法拉第电磁感应定律

合集下载

法拉第电磁感应定律

法拉第电磁感应定律

法拉第电磁感应定律一、电磁感应定律1.感应电动势(1)在电磁感应现象中产生的电动势叫做感应电动势,产生感应电动势的那部分导体相当于电源。

(2)在电磁感应现象中,若闭合导体回路中有感应电流,电路就一定有感应电动势;如果电路断开,这时虽然没有感应电流,但感应电动势依然存在。

2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

(2)公式:E =ΔΦΔt。

若闭合电路是一个匝数为n 的线圈,则E =n ΔΦΔt。

在国际单位制中,磁通量的单位是韦伯,感应电动势的单位是伏特。

1、闭合回路的磁通量Φ随时间t 的变化图像分别如图4-4-5所示,关于回路中产生的感应电动势的下列论述,其中正确的是( )A .图甲回路中感应电动势恒定不变B .图乙回路中感应电动势恒定不变C .图丙回路中0~t 1时间内感应电动势小于t 1~t 2时间内感应电动势D .图丁回路中感应电动势先变大后变小2.如图3所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为( )A.Ba 22ΔtB.nBa 22ΔtC.nBa 2ΔtD.2nBa 2Δt3、一个200匝、面积为20 cm 2的线圈,放在磁场中,磁场的方向与线圈平面成30°角,若磁感应强度在0.05 s 内由0.1 T 增加到0.5 T ,在此过程中磁通量变化了多少?磁通量的平均变化率是多少?线圈中感应电动势的大小是多少?二、导线切割磁感线时的感应电动势1.导线垂直于磁场运动,B 、l 、v 两两垂直时,如图4-4-1所示,E =Bl v 。

2.导线的运动方向与导线本身垂直,但与磁感线方向夹角为θ时,如图4-4-2所示,E =Bl v sin_θ。

图4-4-1 图4-4-21、如图4-4-10所示,在竖直向下的匀强磁场中,将一个水平放置的金属棒ab 以水平初速度v 0抛出,设运动的整个过程中棒的取向不变且不计空气阻力,则金属棒在运动过程中产生的感应电动势大小将( )A .越来越大B .越来越小C .保持不变D .无法确定2、如图6所示,一金属弯杆处在磁感应强度大小为B、方向垂直纸面向里的匀强磁场中,已知ab=bc=L,当它以速度v向右平动时,a、c两点间的电势差为()A.BL v B.BL v sin θC.BL v cos θD.BL v(1+sin θ)3、如图4-4-9所示,水平放置的两平行金属导轨相距L=0.50 m,左端接一电阻R=0.20 Ω,磁感应强度B=0.40 T的匀强磁场方向垂直于导轨平面向下,导体棒ac(长为L)垂直放在导轨上,并能无摩擦地沿导轨滑动,导轨和导体棒的电阻均可忽略不计。

法拉第电磁感应定律

法拉第电磁感应定律

法拉第电磁感应定律(法拉第电磁感应定律)一般指电磁感应定律
本词条由“科普中国”科学百科词条编写与应用工作项目审核。

电磁感应定律也叫法拉第电磁感应定律,电磁感应现象是指因磁通量变化产生感应电动势的现象,例如,闭合电路的一部分导体在磁场里做切割磁感线的运动时,导体中就会产生电流,产生的电流称为感应电流,产生的电动势(电压)称为感应电动势 [1]。

电磁感应定律中电动势的方向可以通过楞次定律或右手定则来确定。

右手定则内容:伸平右手使拇指与四指垂直,手心向着磁场的N极,拇指的方向与导体运动的方向一致,四指所指的方向即为导体中感应电流的方向(感应电动势的方向与感应电流的方向相同)。

楞次定律指出:感应电流的磁场要阻碍原磁通的变化。

简而言之,就是磁通量变大,产生的电流有让其变小的趋势;而磁通量变小,产生的电流有让其变大的趋势。

[1]
感应电动势的大小由法拉第电磁感应定律确定;e(t) = -n(dΦ)/(dt)。

对动生的情况也可用E=BLV来求。

[1]
中文名
电磁感应定律
外文名
Faraday law of electromagnetic induction
别名
法拉第电磁感应定律
表达式
e=-n(dΦ)/(dt)
提出者
纽曼和韦伯
提出时间
1831年8月
适用领域
工程领域
应用学科
物理学、电磁学
时域表达式
e(t) = -n(dΦ)/(dt)
复频域公式
E = -jwnΦ (E和Φ是矢量)。

法拉第电磁感应定律

法拉第电磁感应定律

D、线圈中0到D时间内平均 2 1 感应电动势为0.4V
0 A B D
t/s
0.1
三、导体作切割磁感线运动
如图所示闭合线圈一部分导体ab处于匀强磁场中,磁 感应强度是B,ab以速度v匀速切割磁感线,求产生的 感应电动势 a a
回路在时间t内增大的面积 v G 为: ΔS=LvΔt × × × × × × × × × × × × 穿过回路的磁通量的变化 b b 为: ΔΦ=BΔS =BLvΔt 产生的感应电动势为: Φ BLvt E BLv t t (V是相对于磁场的速度)
金属环转过30°角的过程中,环中产生
5、单匝矩形线圈在匀强磁场中匀速转动,转轴 垂直于磁场。若线圈所围面积里磁通量随时间 变化的规律如图所示,则:( ABD ) A、线圈中0时刻感应电动势最大
B、线圈中D时刻感应电动势为零
C、线圈中D时刻感应电动势最大
Φ/10-2Wb
问题2:影响感应电动势大小的因素?
实验探究
观察实验,分析并思考回答下面的问题:
问题1:在实验中,电流表指针偏转原因 是什么?
Φ变化
产生E 产生I
问题2:电流表指针偏转程度跟感应电动 势的大小有什么关系?
E 总电阻一定时,E越大,I越大, 由I 知:指针偏转越大。 Rr
问题3:该实验中,将条形磁铁从同一高度插入线圈中, 快插入和慢插入有什么相同和不同? 从条件上看 从结果上看 相同 Φ都发生了变化 都产生了I
不同 Φ变化的快慢不同 产生的I大小不等
问题2:影响感应电动势大小的因素?
实验探究 实验结论:感应电动势E的大小与磁通量的变化快慢 有关,即与磁通量的变化率有关.
Δφ 3、磁通量的变化率 Δt
表示磁通量的变化快慢

法拉第电磁感应定律

法拉第电磁感应定律

第二单元 法拉第电磁感应定律1、法拉第电磁感应定律(1)表述: 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式: E =k ·ΔΦ/Δt k 为比例常数, 当E 、ΔΦ、Δt 都取国际单位时,k =1,所以有E =ΔΦ/Δt 若线圈有n 匝,则相当于n 个相同的电动势ΔΦ/Δt 串联,所以整个线圈中的电动势为E =n ·ΔΦ/Δt 。

2、磁通量Φ、磁通量的变化量△Φ、磁通量的变化率tΔΔΦ的意义(1)磁通量Φ是穿过某一面积的磁感线的条数;磁通量的变化量△Φ=Φ1-Φ2表示磁通量变化的多少,并不涉及这种变化所经历的时间;磁通量的变化率tΔΔΦ表示磁通量变化的快慢。

(2)当磁通量很大时,磁通量的变化量△Φ可能很小。

同理,当磁通量的变化量△Φ很大时,若经历的时间很长,则磁通量的变化率也可能较小。

(3)磁通量Φ和磁通量的变化量△Φ的单位是wb ,磁通量变化率的单位是wb /s 。

(4)磁通量的变化量△Φ与电路中感应电动势大小没有必然关系,穿过电路的△Φ≠0是电路中存在感应电动势的前提;而磁通量的变化率与感应电动势的大小相联系,tΔΔΦ越大,电路中的感应电动势越大,反之亦然。

(5)磁通量的变化率tΔΔΦ,是Φ-t 图象上某点切线的斜率。

3、公式E=n tΔΔΦ与E=BLvsin θ的区别与联系(1)研究对象不同,E=n t ΔΔΦ的研究对象是一个回路,而E=BLvsin θ研究对象是磁场中运动的一段导体。

(2)物理意义不同;E=n tΔΔΦ求得是Δt 时间内的平均感应电动势,当Δt →0时,则E 为瞬时感应电动势;而E=BLvsin θ,如果v 是某时刻的瞬时速度,则E 也是该时刻的瞬时感应电动势;若v 为平均速度,则E 为平均感应电动势。

(3)E=ntΔΔΦ求得的电动势是整个回路的感应电动势,而不是回路中某部分导体的电动势。

整个回路的电动势为零,其回路中某段导体的感应电动势不一定为零。

法拉第电磁感应定律

法拉第电磁感应定律

1. 法拉第电磁感应定律 感应电动势公式:tn E ∆∆Φ= (1)注意区分Φ、△Φ、t∆Φ∆的大小关系,三者不是一个量增大,其他均增大。

例如:线圈在匀强磁场中匀速转动时,磁通量Φ最大时, 磁通量的变化量△Φ为零,磁通量的变化率t ∆Φ∆ =0。

反之Φ =0时, t∆Φ∆为最大值。

(2)用于计算Δt 时间内的平均感应电动势。

(3)tn E ∆∆Φ=具体表达式: a .若磁感应强度B 不变,闭合回路的面积变化,则nB S E t∆=∆。

b .若闭合回路的面积不变,磁感应强度B 发生变化,则nS B E t ∆=∆ , 使用时注意S 为B 所在处的有效面积。

c .若磁感应强度B 和闭合回路的面积共同变化,则()n BS E t∆=∆。

(4) 推出电量计算式 E q I t t n R R∆Φ=∆=∆= 2.导体切割磁感线运动,感应电动势公式:E Blv =(1)适用于匀强磁场,若是非匀强磁场则要求L 很短。

(2)适用条件:式中,,B L v 三者互相垂直,即:,,B L B V V L ⊥⊥⊥。

(3)v 为瞬时值,用于计算瞬时感应电动势v 为某段时间内的平均速度, E 为该段时间内的平均感应电动势。

(4)导体平动切割时L 用垂直于v 的有效长度;导体棒以端点为轴,在垂直于磁感应线的匀强磁场中匀速转动时,速度v 为导体棒的平均速度2v ,导体棒产生的感应电动势212E B l ω=。

3.导体运动速度v 与磁感应强度B 的夹角为θ,感应电动势公式:sin E Blv θ=适用条件:式中B L ⊥,但,B v θ不垂直,方向夹角为。

4.感应电动势的方向产生感应电动势的那部分导体,相当于电源。

在电源内部,电流从电源负极流向正极,电动势的方向与感应电流的方向一致也是由负极指向正极。

判断方法仍用右手定则和楞次定律来判断。

对于外电路来说,电流从导体流出的一端为电源的正极。

5.电路中感应电动势产生,与电路是否闭合无关若电路是闭合的,只要穿过电路的磁通量发生变化,则电路中有感应电流。

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用高考要求:1、法拉第电磁感应定律。

、法拉第电磁感应定律。

2、自感现象和、自感现象和自感系数自感系数。

3、电磁感应现象的综合应用。

、电磁感应现象的综合应用。

一、法拉第电磁感应定律一、法拉第电磁感应定律1、 内容:电路中感应电动势的大小,跟穿过这一电路的内容:电路中感应电动势的大小,跟穿过这一电路的磁通量磁通量的变化率成正比。

的变化率成正比。

即E =n ΔФ/Δt 2、说明:1)在电磁感应中,E =n ΔФ/Δt 是普遍适用公式,不论导体回路是否闭合都适用,一般只用来求感应电动势的大小,方向由楞次定律或方向由楞次定律或右手定则右手定则确定。

2)用E =n ΔФ/Δt 求出的感应电动势一般是平均值,只有当Δt →0时,求出感应电动势才为瞬时值,若随时间均匀变化,则E =n ΔФ/Δt 为定值为定值3)E 的大小与ΔФ/Δt 有关,与Ф和ΔФ没有必然关系。

没有必然关系。

3、 导体在磁场中做切割磁感线运动导体在磁场中做切割磁感线运动1) 平动切割:当导体的运动方向与导体本身垂直,但跟磁感线有一个θ角在匀强磁场中平动切割磁感线时,产生感应电动势大小为:E =BLvsin θ。

此式一般用以计算感应电动势的瞬时值,但若v 为某段时间内的平均速度,则E =BLvsinθ是这段时间内的平均感应电动势。

其中L 为导体有效切割磁感线长度。

为导体有效切割磁感线长度。

2) 转动切割:线圈绕垂直于磁感应强度B 方向的转轴转动时,产生的感应电动势为:E =E m sin ωt =nBS m sin ωt 。

3) 扫动切割:长为L 的导体棒在磁感应强度为B 的匀强磁场中以角速度ω匀速转动时,棒上产生的感应电动势:①动时,棒上产生的感应电动势:① 以中心点为轴时E =0;② 以端点为轴时E=BL 2ω/2;③;③ 以任意点为轴时E =B ω(L 12 -L 22)/2。

二、自感现象及自感电动势二、自感现象及自感电动势1、 自感现象:由于导体本身自感现象:由于导体本身电流电流发生变化而产生的电磁感应现象叫自感现象。

法拉第电磁感应定律

法拉第电磁感应定律

法拉第电磁感应定律法拉第电磁感应定律是电磁学的基础定律之一,它描述了导体中感应电动势与导体上的磁场变化之间的关系。

该定律由英国物理学家迈克尔·法拉第于1831年提出,经过实验证实并被广泛应用。

本文将介绍法拉第电磁感应定律的原理、公式以及实际应用。

一、定律原理法拉第电磁感应定律是指当导体中的磁通量发生变化时,导体中会感应出电动势和感应电流。

磁通量是一个衡量磁场穿过一个给定表面的大小的物理量。

当磁通量改变时,导体中的自由电子会受到磁力的作用而发生运动,从而产生电流。

这种现象被称为电磁感应。

二、定律公式根据法拉第电磁感应定律,感应电动势(ε)与磁通量变化速率(dΦ/dt)成正比。

其数学表达式如下:ε = -dΦ/dt其中,ε表示感应电动势,单位为伏特(V);dΦ/dt表示磁通量的变化速率,单位为韦伯/秒(Wb/s)。

根据右手定则,可以确定感应电动势的方向。

当磁场的变化导致磁通量增加时,感应电动势的方向与变化的磁场方向垂直且遵循右手定则;当磁通量减少时,感应电动势的方向与变化的磁场方向相反。

三、应用举例1. 电磁感应产生的电动势可用于发电机的工作原理。

发电机通过转动磁场与线圈之间的磁通量变化来产生感应电动势,最终转化为电能供应给电器设备。

2. 感应电动势也可以应用于感应加热。

感应加热是通过变化的磁场产生的感应电流在导体中产生焦耳热,实现对物体进行加热的过程。

这种方法广泛用于工业领域中的加热处理、熔化金属等。

3. 感应电动势还可以实现非接触的测量。

例如,非接触式转速传感器利用感应电动势来实现对机械设备转速的测量。

四、实验验证1831年,法拉第进行了一系列实验来验证他提出的电磁感应定律。

其中最著名的实验是在一个充满磁铁的线圈中将另一个线圈移动。

当第一个线圈移动时,第二个线圈中就会感应出电流。

这一实验结果验证了法拉第的理论,为电磁感应定律的确认提供了强有力的证据。

五、应用发展法拉第电磁感应定律为电磁学的发展奠定了基础。

法拉第电磁感应定律

法拉第电磁感应定律

法拉第电磁感应定律法拉第电磁感应定律是电磁学中的基本定律之一,由英国科学家迈克尔·法拉第在19世纪中期提出。

该定律描述了磁场变化对磁场内导体产生的感应电动势的影响,为电磁学领域的理论建立奠定了基础。

1. 概述法拉第电磁感应定律是描述电磁感应现象的定律之一。

当磁场的变化导致磁力线与导体相对运动时,导体中会产生电动势。

这个电动势的大小与磁场变化率成正比,与导体回路的形状和导体本身的性质有关。

2. 法拉第电磁感应定律的表达式根据法拉第电磁感应定律,导体中感应电动势的大小可以通过以下公式计算:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示通过导体横截面的磁通量,dt 表示时间的微小变化量。

负号表示当磁通量增加时,感应电动势的方向与导体回路中电流运动的方向相反,反之亦然。

3. 磁通量的计算为了计算感应电动势,我们需要首先计算通过导体横截面的磁通量。

磁通量Φ可以通过以下公式计算:Φ = B * A * cosθ其中,B表示磁场的磁感应强度,A表示导体横截面的面积,θ表示磁场线与导体法线之间的夹角。

4. 磁感应强度和感应电动势的关系根据法拉第电磁感应定律的表达式,我们可以看出磁感应强度的变化率对感应电动势的大小有直接影响。

当磁感应强度的变化率较大时,感应电动势也会较大。

反之,当磁感应强度的变化率较小或为零时,感应电动势将为零。

5. 应用法拉第电磁感应定律广泛应用于各种电磁设备和技术中。

例如,发电机的工作原理就是利用电磁感应产生电动势,将机械能转化为电能。

同时,变压器也是基于电磁感应原理工作的,通过磁场的变化实现电压的升降。

6. 实验验证为了验证法拉第电磁感应定律,可以进行一系列实验。

例如,可以将一个线圈放置在磁场中,并使磁场的强度发生变化,通过测量线圈中感应电压的变化来验证定律的正确性。

结论:法拉第电磁感应定律是电磁学中的基本定律之一,它描述了磁场的变化对导体中产生的感应电动势的影响。

通过研究和应用这一定律,我们可以更好地理解和利用电磁感应现象,推动电磁学的发展和应用。

法拉第电磁感应定律与应用

法拉第电磁感应定律与应用

法拉第电磁感应定律与应用法拉第电磁感应定律是电磁学中的重要定律之一,它描述了磁场变化时在电路中引起的电流的现象。

在本文中,我将介绍法拉第电磁感应定律及其应用。

一、法拉第电磁感应定律的基本原理法拉第电磁感应定律由英国物理学家迈克尔·法拉第在1831年提出。

该定律描述了磁场变化时,空间中的导体中会产生感应电动势,从而引起电流的产生。

其数学表达式为:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示穿过导体的磁通量,dt表示时间的微小变化。

负号表示感应电动势的方向与磁通量的变化方向相反。

二、法拉第电磁感应定律的应用法拉第电磁感应定律在现代生活中有广泛的应用。

以下是几个常见的应用领域:1. 发电机原理发电机是利用法拉第电磁感应定律的原理来转换机械能为电能的设备。

发电机中由磁场引起的磁通量的变化经过导线产生感应电动势,从而驱动电流的产生。

这些电流可用于供电、充电等。

2. 变压器的工作原理变压器也是利用法拉第电磁感应定律工作的设备。

当通过变压器的一个线圈的电流变化时,由于两个线圈的互感作用,将会在另一个线圈中诱导出电动势,从而在不同的线圈中实现电能的传输和变换。

3. 电动汽车的充电原理电动汽车的充电是利用法拉第电磁感应定律的原理进行的。

当电动汽车和充电桩之间建立起磁场变化时,通过感应电动势产生的电流可以对电动汽车进行充电。

4. 感应电磁炉的工作原理感应电磁炉也是基于法拉第电磁感应定律的工作原理。

感应电磁炉利用高频交变磁场在炉内感应出的涡流,在导体中产生电阻加热效应,实现加热的目的。

5. 磁力计的工作原理磁力计是利用法拉第电磁感应定律的原理来测量磁场强度的装置。

通过测量感应电动势的大小,可以间接地了解到磁场的强度。

6. 电能表的工作原理电能表(电表)也利用了法拉第电磁感应定律的原理来测量电能的消耗。

通过测量感应电动势的大小,可以得到电能的消耗量。

总结:法拉第电磁感应定律是电磁学中的基本定律之一,它描述了磁场变化引起导体中的感应电动势和电流的现象。

法拉第电磁感应定律

法拉第电磁感应定律
R R
E = BLv sinθ 二、导体切割磁感线运动时 1、式中 为导体运动速度 与磁感应强度 的夹角 为导体运动速度v与磁感应强度 的夹角. 、式中θ为导体运动速度 与磁感应强度B的夹角 此式只适用于匀强磁场,若是非匀强磁场则要求 很短. 若是非匀强磁场则要求L很短 此式只适用于匀强磁场 若是非匀强磁场则要求 很短 2、 v 恒定时,产生的 恒定; 恒定; 、 恒定时,产生的E恒定 v发生变化时,求出的 是与 对应的瞬时值; 发生变化时, 是与v对应的瞬时值 发生变化时 求出的E是与 对应的瞬时值; v为某段时间的平均速度时,求出的 为该段时间内 为某段时间的平均速度时, 为某段时间的平均速度时 求出的E为该段时间内 的感应电动势的平均值. 的感应电动势的平均值. 3、导体平动切割时 用垂直于 的有效长度; 用垂直于v 、导体平动切割时L用垂直于 的有效长度; 转动切割时,速度v用切割部分的平均速度 用切割部分的平均速度. 转动切割时,速度 用切割部分的平均速度. 4、线圈在匀强磁场中绕垂直于磁场方向的轴做匀速 、 转动时产生的最大电动势E 是线圈匝数. 转动时产生的最大电动势 m =nBSω, n是线圈匝数 是线圈匝数 5、导体棒以端点为轴 在垂直于磁感应线的匀强磁场 、导体棒以端点为轴,在垂直于磁感应线的匀强磁场 中匀速转动时, 中匀速转动时 E=1/2 Bωl 2 6、产生感应电动势的那部分导体相当电源 在解决具 、产生感应电动势的那部分导体相当电源,在解决具 体问题时导体可以看成电动势等于感应电动势、 体问题时导体可以看成电动势等于感应电动势、内 阻等于该导体内阻的等效电源. 阻等于该导体内阻的等效电源.
解: 由楞次定律可知,P板带负电,Q板带正电 , 由楞次定律可知, 板带负电 板带负电, 板带正电 由法拉第电磁感应定律可得,所以正确选项为 。 由法拉第电磁感应定律可得,所以正确选项为D。

法拉第电磁感应定律

法拉第电磁感应定律

法拉第电磁感应定律法拉第电磁感应定律是描述变化磁场引起感应电动势和感应电流产生的物理规律。

该定律由英国物理学家迈克尔·法拉第于1831年发现并提出。

它在电磁学、电动机、发电机和变压器等领域有着广泛的应用。

本文将对法拉第电磁感应定律的原理、应用和相关实验进行详细介绍。

一、法拉第电磁感应定律的原理法拉第电磁感应定律主要包括两个方面的内容:磁通量的变化引起感应电动势,感应电动势的大小与磁通量变化率成正比。

下面将对这两个方面进行详细阐述。

1. 磁通量的变化引起感应电动势当磁场的磁通量通过一个线圈时,如果磁场的强度发生变化,即磁通量发生变化,线圈中就会产生感应电动势。

感应电动势的方向由勒沃瓦定律决定,即感应电动势的方向使得通过线圈的电流的磁场的方向抵消原磁场的变化。

如果磁通量的变化率为Φ/t,线圈的匝数为N,根据法拉第电磁感应定律可得感应电动势:ε = -NΦ/t其中,ε表示感应电动势,N表示线圈的匝数,Φ表示磁通量,t表示时间。

2. 感应电动势的大小与磁通量变化率成正比当磁通量变化率较大时,所产生的感应电动势也相应增大。

根据法拉第电磁感应定律,感应电动势的大小与磁通量变化率成正比。

即感应电动势的大小为Φ/t的导数。

当磁通量以一定的速率改变时,线圈中产生的感应电动势也以相同的速率改变。

二、法拉第电磁感应定律的应用法拉第电磁感应定律在许多领域有着广泛的应用,尤其是在发电、电动机和变压器等设备中。

1. 发电机发电机是运用法拉第电磁感应定律制造的。

利用机械能驱动导线在磁场中运动,使得磁通量发生变化,从而产生感应电动势。

通过外部电路连接,感应电动势驱动电子流动,最终转化为电能。

2. 变压器变压器是利用法拉第电磁感应定律制造的。

变压器通过磁场感应来实现电能的传递和变换。

当交流电通过变压器的一侧线圈时,由于电流的改变引起磁场的改变,从而在另一侧线圈中感应出电动势,实现电能的输送和变压。

3. 电磁感应传感器电磁感应传感器是利用法拉第电磁感应定律制造的。

法拉第电磁感应定律

法拉第电磁感应定律

3、了解:Φ、△Φ、ΔΦ/Δt旳意义
物理意义
与电磁感应关系
磁通量Ф
穿过回路旳磁感 线旳条数多少
无直接关系
磁通量变化△Ф
磁通量变化率
ΔΦ/Δt
穿过回路旳磁通 产生感应电动
量变化了多少
势旳条件
穿过回路旳磁通 决定感应电动
量变化旳快慢
势旳大小
例与练1
有一种50匝旳线圈,假如穿过它旳磁通 量旳变化率为0.5Wb/s,求感应电动势。
旳方向另行判断。
思索与讨论
问题1:磁通量大,磁通量变化一定大吗? 问题2:磁通量变化大,磁通量旳变化率一定大吗?
磁通量旳变化率和磁通量、磁通量旳变化无直接关系:磁通量大 (小,零),磁通量旳变化率不一定大(小,零);磁通量旳变化大(小),磁通 量旳变化率不一定大(小).
(能够类比速度、速度旳变化和加速度.)
问题1:在试验中,电流表指针偏转原因是什么?
Φ变化
产生E
产生I
问题2:电流表指针偏转程度跟感应电动势旳大小 有什 么关系?
总电阻一定时,E越大,I 越大,指针偏转越大.
问题3:在试验中,将条形磁铁从同一高度插入线圈中同一位置, 快插入和慢插入有什么相同和不同?
从条件上看
相同 Φ变化相同 不同 Φ变化旳快慢不同
例与练7
如图,匀强磁场旳磁感应强度为B,长为
L旳金属棒ab在垂直于B旳平面内运动,
速度v与L成θ角,求金属棒ab产生旳感应
电动势。
a
E=BLVsinθ
θ
v b
例与练8 在磁感应强度为B旳匀强磁场中,有一种匝数为n旳矩形线圈,边
长ab=L1,bc=L2线圈绕中心轴OO'以角速度ω由图示位置逆时针 方向转动。求:

法拉第电磁感应定律

法拉第电磁感应定律

法拉第电磁感应定律法拉第电磁感应定律(Faraday's law of electromagnetic induction)是电磁学中的重要定律,描述了磁场的变化如何产生感应电流。

这个定律是由英国物理学家迈克尔·法拉第在1831年发现的,为电磁学的发展做出巨大贡献。

法拉第电磁感应定律可以用一个简洁的数学公式表达:感应电动势的大小等于导线中的磁通量的变化率。

即\epsilon = -\frac{d\Phi}{dt}其中,\epsilon 代表感应电动势,\Phi 代表磁通量,t代表时间。

负号表示感应电动势的方向和磁通量的变化方向相反。

这个定律的核心思想是,当一个导线被置于一个磁场中,并且磁场的强度发生变化时,导线中就会产生感应电流。

这个变化可以是磁场强度的增加或减少,也可以是磁场方向的改变。

这个定律对于理解电磁感应现象和发电原理非常重要,可以应用于实际生活和工程中。

为了更好地理解法拉第电磁感应定律,我们可以从几个方面来解释这个定律的原理和应用。

首先,我们来看一个简单的实验:在一个金属环上绕上一根导线,当将金属环放入强磁场中并旋转时,导线中就会有感应电流产生。

这是因为磁场随着金属环的旋转而发生变化,从而产生感应电动势和感应电流。

这个实验可以用法拉第电磁感应定律来解释:磁通量的变化引起了感应电动势的产生,进而产生了感应电流。

其次,法拉第电磁感应定律在发电中的应用非常重要。

根据这个定律,我们可以利用磁感线的变化来产生电流。

这就是电磁感应发电的原理。

当磁场通过一个线圈时,如果磁场的强度或方向发生变化,就会在线圈中产生感应电流。

这个原理广泛应用于发电机、变压器和电动机等设备中。

通过调节磁场的强度和方向,可以控制感应电动势和感应电流的大小和方向。

此外,法拉第电磁感应定律还与电磁波的产生和传播有关。

电磁波是由振动的电场和磁场所组成的一种波动现象。

根据法拉第电磁感应定律,磁场的变化可以引起电场的变化,进而产生电磁波。

法拉第电磁感应定律

法拉第电磁感应定律

法拉第电磁感应定律法拉第电磁感应定律是关于电磁感应现象中电动势产生的定律。

它是英国物理学家迈克尔·法拉第在1831年通过实验观察到的。

法拉第电磁感应定律揭示了磁场变化引起的感应电流现象,为电磁学的发展做出了重要贡献。

法拉第电磁感应定律的表述为:“当一根导体在磁场中运动或磁场变化时,产生在导体两端的电动势的大小与导体在磁场中运动的速度或磁场变化速率成正比。

”根据法拉第电磁感应定律,可以得出以下三个定律:第一定律:当导体与磁场垂直时,导体中不会产生电动势。

第二定律:当导体与磁场夹角不为零时,导体中会产生感应电动势。

电动势的大小正比于导体在磁场中的速度。

第三定律:当导体与磁场夹角不为零时,导体中会产生感应电动势。

电动势的大小正比于导体所受磁场变化率。

法拉第电磁感应定律的应用非常广泛。

它为电磁感应现象的解释提供了基础,也为电能转换和电磁设备的设计提供了理论依据。

根据法拉第电磁感应定律,我们可以理解一些实际应用。

例如发电机的工作原理就是基于电磁感应定律的。

当磁场和导体的相对运动产生变化时,导体中就会产生感应电动势,从而产生电流。

这就是发电机将机械能转化为电能的原理。

另外,电磁感应定律还可以解释变压器的工作原理。

当交流电通过一个线圈时,会产生交变磁场。

而接近该线圈的另一个线圈中会感应出电动势,从而产生电流。

这个原理被应用于变压器的步进调压、信号传输和能量传输等领域。

同时,法拉第电磁感应定律也可以用于电磁感应的实验教学。

通过实验,学生可以观察到磁场变化对电动势的影响,进而理解电磁感应的基本原理。

在理论研究和工程应用中,法拉第电磁感应定律为我们解决问题提供了重要的参考。

通过对电磁感应现象的深入理解,人们能够更好地利用电磁力和电磁感应现象,使其为社会经济发展和科学研究带来更多的益处。

总之,法拉第电磁感应定律是电磁学中一项重要的定律,它揭示了磁场变化会引起感应电动势的规律。

这一定律为电磁学的研究和应用提供了理论基础,也在发电、变压器和实验教学等领域有广泛应用。

法拉第电磁感应定律

法拉第电磁感应定律

练习 1、粗细均习的电阻丝围成的正方形线框置于有 界匀强磁场中,磁场方向垂直于线框平面,其边界与 正方形线框的边平行。 现使线框以同样大小的速度沿 四个不同方向平移出磁场,如图 100-1 所示,则在移 出过程中线框的一边 a、 两点间电势差绝对值最大的 b 是( B )
2、如图所示,U 形导线框 MNQP 水平放置在磁感 应强度 B=0.2T 的匀强磁场中,磁感线方向与导线框 所在平面垂直,导线 MN 和 PQ 足够长,间距为 0.5m, 横跨在导线框上的导体棒 ab 的电阻 r=1.0Ω,接在 NQ 间的电阻 R=4.OΩ,电压表为理想电表,其余电阻 不计.若导体棒在水平外力作用下以速度ν=2.0m/s 向左做匀速直线运动, 不计导体棒与导线框间的摩擦. (1)通过电阻 R 的电流方向如何? (2)电压表的示数为多少? (3)若某一时刻撤去水平外 力,则从该时刻起,在导体棒运 动 1.0m 的过程中,通过导体棒的 电荷量为多少?
mg(h-b)= mv′2- mv2
1 2 1 2

L
2
联立⑤⑥,解得 v=
(
mgR B
2
)
2

2 g ( h

b )
.
课堂小结:
一、感应电动势 BS En 二、法拉第电磁感应定律 t
(动生电动势)
SB (感生电动势) En t
三、导体棒切割磁感线时产生的电动势 四、反电动势
答案:通过电阻R的电流方向为N→Q 0.16V 2x10-2
3、 如图所示, 在空中有一水平方向的匀强磁场区域, 区域的上下边缘间距为 h,磁感应强度为 B.有一宽度 为 b( b<h 、长度为 L、电阻为 R、质量为 m 的矩形 导体线圈紧贴磁场区域的上边缘从 静止起竖直下落,当线圈的 PQ 边到 达磁场下边缘时,恰好开始做匀速 运动.求线圈的 MN 边刚好进入磁场 时,线圈的速度大小.

法拉第电磁感应定律

法拉第电磁感应定律

法拉第电磁感应定律法拉第电磁感应定律是电磁学中的基本定律之一,描述了变化磁场引起的感应电动势。

此定律由英国科学家迈克尔·法拉第于1831年提出,并推动了现代电磁学的发展。

本文将介绍法拉第电磁感应定律的内容,以及相关的应用和实验。

一、法拉第电磁感应定律的表述根据法拉第电磁感应定律,当一个导体被置于变化的磁场中时,导体中就会产生感应电动势,从而产生感应电流。

其数学表达方式可以用以下公式表示:ε = -dΦ/dt在上述公式中,ε代表感应电动势,单位为伏特(V);dΦ/dt代表磁通量随时间的变化率,单位为韦伯/秒(Wb/s)。

根据法拉第电磁感应定律,当磁场的变化率为正时,感应电动势的极性为负;当磁场的变化率为负时,感应电动势的极性为正。

二、法拉第电磁感应定律的实验验证为了验证法拉第电磁感应定律,科学家们进行了一系列的实验。

其中最著名的实验之一是法拉第实验,即用一个螺线管绕制的线圈将磁场感应到另一个线圈中。

通过改变输入线圈的电流或改变磁场的强度,可以观察到输出线圈中产生的感应电动势的变化。

除了法拉第实验,还有许多其他实验证实了该定律。

比如,当磁铁快速穿过线圈时,线圈中就会产生感应电流;在发电机工作时,通过转动磁场可以产生电流等。

三、法拉第电磁感应定律的应用法拉第电磁感应定律在许多领域都有广泛的应用。

以下是其中一些常见的应用:1. 电磁感应发电:根据法拉第电磁感应定律,通过改变磁场的强度或导体回路的面积,可以产生感应电动势,从而实现发电。

这种原理被广泛应用于发电机和发电厂。

2. 变压器:变压器是电力输送和转换中常用的设备,其工作原理也基于法拉第电磁感应定律。

变压器通过交流电产生变化的磁场,从而在输入线圈和输出线圈之间产生感应电动势和电流,从而实现电压和电流的转换。

3. 感应加热:法拉第电磁感应定律的另一个应用是感应加热。

通过在导体附近放置一个变化磁场的线圈,可以感应出感应电流,并使导体发热。

这种原理被广泛应用于感应炉、感应焊接等工艺中。

法拉第电磁感应定律

法拉第电磁感应定律

不垂直切割 ①V与B不垂直时: 如图,
E BLv BLv sin
②L与V不垂直: 公式中的L为有效切割长度, 即导体与v垂直的方向上的投影长度. 图中E分别为: 甲图:E=BLcdVsinβ 乙图:沿v1,E=BLMN V
沿v2,E=0.
丙图:沿v1,E 2BRV
沿,E=0 沿v3,E=BRV
(1)法拉第电磁感应定律 E n
t
两种常见表达式 一是磁感应强度B不变,垂直于磁场的S发生变化,
ΔS E=nB
Δt
二是垂直于磁场的S不变,磁感应强度B发生变化,
E=nΔ B S Δt
其中 Δ B 是B—t图象的斜率. Δt
适用于任何电磁感应 现象
(2)导体做切割磁感线运动
E BLv
条件: ①磁场是匀强磁场 ② B、l、v三者相互垂直.
(2)0.0128W
8.(1)10cm 25cm (2) 1.67m/s2
(3)0.005c
(4)57.6J
6.
7.
8.
8.
③B与L不垂直 导体棒垂直纸面向外运动(θ 为B L夹角)
E BLv BLv sin
(3)转动切割
v L,
2
E BLv 1 BL2
2
例1
变式1
例2
变式2:B
变式3:D
练习题:1.D 2.D 3.B 4.BC
5.ACD 6.(1)0.05A
(2) 1.25106C
7.(1)0.4A

法拉第电磁感应定律

法拉第电磁感应定律

法拉第电磁感应定律1. 简介法拉第电磁感应定律是描述电磁感应现象的重要定律。

它由英国科学家迈克尔·法拉第于1831年提出,是电磁学的基础定律之一。

该定律描述了当磁通量发生变化时,导体中会产生与磁通量变化方向相反的感应电动势。

2. 法拉第电磁感应定律的表述法拉第电磁感应定律可以通过以下公式进行表述:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示磁通量,t表示时间。

公式中的负号表示感应电动势的方向与磁通量变化方向相反。

3. 定律的解释与应用根据法拉第电磁感应定律,当磁通量发生变化时,导体中会产生感应电动势。

这个电动势可以通过导体两端的电压差进行测量,从而实现能量的转化和传输。

因此,法拉第电磁感应定律是发电机和变压器等电磁设备的基础原理。

3.1 发电机发电机是利用法拉第电磁感应定律产生电能的设备。

当导体与磁场相互作用时,磁通量会发生变化,从而产生感应电动势。

通过不断旋转导体或磁场,可以不断改变磁通量,进而产生稳定的感应电动势。

这种感应电动势可以通过电路连接到负载上,实现电能的输出。

3.2 变压器变压器是利用法拉第电磁感应定律改变电压的设备。

变压器由两个绕组组成,分别是主绕组和副绕组。

当主绕组中的交流电流发生变化时,产生的磁场也会发生变化,从而改变副绕组中的磁通量。

根据法拉第电磁感应定律,这种变化的磁通量会在副绕组中产生感应电动势,从而改变副绕组中的电压。

3.3 感应炉感应炉是利用法拉第电磁感应定律产生热能的设备。

感应炉通过感应加热的原理,将交流电源的电能转化为高频电磁场的能量。

当导体置于高频电磁场中时,导体中的自由电子受到电磁力的作用,产生热能。

这种热能可以用于金属加热、熔炼等工业应用中。

4. 应用举例法拉第电磁感应定律在实际工程中有着广泛的应用。

以下是一些常见的应用举例:•发电机:将机械能转化为电能,供给家庭和工业使用。

•变压器:调节电能的电压,以适应不同场合的需要。

•感应炉:用于金属加热、熔炼等工业应用。

法拉第电磁感应定律

法拉第电磁感应定律

在极短时间 Δt 内电阻 R 上产生的热量为:ΔQ= I2RΔt 2 由 I -t 图象可得, s 时间内电阻 R 上产生的热量 4 1 为:Q= ×4× 0.16×9 J=2.88 J. 2
【答案】
(1)0.4 N
(2)2.88 J
【名师归纳】
求感应电动势时,首先应弄清产
生感应电动势的类型,然后选取适当规律.
④E=Blv中的速度v是相对于磁场的速度,若磁场也运 动时,应注意速度间的相对关系.
⑶导体棒以棒上某点为轴在垂直磁场平面内匀速转动 切割磁感线产生感应电动势: ①导体棒以端点为轴匀速转动: 1 2 E Bl 2 ②导体棒以棒中点为轴匀速转动: A E=0 O ω B (AO或BO两点的电势差不为零。)
解析: ACD.导体切割磁感线产生感应电动势, 选 由右 手定则可知,感应电流方向不变,A 正确. 感应电动势最大值即切割磁感线等效长度最大时的电 动势,故 Em=Bav,C 正确. ΔΦ E= ① Δt 1 2 ΔΦ=B·πa ② 2 2a Δt= ③ v 1 由①②③得 E = πBav,D 正确. 4 故本题应选 B
变式训练 如图所示,平行导轨间距为d,左端跨 接一个电阻R,匀强磁场的磁感应强度为B,方向 垂直于平行金属导轨所在平面.一根金属棒与导轨 成θ角放置,金属棒与导轨的电阻均不计.当金属 棒沿垂直于棒的方向以恒定的速度v在金属导轨上 滑行时,通过电阻R的电流是( )
Bdv A. R Bdvcosθ C. R Bdvsinθ B. R Bdv D. Rsinθ
二.法拉第电磁感应定律 1、法拉第电磁感应定律 ⑴内容:电路中感应电动势的大小,跟穿过这一电路 的磁通量变化率成正比.
E ⑵公式: n t
(n为线圈的匝数)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、感应电动势(E)
1.定义: 在电磁感应现象中产生的电动势。 2.磁通量变化越快,感应电动势越大。
二、法拉第电磁感应定律
1.内容: 电路中感应电动势的大小,跟穿过这一
电路的磁通量的变化率成正比。
E Φ t
E K Φ t
E n Φ t
(n为线圈的匝数)
(K是一个常数)
电动机转动是时,线圈 中产生的感应电动势 总要削弱电源电动势 的作用,阻碍线圈的转
动. ──反电动势
2.电动机由于机械故 障停转,要立即切断 电源。
2.一个矩形线圈,在匀强磁场中绕一个固定轴做 匀速转动,当线圈处于如图所示位置时,它的:
√A.磁通量最大,磁通量变化率最大,感应电动势最大 B.磁通量最小,磁通量变化率最大,感应电动势最大 C.磁通量最大,磁通量变化率最小,感应电动势最大 D.磁通量最小,磁通量变化率最小,感应电动势最大
法拉第电磁感 应定律
实验回顾
电磁感应现象

SS
NN
②S
N
K
? Ф △Ф

t
磁通量Ф 磁通量变化△Ф 磁通量变化率与电
磁感应的关系
磁通量Ф
物理意义
穿过回路的磁感 线的条数
与电磁感应的关 系
无关
磁通量变化△Ф 穿过回路的磁通 感应电动势产生
量的变化量
的条件
磁通量变化率

t
穿过回路的磁通 决定感应电动势
例:如图所示,一个50匝的线圈的两端跟 R=99Ω的电阻相连接,置于竖直向下的匀强 磁场中,线圈的横截面积是20㎝2,电阻为 1Ω,磁感应强度以100T/s的变化率均匀减 少。在这一过程中通过电阻R的电流为多大? 线圈某一横截面内通过的电荷量是多少?
解析: E n n B S
t
t
导体棒的受力情况、运动情况。求出导体
棒运动的最大速度。
a
V
F
b
a
水平方向
受力分析:
F
F安
F
b
F合=F- F安
运动分析: v
E
I
F合 a
N
a=0?
Y
Vm
当F=F安时,a=0, 此时导体棒最大速度为:
vm

F(R r) B 2 L2
拓展
B
N
F安
G
当mgsinθ =F安时,a=0,此时导体棒最大速度为:
§16.2 法拉第电磁感应定律
——感应电动势的大小
一、感应电动势(E)
二、法拉第电磁感应定律
1.内容: 电路中感应电动势的大小,跟穿过这一
电路的磁通量的变化率成正比。
2.数学表达式: E n Φ (n为线圈的匝数)
t
平均磁通
变化率
Φ t
2 1 t2 t1
平均感应电动势 E
如图所示,导线全部为裸导线,半径为r的圆导线 处在垂直于圆平面的匀强磁场中,磁感应强度为B, 方向如图。一根长度大于2r的直导线阻为R, 其余电阻忽略不计。在滑动过程中,通过电阻R的电 流的平均值为__________;当MN从圆环左端滑到右 端的过程中,通过R的电荷量为_________,当MN通 过圆环中心O时,通过R的电流为_________.
t ②E只与Δφ/Δt有关, 而与Φ、Δφ无关。
思考与讨论:
如图所示,长度都是L、质量都为m的两金属杆ab、cd放在水平 放置的足够长的金属导轨MN、EF上,磁感应强度为B的匀强磁 场强度竖直向上,若ab以速度v向右运动,试回答下列问题: (不计一切摩擦且导轨足够长) (1)cd杆将向哪儿动? (2)两金属杆各做什么性质的运动? (3)从开始运动直到最后,在金属框架上消耗掉的能量有多少
而F安

BLv

B2 L2v R
线框下落的高度应为:
h0

v2 2g

m2 gR 2B4 L4
l
F安 h0
v
B
mg
若h h0 v 2gh0
l
F安

BLI

B2L2v R

mg
F安
h0
线框作减速运动, 且加速度不断减小
v
B
mg
若h h0 v 2gh0
l
F安

BLI

B2L2v R

直流电激励电磁铁: 此时环行真空室中只有恒定的磁场,电子在室内只做匀速圆 周运动。
交流电激励电磁铁:
当激励电流增加时,真空室中既有磁场又有有旋电场,电子在其 中得到加速。磁场变化越快,电子的加速越明显。
三、重要的推论
如图所示闭合线圈一部分导体ab处于匀强磁
场中,磁感应强度是B,ab以速度v匀速切割磁感
线,求产生的感应电动势。
解:回路在时间t内增大的面积
为: ΔS=LvΔt
穿过回路的磁通量的变化
为:ΔΦ=BΔS =BLvΔt
产生的感应电动势为:
G
E Φ BLvt BLv
t t
若导体斜切磁感线
当速度v与磁感应强度B不垂直时,可 将 动 感势 应B分无电解贡动为献势平):行,于垂速直度于分速量度B分||(量对B感,应则电
E Blv Blv sin
为B、v之间的夹角 B
B
B V1=Vsinθ
θ
V2
v
I

B||
v
感应电动势
B
L
v
公式BLv中的L指的是切割磁感线的有 效长度。在上图中E=BLv,L是圆弧切割磁 感线的有效长度。
50100 20104 10V
I E 10 0.1A R r 99 1
巩固练习:
1.穿过一个单匝线圈的磁通量始终为每秒钟 均匀地增加2 Wb,则:
A.线圈中的感应电动势每秒钟增加2 V
√B.线圈中的感应电动势每秒钟减少2 V
C.线圈中的感应电动势始终是2 V D.线圈中不产生感应电动势
c
a
B
M
N
E
d
b
F
例题5
如图,质量为m,电阻为R,边 l
长为l的正方形线圈从一匀
强场区域上方高h处自由下
落。设磁场的磁感应强度
为B,方向如图,试分析:
h
在线圈下边刚进入磁场到
上边尚未进入磁场的过程
B
中,线圈有可能做什么运
动,并讨论其条件。
下落h高度,线框速度为:
v 2gh
若此时线框恰匀速进入磁 场,应满足:F安=mg
铁芯
磁场 B
线圈
电 子束
环形 真空室
基本原理 应用感生电场加速电子的电子感应加速器( betatron ) ,是
感生电场存在的最重要的例证之一。 实验装置及原理:
在电磁铁的两极之间安置一个环形真空室,当用交变电流励 磁电磁铁时,在环形室内就会感生出很强的、同心环状的有 旋电场。用电子枪将电子注入环形室,电子在有旋电场的作 用下被加速,并在洛仑兹力的作用下,沿圆形轨道运动。
例题1
如图,设匀强磁场的磁感应强度为B,导 体棒ab的长度为L,以速度v在导轨上向右匀 速运动。求此时a、b两点间的电势差。已 知导轨的总电阻为R,导体棒ab的电阻为r。
a
R
v
b
例题2
在上题中,导体棒ab的质量为m。若开始
导体棒ab在导轨上静止,用一水平向右的
恒力F拉导体棒,使它向右运动,试分析
A





v
体内产生动生电动势。 B

一、动生电动势的起因



B




自由电子所受的洛仑兹力 fL e(v B)
产生动生电动势的实质是由于运动导体中的电荷在
磁场中受洛仑兹力 fL 的结果。
电子感应加速器:在涡旋电场作用下, 电子可以被加速到 10 —100 MeV。
量的变化快慢
的大小
§3. 法拉第电磁感应定律
——感应电动势的大小
一、感应电动势(E)
1.定义: 在电磁感应现象中产生的电动势。
2.磁通量变化越快,感应电动势越大。
磁通量

磁通量变化
2 1
磁通量变化快慢 Φ 2 1 t t2 t1
§3. 法拉第电磁感应定律
——感应电动势的大小
C
B
A
O
R
【例题5】线框在磁场中的转动
如图所示,边长为a的正方形金属线圈绕通 过OO′轴,以角速度ω做匀速转动,匀强磁 场的磁感应强度为B,求下列情况的平均感 应电动势 1)线框从图示位置转过900
2)线框从图示位置转过1800
3)线框从图示位置转过300
o
O’
四.反电动势
1.既然线圈在磁场中转动,线圈中就会产生感应电动势。 感应电动势加强了电源了产生的电流,还是削弱了它? 是有得于线圈的转动,还是阻碍了线圈的转动?
(πBrv/2R, πBr2/R,2Brv/R)
应用举例
例1、如图所示为穿过某线路的磁通量Φ随 时间t变化的关系图,试根据图说明: (1)穿过某线路的磁通量Φ何时最大?
何时最小? (2)Δφ/Δt何时最大?何时最小? (3)感应电动势E何时最大?何时最小?
Φ
O
t1 t2
注意区分几个物理量: t3 t4 ①Φ、Δφ、Δφ/Δt
例4:如图所示,在磁感应强度为B的匀强
磁场中,有半径为r的光滑半圆形导体框架。OC 为一端绕O点在框架上滑动的导体棒,OA之 间连一个阻值为R的电阻(其余电阻都不计), 若使OC以角速度ω匀速转动。试求: (1)图中哪部分相当于电源? (2)感应电动势E为多少? (3)流过电阻R的电流I为多少?
相关文档
最新文档