自动控制原理实验六
自动控制原理实验报告
自动控制原理实验报告一、实验目的。
本实验旨在通过实际操作,加深对自动控制原理的理解,掌握PID控制器的调节方法,并验证PID控制器的性能。
二、实验原理。
PID控制器是一种常见的控制器,它由比例环节(P)、积分环节(I)和微分环节(D)三部分组成。
比例环节的作用是根据偏差的大小来调节控制量的大小;积分环节的作用是根据偏差的累积值来调节控制量的大小;微分环节的作用是根据偏差的变化率来调节控制量的大小。
PID控制器通过这三个环节的协同作用,可以实现对被控对象的精确控制。
三、实验装置。
本次实验所使用的实验装置包括PID控制器、被控对象、传感器、执行机构等。
四、实验步骤。
1. 将PID控制器与被控对象连接好,并接通电源。
2. 调节PID控制器的参数,使其逐渐接近理想状态。
3. 对被控对象施加不同的输入信号,观察PID控制器对输出信号的调节情况。
4. 根据实验结果,对PID控制器的参数进行调整,以达到最佳控制效果。
五、实验结果与分析。
经过实验,我们发现当PID控制器的比例系数较大时,控制效果会更为迅速,但会引起超调;当积分系数较大时,可以有效消除稳态误差,但会引起响应速度变慢;当微分系数较大时,可以有效抑制超调,但会引起控制系统的抖动。
因此,在实际应用中,需要根据被控对象的特性和控制要求,合理调节PID控制器的参数。
六、实验总结。
通过本次实验,我们深刻理解了PID控制器的工作原理和调节方法,加深了对自动控制原理的认识。
同时,我们也意识到在实际应用中,需要根据具体情况对PID控制器的参数进行调整,以实现最佳的控制效果。
七、实验心得。
本次实验不仅让我们在理论知识的基础上得到了实践锻炼,更重要的是让我们意识到掌握自动控制原理是非常重要的。
只有通过实际操作,我们才能更好地理解和掌握知识,提高自己的实际动手能力和解决问题的能力。
八、参考文献。
[1] 《自动控制原理》,XXX,XXX出版社,2010年。
[2] 《PID控制器调节方法》,XXX,XXX期刊,2008年。
自动控制原理实验报告
自动控制原理实验报告实验目的,通过本次实验,掌握自动控制原理的基本概念和实验操作方法,加深对自动控制原理的理解和应用。
实验仪器与设备,本次实验所需仪器设备包括PID控制器、温度传感器、电磁阀、水槽、水泵等。
实验原理,PID控制器是一种广泛应用的自动控制设备,它通过对比设定值和实际值,根据比例、积分、微分三个控制参数对控制对象进行调节,以实现对控制对象的精确控制。
实验步骤:1. 将温度传感器插入水槽中,保证传感器与水温充分接触;2. 将水泵接通,使水槽内的水开始循环;3. 设置PID控制器的参数,包括比例系数、积分时间、微分时间等;4. 通过调节PID控制器的参数,使得水槽中的水温稳定在设定的目标温度;5. 观察记录PID控制器的输出信号和水温的变化情况;6. 分析实验结果,总结PID控制器的控制特性。
实验结果与分析:经过实验操作,我们成功地将水槽中的水温控制在了设定的目标温度范围内。
在调节PID控制器参数的过程中,我们发现比例系数的调节对控制效果有着明显的影响,适当增大比例系数可以缩小温度偏差,但过大的比例系数也会导致控制系统的超调现象;积分时间的调节可以消除静差,但过大的积分时间会导致控制系统的超调和振荡;微分时间的调节可以抑制控制系统的振荡,但过大的微分时间也会使控制系统的响应变慢。
结论:通过本次实验,我们深入理解了PID控制器的工作原理和调节方法,掌握了自动控制原理的基本概念和实验操作方法。
我们通过实验操作和数据分析,加深了对自动控制原理的理解和应用。
总结:自动控制原理是现代控制工程中的重要内容,PID控制器作为一种经典的控制方法,具有广泛的应用前景。
通过本次实验,我们不仅学习了自动控制原理的基本知识,还掌握了PID控制器的调节方法和控制特性。
这对我们今后的学习和工作都具有重要的意义。
自动控制原理实验报告
自动控制原理实验报告实验一、典型环节的时域响应一.实验目的1. 熟悉并掌握TD-ACC+( TD-ACS设备的使用方法及各典型环节模拟控制电路的构成方法。
2. 熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。
对比差异、分析原因。
3. 了解参数变化对典型环节动态特性的影响。
二.实验设备PC机一台,TD-ACC+( TD-ACS实验系统一套。
三.实验内容1. 比例环节2. 积分环节3. 比例积分环节4. 惯性环节5. 比例微分环节6. 比例积分微分环节四、实验感想在本次实验后,我了解了典型环节的时域响应方面的知识,并且通过实践,实现了时域响应相关的操作,感受到了实验成功的喜悦。
实验二、线性系统的矫正一、目的要求1.掌握系统校正的方法,重点了解串联校正。
2.根据期望的时域性能指标推导出二阶系统的串联校正环节的传递函数、仪器设备PC机一台,TD-ACC+或TD-ACS)教学实验系统一套三、原理简述所谓校正就是指在使系统特性发生变接方式可分为馈回路之内采用的测点之后和放1.原系统的结构框图及性能指标对应的模拟电路图2.期望校正后系统的性能指标3.串联校正环节的理论推导四、实验现象分析校正前:校正后:校正前:校正后:六、实验心得次实验让我进一步熟悉了TD-ACC实验系统的使用,进一步学习了虚拟仪器,更加深入地学习了自动控制原理,更加牢固地掌握了相关理论知识,激发了我理论学习的兴趣。
实验三、线性系统的频率响应分析、实验目的1 .掌握波特图的绘制方法及由波特图来确定系统开环传函2 .掌握实验方法测量系统的波特图。
、实验设备PC机一台,TD-ACC系列教学实验系统一套三、实验原理及内容(一)实验原理1 .频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(3由0变至%)而变化的特性。
频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。
自控原理实验报告
一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
自控原理课程实验报告
一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 熟悉自动控制系统的典型环节,包括比例环节、积分环节、比例积分环节、惯性环节、比例微分环节和比例积分微分环节。
3. 通过实验,验证自动控制理论在实践中的应用,提高分析问题和解决问题的能力。
二、实验原理自动控制原理是研究自动控制系统动态和稳态性能的学科。
本实验主要围绕以下几个方面展开:1. 典型环节:通过搭建模拟电路,研究典型环节的阶跃响应、频率响应等特性。
2. 系统校正:通过在系统中加入校正环节,改善系统的性能,使其满足设计要求。
3. 系统仿真:利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。
三、实验内容1. 典型环节实验(1)比例环节:搭建比例环节模拟电路,观察其阶跃响应,分析比例系数对系统性能的影响。
(2)积分环节:搭建积分环节模拟电路,观察其阶跃响应,分析积分时间常数对系统性能的影响。
(3)比例积分环节:搭建比例积分环节模拟电路,观察其阶跃响应,分析比例系数和积分时间常数对系统性能的影响。
(4)惯性环节:搭建惯性环节模拟电路,观察其阶跃响应,分析时间常数对系统性能的影响。
(5)比例微分环节:搭建比例微分环节模拟电路,观察其阶跃响应,分析比例系数和微分时间常数对系统性能的影响。
(6)比例积分微分环节:搭建比例积分微分环节模拟电路,观察其阶跃响应,分析比例系数、积分时间常数和微分时间常数对系统性能的影响。
2. 系统校正实验(1)串联校正:在系统中加入串联校正环节,改善系统的性能,使其满足设计要求。
(2)反馈校正:在系统中加入反馈校正环节,改善系统的性能,使其满足设计要求。
3. 系统仿真实验(1)利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。
(2)根据仿真结果,优化系统参数,提高系统性能。
四、实验步骤1. 搭建模拟电路:根据实验内容,搭建相应的模拟电路,并连接好测试设备。
自动控制原理实验报告-西南交通大学课程与资源中心
西南交通大学自动控制原理课程实验报告册
《自动控制原理》课程实验报告(一)
《自动控制原理》课程实验报告(二)
《自动控制原理》课程实验报告(三)
《自动控制原理》课程实验报告(四)
三、思考题
1. 参数在一定范围内取值才能使闭环系统稳定的系统称为条件稳定系统。
对于这类系
统可以通过根轨迹法来确定使系统稳定的参数取值范围,也可以适当调整系统参数或增加校正网络以消除条件稳定性问题。
对于下图所示条件稳定系统:
试问能否通过增加开环零极点消除系统条件稳定性问题,即对于所有根轨迹增益,根轨迹全部位于s左半平面,闭环系统稳定。
《自动控制原理》课程实验报告(五)
《自动控制原理》课程实验报告(六)
《自动控制原理》课程实验报告(七)
《自动控制原理》课程实验报告(八)
《自动控制原理》课程实验报告(九)。
matlab实验六
自动控制原理课程验证性实验报告
实验名称
六、基于matlab控制系统的根轨迹及其性能分析
实验时间
年日
学生姓名
牛景坤
实验地点
同组人员
专业班级
电技1001B
1、实验目的:
1、熟练掌握使用MATLAB绘制控制系统零极点图和根轨迹图的方法
2、学会分析控制系统根轨迹的一般规律
3、利用根轨迹图进行系统性能分析
2)在根轨迹图上标注分离点和临街开环增益对应的点,显示相关的性能指标。
3)在根轨迹图上各区段取点,使用rlocfind()命令分别在ζ=0,0.25,0.7,1,1.2处,得到相应的开环增益K和闭环极点r,由这两组参量写出系统闭环传递函数,分别绘制其对应系统的阶跃响应曲线,记录系统性能指标,并比较分析。将数据填入实验数据记录表格中
6)偶极子及其处理。如果零、极点之间的距离比它们本身的模值小一个数量级,则她们就构成偶极子。原理原点的偶极子其影响可忽略,反之必须考虑。
7)主导极点。在S平面上,最靠近虚轴而附近又无闭环零点的一些闭环极点,对系统性能影响最大,成为主导极点。凡是比主导极点的实部打3-6倍以上的其他闭环零、极点,其影响课忽略
(4)研究闭环零点、极点对系统性能的影响
范例4.3已知一负反馈系统的开环传递函数为G(s)H(s)=k(s+3)/s(s+2)
(1)绘制其根轨迹图,确定根轨迹分离点及相应增益K,临界增益K
(2)确定系统呈现欠阻尼状态的开环增益范围。
解:当系统呈现欠阻尼状态时,对应的闭环极点应该处于实轴上的两分离点之间的根轨迹上,从根轨迹图上可以测到欠阻尼状态时的开环增益范围为0.539<k<7.45
自动控制原理实验
目录目录 (1)实验一基本绘图 (2)一、实验目的 (2)二、实验内容 (2)实验二模型建立 (9)一、实验目的 (9)二、实验内容 (9)实验三稳定性分析 (15)一、实验目的 (15)二、实验内容 (15)实验四响应曲线 (21)一、实验目的 (21)二、实验内容 (21)实验五根轨迹 (24)一、实验目的 (24)二、实验内容 (24)实验六控制系统的频域分析 (32)一、实验目的 (32)二、基础知识及MATLAB函数 (32)三、实验内容 (32)实验一基本绘图一、实验目的1.学习了解MATLAB语言环境;2.练习MATLAB命令的基本操作;3.学习MATLAB的基本矩阵运算;4.学习MATLAB的各种二维绘图;5.学习MATLAB的三维绘图。
二、实验内容2.1基本二维绘图(1)向量绘图x=0:2*pi/100:2*pi;y1=sin(2*x);y2=cos(2*x);plot(x,y1);plot(x,y2);%保持作图plot(x,y1);hold on;plot(x,y2);hold off;%设定颜色与线型plot(x,y1,':',x,y2,'ro');%多窗口绘图figure(1);plot(x,y1);figure(2);plot(x,y2);%子图绘图subplot(221);plot(x,y1);subplot(222);plot(x,y2)subplot(223);plot(x,y1,x,y1+y2)subplot(224);plot(x,y2,x,y1-y2)2.2多种二维绘图(1)半对数绘图(频率特性绘图)w=logspace(-1,1);%横坐标对数分度g=20*log10(1./(1+2*w*i));%幅值纵坐标取分贝p=angle(1./(1+2*w*i))*180/pi;%相角纵坐标取度subplot(211);semilogx(w,g);grid;%幅频特性子图,半对数绘图,加网线subplot(212);semilogx(w,p);grid;%相频特性子图,半对数绘图,加网线(2)极坐标绘图t=0:2*pi/180:2*pi;mo=cos(2*t);polar(t,mo);(3)直方图绘图t=0:2*pi/8:2*pi;y=sin(t);bar(t,y);(四)离散棒图t=0:2*pi/8:2*pi;y=sin(t);stem(t,y);(五)阶梯图t=0:2*pi/8:2*pi;y=sin(t);stairs(t,y);2.3图形注释fplot('[sin(t),cos(t)]',[0,5]);title('曲线')xlabel('时间t');ylabel('幅值y');gtext('正弦函数');gtext('余项函数');grid2.4三维绘图(1)三维线图t=0:pi/50:10*pi;plot3(sin(t),cos(t),t);comet3(sin(t),cos(t),t);(2)单变量高度网线图Z2=[1 1;1 -1];Z4=[Z2 Z2;Z2 -Z2];Z8=[Z4 Z4;Z4 -Z4];mesh(Z8)(3)变量马鞍面网线图x=-4:0.5:4;y=x;[X,Y]=meshgrid(x,y);Z=X.^2-Y.^2;mesh(X,Y,Z)(四)圆锥面网线图t1=0:0.1:0.9;t2=0:0.1:2;r=[t1,-t2+2];[x,y,z]=cylinder(r,40); mesh(x,y,z)实验二模型建立一、实验目的1.学习在MATLAB命令窗口建立系统模型的方法;2.学习如何在两种模型之间相互转换;3.学习如何用SIMULINK仿真工具建模。
自动控制原理实验报告
一、实验目的1. 理解自动控制原理的基本概念,掌握自动控制系统的组成和基本工作原理。
2. 熟悉自动控制实验设备,学会使用相关仪器进行实验操作。
3. 通过实验验证自动控制理论在实际系统中的应用,加深对理论知识的理解。
二、实验原理自动控制原理是研究自动控制系统动态过程及其控制规律的科学。
实验主要验证以下原理:1. 线性时不变系统:系统在任意时刻的输入与输出之间关系可用线性方程表示,且系统参数不随时间变化。
2. 稳定性:系统在受到扰动后,能够逐渐恢复到稳定状态。
3. 控制器设计:通过控制器的设计,使系统满足预定的性能指标。
三、实验设备1. 自动控制实验台2. 计算机及控制软件3. 测量仪器(如示波器、信号发生器、数据采集器等)四、实验内容1. 线性时不变系统阶跃响应实验2. 线性时不变系统频率响应实验3. 控制器设计实验五、实验步骤1. 线性时不变系统阶跃响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为阶跃信号,观察并记录输出信号;(3)分析阶跃响应曲线,计算系统动态性能指标。
2. 线性时不变系统频率响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为正弦信号,改变频率,观察并记录输出信号;(3)分析频率响应曲线,计算系统频率特性指标。
3. 控制器设计实验(1)根据系统性能指标,选择合适的控制器类型;(2)搭建实验电路,连接好相关仪器;(3)调整控制器参数,观察并记录输出信号;(4)分析控制器效果,验证系统性能指标。
六、实验结果与分析1. 线性时不变系统阶跃响应实验(1)实验结果:绘制阶跃响应曲线,计算系统动态性能指标;(2)分析:与理论值进行对比,验证系统动态性能。
2. 线性时不变系统频率响应实验(1)实验结果:绘制频率响应曲线,计算系统频率特性指标;(2)分析:与理论值进行对比,验证系统频率特性。
3. 控制器设计实验(1)实验结果:调整控制器参数,观察并记录输出信号;(2)分析:验证系统性能指标,评估控制器效果。
《自动控制原理》实验报告讲述
《自动控制原理》实验报告姓名:学号:班级:11电气1班专业:电气工程及其自动化学院:电气与信息工程学院2013年12月目录实验一、典型环节的模拟研究实验二、二阶系统的阶跃响应分析实验三、线性系统的稳态误差分析实验四、线性系统的频率响应分析实验一典型环节的模拟研究1.1 实验目的1、熟悉并掌握TD-ACS设备的使用方法及各典型环节模拟电路的构成方法。
2、熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。
3、了解参数变化对典型环节动态特性的影响。
1.2 实验设备PC机一台,TD-ACS实验系统一套。
1.3 实验原理及内容下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。
1. 比例环节(P)(1) 方框图:如图1.1-1 所示。
图1.1-1(2) 传递函数:Uo(S)/Ui(S)=K(3) 阶跃响应:Uo(t)=K(t≥0)其中K=R1/R0(4) 模拟电路图:图1.1-2注意:图中运算放大器的正相输入端已经对地接了100K 的电阻,实验中不需要再接。
以后的实验中用到的运放也如此。
(5) 理想与实际阶跃响应对照曲线:①取R0 = 200K;R1 = 100K。
理想阶跃响应曲线实测阶跃响应曲线2.积分环节(I)(1) 方框图:如右图1.1-3 所示。
图1.1-3(2) 传递函数:错误!未找到引用源。
(3) 阶跃响应:Uo(t) = 错误!未找到引用源。
(t 0) 其中T=R0C(4) 模拟电路图:如图1.1-4 所示。
图1.1-4(5) 理想与实际阶跃响应曲线对照:①取R0 = 200K;C = 1uF。
3.比例积分环节(PI)(1)方框图:如图1.1-5 所示。
图1.1-5(2) 传递函数:错误!未找到引用源。
(3)阶跃响应:Uo(t)=K+t/T(t) (t 0) 其中K=Ri/Ro; T=RoC(4) 模拟电路图:见图1.1-6图1.1-6(5) 理想与实际阶跃响应曲线对照:①取R0 = R1 = 200K;C = 1uF。
自动控制原理实验(实验六)
实验六Simulink建模及动态仿真
一、实验目的
1、熟悉MATLAB的Simulink工作界面和模型基本结构
2、熟悉MATLAB的Simulink窗口仿真和命令仿真环境
3、掌握用MA TLAB的Simulink分析离散系统
二、实验内容
1、Simulink对双闭环调速系统进行仿真并分析PI调节器对系统的影响。
如:例9-34
2、用Simulink完成例9-19,并分析比例调节器对系统的影响
Kc=0.11时
Kc=6时
结论:当Kc>1是稳定性下降且Kc越大系统趋于不稳定。
3、用Simulink分析离散系统,如例9-35,并完成例9-32
三、实验报告要求
1、将实验内容1、
2、3的simulink仿真图和波形图均写入实验报告中。
2、实验过程中遇到的问题分析及方法解决。
自动控制原理实验1-6
⾃动控制原理实验1-6实验⼀MATLAB 仿真基础⼀、实验⽬的:(1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗⼝的基本操作。
(2)掌握MATLAB 建⽴控制系统数学模型的命令及模型相互转换的⽅法。
(3)掌握使⽤MATLAB 命令化简模型基本连接的⽅法。
(4)学会使⽤Simulink 模型结构图化简复杂控制系统模型的⽅法。
⼆、实验设备和仪器 1.计算机;2. MATLAB 软件三、实验原理函数tf ( ) 来建⽴控制系统的传递函数模型,⽤函数printsys ( ) 来输出控制系统的函数,⽤函数命令zpk ( ) 来建⽴系统的零极点增益模型,其函数调⽤格式为:sys = zpk ( z, p, k )零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den )两个环节反馈连接后,其等效传递函数可⽤feedback ( ) 函数求得。
则feedback ()函数调⽤格式为: sys = feedback(sys1, sys2, sign )其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign =-1;正反馈时,sign =1;单位反馈时,sys2=1,且不能省略。
四、实验内容:1.已知系统传递函数,建⽴传递函数模型2.已知系统传递函数,建⽴零极点增益模型3.将多项式模型转化为零极点模型12s 2s s 3s (s)23++++=G )12()1()76()2(5)(3322++++++=s s s s s s s s G 12s 2s s 3s (s)23++++=G )12()1()76()2(5)(3322++++++=s s s s s s s s G4. 已知系统前向通道的传递函数反馈通道的传递函数求负反馈闭环传递函数5、⽤系统Simulink 模型结构图化简控制系统模型已知系统结构图,求系统闭环传递函数。
自动控制原理实验汇总
实验一 控制系统典型环节的模拟 一、实验目的 (1)熟悉超低频扫描示波器的使用方法。
(2)掌握用运放组成控制系统典型环节的模拟电路。
(3)测量典型环节的阶跃响应曲线。
(4)通过实验了解典型环节中参数的变化对输出动态性能的影响。
二、实验所需挂件及附件DJK01 、DJK15、双踪慢扫描示波器、万用表三、实验线路及原理以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图8-1所示。
图中Z 1和Z 2为复数阻抗,它们都是由R 、C 构成。
基于图中A 点的电位为虚地,略去流入运放的电流,则由图8-1得:由上式可求得,由下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。
(1)比例环节比例环节的模拟电路如图8-2所示:图8-1 运放的反馈连接图8-2 比例环节(2)惯性环节 (1) )(12Z Z u u S G i o =-=2=410820==12K K Z Z )S (G 111/1/)(21212212+=+⋅=+==TS K CS R R R R CS R CS R Z Z S G取参考值R 1=100K ,R 2=100K ,C=1uF图8-3 惯性环节(3)积分环节式中积分时间常数T=RC,取参考值R=200K ,C=1uF图8-4 积分环节(4)比例微分环节(PD ),其接线图如图及阶跃响应如图8-5所示。
参考值R 1=200K ,R 2=410K ,C=0.1uF)(3 1 1 /1)(12TS RCS R CS Z Z S G ====C R =T , =K (4) 1+= 1+•= 1+==1D 1211211212R R )S T (K )CS R (R R CS /R CS /R R Z Z )S (G D 其中图8-5 比例微分环节 (5)比例积分环节,其接线图单位阶跃响应如图8-6所示。
参考值R 1=100K R 2=200K C=0.1uF图8-6 比例积分环节(6)振荡环节,其原理框图、接线图及单位阶跃响应波形分别如图8-7、8-8所示。
实验6_状态反馈与状态观测器.doc
实验6_状态反馈与状态观测器自动控制原理实验报告自动控制原理实验报告院系名称:仪器科学与光电工程学院班级:141715班姓名:武洋学号:14171073实验六状态反馈与状态观测器一、实验目的1. 掌握用状态反馈进行极点配置的方法。
2. 了解带有状态观测器的状态反馈系统。
3. 理解系统极点、观测器极点与系统性能、状态估计误差之间的关系。
二、实验内容1. 系统G(s)=10.05s2+s+1如图2.6.1所示,要求设计状态反馈阵K,使动态性能指标满足超调量,峰值时间。
图2.6.1二阶系统结构图2.被控对象传递函数为写成状态方程形式为式中; ;为其配置系统极点为S1,2=-仪器科学与光电工程学院班级:141715班姓名:武洋学号:14171073实验六状态反馈与状态观测器一、实验目的1. 掌握用状态反馈进行极点配置的方法。
2. 了解带有状态观测器的状态反馈系统。
3. 理解系统极点、观测器极点与系统性能、状态估计误差之间的关系。
二、实验内容1. 系统G(s)=10.05s2+s+1如图2.6.1所示,要求设计状态反馈阵K,使动态性能指标满足超调量,峰值时间。
图2.6.1二阶系统结构图2.被控对象传递函数为写成状态方程形式为式中; ;为其配置系统极点为S1,2=:其中维状态反馈系数矩阵,由计算机算出。
维观测器的反馈矩阵,由计算机算出。
为使跟踪所乘的比例系数。
三、实验原理1. 闭环系统的动态性能与系统的特征根密切相关,在状态空间的分析中可利用状态反馈来配置系统的闭环极点。
这种校正手段能提供更多的校正信息,在形成最优控制率、抑制或消除扰动影响、实现系统解耦等方面获得广泛应用。
在改善与提高系统性能时不增加系统零、极点,所以不改变系统阶数,实现方便。
2. 已知线形定常系统的状态方程为为了实现状态反馈,需要状态变量的测量值,而在工程中,并不是状态变量都能测量到,而一般只有输出可测,因此希望利用系统的输入输出量构成对系统状态变量的估计。
自动控制原理实验报告(电子版)
自动控制原理实验报告课程编号:ME3121023专业班级姓名学号实验时间:一、实验目的和要求:通过自动控制原理实验牢固地掌握《自动控制原理》课的基本分析方法和实验测试手段。
能应用运算放大器建立各种控制系统的数学模型,掌握系统校正的常用方法,掌握系统性能指标同系统结构和参数之间的基本关系。
通过大量实验,提高动手、动脑、理论结合实际的能力,提高从事数据采集与调试的能力,为构建系统打下坚实的基础。
二、实验仪器、设备(软、硬件)及仪器使用说明自动控制实验系统一套计算机(已安装虚拟测量软件---LABACT)一台椎体连接线18根实验一线性典型环节实验(一)、实验目的:1、了解相似性原理的基本概念。
2、掌握用运算放大器构成各种常用的典型环节的方法。
3、掌握各类典型环节的输入和输出时域关系及相应传递函数的表达形式,熟悉各典型环节的参数(K、T)。
4、学会时域法测量典型环节参数的方法。
(二)、实验内容:1、用运算放大器构成比例环节、惯性环节、积分环节、比例积分环节、比例微分环节和比例积分微分环节。
2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关系。
3、在运算放大器上实现各环节的参数变化。
(三)、实验要求:1、仔细阅读自动控制实验装置布局图和计算机虚拟测量软件的使用说明书。
2、做好预习,根据实验内容中的原理图及相应参数,写出其传递函数的表达式,并计算各典型环节的时域输出响应和相应参数(K、T)。
3、分别画出各典型环节的理论波形。
5、输入阶跃信号,测量各典型环节的输入和输出波形及相关参数。
(四)、实验原理:实验原理及实验设计:1.比例环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时域输出响应:2.惯性环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:3.积分环节:Ui-Uo的时域响应理论波形:传递函数:时常数:时域输出响应:4.比例积分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:5.比例微分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:6.比例积分微分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:(五)、实验方法与步骤1、根据原理图构造实验电路。
自动控制原理实验报告
自动控制原理实验报告实验目的,通过本次实验,掌握自动控制原理的基本知识,了解控制系统的结构和工作原理,以及掌握控制系统的设计和调试方法。
实验仪器,本次实验所使用的仪器有PID控制器、执行器、传感器等。
实验原理,自动控制系统是指通过传感器采集被控对象的信息,经过控制器处理后,通过执行器对被控对象进行调节,以达到设定的控制目标。
其中PID控制器是通过比较被控对象的实际值和设定值,计算出误差,并根据比例、积分、微分三个参数来调节执行器输出的控制信号,使被控对象的实际值逐渐趋近设定值的一种控制方式。
实验步骤:1. 将PID控制器与执行器、传感器连接好,并确认连接正确无误。
2. 设置被控对象的设定值,并观察实际值的变化情况。
3. 调节PID控制器的参数,观察被控对象的响应情况,找到最佳的控制参数组合。
4. 对不同类型的被控对象进行实验,比较不同参数组合对控制效果的影响。
实验结果与分析:通过实验我们发现,合适的PID参数组合能够使被控对象的实际值快速稳定地达到设定值,并且对不同类型的被控对象,需要调节的参数组合也有所不同。
在实际工程中,需要根据被控对象的特性和控制要求来选择合适的PID参数,并进行调试和优化。
结论:本次实验使我们进一步了解了自动控制原理,掌握了PID控制器的基本原理和调试方法,对控制系统的设计和调试有了更深入的理解。
同时也认识到在实际工程中,需要根据具体情况来选择合适的控制方法和参数,进行调试和优化,以达到最佳的控制效果。
通过本次实验,我们对自动控制原理有了更深入的认识,对控制系统的设计和调试方法有了更加清晰的理解,相信这对我们今后的学习和工作都将有所帮助。
自动控制原理_实验报告
一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握典型环节的传递函数和响应特性;3. 熟悉PID控制器的原理和参数整定方法;4. 通过实验验证理论知识的正确性,提高实际操作能力。
二、实验设备1. 自动控制原理实验箱;2. 示波器;3. 数字多用表;4. 个人电脑;5. 实验指导书。
三、实验原理自动控制系统是一种根据给定输入信号自动调节输出信号的系统。
它主要由控制器、被控对象和反馈环节组成。
控制器根据被控对象的输出信号与给定信号的偏差,通过调节控制器的输出信号来改变被控对象的输入信号,从而实现对被控对象的控制。
1. 典型环节(1)比例环节:比例环节的传递函数为G(s) = K,其中K为比例系数。
比例环节的响应特性为输出信号与输入信号成线性关系。
(2)积分环节:积分环节的传递函数为G(s) = 1/s,其中s为复频域变量。
积分环节的响应特性为输出信号随时间逐渐逼近输入信号。
(3)比例积分环节:比例积分环节的传递函数为G(s) = K(1 + 1/s),其中K为比例系数。
比例积分环节的响应特性为输出信号在比例环节的基础上,逐渐逼近输入信号。
2. PID控制器PID控制器是一种常用的控制器,其传递函数为G(s) = Kp + Ki/s + Kd(s/s^2),其中Kp、Ki、Kd分别为比例系数、积分系数和微分系数。
PID控制器可以实现对系统的快速、稳定和精确控制。
四、实验内容及步骤1. 实验一:典型环节的阶跃响应(1)搭建比例环节电路,观察并记录输出信号随时间的变化曲线;(2)搭建积分环节电路,观察并记录输出信号随时间的变化曲线;(3)搭建比例积分环节电路,观察并记录输出信号随时间的变化曲线。
2. 实验二:PID控制器参数整定(1)搭建PID控制器电路,观察并记录输出信号随时间的变化曲线;(2)通过改变PID控制器参数,观察并分析系统响应特性;(3)根据系统响应特性,整定PID控制器参数,使系统达到期望的响应特性。
自动控制原理(THKKL-6型)实验指导书
目录
第一部分 使用说明书 ........................................................................................................................1 第一章 系统概述 ............................................................................................................................1 第二章 硬件的组成及使用 ............................................................................................................2
天煌科技
3
天煌教仪
自动控制原理(THKKL-6 型) 实验指导书
注意事项: 1. 每次连接线路前要关闭电源总开关。 2. 按照实验指导书连接好线路后,仔细检查线路是否连接正确、电源有无接反。如确认无
误后方可接通电源开始实验。
天煌科技
4
天煌教仪
自动控制原理(THKKL-6 型) 实验指导书
第二部分 实验指导书
天煌科技
2
天煌教仪
自动控制原理(THKKL-6 型) 实验指导书
通用单元电路具体有“通用单元 1”~“通用单元 6”、“反相器单元”和“系统能控性与能 观性分析”等单元。这些单元主要由运放、电容、电阻、电位器和一些自由布线区等组成。通 过不同的接线,可以模拟各种受控对象的数学模型,主要用于比例、积分、微分、惯性等电路 环节的构造。一般为反向端输入,其中电阻多为常用阻值 51k、100k、200k、510k;电容多在 反馈端,容值为 0.1uF、1uF、10uF。
自动控制原理实验报告
自动控制原理实验报告实验报告:自动控制原理一、实验目的本次实验的目的是通过设计并搭建一个简单的自动控制系统,了解自动控制的基本原理和方法,并通过实际测试和数据分析来验证实验结果。
二、实验装置和仪器1. Arduino UNO开发板2.电机驱动模块3.直流电机4.旋转角度传感器5.杜邦线6.电源适配器三、实验原理四、实验步骤1. 将Arduino UNO开发板与电机驱动模块、旋转角度传感器和直流电机进行连接。
2. 编写Arduino代码,设置电机的控制逻辑和旋转角度的反馈机制。
3. 将编写好的代码上传至Arduino UNO开发板。
4.将电源适配器连接至系统,确保实验装置正常供电。
5.启动实验系统并观察电机的转动情况。
6.记录电机的转动角度和实际目标角度的差异,并进行数据分析。
五、实验结果和数据分析在实际操作中,我们设置了电机的目标转动角度为90度,待实验系统运行后,我们发现电机实际转动角度与目标角度存在一定的差异。
通过对数据的分析,我们发现该差异主要由以下几个方面导致:1.电机驱动模块的响应速度存在一定的延迟,导致电机在到达目标角度时出现一定的误差。
2.旋转角度传感器的精度有限,无法完全准确地测量电机的实际转动角度。
这也是导致实际转动角度与目标角度存在差异的一个重要原因。
3.电源适配器的稳定性对电机的转动精度也有一定的影响。
六、实验总结通过本次实验,我们了解了自动控制的基本原理和方法,并通过实际测试和数据分析了解了自动控制系统的运行情况。
同时,我们也发现了实际系统与理论预期之间存在的一些差异,这些差异主要由电机驱动模块和旋转角度传感器等因素引起。
为了提高自动控制系统的精度,我们需要不断优化和改进这些因素,并进行相应的校准和调试。
实验的结果也提醒我们,在实际应用中,需要考虑各种因素的影响,以确保自动控制系统的可靠性和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阻尼比是二阶系统复数极点与副实轴夹角的余弦,即cos(β)=ζ,当cos(β)为最小值时,系统阻尼最小,此时β有最大值,即过坐标原点作该系统根轨迹圆的切线,切点对应的一对共轭复数就是系统最小阻尼比时的闭环
4、实验方法、步骤:
1)编程分别绘制控制系统的零极点图和和根轨迹图
6)偶极子及其处理。如果零、极点之间的距离比它们本身的模值小一个数量级,则她们就构成偶极子。原理原点的偶极子其影响可忽略,反之必须考虑。
7)主导极点。在S平面上,最靠近虚轴而附近又无闭环零点的一些闭环极点,对系统性能影响最大,成为主导极点。凡是比主导极点的实部打3-6倍以上的其他闭环零、极点,其影响课忽略
4、研究闭环零点、极点对系统性能的影响
2、实验主要仪器设备和材料:
计算机、MATLAB软件
3、实验内容和原理:
一、实验原理:
(1)根轨迹与稳定性
当系统开环增益从0→∞变化时若根轨迹不会越过虚轴进入S右半平面,那么系统对搜有的K值都是稳定的;若根轨迹越过虚轴进入S右半平面,那么根轨迹与虚轴交点处的K值就是临街开环增益。应用根轨迹法,可以迅速确定系统在某一开环增益或某一参数下的闭环零点、极点位置,从而得到相应的闭环传递函数。
[k,r]=rlocfind(num,den)
在做好的根轨迹图上,确定被选的闭环极点位置的增益值k和此时闭环极点r(向量)的值
在作出根轨迹图后,在执行该命令,命令窗口出现提示语“Selet a point in the graphis windows”,
此时将鼠标移至根轨迹图并选定位置,单击鼠标左键确定,出现“+”标记,在MATLAB窗口上即可得到该点的根轨迹开环增益K值和对应的所有闭环根r(列向量)
(4)研究闭环零点、极点对系统性能的影响
范例4.3 已知一负反馈系统的开环传递函数为G(s)H(s)=k(s+3)/s(s+2)
(1)绘制其根轨迹图,确定根轨迹分离点及相应增益K,临界增益K
(2)确定系统呈现欠阻尼状态的开环增益范围。
解:当系统呈现欠阻尼状态时,对应的闭环极点应该处于实轴上的两分离点之间的根轨迹上,从根轨迹图上可以测到欠阻尼状态时的开环增益范围为0.539<k<7.45
(3)根轨迹与系统性能的定性分析
1)稳定性。如果闭环极点全部位于S左半平面,则系统一定是稳定的,即稳定性只与闭环极点的位置有关,而与闭环零点的位置无关
2)运动形状。如果闭环系统无零点,且闭环极点为实数极点,则时间响应一定是单调的;如果闭环极点均为复数极点则时间响应一定振荡的。
3)超调量。超调量主要取决于闭环复数主导极点的衰减率,并与其他闭环零极点接近坐标原点的程度有关。
在根轨迹的分离点(-0.423,0)处,对应于阻尼大于1,超调量为0,开环增益K=0.385,系统处于临界阻尼状态。
根轨迹于实轴相交时,闭环跟位于虚轴上,闭环极点是一对纯虚根(±j1.41),阻尼为0,超调量最大,系统处于无阻尼状态,其动态响应将出现等幅振荡。此时K=5.92,称谓临界增益K。
(3)根据控制系统的根轨迹分析控制系统的性能
根轨迹的条数及运动方向:根轨迹有3条,分别是从起点(0,0)(-1,0)和(-2,0)出发,随着K值从零到无穷大变化,趋于无穷远。
位于负实轴的根轨迹(-∞,-2)和(-1,0)区段,其对应的阻尼大于1,超调量为0,系统处于过阻尼状态,而且在远离虚轴的方向,增益K增大,震荡频率随之增大,系统衰减速率响应加大。
2)在根轨迹图上标注分离点和临街开环增益对应的点,显示相关的性能指标。
3)在根轨迹图上各区段取点,使用rlocfind()命令分别在ζ=0,0.25,0.7,1,1.2处,得到相应的开环增益K和闭环极点r,由这两组参量写出系统闭环传递函数,分别绘制其对应系统的阶跃响应曲线,记录系Байду номын сангаас性能指标,并比较分析。将数据填入实验数据记录表格中
范例4.2 若已知系统开环传递函数G(s)H(s)=k/[s(s+1)(s+2)]绘制控制系统的根轨迹图,并分析根轨迹的一般规律。
解:参考程序如下:
k=1;z=[];p=[0 -1 -2];
[num,den]=zp2tf(z,p,k);
Rlocus(num,den),grid
运行后根轨迹图如下:
分析:一般规律
4)调节时间。调节时间主要取决于最靠近虚轴的闭环复数极点的实部绝对值,如果实数极点距虚轴最近并且它附近没有实数零点,则调节时间主要取决于该实数极点的模值。
5)实数零、极点影响。零点减小闭环系统的阻尼,从而使系统的峰值时间提前,超调量增大;极点增大闭环系统的阻尼,使系统的峰值延后超调量减小。而且这种影响将接近坐标原点的程度而加强
(2)二阶系统根轨迹的 一般规律
若闭环极点为复数极点,系统为欠阻尼系统,单位阶跃响应为阻尼振荡过程,且超调量将随K值的增大而增大,但调节时间的变化不显著。若闭环极点为重叠的两个实数,系统为临界阻尼系统,单位跃阶相应为非周期过程,但是响应速度较过阻尼快。若所有闭环极点位于实轴上,系统为过阻尼系统,单位跃阶响应为非周期过程
范例4.1 已知系统的开环传递函数,绘制系统的零极点图如下:
G(s)H(s)=s²+5s+5/s(s+1)(s²+2s+2)
(2)绘制控制系统的根轨迹图并分析根轨迹的一般规律
MATLAB提供rlocus()函数来绘制系统的根轨迹图,其调用格式为
rlocus(num,den) 直接在S复平面上绘制系统根轨迹图
黄淮学院电子科学与工程系
自动控制原理课程验证性实验报告
实验名称
用MATLAB进行系统根轨迹分析
实验时间
2012年12月06日
学生姓名
实验地点
070312
同组人员
专业班级
电技1001B
1、实验目的:
1、熟练掌握使用MATLAB绘制控制系统零极点图和根轨迹图的方法
2、学会分析控制系统根轨迹的一般规律
3、利用根轨迹图进行系统性能分析
二、实验内容
(1)绘制系统的零极点图
MATLAB提供pzmap()函数来绘制系统的零极点分布图,其调用格式为pzmap(num,den)或[p,z]=pzmap(num,den)。直接在S复平面上绘制系统对应的零极点位置,极点用“×”表示,零点用○表示。极点是微分方程的特征根,因此,决定了所描述系统自由运动的模态。零点距极点的距离越远,该极点所产生的模态所占的比重越大;零点距极点的距离越近,该极点所产生的模态所占比重越小。如果零极点重合则该极点所产生的模态为零,因为零极点相互抵消。