九年级圆的认识 ppt课件

合集下载

圆的认识PPT课件

圆的认识PPT课件
理解圆的基本概念和性质
通过学习,学生应能理解并掌握圆的基本概念和性质,如圆上各点到圆心的距 离相等、直径是半径的两倍等。
培养空间观念和推理能力
通过观察、操作和推理,培养学生的空间观念和推理能力,为后续学习奠定基 础。
02
圆的基本性质
圆的定义
总结词
圆的定义是平面内到定点距离等种非常有用的几何图形,它在日常生 活和工业生产中有着广泛的应用。例如,轮 胎的设计就是利用了圆的旋转不变性,使得 车辆能够平稳地行驶;钟表的设计也是利用 了圆的知识,才能够准确地计量时间;餐具 中的盘子、碗等也是利用了圆的知识来设计
,使得它们能够方便地使用和清洗。
05
圆的切线和半径的关系
生活品质。
圆在日常生活中的应用还体现在 艺术和装饰方面,如圆形图案的 运用,增添了物品的美感和时尚
感。
圆在科学实验中的应用
圆在科学实验中具有广泛的应用,如物理学中的圆周运动、化学中的分子结构、生 物学中的细胞结构等。
圆在科学实验中的应用能够简化实验设计和数据分析过程,提高实验的准确性和可 靠性。
圆在科学实验中的应用还体现在工程技术和科学研究方面,如航天器轨道的设计、 天体运行规律的探索等。
切线的定义和性质
切线的定义
切线是一条与圆只有一个公共点的直 线,这个公共点叫做切点。
切线的性质
切线与半径垂直,切线与半径相交于 切点。
切线和半径的关系
切线与半径垂直
切线与经过切点的半径垂直,这是切线的基本性质。
切线与半径相交于切点
切线与半径在切点处相交,这是切线的另一个重要性质。
切线定理的应用
圆的认识ppt课件
• 引言 • 圆的基本性质 • 圆的周长和面积 • 圆的对称性和旋转不变性 • 圆的切线和半径的关系 • 圆的综合应用

圆的认识ppt课件

圆的认识ppt课件
很多交通工具如轮胎、轮毂和车盖等都采用 圆形设计,因为这种形状可以减少摩擦和风 阻,提高行驶效率。
管道
在建筑和家庭装修中,圆形管道通常被用来 连接水管、电线和暖气管道等,因为这种形 状可以保证液体或气体流畅地流动,减少堵 塞和磨损。
艺术中的圆的应用
雕塑
许多雕塑作品如球体、花瓶和头 像等都采用圆形设计,因为这种 形状可以增强作品的美感和立体
对未来进一步学习和研究圆的展望
01
深入研究圆的性质
进一步学习和研究圆的性质, 包括圆与其他图形的联系和区 别,以及圆在各种不同情况下 的表现。
02
探讨圆的实际应用
通过研究和实践,进一步探索 圆在各个领域中的应用,如建 筑设计、机械设计、包装设计 等。
03
圆的拓展学习
学习与圆有关的其他知识,如 立体几何、解析几何等,以更 全面地了解圆的性质和应用。
平面图形。
圆的相关公式和定理
圆的中心位置由圆心决定,圆心到圆周上任 意一点的距离都相等。圆的面积和周长与半 径有关,半径越大,面积和周长也越大。
圆的性质
包括圆的周长公式(C=2πr)、圆的面积公 式(S=πr²)以及垂径定理、圆周角定理等

圆的应用
圆在现实生活中有着广泛的应用,如车轮、 方向盘、钟表等都采用了圆形的形状,因为 它具有旋转不变性和对称性。
04
发展圆的创新应用
通过研究和创新,发展更多具 有创新性和实用性的圆的应用 ,推动科学技术的发展。
感谢您的观看
THANKS
使用铅笔和尺子,从圆心 开始,以确定的半径为长 度,绘制出一条弧线。
完成绘制
在完成绘制后,检查是否 符合所需的形状和大小。
使用代码绘制圆
定义圆心和半径

圆 初三 ppt课件ppt课件ppt

圆 初三 ppt课件ppt课件ppt

圆的性质
01
圆的直径是半径的两倍 ,半径是直径的一半。
02
圆内接正多边形的所有 边都相等,所有内角也 都相等。
03
圆的外切正多边形的所 有边都相等,所有内角 也都相等。
04
圆的周长和面积都随着 半径的增加而增加。
圆的度量
圆的周长公式
C = 2πr,其中r是圆的半径。
圆的面积公式
A = πr^2,其中r是圆的半径。
圆弧的长度公式
圆内接多边形的周长和面积公式
L = θ/360° × 2πr,其中θ是圆心角的大小 ,r是圆的半径。
P = nπr/180,A = nr^2/4,其中n是多边 形的边数,r是圆的半径。
02 圆的对称性
圆的中心对称性
总结词
圆关于其圆心对称
详细描述
圆关于其圆心具有中心对称性 ,即任意一点关于圆心的对称 点也在圆上。
• 总结词:掌握圆的综合问题需要理解圆的性质和定理,以 及与其他几何知识的结合。
圆的综合问题 圆的综合问题
圆的综合题解题思路 利用圆的性质和定理解决实际问题。
结合其他几何知识,如三角形、四边形等,进行解题。
圆的综合问题 圆的综合问题
运用代数、方程等数学方法进行求解。 圆的综合题解题方法
观察题目,分析已知条件和未知量。
C = 2πr,其中r是圆的半 径,π是一个常数约等于 3.14159。
周长计算方法
使用圆的半径计算出周长 ,可以通过公式直接计算 ,也可以使用计算器或图 形计算软件进行计算。
周长计算实例
假设一个圆的半径为5厘 米,那它的周长就是 31.4厘米。
圆在几何作图中的应用
圆规作图
圆规是用来画圆的工具,通过固定半径长度,可以在纸上 画出标准的圆形。

圆初三ppt课件ppt课件

圆初三ppt课件ppt课件
圆的综合问题
圆的综合问题的解题思路
明确题意
首先需要仔细阅读题目,明确题目所给的 条件和要求。
总结答案
最后,对答案进行总结和整理,确保答案 的准确性和完整性。
分析问题
对题目进行深入分析,找出与圆相关的条 件和信息,并尝试将问题转化为与圆相关 的数学模型。
计算和证明
根据选择的数学工具进行计算和证明,得 出结论。
圆初三ppt课件
目录
• 圆的定义与性质 • 圆的周长与面积 • 圆的切线与弦 • 圆与直线的位置关系 • 圆的综合问题
01
CATALOGUE
圆的定义与性质
圆的定义
圆上三点确定一个圆
在平面内,三个不共线的点可以确定 一个圆,通过这三个点的圆是唯一的 。
圆上两点之间的距离
圆心和半径
圆心是圆上所有点的中心点,半径是 从圆心到圆上任一点的线段。
利用直线与圆交点的个数
通过判断直线与圆交点的个数,可以确定圆与直线的位置关 系。
圆与直线的位置关系的应用
几何作图
在几何作图中,利用圆与直线的位置关系可以确定某些图形的位置和大小。
实际问题解决
在解决实际问题时,如拱桥设计、管道铺设等,需要考虑圆与直线的位置关系以 符合工程要求。
05
CATALOGUE
C = 2πr,其中C表示圆的周长,r表示圆的半径 ,π是一个常数,约等于3.14159。
3
圆的周长的应用
在日常生活和生产实践中,常常需要计算圆的周 长,例如计算车轮的周长、管道的周长等。
圆的面积
圆的面积的定义
圆的面积是指圆所占平面的大小。
圆的面积的计算公式
A = πr²,其中A表示圆的面积,r表示圆的半径,π是一个常数,约 等于3.14159。

圆(22张PPT)2024—2025学年九年级数学上册

圆(22张PPT)2024—2025学年九年级数学上册
圆的集合性定义(静态定义):
圆是______________________________ 点的集合.
平面内到定点的距离等于定长的
注:其中定点为圆心,定长为半径.
m.
(1)画出下列图形:到点P的距离等于1cm的点的集合;到点Q的距离等于1.5cm的点的集合.
拓展延伸
1.下列条件中,能确定圆的是( B )
A.以已知点O为圆心
B.以已知点O为圆心,2cm为半径
C.以2cm为半径
D.经过已知点A,且半径为2cm
2.若☉O的直径为10cm,点A到圆心O的距离OA=6cm,则点A与☉O的位置关系为( C )
A.点A在☉O上
B.点A在☉O内
C.点A在☉O外
D.无法确定
1cm
1.5cm
(2)在所画图中,到点P的距离等于1cm且到点Q的距离等于1.5cm的点有几个?在图中将它们表示出来.
(3)在所画图中,到点P的距离小于或等于1cm,且到点Q的距离大于或等于1.5cm的点的集合是怎样的图形?在图中将它表示出来.
例1 图已知矩形ABCD的边AB=3cm,AD=4cm,以点A为圆心,4cm为半径作⊙A,则点B、C、D与⊙A的位置关系为:
圆是______________________________ 点的集合.
平面内到圆心的距离等于半径的
圆的内部是______________________________点的集合.
圆的外部是______________________________点的集合.
平面内到圆心的距离小于半径的
平面内到圆心的距离大于半径的
点B在_______; 点D在_______; 点C在_______;
3cm

苏科版数学九年级上册2.1《圆的认识 》(共18张PPT)

苏科版数学九年级上册2.1《圆的认识 》(共18张PPT)

r•
r
do
半径与直径的关系
r r
•r do
半径与直径的关系
r
• do
r r
半径与直径的关系
r
• dor
r=
d 2
我们来画圆
你知道圆规画圆的道理吗? 请你画一个半径3厘米的圆。
我们来画圆
请你再画一个圆,要比原来这个小得多。
如果要画一个比原来这个圆大得多的 圆,你想怎么画? 根据刚才画圆的经验,谁能说一说圆的 大小由什么决定?
(× ) (× )
(√ )
(× )
2.6 5.2
练习:
3 选择题:
(1)画圆时,圆规两脚间的距离是( A )。
A.半径长度 B.直径长度
(2)从圆心到( C )任意一点的线段,叫半径。
A.圆心
B.圆外
C.圆上
(3)通过圆心并且两端都在圆上的( B )叫直径。
A.直径
B.线段
C.射线
探究新知
拿出准备好的圆形纸片,你可 以独立行动,也可以和周围的同学 合作,你可以折一折,也可以量一 量,你能发现什么?
认识圆
·
· 直径 d
半径 r
O
圆心
图中哪些是半径?哪些是直径?哪些不是,为什么?
G E
C
F
B
M
o
D
N H
比一比,看一看
比一比,看一看
• o
比一比,看一看
• o
半径与直径的关系
我们来画圆
请你在白纸上画5个半径3.5厘米的圆。
现在我们画出的圆一样大,但位置 不同,为什么?圆的位置是由什么 决定的?
练习:
1 判断:
(1)在同一个圆内只能画100条直径。 (2)所有的圆的直径都相等。 (3)等圆的半径都相等。 (4)两端都在圆上的线段叫做直径。

5.1《圆的认识》课件(21张PPT)

5.1《圆的认识》课件(21张PPT)
有了轮子, 运输胡萝卜 真省力呀!
课堂总结
这节课我们学习了什么?通过这节课的学习,你有什么收获?
填一填。
(1)在一圆中,半径有(无数)条,直径有(无数 )条,直径的长度是
半径的( 2倍 ),半径的长度是直径的( 一半)。 (2)圆的位置由( 圆心)决定,圆的( 大小)由半径决定。 (3)填表。(单位:cm)
(1)小圆的直径是多少厘米? 15÷(2+1)=5(cm) 答:小圆的直径是5 cm。
(2)长方形的面积是多少平方厘米? 5×2=10(cm) 15×10=150(cm2) 答:长方形的面积是150 cm2。
布置作业
(1)教材58页“做一做”1、2题。 (2)教材60页1、2题。
5.1《圆的认识》
圆在生活中随处可见,让我们一起来欣赏一下吧!
定半径
定圆心
旋转一周
圆心 O
圆心到圆上任意一点的距离都相等。
连接圆心和圆上任意一点的线段叫做半径, 半径一般用字母r表示。
圆心 半径r O
在同一圆里有无数条半径,所有半径的长度相等。 `
圆心 O 直径d
通过圆心,两端点在圆上,长度相等。
r
6
2.8
5.6
12.5
d
12
0.39
0.78
25
判一判。(对的画“√”,错的画“×”)
(1) 圆 的 半 径 和 直 径 分 别 相 等 。
(2)两端都在圆上的线段就是直径。
× (× ) ()
看图填空。 (1)圆的直径是(3 cm ),圆的半径是1(.5 cm )。
(2)半圆的半径是(5 cm ),半圆的直径是(10 cm )。 (3)长方形的长是(8 cm ),长方形的宽是(4 cm )。

圆 初三 ppt课件ppt课件

圆 初三 ppt课件ppt课件

CHAPTER
06
圆的综合题解题思路
圆的综合题解题方法
利用圆的性质
根据圆的性质,如圆周 角定理、垂径定理等, 推导出其他相关条件或
结论。
数形结合
将圆的性质与代数方程 相结合,通过代数运算
解决问题。
构造辅助线
在解题过程中,根据需 要构造辅助线,以连接 圆上的点或与其他图形
建立联系。
运用相似三角形
在解题过程中,通过构 造相似三角形,利用相 似三角形的性质解决问
THANKS
感谢观看
详细描述
圆的一般方程是$x^{2} + y^{2} + Dx + Ey + F = 0$,其中$D, E, F$是三个系数 。这个方程表示所有满足这个方程的点都在圆上。通过解这个方程,可以得到圆 上三个点的坐标。
圆的参数方程
总结词
圆的参数方程是一种基于三角函数的描述圆的方式,它通过 角度和半径来描述圆上的点。
题。
圆的综合题解题技巧
寻找隐含条件
在题目中寻找隐含条件,这些条件可 能对解题起到关键作用。
化复杂为简单
将复杂的问题分解为多个简单的问题 ,逐一解决,最后再综合起来。
利用特殊到一般的思路
先考虑特殊情况,再推广到一般情况 ,这样有助于找到解题思路。
注意图形的变化
在解题过程中,注意图形的变化,如 角度、长度等的变化,并利用这些变 化解决问题。
VS
详细描述
根据圆的对称性质,我们可以利用已知圆 上的任意一点或直径两端点来作出一个与 已知圆相切或重合的新圆。具体操作包括 通过圆心和已知圆上一点作圆,以及通过 两个已知圆的中心和它们之间的距离作圆 。
利用已知点作圆

《圆的认识》公开课课件

《圆的认识》公开课课件
归纳法
通过大量实例和观察,归纳出一般 性的结论。在圆的证明中,有时可 以通过归纳法来证明一些性质。
圆的定理和推论
垂径定理
垂直于弦的直径平分该弦,并且 平分弦所对的弧。这个定理是圆 的基本性质之一,在圆的证明和
作图中非常有用。
切线长定理
经过圆外一点的切线与切点之间 的线段长等于过切点的直径与该 点的距离。这个定理在解决与切
圆与三角形的相切
当一个三角形与圆相切时,切线 与半径垂直。利用这个性质,我 们可以解决一些几何问题。
圆与其他图形的结合
圆与直线的位置关系
根据圆心到直线的距离,我们可以判 断圆与直线是相交、相切还是相离。 这些位置关系在解决几何问题中非常 有用。
圆与多边形的结合
在一个多边形中,如果所有顶点都在 同一个圆上,则这个多边形称为圆内 接多边形。通过圆内接多边形的性质 ,我们可以研究圆的性质。
圆的面积是指圆所占平面的大小,通常用字母A表示。
圆的面积的计算公式
A = πr^2,其中r表示圆的半径。
圆的面积的应用
通过圆的面积公式,我们可以计算出圆的面积,进而求出圆内接多 边形的面积等。
圆的相关计算
圆的相关计算包括:求圆心角、圆弧长、圆内接多边形的面 积等。这些计算都需要用到圆的半径和直径,以及相关的数 学公式和定理。
圆与圆的关系
内含、相交、外离、同心
内含:一个圆完全位于另 一个圆的内部。
外离:两个圆没有公共的 交点。
相交:两个圆有公共的交
同心:两个圆有共同的圆
•·
点。
心。
圆在生活中的应用
轮胎、餐具、建筑、天文
轮胎:车辆的轮胎设计为 圆形,可以保证平稳滚动 。
建筑:圆形窗户和门框在 建筑中常用于装饰和结构 。

《圆的认识》圆PPT优秀教学课件

《圆的认识》圆PPT优秀教学课件

04
圆的综合应用举例
求解切线方程问题
切线定义及性质
典型例题解析
回顾切线定义,阐述切线与半径垂直 的性质。
选取具有代表性的切线方程问题,详 细解析求解过程。
切线方程求解方法
通过圆心坐标和切线斜率,利用点斜 式或斜截式求解切线方程。
求解切线长问题
切线长定义及性质
回顾切线长定义,阐述切线与半 径、切线长与弦长的关系。
圆心、半径和直径
01
02
03
圆心
圆的中心,用字母O表示。
半径
连接圆心和圆上任意一点 的线段,用字母r表示。
直径
通过圆心且两端点都在圆 上的线段,用字母d表示, 且d=2r。
圆的周长与面积
圆的周长
围绕圆形绘制的线的长度,计算公 式为C=2πr或C=πd。
圆的面积
圆形所占平面的大小,计算公式为 S=πr²。
半径
03
一般方程中,半径$r=frac{sqrt{D^{2}+E^{2}-4F}}{2}$。
圆的参数方程
01 02
定义
以点$O(a,b)$为圆心,$r$为半径的圆的参数方程为 $left{ begin{array}{l} x=a+rcostheta y=b+rsintheta end{array} right.$,其中$theta$为参数。
求解割线性质问题
割线性质概述
总结割线的性质,如割 线与半径的关系、割线 定理等。
割线性质应用
利用割线性质解决与圆 相关的角度、长度等问 题。
典型例题解析
选取具有代表性的割线 性质问题,详细解析求 解过程。
05
与圆相关的数学问题拓展
点到直线距离公式推导及应用

初三 圆 ppt课件ppt课件

初三 圆 ppt课件ppt课件
圆的作图方法
通过给定三点的作圆方法
总结词
三点确定一个圆
详细描述
通过给定的三个不共线的点,可以确定一个唯一的圆。首先 确定圆心,为三个给定点构成的线段的垂直平分线的交点, 然后确定半径,为两端的点作圆的方法
总结词
直径确定圆的位置和大小
详细描述
已知直径的两端点,可以确定圆的位 置和大小。首先确定圆心,为给定两 点连线的中点,然后确定半径,为从 圆心到任意一点的距离。
证明方法
利用圆的性质和几何推理进行证明。
应用
在几何问题中,圆与圆的位置关系定理常用于解决与两圆位置和大 小相关的问题。
03
CATALOGUE
圆的实际应用
生活中的圆
总结词:无处不在
详细描述:圆在日常生活中随处可见,如车轮、餐具、建筑结构等,它具有旋转 对称性和美观性。
圆在几何图形中的应用
总结词:基础图形
初三 圆 ppt课 件ppt课件
目录
• 圆的基本概念 • 圆的性质与定理 • 圆的实际应用 • 圆的作图方法 • 圆的习题与解析
01
CATALOGUE
圆的基本概念
圆的基本性质
圆上三点确定一个圆
不在同一直线上的三个点可以确定一 个唯一的圆,这三个点称为圆的三个 基本元素,分别是圆心、半径和直径 。
通过给定圆周上四点的作圆方法
总结词
四点确定一个圆的位置和大小
详细描述
已知圆周上的四个点,可以确定一个 唯一确定的圆。首先通过任意三点确 定一个圆,然后通过第四点与圆心的 连线与圆的交点确定新的圆心和半径 。
05
CATALOGUE
圆的习题与解析
基础题目解析
总结词
掌握基础概念

《初三数学圆》课件

《初三数学圆》课件

圆和其他几何图形
总结词
利用圆的性质解决其他几何图形问题
详细描述
除了三角形和四边形,圆的性质还可以应用于其他几何图形问题中。例如,在解决与球 体、柱体、锥体等相关的问题时,可以通过引入辅助圆或利用圆的相关性质来简化问题
,提高解题效率。
THANKS
切线的性质
切线与半径垂直,切线与 半径相交于切点。
切线的判定
如果直线经过半径的外端 并且垂直于半径,那么这 条直线就是圆的切线。
切线的判定定理
01
切线的判定定理:如果一条直线同时满足以下 两个条件,则它是圆的切线
03
2. 与半径垂直。
02
1. 经过半径的外端;
04
应用:利用切线的判定定理可以判断一条直线是否 为圆的切线,从而确定切点。
圆心和半径
总结词
圆心是圆的中心点,半径是从圆心到 圆上任一点的线段。
详细描述
圆心位于圆的中心,是圆的对称轴。 半径是从圆心到圆上任一点的线段, 所有的半径长度都相等。半径的长度 决定了圆的大小。
圆的性质
总结词
圆的性质包括其对称性、旋转不变性和相似性等。
详细描述
圆具有旋转不变性和对称性,这意味着旋转一个圆或其任何部分不会改变其形 状或大小。此外,相似的圆具有相同的面积和周长,但可以有不同的半径或圆 心位置。
《初三数学圆》ppt课件
$number {01}
目录
• 圆的基本性质 • 圆的周长和面积 • 圆和直线的位置关系 • 圆的切线定理 • 圆的定理和推论 • 圆的综合应用
01
圆的基本性质
圆的定义
总结词
通过一个定点,在平面上作所有 与定点等距离的点的集合形成的 图形称为圆。

初中数学人教九年级上册第二十四章圆圆的概念PPT

初中数学人教九年级上册第二十四章圆圆的概念PPT
圆是一种基本的几何图形,
圆形物体在生活中随处可见。
圆也是一种和谐、美丽的图形,无 论从哪个角度看,它都具有同一形状。 十五的满月、圆圆的月饼都象征着圆满、 团圆、和谐。
古希腊的数学家毕达 哥拉斯认为:“一切立体图 形中最美的是球,一切平面 图形中最美的是圆”。
乐在其中
祥子
一石激起千层浪
二、圆的概念
确定一个圆的要素:
一是圆心, 圆心确定其位置, 二是半径, 半径确定其大小.
O
A
同步练习
1、填空: (1)根据圆的定义,“圆”指的是
“ 圆周 ”,而不是“圆面”。 (2)圆心和半径是确定一个圆的两个 必需条件,圆心决定圆的 位置 , 半径决定圆的 大小 ,二者缺一不 可。
议一议、说一说
1、车轮为什么做成圆形的?
同心圆
• 同心圆:圆心相同而半径不等的两个圆或多个圆。
圆心相同,半径不同
半径相同,圆心不同
想一想
判断下列说法的正误: (1)弦是直径;( )
(2)半圆是弧; (
)
(3)直径是最长的弦;( )
(4)圆心相同,半径相等的两个圆是同心圆;( )
(5)半径相等的两个圆是等圆.( )
A
如图,在⊙中O OB是半径,AC是
圆的性质:
圆上各点到定点(圆心O)的距离都等于定长(半径r)
玩一玩
体育课时,要同学们在距离老师5m的位置集合,这样的队形你会站吗? 总结归纳:到定点的距离等于定长的点都在同一个圆上.
圆的第二定义(集合定义):在同一平面内,所有到定点O的距离等于 定长r的点的集合.
Hale Waihona Puke 与圆有关的概念弦 连接圆上任意两点的线段(如图
祝同学们学习进步,学有所成!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
固定的端点O叫做圆心
r

线段OA叫做半径
以点O为圆心的圆,记作“⊙O”, 读作“圆O”.
PPT课件
我国古人很早对 圆就有这样的认 识了,战国时的 《墨经》就有 “圆,一中同长 也”的记载.它 的意思是圆上各 点到圆心的距离 都等于半径. 5
例1根据条件作图: (1)以o为圆心作圆 (2)以4厘米为半径作圆 (3)以AB=4厘米为直径作圆
C
A
B
D
PPT课件
19
设CD=3cm,作图说明满足下列要求的图形:
(4)到点C和点D的距离都小于2cm的所有点 组成的图形.
C
A
B
D
PPT课件
20
设CD=3cm,作图说明满足下列要求的图形: (4)到点C和点D的距离都小于2cm的所有点 组成的图形.
C
B
A
D
PPT课件
21
设CD=3cm,作图说明满足下列要求的图形: (5)到点C的距离小于2cm,且到点B的距离 大于2的所有点组成的图形.
C
A
B
D
PPT课件
22
用一用
如图,一
根 3m 长 的 绳 子 ,
一端栓在柱子
上,另一端栓
着一只羊,请
5
画出羊的活动
区域.
PPT课件
23
5m 4m o
5m 4m o
正确答案
PPT课件
24
GOOD-BYE !
PPT课件
25
例3如图,AB,CD为圆O的两条直径,
求证(1)四边形ABCD为矩形
(2)若M,N为AO,BO的中点,则 CMDN为平行四边形
归纳:圆的定义2:圆心为O、半径为r的圆可以 看成是所有到定点O的距离等于定长r 的点组 成的图形.
PPT课件
8
动态:如图,在一个平面内,线段OA绕 它固定的一个端点O旋转一周,另一个 端点A所形成的图形叫做圆.
静态:圆心为O、半径为r的圆可以看成 是所有到定点O的距离等于定长r 的点组 成的图形.
FB
(4)线段EF、GH 是弦吗?__不__是___.
AH
C
K
Q
PPT课件
13
A 1.如图,半径有:____O_A_、__O_B_、__O_C_
B 若∠AOB=60°,
O●
则△AOB是等___边_____ 三角形.
2.如图,弦有:_A_B_、__B_C_、__A_C____
C 在圆中有长度不等的弦,
PPT课件
17
第5题
例2.设CD=3cm,作出满足下列要求的图形:
(1)到点C的距离都等于2cm的点组成的 图形.
(2 )到点D的距离都等于2cm的点组成的图形.
(3)到点C和点D的距离都等于2cm的所有 点组成的图形.
PPT课件
18
设CD=3cm,作图说明满足下列要求的图形:
(3)到点C和点D的距离都等于2cm的所有点 组成的图形.
第24章 圆
PPT课件
1
圆是生活中常见的图形,许多物体都给我们以圆的形象.
一石激起千层浪PPT课件
2
天安门广场 国庆花坛
城市立体交通
PPT课件
3
一切平面图形中最美的是圆! 圆是和谐,圆是美好,圆是…….
什么是圆?
PPT课件
4
圆的概念
如图,在一个平面内,线段OA绕它固定的一个
端点O旋转一周,另一个端点A所形成的图形叫做圆.
3.如图,图中有__1__条直径,__2__条非直径的弦,圆中
以A为一个端点的优弧有__4__条,劣弧又有_4___条.
4.如图, ⊙O中,点A、O、D以及点B、O、C分别在一直线
上,图中弦的条数为__2___。
5.CD为⊙O的直径,∠EOD=72°,AE交⊙O于B,
且AB=OC,则∠A=__2_4_°___.
× 10、半圆是弧,但弧不一PP定T课是件 半圆.
28
思考
某部队在灯塔A的周围进行爆破作业,A的周围 3km内的水域为危险区域,有一渔船误入离A点 2km的B处,为了尽快驶离危险区域,该般应沿 什么方向航行?
连接圆上任意两点的线段(图中的线段AB、AC)。
直径
经过圆心的弦(图中的AB)。
B
注意:
直径
凡直径都是弦,是圆中最长的弦
O.
但弦不一定是直径.
C
A
PPT课件

12
即时考你:
如图(1)直径是___A__B__;
P
(2)弦是__C_D_、__D_K__、__A_B_; E
. (3) PQ是直径吗?__不_是___; G O
PPT课件
6
1.要确定一个圆,必须确定圆的
圆__心__和_半_ 径__
O
圆心确定圆的位置,

半径确定圆的大小.
这个以点O为圆心的圆叫作“圆O”,记为 “⊙2.圆O”是指. “圆周”,是曲线,而不是“圆面”。
3.同一个圆的半径处处相等。
PPT课件
7
从画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离都等 于定长(半径r); (2)到定点的距离等于定长的点都在圆上.
直径是圆中最长的弦。
PPT课件
14
圆弧:连接圆上任意两点间的部分叫做圆弧,简称弧.
以A、B为端点的弧记作 AB , 读作:“圆弧AB”或“弧AB”。
大于半圆的弧(用三个点表示,如: 叫做优弧;
),
小于半圆的弧叫做劣弧. 如:
圆的任意一条直径的两个端点把圆分成两条弧,
每一条弧叫做半圆.
PPT课件
15
PPT课件
27
√ 1、圆中的直径是弦; ×2、弦是圆中的直径;
判断正误:
√ 3、直径是圆中最长的弦;
√ 4、直径的中点是圆心;
√ 5、半径和弦都是线段;
√ 6、直径相等的两个圆是等圆;
× 7、弦是圆上两点间的部分;
× 8、等于半径两倍的线段是直径。
× 9、若P是⊙O内一点,过P点的最长的弦有无数条。
(3)CMDN能够为菱形吗?若能,需添 加怎样的条件?
. . A
D
M
ቤተ መጻሕፍቲ ባይዱON
C
B
PPT课件
26
想一想 判断下列说法的正误:
(1)弦是直径;
(2)半圆是弧; (3)过圆心的线段是直径; (4)过圆心的直线是直径; (5)半圆是最长的弧;
(6)直径是最长的弦; (7)圆心相同,半径相等的两个圆是同心圆;
(8)半径相等的两个圆是等圆.
1.如图,弧有:______________ A
B 2 .劣弧有: A⌒B B⌒C
O●
优弧有:

ACB

BAC
C
PPT课件
16
1.过圆上一点可以作圆的最长弦有( A )条.
A. 1
B. 2
C. 3 D.无数条
2.则一这点个和圆⊙的O上半的径最是近_7_点_或_距_3_离c为m.4cm,最远距离为10cm,
PPT课件
9
车轮为什么做成圆形?
PPT课件
10
把车轮做成圆形,车轮上各点到车轮中心(圆心) 的距离都等于车轮的半径, 当车轮在平面上滚动时, 车轮中心与平面的距离 保持不变。因此, 当车辆在平坦的路上行使时, 坐车的人会感觉到非常平稳, 这也是车轮都做成圆形的 数学道理。
PPT课件
11

与圆有关的概念
相关文档
最新文档