、假设检验:假设检验是统计推断的基本方法,是统计方法求出的取值所处位置在参数特定范围内的概率,通常用统计量在假设下把允许的概率建模出来。

2、置信区间:置信区间是统计学中定量评价事物变化范围的一种分析方法,其作用是加以比较研究结果,以及让相应的概率参数可以被确定的概率范围的压缩,使数据更有说服力。

3、方差分析:方差分析是检验研究变量之间是否存在显著的差异性的统计分析方法,其研究的是变量的变异程度。

数理统计的基本概念PPT模板

数理统计的基本概念PPT模板
3 次序统计量和样本分布函数
例 4 设总体服从泊松分布,容量为 10 的样本观测值如下: 2,1,4,3,5,6,4,8,4,3.
试构造样本的分布函数 F10 (x) .
解 将样本的观测值由小到大排列为1 2 3 3 4 4 4 5 6 8 ,所以样本的频 率分布如表 5-1 所示.
设 X1 ,X2 , ,Xn 是总体 X 的样本,则可定义以下统计量.
(1)样本均值为
X
1 n
n i 1
Xi

(5-1)
它的观测值记为
x
1 n
n i 1
xi

数理统计的基础知识
数理统计的基本概念
1.2 参数与统计量
(2)样本方差为
S2 1 n n 1 i1
Xi X
2
1 n 1
n i 1
数理统计的基本概念
1.2 参数与统计量
由于样本具有二重性,统计量作为样本的函数也具有二重性,即 对一次具体的观察或试验,它们都是具体的数值,但当脱离具体的某 次观察或试验,样本是随机变量,因此统计量也是随机变量.
统计量是用来对总体分布参数进行估计或检验的,它包含了样本 中有关参数的信息,在数理统计中,根据不同的目的构造了许多不同 的统计量.
设 样 本 X1 ,X2 , ,Xn 的 次 序 统 计 量 为
X (1) X (2)
X(n) ,对应的样本观测值为
x(1) x(2)
x(n) ,令
0 ,x x(1) ,
1 n
,x(1)
x x(2) ,
Fn
(x)
k
n
,x(k )
x x(k 1) ,
1,x x(n) .
(5-6)

10 06 数理统计的基本概念 知识点

10 06 数理统计的基本概念 知识点

10 06 数理统计的基本概念知识网络图正态总体下的四大分布统计量样本函数样本个体总体数理统计的基本概念→⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧ 主要内容一、样本我们把从总体中抽取的部分样品n x x x ,,,21 称为样本。

样本中所含的样品数称为样本容量,一般用n 表示。

在一般情况下,总是把样本看成是n 个相互独立的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。

在泛指任一次抽取的结果时,n x x x ,,,21 表示n 个随机变量(样本);在具体的一次抽取之后,n x x x ,,,21 表示n 个具体的数值(样本值)。

我们称之为样本的两重性。

二、.统计量1.定义:称不含未知参数的样本的函数),,,(21n X X X f 为统计量2.常用统计量样本均值 .11∑==ni i x n x 样本方差∑=--=n i i x x n S 122.)(11 样本标准差 .)(1112∑=--=ni i x x n S 样本k 阶原点矩∑===n i k i k k x n A 1.,2,1,1 样本k 阶中心矩∑==-=ni k i k k x x n B 1.,3,2,)(1 μ=)(X E ,n X D 2)(σ=,22)(σ=S E ,221)(σnn B E -=, 其中∑=-=ni i X X n B 122)(1,为二阶中心矩。

三、抽样分布1.常用统计量分布(1)设n X X X ,,,21 是相互独立的随机变量,且均服从与标准正态分布)1,0(N ,则222212nn X X X X ++=,服从自由度为n 的-2χ分布,记为()n 2~χχ. (2)设()()n Y N X 2~,1,0~χ,且X 与Y 相互独立,则.n YXT =服从自由度为n 的-t 分布,记为()n t T ~.(3)设X 与Y 相互独立,分别服从自由度为1n 和2n 的-2χ分布,则1221n n Y X n Y n XF ⋅==。

《概率论》 第六章 数理统计的基本概念.

《概率论》 第六章 数理统计的基本概念.

2. 抽样原则 为使抽取的样本能很好地反映总体的特征,
一般要求抽取样本时遵循以下两点原则:
(1) 代表性 要求样本中的每个样品都是从总体 中 完全随机地抽出的,即每个样品与总体 具有相同
的分布;
(2) 独立性 要求每个样品的抽出相互之间是互不 影响的,即要求每个样品之间相互独立.
满足以上两点要求的样本称为简单随机样本.
1n
n 1 i1
i
2
(4) 样本 k 阶原点矩
Mk

1 n
n

i 1

k i
,
k

1,
2, ;
(5)样本 k 阶中心矩
M

k

1 n
n
(i
i 1
)k
, k 2, 3, ;
注 1. 上述几个统计量统称为样本矩;
2.
X

M1 ,
S2

M

2
.
三、样本矩的性质
2. 2分布的性质
性质1 ( 2 分布的可加性)
设 ~ 2(n1 ), ~ 2(n2 ), 并且 , 独立, 则 ~ 2(n1 n2 )
推广: 设 i ~ 2(ni ), 并且 i (i 1, 2,, m) 相互
独立,

m


i
~
2 (n1

标准正态分布的上侧分位点
定义 设 U ~ N (0,1) ,对给定的正数(0 1),
若实数u 满足
P{U u }
则称点 u为标准正态分布U的 上侧分位点(或称 上 分位数或 临界值).

数理统计的基本概念

数理统计的基本概念

i 1
若总体X是持续型r.v. ,d.f.为f(x),则样
本的联合d.f.为
n
fn( x1, x2 ,, xn ) f ( xi )
i 1
若总体X是离散型r.v. ,其概率分布为
p(x)=P(X=x),则样本的概率分布为: n
pn (x1, x2, , xn ) P(X1 x1, X2 x2, , Xn xn) p(xi ).
注:在统计研究中,人们关心总体仅仅是关心其每个 个体的一项(或几项)数量指标和该数量指标在总体中 的分布状况.这时,每个个体含有的数量指标的全体就 是总体.
样本 —— 从总体中抽取的部分个体. 用 ( X1, X 2,, X n )表示, n 为样本容量.
称 (x1, x2,为,总xn体) X 的一个容量为n
★K.皮尔森在1990年提出了检验拟合优
度的 2统计量,并证明了其极限分布就是 2分布。
★K.皮尔森的学生英国医生戈塞特1908
年导出了 t统计量的精确分布— t分布,开
创了小样本的先河。
★费希尔系统发展了正态分布总体下多 个统计量的抽样分布理论;建立了以极 大似然预计为中心的点预计理论;创立
了实验设计,并发展了对应的数据分析 办法——方差分析。
k 1
n ik e
sn
e n
k 1 ik !
i1 !i2 ! in !
其中ik (1 k n)取非负整数,sn i1 i2 in.
统计推断:运用总体的样本信息对未知的总
体分布进行推断。
总体、样本及样本值间的关系
总体(理论分布)?
样本值
样本
样本是联系两者的桥梁
总体分布决定了样本取值的概率规律,也就 是样本取到样本值的规律,因而能够由样本 值去推断总体.

第6章 数理统计的基本概念

第6章 数理统计的基本概念

(
n1 2
n1
)
+ n2 2
(
)
n2 2
)
(
n1 n2
)(
n1 n2
n1 −1
x) 2 (1 +
n1 n2

x)
n1 + n2 2
,x
0
0,
x0
24
f (x) =
(
(
n1 2
0
n1 + n2 2
) ( ,
)
n2 2
)
(
n1 n2
)(
n1 n2
n1 −1
x) 2 (1 +
n1 n2
− n1 + n2
n−2 23
3、F 分布
定义 设 X ~ 2 (n1 ) , Y ~ 2 (n2 ) ,且 X 与 Y 相互
独立,则称随机变量
F = X / n1 Y / n2
服从自由度为 (n1, n2 )的 F 分布,记为 F ~ F (n1, n2 ) .
F(n1,n2)的概率密度为
f (x) =
(
实际上,每一次测量所得结果是一个个体, 而总体是由“一切可能的测量值”组成。这只是 一个想象中存在的集合,因为不可能去进行无限 次测量。它的个体是通过试验“制造”出来的。
这种情况在实际应用中非常之多。给这种总 体同样可规定分布,例如上述例子中说“测量结 果服从正态分布”是容易理解的。
8
二、样本
一般情况下,对总体的每一个个体都进行观察或试 验是不可能的,这是因为经济上、时间上不允许(如个体 的数量很大),或观察试验是带破坏性的(如灯泡的寿命、 炮弹的射程).因此,必须对总体进行抽样观察.

《数理统计基本概念》课件

《数理统计基本概念》课件

不可能事件
概率等于0的事件,表示一定 不会发生。
独立事件
两个事件的发生相互独立,一 个事件的发生不影响另一个事 件的发生。
随机变量及其分布
01
02
03
04
离散型随机变量
随机变量可以取到有限个或可 数无穷个值。
连续型随机变量
随机变量可以取到任何实数值 。
概率分布函数
描述随机变量取值概率的函数 。
概率密度函数
确定因子、提出假设、构造统计量、 进行统计分析、做出推断结论。
方差分析的应用场景
比较不同组数据的均值差异、分析多 因素对结果的影响等。
方差分析的注意事项
满足正态性和方差齐性的假设、注意 组间和组内的比较等。
04
回归分析
一元线性回归
总结词
一元线性回归是数理统计中常用的回归分析方法,用于研究一个因变量与一个自变量之间 的线性关系。
假设检验的类型
单侧检验、双侧检验、独立样本检验、配对 样本检验等。
假设检验的基本步骤
提出假设、构造检验统计量、确定临界值、 做出推断结论。
假设检验的注意事项
避免两类错误、注意样本量和分布情况等。
方差分析
方差分析的概念
方差分析是用来比较不同组数据的变 异程度和分析变异来源的一种统计方 法。
方差分析的基本步骤
详细描述
一元线性回归分析通过最小二乘法拟合一条直线,使得因变量的观测值与自变量的预测值 之间的残差平方和最小。它可以帮助我们了解自变量和因变量之间的相关性和预测因变量 的未来值。
公式
(y = ax + b) 其中,(a) 是斜率,(b) 是截距。
多元线性回归
01
总结词
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10 06 数理统计的基本概念
知识网络图
正态总体下的四大分布统计量样本函数样本个体总体数理统计的基本概念→⎪⎪⎪⎭
⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧
主要内容
一、样本
我们把从总体中抽取的部分样品n x x x ,,,21 称为样本。

样本中所含的样品数称为样本容量,一般用n 表示。

在一般情况下,总是把样本看成是n 个相互独立的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。

在泛指任一次抽取的结果时,n x x x ,,,21 表示n 个随机变量(样本);在具体的一次抽取之后,n x x x ,,,21 表示n 个具体的数值(样本值)。

我们称之为样本的两重性。

二、.统计量
1.定义:称不含未知参数的样本的函数),,,(21n X X X f 为统计量
2.常用统计量
样本均值 .11
∑==n
i i x n x 样本方差 ∑=--=n i i x x n S 122
.)(11 样本标准差 .)(111
2∑=--=n
i i x x n S 样本k 阶原点矩
∑===n i k i k k x n A 1
.,2,1,1 样本k 阶中心矩
∑==-=n
i k i k k x x n B 1
.,3,2,)(1 μ=)(X E ,n X D 2
)(σ=,
22)(σ=S E ,221)(σn
n B E -=, 其中∑=-=n
i i X X n B 1
22)(1,为二阶中心矩。

三、抽样分布
1.常用统计量分布
(1)设n X X X ,,,21 是相互独立的随机变量,且均服从与标准正态分布)1,0(N ,则222212n n X X X X ++=,服从自由度为n 的-2χ分布,记为()n 2~χχ.
(2)设()()n Y N X 2~,1,0~χ,且X 与Y 相互独立,则.n Y
X
T =服从自由度为n 的-t 分
布,记为()n t T ~.
(3)设X 与Y 相互独立,分别服从自由度为1n 和2n 的-2χ分布,则1
22
1n n Y X n Y n X
F ⋅==。

服从自由度为()21,n n 的-F 分布,记为()21,~n n F F
2.正态总体场合
设n X X X ,,,21 是从正态总体()2,σμN 中抽取的一个样本,记
()2
1211,1∑∑==-==n i i n n i i X X n S X n X ,则 (1);,~2⎪⎪⎭
⎫ ⎝⎛n N X σμ (2)X 与2
n S 相互独立. (3)()()1~1222
--n S n χσ;或()1~)(2212
--∑=n X X n i i χσ
(4)()n X
n i i 2212
~)(χσμ∑=-
(5)()1~/-=-=n t n
S X T μ
(6)若n X X X ,,,21 ,2,,21n Y Y Y 这21n n +个随机变量相互独立,且都服从正态分布()2,σμN ,则
()()
()1,1~11112112212121------=∑∑==n n F Y Y n X X n F n i i n i i . 即()1,1~2122
21--=n n F S S F。

相关文档
最新文档