风电机组选型
风电机组选型、微选、复核注意事项---经验值(1)
风电机组选型、微选、复核注意事项---经验值(1)1、根据国外进行的实验,风力发电机组间距离为10倍风轮直径时,风力发电机组效率减少20%~30%,20倍风轮直径时无任何影响。
2 当盛行主风向为一个或两个方向相互为反方向时,风力发电机组的排列方式一般为矩阵分布,风力发电机组群排列方向与盛行风向垂直,前后两排错位,即后排风力发电机组始终位于前排2台风力发电机组中间。
3、当场址为多风向时,即该地区存在多个盛行风向时,依场地面积和风力发电机组数量,风力发电机组采用“田”形或圆形分布, 此时风力发电机组的间距应更大些。
4、湍流强度:标准偏差/平均风速;当其值在0.10或者以下表示湍流相对较小,中等湍流值为0.10~0.25,更高的湍流值表明湍流过大。
湍流强度大小与风速和地面粗糙度有关。
风场的湍流特征很重要,因为风力发电机组有不利影响,主要是减少输出功率,还可能引起极端载荷,最终削弱和破坏风力发电机。
5、风剪切系数:垂直风向的平面上风速随高度的变化快慢,一般已0.143为界,确定塔筒在同一系列风机的情况下不同塔筒的高度选择,大于.143则选择相对高一些的,当然也要考虑地形的影响。
6、微观选址所需要的资料:1)等高线地图或者cad都可以以及粗糙度+(风场大体地形情况)2)测风塔数据(至少一年)+测风塔坐标(最好有说明表)3)风场边界+风场容量+风场大体概况4)前提是保证地图和测风塔坐标等是同一个坐标系的7、复杂地形风机排布的基本原则:a 占山头,沿山脊排布;b 主风向上尽量拉大距离;c 尾流控制,单机尾流不超8%,整体不超5%;d 各风机有效风速段内湍流强度不超设计标准。
(一般不能超过A类0.18,同时在windpro中输出结果中可以有图表说明)f 复杂地形用windsim 或者WT,简单地形用wasp。
windfarmer 用于复核计算。
8、功率和叶片直径的平方以及风速的三次方成正比,若要P3000=2P1500,则D3000=1.4142D1500.9、微观选址复核完成的项目内容:(1)平均风速(2)极限风速(3)风剪切指数(4)湍流强度(5)入流角(6)坡度10、用wasp engineering 可以算出极大风速,即三秒风速最大值,可以得出极限风速,从而选择风机类型。
风电操作技术培训风电机组布置与选型
风电操作技术培训风电机组布置与选型风电操作技术培训:风电机组布置与选型风力发电作为清洁能源的代表,已经在全球范围内得到广泛应用。
风电机组的布置与选型是风电操作技术培训中的重要内容。
本文将从风电机组布置的原则和风电机组选型的关键因素两个方面进行阐述。
一、风电机组布置的原则风电机组布置是指在一个特定的风能资源区内,按照一定的要求将风电机组合理地布置在地面或海上的空间中。
风电机组布置的原则如下:1.最大化利用风能资源:风能资源的分布在地球上是不均匀的,根据不同地区的风能资源状况,需要合理选择布置风电机组的位置。
一般来说,应优先选择风速较高、舒适性较低的地区进行布置。
2.保证风电机组的安全运行:风电机组的布置需要考虑到周围环境的因素,如地形、地貌、居民区、交通道路等。
应避免风电机组之间的互相遮挡,以免影响机组的发电效率。
同时,也要防止机组和人员安全的风险。
3.便于运维与维修:布置合理的风电机组应便于后期的运维与维修。
应尽量减少机组之间的距离,方便工作人员的操作和维修。
二、风电机组选型的关键因素风电机组选型是指根据风能资源的特点和发电需求,选择适合的风电机组产品。
风电机组选型的关键因素包括:1.额定功率:风电机组的额定功率是影响发电量的重要因素。
根据实际的发电需求和风能资源的情况,选择合适的风电机组额定功率。
2.切入风速和切出风速:风电机组的切入风速和切出风速是指机组开始和停止发电的风速范围。
根据风能资源的平均风速以及机组的性能指标,选择适合的切入风速和切出风速,以最大限度地利用风能资源。
3.机组传动方式:风电机组传动方式分为直接驱动和间接驱动两种。
直接驱动是指通过风力直接驱动发电机发电,具有结构简单、无需传动系统维护等优点;间接驱动是指通过风力驱动功率-转速-转矩转换系统,再由发电机发电。
根据实际需求和可行性,选择适合的驱动方式。
4.发电机类型:风电机组中的发电机类型有同步发电机和异步发电机两种。
同步发电机可以通过控制转速和变桨角度来实现对有功功率的控制;异步发电机需要通过电网侧的变频设备来实现对有功功率的控制。
风电场最佳风力发电机组选型的探讨
风电场最佳风力发电机组选型的探讨风电机组的选型在风电场可研设计中具有至关重要的作用,直接影响风电场的风能利用率及其经济效益。
风电场最佳机型选择应考虑适合风电场场址的风资源条件,有利于提高风电场的发电效率。
而最终型号的选择须经多方技术经济条件比较后确定最优方案。
本文结合作者实际工作经历,从风力发电机的类型介绍入手,详细论述选择风力发电机应考虑的原则和几个重要因素,已达到充分利用风能资源,提高风能利用率的目的。
标签:风力发电机;风速;容量系数;功率曲线引言:分析风力发电机组选型的原则有四个方面:a.对质量认证体系的要求,风力发电机组选型中最重要的一个方面是质量认证;这是保证风电场机组正常运行及维护最根本的保障体系;风电机组制造必须具备IS09000系列的质量保障体系的认证;b.对机组功率曲线的要求,功率曲线是反映风力发电机组发电输出性能好坏的最主要曲线之一;c.对机组制造厂家业绩考查,业绩是评判一个风电制造企业水平的重要指标之一;d.对特定环境要求;如台风、低温等。
风力机型的选择,受气候和地形影响,各地、个高度风力资源分布极不均匀,风力资源的状况相差很大,风力机的输出功率既与所在点的风速分布特性有关,又与所选用的风力机型有关,世界各国现在己开发和使用的风力机容量从1000kW到5000kW,各参数和技术指标相差很大。
对于特定的场点特别是并网运行的大型风电场来讲,选择与该点风速分布特性最相匹配的风力发电机组以最大限度地利用风能,和产生最好的经济效益是风电场设计中首要解决的。
1.风力发电机的分类按风轮轴安装形式可分为水平轴风力发电机和垂直轴风力发电机(1)水平轴风力发电机水平轴风力发电机是目前国内外广泛采用的一种结构型式。
主它的主要机械部件都在机舱中,如主轴、齿轮箱、发电机、液压系统及调向装置等。
对于水平轴风力发电机来说,需要风轮始终保持面向风吹来的方向。
有些水平轴风力发电机组的风轮在塔架的前面迎风旋转,称为上风向风力发电机组;而风轮在塔架后面的,则称为下风向风力发电机组。
风电机组选型的几个关键问题
本文数据为2009年统计数据,但现在看来仍不失为一篇很好的科普文章,仅供大家参考。
摘要:风电机组选型在风电项目开发过程中至关重要,项目有盈利可能是进行选型的前提。
本文回顾了我国风电电价发展历程,给出了收益率、电价与风资源的定量关系;研究了风电机组等级与GL型式认证的相关问题;澄清了一些对可利用率、可靠性的混淆认识;论证了国内风电机组理论功率曲线偏高问题。
1.前言如今,风电发展已跨越初期示范阶段,进入大规模产业化时代,追求利润最大化成为投资的主要目的。
决定风电项目盈利水平的要素包括风资源状况、电网接入状况、上网电价、机组选型和运维水平等。
项目核准后,前三项基本已成定局,机组选型的重要性显而易见。
据《2009年中国风电机组制造商竞争态势与投资分析研究报告》分析,截止到2008年10月1日,中国境内的风电机组整机生产商已经达到76家目前,其中真正有产品推出的内资与合资企业共10多家,加上几家在中国市场表现积极的外资企业,总数在20左右。
而每个厂家还有不同等级、不同轮毂高度、不同容量、不同应用环境的多种机型,如何从中抉择出高安全性、高性价比的机组,成为风电投资必须面对的问题。
2.机组选型的前提进行机组选型的前提是项目有盈利的可能。
众所周知,电价越高风,风资源越好,项目的盈利水平就越高,先来看电价。
1)我国风电电价发展历程我国风电并网电价的形成大体经历了四个不同的历史阶段:1)发展初期,机组多由国外资金援助,竞争上网,电价很低,每千瓦时约0.3元;2)1994年起,电力部全额收购风电上网电量,差价全网均摊,各地由价格主管部门审批,致使风电价格参差不齐,低的与火电相当,高的每千瓦时超过1元;3)2002年开始,招标电价和审批电价并存,特许权招标项目的招标由国家发改委牵头组织,电价区间趋于稳定;4)2009年,国家发改委下发《关于完善风力发电上网电价政策的通知》,《通知》按风能资源状况和工程建设条件,将全国分为四类风能资源区,并制定相应的风电标杆上网电价,见表1,今后新建陆上风电项目统一执行。
风电场风电机组选型、布置及风电场发电量估算
风电场风电机组选型、布置及风电场发电量估算(总12页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除5 风电机组选型、布置及风电场发电量估算批准:宋臻核定:董德兰审查:吉超盈校核:牛子曦编写:李庆庆5 机型选择和发电量估算5.1风力发电机组选型在风电场的建设中,风力发电机机组的选择受到风电场自然环境、交通运输、吊装等条件等制约。
在技术先进、运行可靠的前提下,选择经济上切实可行的风力发电机组。
根据风场的风能资源状况和所选的风力发电机组,计算风场的年发电量,选择综合指标最佳的风力发电机组。
5.1.1 建设条件酒泉地区南部为祁连山脉,北部为北山山系,中部为平坦的戈壁荒滩,形成两山夹一谷的地形,成为东西风的通道,风能资源丰富。
场址位于祁连山山脉北麓山前冲洪积戈壁平原上,地势开阔,地形平缓,便于风机安装;风电场东侧距312国道约30km,可通过简易道路运输大型设备。
根据黑厓子北测风塔 2008年7月~2009年6月测风数据计算得到该风电场场址90m高度风功率密度分布图见图5.1(图中颜色由深至浅代表风能指标递减)。
由图5.1可见,该风电场场址地势开阔,地形平坦,风能指标基本一致。
根据风能资源计算结果,该风电场主风向和主风能方向一致,以E风和W风的风速、风能最大和频次最高。
用WASP9.0软件推算到预装风电机组轮毂高度90m高度年平均风速为7.32m/s,平均风功率密度为380W/m2,威布尔参数A=8.3, k=2.0;50m高度年平均风速为7.04m/s,平均风功率密度为330W/m2,威布尔参数A=7.9, k=2.06。
根据《风电场风能资源评估方法》判定该风电场风功率密度等级为3级。
黑厓子西风电场90m高度年有效风速(3.0m/s~25.0m/s)时数为7131h,风速频率主要集中在3.0 m/s~12.0m/s ,3.0m/s以下和25.0m/s以上的无效风速少,无破坏性风速, 年内变化小,全年均可发电。
风力发电机组选型方案选择
机型选择方法
不同高度的年平均风速、平均风功率密度表 轮毂高度 年平均风速 平均风功率密度 50年一遇极大风速
60m 7.27m/s 372W/m2 47.4m/s
61.5m 7.31m/s 377W/m2 47.4m/s
65m 7.32m/s 380W/m2 47.4m/s
理论产量的修正
理论产量是理想条件下的产量,计算实际产量时需对理论产
量进行修正
修正时考虑的因素: 1.风机排布的尾流影响;
2.空气湍流强的影响
3.空气密度对产量的影响; 4.风电机组可利用率的影响;
5.风电机组叶片污染对气动性能的影响场内输变电线路的线
损及场用电
实际上网电量计算
综合折减系数=空气密度折减系数×(1-尾流折减
系数)×(1-湍流折减系数) ×(1-叶片污染折
减系数)× (1-场用电及线损率)×风电机组可利 用率 实际产量=理论产量×综合折减系数
机型选择方法
5.根据市场成熟的商品化风电机组技术规格,结合风电 机组本地化率的要求进行选择。
对单机容量为850KW以上的风电机组进行初选。初选
的机型有Vestas公司的V52/850KW、华锐风电科技公 司的SL1500KW、东方电汽的FD77A /1500KW、湘潭 电机的Z72/2000KW风机。机型特征参数如下:
机型选择方法
该风场风功率等级为3级,风能资源丰富,年有效风
速(3.0m/s-20.0m/s)时数为7893h,占全年的90.1%,
11m/s-20m/s时数为1663h,占全年的18.65%,<3m/s的 时段占全年的8.80%,>20m/s的时段占全年的0.086%,有 效风速时段长,无效风速时段较短,全年均可发电,无破坏性 风速。
海上风电项目开发的风电机组选型与采购流程
海上风电项目开发的风电机组选型与采购流程随着对可再生能源需求的增加以及对环境影响的关注,海上风电项目成为了各国能源开发的重要方向。
在海上风电项目开发的过程中,风电机组的选型与采购是决定项目成功的关键因素之一。
本文将探讨海上风电项目开发过程中风电机组选型与采购的重要流程和考虑因素。
1. 项目前期准备在海上风电项目开发之前,需要进行详细的项目前期准备工作。
这包括确定项目目标、测风状况评估、项目定位和评估海域的可行性等。
在这个阶段,需要确定风电机组的基本要求和性能指标,这将对后续的选型和采购决策产生重要影响。
2. 风电机组选型在确定项目基本要求和性能指标之后,需要进行风电机组的选型工作。
首先需要对市场上各种类型的风电机组进行调研和评估,了解不同型号和技术参数的风电机组在相似项目中的性能和经济指标。
考虑到项目的特点和需求,可以制定评估指标体系并进行优化。
评估指标可以包括功率曲线、转速特性、容量因子、可靠性、维护成本、服务网点等。
通过对不同供应商的产品进行评估和对比,选择出满足项目需求且具有较高性价比的风电机组。
3. 技术交流与合作在选定风电机组型号后,可以与风电机组供应商进行技术交流与合作。
这包括参观供应商的生产基地、沟通技术细节、了解服务保障体系以及解决潜在问题等。
通过与供应商的合作,可以更好地理解风电机组的性能特点,同时也为项目后期的合作奠定基础。
4. 采购合同签署经过前期的评估和技术交流,确定了最终的风电机组供应商后,需要与供应商签署采购合同。
采购合同应明确风电机组型号、数量、技术规格、质量要求、交付期限、付款方式等重要条款。
同时,合同还应包括保修期、售后服务、返修和更换等方面的约定。
在签署合同时,还需要考虑一些特殊情况,例如对供应商信用评估、承诺履约保证金、违约责任等进行明确规定。
此外,还应核实供应商的资质证书和相关资质,确保供应商具备必要的技术和实力。
5. 风电机组运输与安装风电机组的运输与安装是项目中的重要环节。
风力发电机组设备优化选型的分析
风力发电机组设备优化选型的分析摘要:风电场建设中风力发电机组设备的投资在建设投资中占有相当大的比重,因此,风力发电机组选型是风电场建设至关重要的问题。
风力发电机组选型的合适与否直接关系到项目的投资效益,甚至关系到项目投资的成败。
因此,优选出技术经济条件最好的风力发电机组是构成一个优秀风电场的基础。
关键词:风力发电机组;选型;技术经济1引言在特定风能资源状况下,为了获得最佳的投资收益,须注重风力发电机组的选型,因为它关系到风电场的年发电量、总投资和投产后的运行维护成本。
目前国内风机产品还未形成标准化,不同厂家生产的产品,其技术类型、单机容量等主要技术指标差异较大,给风机选型工作带来了不可确定性。
风电设备选型时主要技术经济指标的准确和有效评价,对风电项目投资行为起着至关重要的作用。
2 风电机组机型初步选择根据风电场风能资源条件、风况特征以及风电场所在区域的特殊情况,结合行业要求、电网要求、国内外风电机组的制造水平、技术成熟程度、运行业绩、设备制造的可行性等进行风电场机组型式选择。
风电机组选型原则上要满足以下要求:(1)单机容量范围选择。
目前世界范围内的路上风机和海上风机组平均单机容量已接近6-8MW,国内3.0~5.0MW级的风力发电机组成为目前的主流机型,为适应各种风况条件,在机型方面又细分为中低风速区型、内陆型和高风速区型机组。
机组选型应结合风电市场近年来的发展趋势,综合考虑目前国内外风力发电机组的制造水平、技术成熟程度、实际运行情况、价格水平和施工机械的吊装能力等因素,来初步选用合理的单机容量范围。
(2)满足安全等级要求。
根据风电场场区年平均风速、50年一遇最大风速和湍流强度结果,风电机组应满足安全等级要求。
(3)满足场址区特殊环境、气候等条件要求。
根据风电场区域的极端最低气温、覆冰、雷暴等天气状况,选出适宜风电场的机型。
(4)满足工程进度保证,所选风电机组生产企业要具备足够的产能,以满足风电场的安装进度要求,以保证项目的建设进度。
风电机组结构及选型
第一节风电机组结构1.外部条件根据最大抗风能力和工作环境的恶劣程度,按强度变化的程度对风电机组进行分级。
根据IEC61400设计标准,共分为4级。
一类风场I:参考风速为50m/s,年平均风速为10m/s,50年一遇极限风速为70m/s,一年一遇极限风速为52.5m/s;二类风场II:参考风速为42.5m/s,年平均风速为8.5m/s,50年一遇极限风速为59.5m/s,一年一遇极限风速为44.6m/s;三类风场III:参考风速为37.5m/s,年平均风速为7.5m/s,50年一遇极限风速为52.5m/s,一年一遇极限风速为39.4m/s;四类风场IV:低于三类风场风速,属低风速区,鲜有商业风电场开发。
对电网的要求:电压波动为额定值±10%,频率波动为额定值±5%。
2.机械结构2.1总体描述整机是建立在钢结构底座上,该结构应具有很大的强韧度,底部由坚固底法兰组成,风电机组所有的主要部件都连接于其上。
发电机固定位置与机舱轴线偏离,以使得风电机组在满载运行时,整机质心与塔架和基础中心相一致。
偏航机构直接安装在机舱底部,机舱通过偏航轴承与偏航机构连接,并安装在塔架上,整个机舱底部对叶轮转子到塔架造成的动力负载和疲劳负荷有很强的吸收作用。
机舱座上覆盖有机舱罩,材料是玻璃钢,具有轻质高强的特点,有效地密封,以防止外界侵蚀,如雨、潮湿、盐雾、风砂等。
产品生产采用多种工艺,包括:滚涂、轻质RTM、真空灌注等,机舱罩主体部分设置PVC泡沫夹层,以增加强度。
内层设置消音海绵,以降低主机噪声。
机舱上安装有散热器,用于齿轮箱和发电机的冷却;同时,在机舱内还安装有加热器,使得风电机组在冬季寒冷的环境下,机舱内保持在10℃以上的温度。
2.2载荷情况- 启动:从任一静止位置或空转状态到发电过渡期间,对风电机组产生的载荷。
- 发电:风电机组处于运行状态,有电负荷。
- 正常关机:从发电工况到静止或空转状态的正常过渡期间,对风电机组产生的载荷。
风电场风电机组选型方案
风电场风电机组选型方案1.1 风电机组选型原则1.1.1 风电机组应满足风电场安全等级要求,根据风资源分析成果,确定风电机组采用IECⅠ、Ⅱ、Ⅲ类或S类风电机组。
1.1.2 风电机组的性能应满足场址区特殊环境、气候等条件要求。
1.1.3 风电机组选型应充分考虑电网的特点和要求,风电机组宜具备低电压穿越能力、无功补偿能力等。
1.1.4 风电机组选型应考虑已运行风电场的业绩、制造厂家技术和服务水平等因素。
1.1.5 单机容量选择需考虑风电场地形地貌、总装机规模等条件,目前单机容量宜选750kW级及以上机型。
除特殊地形要求外,提倡选择MW级风电机组。
1.2 风电机组选型比较1.2.1 按照上述风电机组机型选择考虑的主要原则,通过不同风电机组机型技术经济方案比选,选择度电成本较低、运行维护成本较低的风电机组作为风电场的可选机型。
表6-1 不同风电机组机型综合比较表括风电机组主机设备投资及相关配套费用,其中比较方案的设备报价采用向制造厂家初步询价价格,相关配套费用根据相关定额、场址建设条件进行估算。
各方案发电效益为各方案机型的理论发电量,各方案投资费用及发电效益比较见表6-1。
1.2.3不同风电机组机型选型比较时,还应考虑拟选风电机组机型的成熟度、制造商的业绩、运行维护成本以及收益率指标等因素。
1.3 风电机组轮毂高度选择1.3.1根据风电机组机型选择确定的风电机组塔架定型高度,拟定不同的风电机组轮毂预装高度方案进行技术经济比较,选择风电机组的轮毂安装高度。
1.3.2 风电机组轮毂安装高度方案比较可采用差额投资内部收益率法。
各方案投资费用仅比较各方案间不同的部分,包括塔架费用、风电机组基础费用、设备吊装费用等;各方案发电效益根据各高度的风速资料结合选定的机组功率曲线进行计算。
方案比较的基准内部收益率取8%。
1.4 风电场发电量估算1.4.1理论年发电量估算利用风能资源评估专业软件,结合风电场预装轮毂高度测风塔代表年逐时风速、风向系列资料及选定的风电机组机型和风电机组功率曲线,进行风场模拟分析,计算各风电机组标准状态下的理论年发电量。
风电机组的选型
风电机组低电压穿越(LVRT)要求 示意图
1.2 1.1 1.0 0.9 电网故障
0.8
并网点电压(pu) 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -1.00
要求风电机组不间断并网运行
风电机组可以从电网切除
0.00
0.625 1.00 时间(s)
2.00
3.00
4.00
当并网点电压在图中电压轮廓线以上时,风电机组必须保证不间断并网运行; 当并网点电压在图中电压轮廓线以下时,风电机组允许从电网切出。
中国的风资源及风电发展
风资源
•
东北地区,西北地区,华北地区及 东南沿海风资源较丰富。 2010年风电发展目标提前实现, 2020年目标会调整。
风电发展规划
•
电网情况
•
风资源丰富的“三北地区”电网相 对薄弱,风电远离负荷中心。
沿海风电场受土地资源的限制。
中国风资源分布图
•
1.1 中国风电情况介绍
潮流方向
ChangLing 174(9.35MW)
Nongan
223MW
ChangLing Hexin Xijiao ChangLing Wangzi (49.5MW)
234kV
38Mvar 电容器组
Jiiutai
500kV Substation 220kV Substation Thermal Power Wind Farm
ChaGan (30MW)
71km
0MW
Taonan Datong (49.5+49.3MW)
37km 19km Yuanqu Baicheng 35km Taonan
236kV
风电机组选型要点分析
。低电压穿越是指,当电网因为各种原因出现瞬 时的、一定幅度的电压降落时,风力发电机组能 够不停机继续维持正常工作的能力。低电压穿越 能力差的风力发电机组当电网电压降落
时会保护性停机并自动切出电网,一台风力发电 机组切出电网将导致电网电压的进一步降落,致 使整个风力发电机组全部停机,最终导致电网崩 溃。因此,风力发电机组的低电压穿越
能力是衡量风力发电机组并网性能的重要指标, 直接影响了风力发电机组的选型。最后是经济因 素。主要包括上网电价、固定资产投资和设备的 利用率,以及风力发电机组运输、吊装
与维护的影响等。风力发电机组的选型风力发电 机组的选型分为单机容量选择和机型选择。1、 单机容量选择根据目前国内外风机市场的现状以 及国内已建风电场的装机情况,按照单
发电机组可能被破坏。但是如果盲目追求安全性, 不恰当地选择极限风速过高的风力发电机组产品, 则会毫无意义地增加投资。因为由额定风速到切 出风速之间风力发电机组处于满功
率发电状态,选择切出风速高的产品有利于多发 电。但切出风速高的产品在额定风速到切出风速 的控制增加需要增加投入,投资者必须根据风力 发电场的风能资源特点综合考虑利弊得
什么是机型选择?在风电场建设过程中,风力发 电机组的选择受到自然环境、交通运输、吊装等 条件的制约。同时,风力发电机组的选择决定了 建场投资和发电量,风机选型就是要在
这两者之间选择一个最佳配合。在技术先进、运 行可靠的前提下,根据风场的风能资源状况,选 择经济上切实可行的风力发电机组,计算风场的 年发电量,选择综合指标最佳的风力发
类型的机组。3、风力发电机组选型的经济性风 力发电机组选型的经济性,主要指评价该风场投 资所产生的经济效益。对于一个风电项目,主要 风险变量有固定资产投资、年上网电量
国际风电工程风电机组选型方法浅析
国际风电工程风电机组选型方法浅析摘要:随着“碳达峰”“碳中和”不断发展深入,在全球经济一体化的发展过程中,风电作为最重要的可再生能源之一,是世界各国的必然选择。
合理地风电机组选型是国际风电项目投资取得良好收益的重要保证。
本文通过归纳总结国际上不同国别风电工程机组选型边界条件,结合工程实际案例深入分析,探讨在国际风电工程中不同边界对应的机组选型方法,为从事国际风电工程的行业提供相关经验。
关键词:边界条件单机容量度电成本机组选型一、机组选型的基本边界条件笔者通过多年的国际项目实践,通过分析国外不同国家的政策,把在项目投资活动过程中对风电机组选型的主要边界条件做了以下几个分类。
(一)、第一类,先容量后定机组与国内思路一样,由于审批制度的原因,许多国家政府部门对风电场容量做了相应规定,比如越南国别,规定规模在30MW以下,其相关手续报批仅需到省级部门。
因此考虑在开发过程中的时间成本,大多数企业都把投资规模控制在30MW以内,以笔者参与的风电场总承包项目为例,项目容量为29.7MW。
这类风电场机组选型,以风电场总规模为边界条件考虑,进行风电机组选型,尽可能的收益最大化。
通常以东南亚国家过主。
(二)、第二类,先定机位数后定机组由于用地及环保等因素,用地报批在项目审批之前,因此在投资开发过程中,用地基本确定是项目开发及机组选型的前置条件,也就是说当地政府不控制投资规模,但是对风机机位数量会有制约,不允许轻易增加机位。
这类风电场,以风电场机位为边界条件考虑,进行风电场选型。
通常以欧美等国家对土地及环保又较高要求的国家为主。
(三)、第三类,其他条件除上述条件外的其他条件。
二、国际项目不同边界下机组选型的方法分析随着技术的发展,通常影响机组选型的主要因素为第一类及第二类。
根据笔者经验,在东南亚地区如越南,其政策以及开发流程上与国内较为相似。
这类国别项目通常以第一类边界条件,先定容量后定机组,通过不同类型风机进行比选,从而得到最优的风电机组。
浅谈风电机组选型
浅谈风电机组选型【摘要】风电场机型选择应考虑适合风电场场址的风资源条件,有利于提高风电场的发电效益。
随着国内外风力发电设备制造技术日臻成熟,针对不同区域风资源条件,各风机设备制造厂家已经开发出不同结构型式、不同控制调节方式的风力发电机组可供选择。
发电机组的选型在其中扮演着重要角色,它决定了全场效率的优劣,本文主要分析机组的选型问题,希望对业界风电机组的选型有所帮助,期待我国的风力发电最大化的发挥效益。
【关键词】风电机组选型我国针对固有资源的开发利用已经进入成熟阶段,当下非再生资源的储量已无法满足日益进步的经济需求,人们在日常生活中对于能源的需求逐步加大,环境的问题与资源利用问题也被广大人们所关注,而随着社会的发展进步,风力发电这种可再生清洁能源被广泛利用是发展趋势,所以,我们在设计中对于风力发电机组的选型能否符合效益的生成,是否符合经济效益的提升便是我们重点关注与分析的。
下面以江苏中部某现代农业产业园多能互补风电项目为例谈谈风电机组选型。
1项目概况1.1 项目基本信息江苏中部某风电场位于北纬32°20′~32°42′、东经119°48′~120°18′,地跨长江三角洲和里下河平原。
风机布置区域属于平原,场内地形较平坦,地貌主要为农田、河道及村庄为主。
附近已有部分道路,场外交通较为便利。
本期风电场工程规划装机容量 15MW。
风电场地理位置见图 1-1。
图 1-1 风电场地理位置示意图(省位置(左)、区位置(右))2风电机组型式选择风电场机型选择应考虑适合风电场场址的风资源条件,有利于提高风电场的发电效益。
随着国内外风力发电设备制造技术日臻成熟,针对不同区域风资源条件,各风机设备制造厂家已经开发出不同结构型式、不同控制调节方式的风力发电机组可供选择。
因此,本报告结合项目场址的地形、交通运输情况、风资源条件和风况特征,结合国内外商品化风电机组的制造水平、技术成熟程度,进行本风电项目机组型式选择。
中国风力发电机组选型手册
《中国风力发电机组选型手册》是一本关于风力发电机组选型的权威指南。
该手册提供了以下方面的信息:
1.风力发电机组的基本原理和特点:介绍了风力发电机组的基本工作原理、特点以及适用范围,帮助读者了解不同类型风力发电机组的优缺点。
2.风能资源评估:重点讲述了风能资源的评估方法,包括风速、风向、风能密度等参数的测量和计算,为风力发电机组的选型提供依据。
3.风力发电机组类型及特点:详细介绍了不同类型风力发电机组的特点、性能参数、适用场景等,包括大型风力发电机组、中小型风力发电机组、直驱式风力发电机组、双馈式风力发电机组等。
4.风力发电机组选型原则和方法:给出了风力发电机组选型的原则和方法,包括单机容量选择、桨叶选择、塔筒高度设计、控制系统配置等,帮助读者根据实际情况选择最适合的风力发电机组。
5.风力发电机组的安装和维护:介绍了风力发电机组的安装和维护要求,包括基础施工、机组安装、电缆连接、运行调试等,为读者提供相关指导和建议。
6.案例分析:通过实际案例的分析,帮助读者更好地理解风力发电机组选型的实际应用和效果。
总之,《中国风力发电机组选型手册》是-本非常有价值的工具书,适合风电行业的从业者、研究人员、企业领导等阅读和使用。
通过该手册,读者可以全面了解风力发电机组的选型方法和原则,为风电项目的成功实施提供有力支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 风电机组选型、布置及风电场发电量估算
5.1 风电机组选型
5.1.1 单机容量范围及方案的拟定
5.1.1.1 风电机组发电机类型的确定
风电场机型选择应考虑适合风电场场址的风资源条件,有利于提高风电场的发电效益。
随着国内外风力发电设备制造技术日趋成熟,针对不同区域风资源条件,各风机设备制造厂家已经开发出不同结构型式、不同控制调节方式的风力发电机组可供选择。
按照IEC61400-1标准(风电机组设计要求),风电场机组按50年一遇极大风速可分为I、II、III三个标准等级,每个等级按15m/s风速区间的湍流强度可分为A、B、C三个标准等级,为特殊风况和外部条件设计的为S级。
因此,根据怀宁风电场场址的地形、交通运输情况、风资源条件和风况特征,结合国内外商品化风电机组的制造水平、技术成熟程度以及风电机组本地化率的要求,进行风电场机组型式选择。
风力发电机组选型应考虑的几种因素
(1) 风电机组应满足一定的安全等级要求
表5.1.1.1-1 IEC61400-1各等级WTGS基本参数
上表中各数据应用于轮毂高度,其中V ref为10min平均参考风速,A 表示较高湍流特性,B表示中等湍流特性,C表示较低湍流特性,Iref为湍流强度15m/s时的特性。
在轮毂高度处,15m/s风速区间的湍流强度值不大于0.12,极大风速为28.2m/s。
根据国际电工协会IEC61400-1(2005)标准判定本风电场工程70~90m轮毂高度适宜选择IECⅢC及以上等级的风力发电机组。
(2) 风轮输出功率控制方式
风轮输出功率控制方式分为失速调节和变桨距调节两种。
两种控制方式各有利弊,各自适应不同的运行环境和运行要求。
从目前市场情况看,采用变桨距调节方式的风电机组居多。
(3) 风电机组的运行方式
风电机组的运行方式分为变速运行与恒速运行。
恒速运行的风力机的好处是控制简单,可靠性好。
缺点是由于转速基本恒定,而风速经常变化,因此风力发电机组经常工作在风能利用系数(Cp)较低的点上,风能得不到充分利用。
变速运行的风电机组一般采用双馈异步发电机或多极永磁同步发电机。
变速运行方式通过控制发电机的转速,能使风力机的叶尖速比接近最佳值,从而最大限度的利用风能,提高风力发电机组的运行效率。
(4) 发电机的类型
目前,市场上主流的变速变桨恒频型风电机组技术分为双馈式和直驱式两大类。
双馈式变桨变速恒频技术的主要特点是采用了风轮可变速变桨运行,传动系统采用齿轮箱增速和双馈异步发电机并网,而直驱式变速变桨恒频技术采用了风轮与发电机直接耦合的传动方式,发电机多采用多极同步电机,通过全功率变频装置并网。
直驱技术的最大特点是可靠性和效率都进一步得到了提高。
还有一种介于二者之间的半直驱式,由叶轮通过单级增速装置驱动多极同步发电机,是直驱式和传统型风力发电机的混合,但是该类产品还不是很成熟,因此本工程不推荐。
双馈式:交流励磁发电机又被人们称之为双馈发电机。
双馈风电机组中,为了让风轮的转速和发电机的转速相匹配,必须在风轮和发电机之间用齿轮箱来联接,这就增加了机组的总成本;而齿轮箱噪音大、故障率高、需要定期维护,并且增加了机械损耗;机组中采用的双向变频器结构和控制复杂;电刷和滑环间也存在机械磨损。
目前,世界各国正在针对这些缺点改进机组或研制新型机组,如无刷双馈机组。
永磁直驱风电机组,就是取消了昂贵而又沉重的增速齿轮箱,风轮轴直接和发电机轴直接相连,转子的转速随来流风速的变化而改变,其交流
电的频率也随之变化,经过大功率电力电子变频器将频率不定的交流电整流成直流电,再逆变成与电网同频率的交流电输出。
表5.1.1.1-2 双馈型与直驱型风力发电机组的特性比较
双馈式风力发电机组的特点是采用了多级齿轮箱驱动有刷双馈式异步发电机。
它的发电机的转速高,转矩小,重量轻,体积小,变流器容量小,但齿轮箱的运行维护成本高且存在机械运行损耗。
直驱式风力发电机组在传动链中省掉了齿轮箱,将风轮与低速同步发电机直接连接,然后通过变流器全变流上网,降低了机械故障的概率和定期维护的成本,同时提高了风电转换效率和运行可靠性,但是电机体积大、价格高。
永磁直驱虽然发电机体积大、成本高,但由于省去了昂贵的齿轮箱,电能生产的机械传动路径缩短了,避免了因齿轮箱旋转产生的机械损耗、噪声以及材料的磨损甚至漏油等问题使机组的工作寿命更有保障,也更适
合于环境保护的要求;发电机外围面积大,易散热,由于没有电励磁,转子损耗近似为零,可采用自然通风冷却,结构简单可靠;交流一直流一交流变频装置可以根据要求进行有功功率、无功功率及频率输出的任意调节,谐波分量低,具有很强的低电压穿越能力,以适应电网扰动,实现高效率发电。
由此可以看出,永磁材料的使用使直驱风电机组的优势更加突出。
永磁直驱同步发电机系统存在的缺点是:对永磁材料的性能稳定性要求高,电机重量和成本增加。
另外,IGBT逆变器的容量较大,一般要选发电机额定功率的120%以上。
永磁直驱风电机组的设备总价比双馈风电机组的高,双馈机组在价格上占有一定的优势,但总体价格相差并不是很大。
从维修成本来看,直驱型占有相当大的优势。
风力发电机风轮的受力状况极为恶劣,经常在急剧变化的重载荷下连继运行数十小时,采用双馈型机组时,风轮所受到的各种载荷都通过主轴直接传递给齿轮箱的低速轴,所以齿轮箱成为故障率最高的部件。
有的风场齿轮箱损坏率高达40%~50%,个别品牌的齿轮箱更换率几乎接近100%。
以大坂城风电场一场为例,由齿轮箱故障或损坏导致的直接电量损失年均约15万kW.h,占非常规维护工作量的40%以上。
结论:
1)双馈风电机组具有很高的性价比,尤其适合变速恒频风力发电系统,因而在未来一段时间内仍然是风电行业的主流机型。
2)永磁直驱风电机组可靠性高、运行维护简单;电网运行质量大大提高。
在技术经济条件成熟时,永磁直驱风电机组有望成为风电领域更受欢迎的产品。
目前,由于双馈风电机组技术十分成熟,生产厂商较多,业主选择性更强,运行经验丰富,仍是风电场开发的主流机型。
而直驱风电机组技术尚未完全成熟,国内生产厂商较少,有些机型还处在设计研发阶段,并且已投人运行的机组运行时间较短,其性能、工艺质量尚需时日考验,更大兆瓦级直驱风电机组仍需在结构、材料、工艺等方面进一步研究。
此外,使用性能更好的变流器才会有更好的前景。
直驱风电机组是近几年发展起来的新型机组,代表了未来风电技术的发展方向。
随着永磁新材料的使用,新结构发电机和电力电子变流器的结
合,有望大幅减少大功率低速直驱风电机组的空间尺寸,可以预见直驱风电机组尤其是永磁直驱风电机组的市场占有率将不断增长。
从国外技术发展上来看,采用永磁直驱技术是大型风力发电产品发展必然的趋势,而且稀土永磁材料在我国的储量最大,原材料成本远小于国外,更应该考虑采用永磁直驱技术。
必须注意的是永磁电机占直驱机组的成本31%,而双馈电机只占双馈发电机组的6%,这样的话采用直驱式风力发电机组的方案利润空间会更大。
(5) 风电机组的机组性能应满足场址区特殊环境、气候等条件要求
怀宁属北亚热带湿润气候区,气候特点为四季分明、日照充足、热量丰富、雨量充沛、无霜期长,年平均温度16.4℃、历年极端最高气温:39.9℃、历年极端最低气温:-15.1℃。
因此,风机的选择可采用常温型机组。
根据国家电网公司关于《国家电网公司风电场接入电网技术规定(修订版)》,结合风电场输电特点、场区地形、地貌、地质条件、机组安装及运输等因素,提高土地综合利用率,本工程选用直驱型和双馈型风力发电机进行经济比选。