岩质边坡稳定性设计与监测分析

合集下载

岩质边坡稳定性分析计算

岩质边坡稳定性分析计算

岩质边坡稳定性分析计算引言:岩质边坡是指由岩石构成的边坡体,它的稳定性分析是地质工程中的一项重要内容。

本文将围绕岩质边坡的稳定性分析进行详细讨论,包括边坡的力学特性、稳定性分析的方法和计算步骤。

一、岩质边坡力学特性:岩质边坡的力学特性主要包括边坡坡度、岩性、结构构造、地质构造、坡面覆盖物、地下水等。

这些因素对边坡的稳定性有着重要影响。

1.边坡坡度:边坡坡度是指地面或水平面与边坡倾斜线的夹角,是影响边坡稳定性的重要因素。

坡度越大,边坡的稳定性越差。

2.岩性:岩石的强度、粘聚力、内摩擦角等岩性参数对边坡稳定性有着重要影响。

一般来说,岩性较强的边坡稳定性较好。

3.结构构造:边坡中的断层、节理、褶皱等结构构造对边坡的稳定性有着重要影响。

结构面的发育程度和倾角越大,边坡的稳定性越差。

4.地质构造:地质构造包括岩层倾角、层面、节理等,对边坡的稳定性具有重要影响。

地质构造的研究可以帮助我们了解边坡的受力特点和变形规律。

5.坡面覆盖物:坡面覆盖物通常包括土壤、草地、水层等,这些覆盖物的分布情况和特性对边坡的稳定性有着显著影响。

6.地下水:地下水的存在对边坡的稳定性具有重要影响。

当地下水位上升时,边坡会受到水的浸润,导致边坡强度降低,从而增加边坡失稳的可能性。

二、岩质边坡稳定性分析方法:岩质边坡的稳定性分析方法主要有极限平衡法和有限元法两种,下面将对这两种方法进行介绍。

1.极限平衡法:极限平衡法是一种经典的岩质边坡稳定性分析方法,它基于边坡体在其稳定状态下的力学平衡原理进行计算。

这种方法通常将边坡分割为无限小的切割体,并假设切割体沿着内摩擦边界面滑动,从而得到边坡的稳定状态。

2.有限元法:有限元法是一种基于有限元理论进行边坡稳定性分析的方法。

这种方法将边坡体离散为有限数量的单元,通过求解单元之间的位移和应力,得到边坡的稳定状态。

有限元法能够模拟较为复杂的边坡几何形状和边界条件,但计算复杂度较大。

三、岩质边坡稳定性计算步骤:进行岩质边坡稳定性分析计算时,通常需要进行以下步骤:1.边坡参数确定:根据实地调查和实验数据,确定边坡的坡度、坡高、岩石强度参数、结构面参数等。

岩质边坡稳定性分析

岩质边坡稳定性分析

作用于CD上的静水压力V
V
2 0.5 w gZw
作用于AD上的静水压力U为
Hw Zw 1 V w gZw 2 sin
边坡稳定性系数为

(G cos U V sin )tg j C j AD G sin V cos
3、有水压力作用与地震作用
水平地震作用 FEK=1G
块体Ⅱ
Q 2W2 sin 2 [C3 BD cos( 2 ) C2 BC W2tg 2 cos 2 ] tg 2C3 BD sin( 2 ) ( 2 tg 2tg3 ) sin( 2 ) (tg3 tg 2 ) cos( 2 )
K s 边坡稳定; K s 边坡不稳定
四、 边坡岩体稳定性计算
(一)、单平面滑动
1、仅有重力作用时 滑动面上的抗滑力 Fs=Gcosβtgφj+CjL 滑动力 Fr=Gsinβ 稳定性系数
Fs G cos tg j C j L Fr G sin

tg j tg
第三节 岩质边坡稳定性分析
一、岩质边坡应力分布特征 二、岩质边坡的变形与破坏 三、岩质边坡稳定性分析步骤 四、岩质边坡稳定性计算
一、 边坡岩体中的应力分布特征
斜坡(slope)统指地表一切具有侧向临空面的地质 体,包括天然斜坡和人工边坡。 天然斜坡(简称斜坡)是指自然地质作用形成未经 人工改造的斜坡。 人工边坡(简称边坡)是指经人工开挖或改造形成 的斜坡。 研究目的:研究边坡变形破坏的机理(包括应力分 布及变形破坏特征)与稳定性,为边坡预测预报及 整治提供岩体力学依据。其中稳定性计算是岩体 边坡稳定性分析的核心。
(二)、受力条件分析

岩质边坡稳定性分析计算

岩质边坡稳定性分析计算

表4*3.3边坡岩体内摩擦角的折减系数
边坡岩体完整程度
内摩擦角的折戚系数
完解
0, 95〜0, 90
较完整
0. 90-0.85
较破碎
注:1全风化层可按成分相同的土 IB考虑; 2强风化基岩可根据池方经验适当折减*
0.85**0.80
4.3.4边坡岩体等效内摩擦角宜按当地经验确定。当缺乏当地 经验时, 可按表4.3.4取值。
面形态按本规范附录A选择具体计算方法。
A*OH圆弧形沿面的边坡稳定性系数可按下列公式计算{图 A, 0, 1):
式中:F. 第;计算条块滑面内摩擦角(°); A 1列1形汾面边坡计算示怠 第计算条块搿面长度( mh
d, 第H十算条块滑面倾角('),滑面倾向与滑动方向
相同时取正值,滑面倾向与滑动方向相反时取 负
结构面结 合 差
外 倾 结 构 面 或 外 倾 3 、 同 8m «的边坡 稳
结构面的组合线倾角 >75'或 定 , 15m 岛 的 边
<27*
坡欠稳定
较破晬
结构面结合 良好或一般
较破碎
结构面结合
(碎裂禳嵌〉良好或一般
1窪,
夕卜倾结构面或外倾不同 8m S的边坡 稳
结构面的组合线倾角 >75•或 定,ISm髙 的边坡
值:
:
LA 第,计算条块滑面单位宽度总水压力<kN/m); Gt——第/计算条块单位宽度自重(kN/m);
第/计算条块单位宽度竖向附加荷载方 向指向下方时 取正值|指向上方时取负值;
___
G ——第i_if算条块单位宽度水平荷载方向指 向坡外时取正 值,指向坡内吋取负值;
——第i及第/一 1计算条块滑面前端水头髙度(m):

(精品)图解赤平投影法分析岩质边坡稳定性

(精品)图解赤平投影法分析岩质边坡稳定性

岩质边坡的稳定问题历来是边坡工程稳定性分析和研究的重要课题。

岩质边坡的变形和破坏主要受岩体中发育的各类结构面所控制。

利用极射赤平投影(以下简称赤平投影)方法进行岩质边坡稳定性的分析,可直观地表明各组结构面的组合关系、组合切割体与边坡的相对关系、不稳结构体可能变形失稳的方向等,由此得到边坡变形的边界条件,对边坡的稳定性作出定性分析和评价。

从20世纪80年代,赤平投影方法开始引进到工程地质学中,用于分析工程岩质边坡的整体稳定性,现已得到了广泛应用,是目前分析岩质边坡稳定问题的主要方法之一。

笔者综合已有理论分析方法与工程实践,从简洁、实用的角度出发,结合工程实例,总结提出赤平投影法分析岩质边坡稳定性的图解模板,谨供同行研究参考。

1 赤平投影法分析岩质边坡稳定性的基本方法赤平投影法在进行工程岩质边坡的稳定性分析赤平投影法分析岩质边坡稳定性图解模板时,具有一定的假设前提,即边坡岩体是刚性的,不考虑内部块体之间的应变,同时忽略条件力的作用,只考虑块体滑动力与抗滑力的作用。

1. 1 岩体中发育 1 组结构面的情况边坡岩体中仅发育 1 组结构面时,可能的失稳岩体滑动方向即为结构面的倾向,边坡稳定性分析比较简单,可以概括为 3 种工况:( 1)当结构面倾向与边坡倾向相反,则不考虑结构面倾角大小,边坡是稳定的;( 2)当结构面倾向与边坡倾向相对一致,倾角大于边坡倾角,边坡是较稳定的;(3)当结构面倾向与边坡倾向相对一致,倾角小于边坡倾角,边坡是不稳定的。

这是一种最基本、理想的状况,实际工程边坡岩体中分布的结构面远较之复杂。

1. 2 岩体中发育 2 组结构面的情况边坡岩体中发育 2 组结构面时,边坡的稳定则主要受控于结构面的组合情况。

用赤平投影方法,根据结构面和边坡的产状作赤平投影图,分析结构面组合交线与边坡投影弧的相对关系,判断边坡的稳定状态,通常有以下 5 种情况( 如图 1)。

图 1 两组结构面和边坡的赤平投影关系图(1)图1中,2组结构面(J1,J2)的交点(M)位于人工边坡(cS)及天然边坡(nS)投影弧的对侧(图1-a)。

矿山排土场边坡稳定性分析及安全评价

矿山排土场边坡稳定性分析及安全评价
03
人工边坡:由人工开挖或填筑而成,稳定性受人工因素影响较大,易发生滑坡、崩塌、落石等灾害。
04
稳定性评价方法
地质力学法:通过分析边坡的地质条件,判断边坡的稳定性
03
现场监测法:通过监测边坡的变形和位移,判断边坡的稳定性
04
极限平衡法:通过计算边坡的稳定系数,判断边坡的稳定性
01
数值模拟法:利用计算机模拟边坡的变形和破坏过程,预测边坡的稳定性
03
环境条件:分析环境条件对边坡稳定性的影响,包括气候条件、植被覆盖等
04
边坡防护措施:分析边坡防护措施的有效性,包括挡土墙、护坡网等
05
监测与预警:分析监测与预警系统的有效性,包括监测设备、预警机制等
06
安全管理制度:分析安全管理制度的完善程度,包括安全管理制度、安全培训等
安全评价流程
确定评价对象:明确需要评价的矿山排土场边坡
环境条件:选择远离居民区、水源地、自然保护区等环境敏感区域
交通条件:选择交通便利、便于运输和施工的地区
土地利用:选择土地资源丰富、可利用土地面积效益较高的地区
排土场设计
01
选址:选择地质条件稳定、地形适宜的地点
03
边坡设计:根据土质、坡度、高度等因素进行设计
矿山排土场事故案例分析
事故原因分析
地质条件不稳定:边坡岩土体结构不稳定,易发生滑坡、崩塌等事故
设计不合理:排土场设计不符合规范要求,边坡坡度、高度等参数不合理
施工质量问题:施工过程中未按照设计要求进行施工,导致边坡稳定性降低
管理不善:排土场管理不到位,未及时监测边坡稳定性,未能及时发现和处理安全隐患
02
影响因素分析
地质条件:岩土类型、结构、强度等

高陡岩质边坡微震监测与稳定性分析研究

高陡岩质边坡微震监测与稳定性分析研究

高陡岩质边坡微震监测与稳定性分析研究一、本文概述随着基础设施建设的快速发展,高陡岩质边坡的稳定性问题日益凸显,成为岩土工程领域的研究热点。

高陡岩质边坡的稳定性不仅关系到工程项目的安全,也直接影响周边环境和人民生命财产安全。

因此,对高陡岩质边坡的稳定性进行准确分析和有效监测显得尤为重要。

本文旨在通过微震监测技术,对高陡岩质边坡的稳定性进行深入分析,以期为相关工程实践提供理论支持和实际应用指导。

本文首先介绍了高陡岩质边坡的特点和稳定性分析的重要性,阐述了微震监测技术在边坡稳定性分析中的应用原理和优势。

随后,详细描述了微震监测系统的构建过程,包括传感器的选型与布置、数据采集与处理等关键步骤。

在此基础上,结合具体工程案例,对微震监测数据进行了深入分析,探讨了高陡岩质边坡的变形破坏机制和稳定性影响因素。

提出了基于微震监测数据的边坡稳定性评估方法和预警体系,为边坡工程的安全运营提供了有力保障。

本文的研究不仅丰富了高陡岩质边坡稳定性分析的理论体系,也为实际工程应用提供了有效手段。

通过微震监测技术的应用,可以实现对高陡岩质边坡稳定性的实时监测和预警,有助于及时发现潜在的安全隐患,采取相应的工程措施,确保边坡工程的安全稳定。

本文的研究成果也为类似工程提供了借鉴和参考,具有重要的理论价值和实践意义。

二、高陡岩质边坡地质特性分析高陡岩质边坡作为一种特殊的地理现象,其地质特性直接影响着边坡的稳定性和安全性。

因此,对高陡岩质边坡的地质特性进行深入分析,是开展微震监测与稳定性分析的关键前提。

高陡岩质边坡的岩石类型多样,常见的有花岗岩、石灰岩、砂岩等。

这些岩石的物理力学性质,如强度、弹性模量、泊松比等,直接决定了边坡的承载能力和变形特性。

岩石中的节理、裂隙等结构面的发育情况,对边坡的稳定性有着重要影响。

这些结构面不仅降低了岩体的整体强度,还容易成为应力集中的区域,从而引发边坡的破坏。

高陡岩质边坡的地质构造背景也是不可忽视的因素。

岩质高陡边坡稳定性分析

岩质高陡边坡稳定性分析
第2 9卷第 3期
Vo. 9, . 1 2 No 3
西 华 大 学 学 报 (自 然 科 学 版 )
J un l f h aUnv ri ・ N trlS in e o ra u iest o Xi y aua ce c
21 0 0年 5月
Ma . 01 y2 0
文章编号 :6 319 2 1 )30 5 - 17 — X( 00 0 -040 5 2
( colfAcic r ad Cv nier g Xha U i rt, hn d 10 9C i ) Sho o r t t e n il gnei ,iu n e i C eg u60 3 hn he u iE n v sy a
Ab t a t T e sa i t n lsso ih a d se p r c lp s a c mp e y tm n i e rn s u .T e p o lm a ss e sr c : h t bl y a ay i fh g n t e o k so e i o l x s s i e e gn ei g i e s h r be a l i ,r — n y sac e r h,e au t n a d d sg r n o v d i t e t s v l ai e in a e iv l e mah mai ,me h n c ,g oo ia a k ru d a d e vr n n a o d t n .A o o n n c c a is e lgc lb c g o n n n i me t lc n i o s o i c m- p e e sv ,i t gae p r a h i o e a n h ay i a d s l t n t h r b e r h n ie n e r td a p o c s t x mi e te a l s n oui o t e p o lm. S o e sa i t n lss u i g ae S d n n s o l p tb l y a ay i sn r we e , i

岩质边坡稳定性分析

岩质边坡稳定性分析

03
边坡稳定性评价方法:采用何种方法进行稳定性评价, 如极限平衡法、数值模拟法等
04
边坡稳定性分析结果:根据评价方法得出的边坡稳定 性等级,以及可能的失稳模式等
05
边坡治理措施:针对边坡稳定性问题,提出相应的治 理措施,如支护加固、排水措施等
06
边坡监测与预警:建立边坡监测系统,实时监测边坡 稳定性,及时发现并预警可能的边坡失稳风险。
04
综合评价方法:结合多种分析方法,对边坡稳定性进行综合评价
地质条件
01
岩石类型:不同岩石的力学性质和抗风化能力不同
02
地质构造:断层、褶皱等地质构造对边坡稳定性产生影响
03
地下水:地下水位变化、地下水渗流对边坡稳定性产生影响
04
气候条件:降雨、温度等气候条件对边坡稳定性产生影响
水文条件
1
地下水位:地下 水位的升降会影 响边坡的稳定性
目录
01. 边坡稳定性分析的重要性 02. 岩质边坡稳定性分析方法 03. 岩质边坡稳定性影响因素 04. 岩质边坡稳定性分析案例
保障工程安全
边坡稳定性分析是工程设计的重要环
01
节,关系到工程的安全性和稳定性。 边坡稳定性分析可以预测边坡的变形
02
和破坏,为工程设计提供依据。 边坡稳定性分析可以指导工程设计和
数值模拟法: 利用计算机 模拟边坡变 形和破坏过 程
概率分析法: 通过概率统 计方法评估 边坡稳定性
模糊数学法: 利用模糊数 学理论对边 坡地质力学分析:分析边坡的地质构造、岩石力学性质等
02
数值模拟分析:利用计算机模拟边坡的变形、破坏过程
03
现场监测分析:通过现场监测获取边坡的变形、应力等数据
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

岩质边坡稳定性设计与监测分析
发表时间:2019-05-23T11:29:32.640Z 来源:《防护工程》2019年第3期作者:王平
[导读] 边坡稳定性问题一直是道路工程中的重点问题,而且边坡一旦失稳,造成的损失和伤害不可估量,因此对它的监测与研究工作势在必行。

中冶沈勘秦皇岛工程设计研究总院有限公司河北省秦皇岛市 066004
摘要:边坡稳定性问题一直是道路工程中的重点问题,而且边坡一旦失稳,造成的损失和伤害不可估量,因此对它的监测与研究工作势在必行。

文中结合边坡地质条件,详细分析了边坡锚杆拉力的变化,使用多点位移计对边坡的变形进行长期的跟踪监测,对锚杆应力计和多点位移计的监测数据进行总结和反馈。

分析结果表明:文中边坡的锚杆拉力及坡内多点位移均趋于稳定,说明该边坡整体上处于相对稳定的状态,提出的锚杆设计方法是成功的。

断面的坡顶位置在雨季最为危险,在雨季存在发生滑动的风险,应作为重点监测对象。

连续降雨对边坡的稳定性有重要影响。

降雨会增加边坡的锚杆拉力和坡内位移。

随着雨季结束,锚杆内力和坡内位移会逐渐下降并趋于稳定。

关键词:边坡;锚杆应力计;多点位移计;稳定性分析
锚杆由于其安全可靠、施工简单、成本较低,已成为当前边坡支护工程中最基本的组成部分之一,在各类边坡支护工程中得到广泛应用。

它实质上是位于岩土体内部并与岩土体形成一个新的复合体。

通过锚杆杆体的纵向拉力作用,克服岩土体抗拉能力远远低于抗压能力的缺点,从而使得岩土体自身的承载能力大大加强。

锚杆加固边坡时,依赖其与周围岩土体相互作用传递锚杆拉力,限制岩土体变形与发展,改善岩土体的力学参数和应力状态,以使边坡保持稳定。

由于边坡地质条件和锚杆荷载传递机理都很复杂,而前期的工程实地勘测不能完全准确揭示边坡的地质情况,因此对实际边坡工程的变形特征和应力状态进行检测,为认识边坡稳定性提供途径。

部分学者基本是通过对锚杆受力的数值分析,来研究锚杆对边坡稳定性的影响。

某市一个靠海边坡位置较为特殊,使用锚杆应力计和多点位移计的结合对该边坡稳定性进行综合评价有一定的借鉴意义。

1边坡稳定性监测方法
从目前来看,对人工边坡的整体监测可分为三大类:
(1)地面监测:监测手段主要有,三角网、沉降水准和视准线测量以及收敛计、倾斜仪监测;
(2)地下监测:监测手段主要有,钻孔倾斜仪、多点位移计、地下水位孔、渗压计等;
(3)支护结构物监测:监测手段主要有,钢筋计、预应力锚索测力计、土压力盒、测缝计等。

此外根据不同工程具体特点,尚有一些简易观测手段,如:量水堰、简易测桩、平硐底部浇低标号素混凝土观测变形和地面地质巡视等,并有部分工程边坡监测与地震监测相结合进行及常规仪与全球定位系统相结合。

“八五”国家科技攻关项目《岩质高边坡勘测及监测技术方法研究》已经研制出4种先进的仪器设备和5种新的技术方法,即钻孔彩色电视孔壁成像系统、直接横波测井研究偶极子井下声系和声波仪、钻孔多点渗压仪及压模系统、岩质高边坡快速摄像微机地质素描成图、层析成像技术、近坝库段安全监测技术、边坡监测数据处理预报软件研究、高精度大地测量监测自动化系统。

这些新技术和新方法已达到世界先进水平。

2边坡稳定性计算
本工程为某市某道路扩建工程,道路全长约8km,规划为城市主干道。

本路段南面临海,北侧靠山,地理位置较为特殊,设计范围内有多段边坡需进行护坡处理。

C坡岩质较差,易发生破坏,故以C坡作为研究对象。

C坡原始山体坡度为25°左右,坡长约178m,高度为7.3~18.8m,属岩石坡面。

岩性为安山岩、硅化安山岩,可见斑状结构,块状构造。

裂隙发育,发育为压扭性断裂,断裂走向N65°E,倾向NW,倾角60°~70°,宽度100~135m,延伸长度大于500m。

断裂两侧岩石较破碎,风化蚀变较强,主要为高岭土化、褐铁矿化,岩石含水性差。

坡体在震动和强降雨条件下有形成滑塌的可能,总体评价稳定性较低。

坡体自上而下分为杂填土、强风化安山岩、中风化安山岩3个岩土层。

依据《建筑边坡工程技术规范》(GB50330-2002),采用平面滑动法,对现状边坡临空面进行稳定性验算,边坡工程安全等级为二级,边坡稳定安全系数KS=1.30。

3监测结果分析。

3.1锚杆应力计分析
该边坡各处共安装了15个锚杆应力计,其应力测量值却相差悬殊,变化规律也各不相同。

各锚杆应力状态与锚杆所处位置的地质、工程条件以及锚杆长度有密切关系。

本文选取C2、C3、C4等3个典型断面进行分析。

发现所有锚杆从2013-05-30到2014-06-27这一年多的时间里,锚杆应力逐渐上升。

而在2014-06-27到2015-04-16的时间里,锚杆应力虽然基本在持续增长中,但增速缓慢,逐渐趋于稳定。

处于边坡顶部的C2C1锚杆内力最大,处于边坡中部的C2C2锚杆内力次之,处于边坡下部的C2C3锚杆应力计出现问题,没能连续测到数据。

根据前两个测量数据来看,C2C2锚杆内力应该最小。

C2C1锚杆内力最大时达到29kN,应力达到59MPa。

此时对应20144年9月5日。

根据天气记录,7月份、8月份、9月份,该市进入夏季,雨量充沛。

2014年7月23日至2014年9月5日之间,雨水天气达到16d之多。

特别是2014年7月25日,天气状况是大到暴雨。

9月5日之前的9月2日、9月3日也是连续中雨。

这种雨水天气最有可能引起断裂结构面发生滑动。

由C2C2锚杆可见,2014年9月5日C2C1锚杆内力突然增加,然后随着雨季过去,层间滑移状态减弱,C2C1锚杆内力也逐渐下降。

C2C2锚杆内力也于2014年10月27日突然增加,随后逐渐下降。

但总体上,锚杆应力后期逐渐稳定下来,稳定在20kN附近,说明C2断面趋于稳定。

仍然是处于边坡顶部的C3C1锚杆内力最大,处于边坡中部的C3C1锚杆内力次之,处于边坡下部的C3C3锚杆内力最小。

这与C2断面测量结果类似。

但也有不同之处,C3C1锚杆拉力最大值为18kN,比C2C1锚杆拉力低得多。

另外不同之处是,该市气候进入夏季,经过7月份、8月份、9月份雨水的作用,2014年9月5日之后的锚杆拉力值继续增加,没有下降的趋势,一直持续到2015年4月16日,锚杆内力才开始下降。

4结论
(1)岩质高边坡的稳定性监测主要包括地面监测、地下监测和支护结构物监测三个部分,随着科技的进展,新的高科技手段如钻孔彩色电视孔壁成像系统、直接横波测井研究偶极子井下声系和声波仪、钻孔多点渗压仪及压模系统、岩质高边坡快速摄像微机地质素描成图、
层析成像技术、近坝库段安全监测技术、边坡监测数据处理预报软件研究、高精度大地测量监测自动化系统及常规仪与全球定位系统一相结合等不断地使边坡监测更加的科学,对边坡的稳定性评价也更加地符合实际。

(2)岩质高边坡的监测成果的数据处理也是一个广泛关注的课题之一,应加强处理技术方法与实践经验相结合,提高边坡稳定性评价的科学性与实用性。

结束语:
岩质高边坡稳定性研究一直是岩体力学工程界和地质工作者极为关注的重大课题之一,在水电建设工程中遇到的大部分是人工边坡。

相对于自然边坡,人工高边坡具有较规整的几何坡面,暴露时间短,岩体新鲜、边坡的稳定性经过精心计算设计。

另一方面,许多岩质高边坡面积大,地质条件复杂,断层、节理、弱结构面、软弱夹层穿插其中,静力水及动力水相互作用,爆破施工以及地应力失去稳定平衡产生地应力松弛和岩爆现象等,尽管坡体经过稳定性计算和支护,但边坡的稳定性状况仍难以确定,在开挖过程中或开挖后的失稳事故也常有发生。

因此,对边坡进行稳定性监测是确保工程建设顺利进行的重要措施。

参考文献:
[1]俞佳炜,高俊启,鲁洪强,任强,曾武亮.岩质边坡稳定性设计与监测分析[J].公路,2018,63(12):36-41.
[2]龚涛.顺层岩质边坡稳定性研究[D].西安理工大学,2009.
[3]刘小平,何志攀,周北,周才辉.人工岩质高边坡稳定性的监测和分析[J].勘察科学技术,2006(05):9-12+26.。

相关文档
最新文档