PKPM高层模型控制参数及调整精选文档
PKPM参数设置-10页word资料
PMCAD中设计参数1、考虑结构设计使用年限的荷载调整系数,【高规5.6.1】设计使用年限为50年时取1.0,设计使用年限为100年时取1.1。
2、框架梁端负弯矩条幅系数,【高规5.2.3】在竖向荷载作用下,可考虑框架梁端塑性变形内力重分布对梁端负弯矩乘以调幅系数进行调幅,并应符合下列规定:装配整体式框架梁端负弯矩调幅系数可取为0.7~0.8,现浇框架梁端负弯矩调幅系数可取为0.8~0.9(一般取为0.85),且调幅后的跨中弯矩不应小于按简支计算的跨中弯矩的1/2。
3、梁柱混凝土保护层厚度,【混规8.2.1】中有详细规定(新规范保护层厚度指以最外层钢筋的外边缘计算混凝土的保护层厚度)。
4、框架的抗震等级,【抗规6.1.2】中有详细规定(表6.1.2中确定的房屋的抗震等级为丙类建筑的抗震等级,甲乙类建筑应提高一度查表6.1.2确定其抗震等级,但抗震设防烈度为9度时,乙类建筑的抗震等级应按特一级采用,甲类建筑应采取更有效的抗震措施,丁类建筑允许降低一度采取抗震措施,但已为6度时不应再降低)5、抗震构造措施的抗震等级,【抗规3.3.2】建筑场地为1类时,对甲乙类建筑应允许仍按本地区抗震设防烈度的要求采取抗震构造措施,对丙类建筑应允许按本地区抗震设防烈度降低一度的要求采取抗震构造措施,但抗震设防烈度为6度时仍应按本地区抗震设防烈度的要求采取抗震构造措施。
(1类场地时,丁类建筑抗震构造措施也可降低一度同丙类;2类场地时,甲乙类建筑应按本地区抗震设防烈度提高一度采取抗震构造措施,丙类建筑按本地区抗震设防烈度采取抗震构造措施,丁类建筑可按本地区抗震设防烈度降低一度采取抗震构造措施;3、4类场地时,甲乙类建筑应按本地区抗震设防烈度提高两个等级采取抗震构造措施,丙类建筑7度半和8度半分别按8度9度采取抗震构造措施,丁类建筑7度和8度分别按6度7度采取抗震构造措施)。
6、计算振型个数,【高规5.1.13】计算振型数应使各振型参与质量之和不小于总质量的90%(振型数应为3的倍数,与结构的自由度有关,所选振型数不应大于结构的自由度,当结构按侧刚模型分析时,每层的刚性楼板有三个自由度,总自由度为3n,当按总刚模型分析时,每个节点有两个自由度,总自由度为2mn)。
(完整word版)PKPM参数(超详细)解析
一、总信息1、水平力与整体坐标夹角:该参数为地震力、风荷载作用方向与结构整体坐标的夹角。
抗规》5.1.1 条和《高规》4.3.2 条规定,“一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进行抗震验算”.如果地震沿着不同方向作用,结构地震反应的大小一般也不相同,那么必然存在某个角度使得结构地震反应最为剧烈,这个方向就称为“最不利地震作用方向”。
这个角度与结构的刚度与质量及其位置有关,对结构可能会造成最不利的影响,在这个方向地震作用下,结构的变形及部分结构构件内力可能会达到最大. SATWE 可以自动计算出这个最不利方向角,并在WZQ。
OUT 文件中输出。
如果该角度绝对值大于15 度,建议用户按此方向角重新计算地震力,以体现最不利地震作用方向的影响。
一般并不建议用户修改该参数,原因有三:①考虑该角度后,输出结果的整个图形会旋转一个角度,会给识图带来不便;②构件的配筋应按“考虑该角度"和“不考虑该角度”两次的计算结果做包络设计;③旋转后的方向并不一定是用户所希望的风荷载作用方向.综上所述,建议用户将“最不利地震作用方向角"填到“斜交抗侧力构件夹角”栏,这样程序可以自动按最不利工况进行包络设计。
水平力与整体坐标夹角与地震信息栏中斜交抗侧力构件附加地震角度的区别是:水平力不仅改变地震力而且同时改变风荷载的作用方向;而斜交抗侧力仅改变地震力方向(增加一组或多组地震组合),是按《抗规》5.1.1 条2 款执行的。
对于计算结果,水平力需用户根据输入的角度不同分两个计算工程目录,人为比较两次计算结果,取不利情况进行配筋包络设计等;而{斜交抗侧力}程序可自动考虑每一方向地震作用下构件内力的组合,可直接用于配筋设计,不需要人为判断。
只有在风荷载起控制作用时,现有的坐标下风荷载不能起到控制结构的最大受力状态,此时填写一个角度(逆时针为正,顺时针为负),让坐标系发生变化,使风荷载在新的坐标系下(如何计算出风荷载产生的内力最大值的角度值?),能起控制作用(控制结构的最大受力状态),改变参数后,地震作用和风荷载的方向(说明两者方向是一致)将同时改变,但地震作用方向已经不是最不利的方向了,故需要在附加地震作用方向上输入一个相反的角度,使地震作用方向应按原坐标系计算,使地震力最大;如不需要改变风荷载的方向,只需考虑其它角度的地震作用时,则无需改变“水平力与整体坐标的夹角”,只增加附加地震作用方向即可。
PKPM★知识点汇总-3(控制调整篇)
控制参数调整一、结构整体合理性参数体现01.结构延性:轴压比;02.扭转效应:周期比、位移比;03.竖向不规则:层间刚度比、楼层受剪承载力之比、剪重比;04.结构整体稳定:刚重比;05.各构件配筋合理,做到刚度适中、配筋率在经济配筋率范围之内。
二、各控制参数调整01.轴压比说明:用于控制结构延性,规范对墙肢和柱均有相应限值要求。
《抗规》6.3.6条和6.4.2条;《高规》6.4.2条和7.2.13条。
调整:根据轴压比计算公式μ=N/(fcAc)可以知道轴压比过大时可以选择增大柱、墙截面或者提高混凝土等级。
02.周期比说明:用于控制结构的扭转效应。
周期比是第一扭转周期和第一平动周期的比值。
《高规》3.4.5条。
周期比不满足要求说明结构的抗扭刚度相对于侧移刚度过小,结构扭转效应大。
周期比反应的是一种相对关系,也就是扭转和侧移的相对大小关系。
而不是扭转效应的绝对值。
所以说周期比不满足往往是结构构件布臵不均匀导致整个结构刚度不均匀而使抗扭刚度过小。
限值:A级高度高层建筑不应大于0.9;B级高度高层建筑不应大于0.85。
(A级B级《高规》3.3.1)调整:①人工进行调整。
从公式Tt/T1可以看出有两种方法解决。
一种是减小平面刚度,去除平面中部的部分剪力墙,使T1增大;一种是在平面周边增加剪力墙(根据材料力学扭转一章可以知道周边抗扭越好),提高抗扭刚度,降低Tt(根据周期公式可以知晓)。
②第一或第二振型为扭转时:结构的第一第二振型宜为平动,扭转周期宜出现在第三周期及以后;程序中振型是根据周期的长短排序的,扭转周期出现在第一或第二位臵时说明扭转周期过大→抗扭刚度过小。
如果扭转周期出现在第一振型也就是出现在第一位臵,说明扭转周期过大,两个主轴方向的周期过小→适当削弱结构内部的刚度,沿两个主轴方向适当加强结构外围刚度。
当扭转周期出现在第二振型时,说明扭转周期相对于第三振型的平动周期过大,也就是说第三振型振动方向的刚度太大(第三振型方向刚度大所以周期小),所以适当削弱第三振型振动方向上结构内部的刚度,适当加强结构外围(主要是第一振型振动方向)的刚度。
PKPM高层模型控制参数及调整
satwe处理后最主要控制以下几个参数就可以了。
高层结构设计需要控制的七个比值及调整方法高层设计的难点在于竖向承重构件(柱、剪力墙等)的合理布置,设计过程中控制的目标参数主要有如下七个:一、轴压比:主要为限制结构的轴压比,保证结构的延性要求,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,高规 6.4.2和及相应的条文说明。
轴压比不满足要求,结构的延性要求无法保证;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积。
轴压比不满足时的调整方法:1、程序调整:SATWE程序不能实现。
2、人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
二、剪重比:主要为限制各楼层的最小水平地震剪力,确保周期较长的结构的安全,见抗规5.2.5,高规及相应的条文说明。
这个要求如同最小配筋率的要求,算出来的水平地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。
剪重比不满足时的调整方法:1、程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2、人工调整:如果还需人工干预,可按下列三种情况进行调整:1)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度。
2)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标。
3)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。
三、刚度比:主要为限制结构竖向布置的不规则性,避免结构刚度沿竖向突变,形成薄弱层,见抗规3.4.2,高规4.4.2及相应的条文说明;对于形成的薄弱层则按高规予以加强。
(word完整版)PKPM如何调整参数和选用(完整版)
2010版SATWE计算参数选用一、2010版计算参数的选用(PKPM及SATWE):免责声明:炒饭个人总结,仅用作参考。
以下内容需与PKPM2010版satwe说明书结合使用.参数在PKPM中如何实现需参考satwe说明书。
1、总信息:A、“水平力与整体坐标夹角”,此参数一般不做修改。
而是将周期计算结果中输出的“地震作用最大的方向角"填到“斜交抗侧力构件方向附加地震数,相应角度".B、PM里的“混凝土容重”框架取26,剪力墙取27。
(现在版本软件PM与SATWE 的“混凝土容重”联动),故在PM中布置楼面恒载时一般不勾选“自动计算现浇板厚",恒载输入数值为“人工计算板自重+装修荷载重”。
C、“钢材容重”暂时默认78,未研究。
D、“裙房层数”此参数仅用来判定底部加强区:即对剪力墙和框剪结构PKPM 总是将裙房以上一层作为加强区判定的一个条件。
框架结构均可输入0,其他结构未研究.此参数包含地下室层数。
(如3层地下室,4层裙房,此参数应输入7.) E“转换层所在层号”含地下室层数,详见2010satwe说明书,未深入研究。
F、“嵌固端所在层数”自然地面为嵌固端时填“1”,地下室顶板作为嵌固端时填“地下室层数+1"。
G、“地下室层数”按实际输入。
H、“墙元细分最大控制长度"取“1”。
影响计算精度,对含剪力墙的结构有影响。
I、“对所有楼层强制采用刚性楼板假定" 仅在计算位移比和周期比时勾选,其他不勾选。
J、“地下室强制采用刚性楼板假定"勾选。
K、“墙梁跨中节点作为刚性楼板从节点" 此参数本人尚不能合理选择,只把网上比较后的结果贴出来.勾选该参数后,结构周期减小,连梁内力增大,内力平衡校核轴力。
L、“计算墙倾覆力矩时只考虑腹板和有效翼缘”勾选.对于L型、T型等截面形式,垂直于地震作用方向的墙段称为翼缘,平行于地震作用方向的墙段称为腹板,翼缘可以区分为有效翼缘和无效翼缘两部分。
PKPM七大控制指标及调整方法
PKPM七大控制指标及调整方法一、轴压比:含义:轴压比指柱组合的轴压力设计值与柱的截面面积和混凝土轴心压强强度设计值乘积之比值,u=N/(A*Fc)——抗规6.3.6作用:主要是为限制结构的轴压比,保证结构的延性要求,规范对墙址和柱均有相应限值要去,具体详见抗规6.3.7和6.4.6,高规6.4.2和7.2.14及相应的条文说明。
轴压比不满足要求,对结构的延性没有办法满足;若轴压比过小,说明结构的经济指数指标较差,宜适当减小相应墙柱、柱的截面面积。
轴压比不满足时的调整方法:1、程序调整:SATWE程序不能实现2、人工调整:从公式出发,可以增大墙柱截面面积或提高混凝土的强度。
规范规定:柱轴压比不宜超过下表的规定;建造于Ⅳ类场地且较高的高层建筑,柱轴压比限值应适当减小:注:1.轴压比指柱组合的轴压力设计值与柱的全截面面积和混凝土轴心抗压强度设计值乘积之比值;对本规范规定不进行地震作用计算的结构,可取无地震作用组合的轴力设计值计算;2.表内限值适用于混凝土强度等级不高于C60的柱;当混凝土强度等级为C65-C70时,轴压比限值应降低0.05;当混凝土强度等级为C75-C80时,轴压比限值应降低0.10;3.表内限值适用于剪跨比大于2的柱;剪跨比不大于2但不小于1.5的柱,轴压比限值应降低0.05;剪跨比小于1.5的柱,轴压比限值应专门研究并采取特殊构造措施;4.沿柱全高采用井字复合箍且箍筋肢距不大于200mm、间距不大于100mm、直径不小于12mm,或沿柱全高采用复合螺旋箍、螺旋间距不大于100mm、箍筋肢距不大于200mm、直径不小于12mm,或沿柱全高采用连续复合矩形螺旋箍、螺旋净距不大于80mm、箍筋肢距不大于200mm、直径不小于10mm,轴压比限值均可增加0.10;5.在柱的截面中部附加芯柱,其中另加的纵向钢筋的总面积不少于柱截面面积的0.8%,轴压比限值可增加0.05;此项措施与注3的措施共同采用时,轴压比限值可增加0.15,但箍筋的体积配箍率仍可按轴压比增加0.10的要求确定;6.轴压比限值不应大于1.05。
2010版pkpm参数设置规范对照版及高层六大比值的控制(绝对经典)
第一节结构模型输入及参数设置1、总信息:1.1水平力与整体坐标系夹角:0根据抗规(GB50011-2001)5.1.1条规定,“一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进行抗震验算,各方向的水平地震作用应由该方向的抗侧力构件承担;有斜交抗侧力构件的结构,当相交角度大于15度时,应分别计算各抗侧力构件方向的水平地震作用”。
当计算地震夹角大于15度时,给出水平力与整体坐标系的夹角(逆时针为正),程序改变整体坐标系,但不增加工况数。
同时,该参数不仅对地震作用起作用,对风荷载同样起作用。
通常情况下,当Satwe文本信息“周期、振型、地震力”中地震作用最大方向与设计假定大于15度(包括X、Y两个方向)时,应将此方向重新输入到该参数进行计算。
注意事项:(1)为避免填入该角度后图形旋转带来的不便,也可以将最不利地震作用方向在多方向水平地震参数中输入。
(2)本参数不是规范要求的,供设计人员选用。
(3)本参数也可以考虑最大风力作用的方向,但需要用户自行设定多个角度进行计算,比较多次计算结构取最不利值。
1.2混凝土容重:26本参数用于程序近似考虑其没有自动计算的结构面层重量。
同时由于程序未自动扣除梁板重叠区域的结构荷载,因而该参数主要近似计算竖向构件的面层重量。
通常对于框架结构取26;框架-剪力墙结构取27;剪力墙结构,取28。
注意事项:如果结构分析是不想考虑混凝土构件自重荷载,可以填0。
1. 3钢容重:78一般情况下取78,当考虑饰面设计时可以适当增加。
1. 4裙房层数:按实际填入1. 混凝土高规(JGJ3-2002)第4.8.6条规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施。
2. 同时抗规(GB50011-2001)6.1.10条条文说明要求:带有大底盘的高层抗震墙(筒体)结构,抗震墙的底部加强部位可取地下室顶板以上H/8,向下延伸一层,大底盘顶板以上至少包括一层。
PKPM运用 高层结构的整体参数控制(六个比值)
[转贴]高层结构设计需要控制的六个比值1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6。
2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5。
3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层,见抗规3.4.2。
4、位移比:主要为控制结构平面规则性,以免形成扭转,对结构产生不利影响。
见抗规3.4.2。
5、周期比:主要为控制结构扭转效应,减小扭转对结构产生的不利影响,要求见高规6、刚重比:主要为控制结构的稳定性,以免结构产生滑移和倾覆,要求见高规。
有效质量系数《高规》5.1.13-2层间受剪承载力比《高规》4.4.3 & 5.1.14 《抗规》3.4.3▲见SATWE结果文件wmass.out ,wdisp.out, wzq.out......▲我觉得这些不是第一位的,应该是你的结构方案合理的基础上而要考虑的因素: 当你对于一个高层结构方案电算结束后,首先要看的是结构前几个周期和前几个振型,这是最为关键的!然才开始考虑上述的6要素.因为只有在周期振型合理的基础上,你的方案在概念设计上才算可行的,然后再用其6要素进行结构量方面的控制.▲TBSA6.0在计算结果一栏的下拉菜单中的文本文件中有一个文件名“计算结果汇总”。
▲我觉得这些不是第一位的,应该是你的结构方案合理的基础上而要考虑的因素: 当你对于一个高层结构方案电算结束后,首先要看的是结构前几个周期和前几个振型,这是最为关键的!然才开始考虑上述的6要素.因为只有在周期振型合理的基础上,你的方案在概念设计上才算可行的,然后再用其6要素进行结构量方面的控制.说得好啊,我的老师也有这样提过了啊,可是那个参数不合要求后,怎样进行处理,如结构周期偏大如何处理,等....不知哪里有这方面的详细经验资料介绍?谢谢▲6、刚重比:主要为控制结构的稳定性,以免结构因重力二阶效应过大而失稳倒塌,见高规5.4.4(强条)。
pkpm设计应该控制的参数
通过对PKPM软件的学习,结合本人的理解,做一些总结。
一、楼板刚度随着结构体系的多样化,楼板受力复杂化,楼板刚度的合理假定将直接影响结构的分析效率和精度。
SATWE对各种楼板形式分成刚性楼板,弹性楼板6,弹性楼板3,弹性膜等四种计算模型,其假定及应用详下表:楼板类型平面内刚度平面外刚度适用范围备注(1)刚性楼板无限大0 一般楼板每层楼板有三个自由度;结构总刚偏小,用梁刚度放大系数的方法考虑楼板平面外刚度(2)弹性楼板6 真实计算真实计算板柱,板柱—抗震墙结构部分楼板面荷载可通过楼板平面外刚度直接传递给竖向构件,导致梁的弯矩变小;布置暗梁协肋有限单元格的划分(3)弹性楼板3 无限大真实计算厚板转换层的转换厚板布置暗梁协肋有限单元格的划分;板厚均分给相邻层层高(4)弹性膜真实计算0 空旷厂房,体育馆,楼板局部开大洞等存在平面内的变形,即平面内任意两点的水平距离可以变化尽管从理论上讲,弹性楼板6假定是最符合楼板的实际情况,但是这样做会使梁端弯矩减小,结构计算机时也将大大增加,所以应跟据实际情况,合理假定楼板的刚度。
二、结构平面布置的规则性高层建筑的平面布置应满足高规第4.3.3条平面尺寸的要求和抗规3.4.2条的规定,需要强调的是结构的规则性:应满足:周期比:结构扭转为主的第一周期Tg(扭转因子大于50%)与平动为主的第一周期T1之比,A级高度高层建筑不应大于0.9,B级高度高层建筑,混合结构高层建筑及复杂高层建筑不应大于0.85。
位移比:在考虑偶然偏心地震作用下,楼层竖向构件的最大水平位移和层间位移,A级高度高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.5倍,B级高度高层建筑,混合结构高层建筑及复杂高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层的平均值的1.4倍。
(按刚性楼板假定计算)三、结构竖向布置的规则性主要体现在结构竖向薄弱层的确定:层刚比:抗震设计的高层建筑,其楼层侧向刚度不宜小于相邻上部楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%.承载力比:A级高层建筑的楼层层间抗侧力结构的受剪承载力不宜小于其上一层受剪承载力的80%,不应小于上一层受剪承载力的65%;B级高度高层建筑的楼层层间抗侧力结构的受剪承载力不应小于其上一层受剪承载力的75%。
PKPM参数设置共25页文档
PMCAD中设计参数1、考虑结构设计使用年限的荷载调整系数,【高规5.6.1】设计使用年限为50年时取1.0,设计使用年限为100年时取1.1。
2、框架梁端负弯矩条幅系数,【高规5.2.3】在竖向荷载作用下,可考虑框架梁端塑性变形内力重分布对梁端负弯矩乘以调幅系数进行调幅,并应符合下列规定:装配整体式框架梁端负弯矩调幅系数可取为0.7~0.8,现浇框架梁端负弯矩调幅系数可取为0.8~0.9(一般取为0.85),且调幅后的跨中弯矩不应小于按简支计算的跨中弯矩的1/2。
3、梁柱混凝土保护层厚度,【混规8.2.1】中有详细规定(新规范保护层厚度指以最外层钢筋的外边缘计算混凝土的保护层厚度)。
4、框架的抗震等级,【抗规6.1.2】中有详细规定(表6.1.2中确定的房屋的抗震等级为丙类建筑的抗震等级,甲乙类建筑应提高一度查表6.1.2确定其抗震等级,但抗震设防烈度为9度时,乙类建筑的抗震等级应按特一级采用,甲类建筑应采取更有效的抗震措施,丁类建筑允许降低一度采取抗震措施,但已为6度时不应再降低)5、抗震构造措施的抗震等级,【抗规3.3.2】建筑场地为1类时,对甲乙类建筑应允许仍按本地区抗震设防烈度的要求采取抗震构造措施,对丙类建筑应允许按本地区抗震设防烈度降低一度的要求采取抗震构造措施,但抗震设防烈度为6度时仍应按本地区抗震设防烈度的要求采取抗震构造措施。
(1类场地时,丁类建筑抗震构造措施也可降低一度同丙类;2类场地时,甲乙类建筑应按本地区抗震设防烈度提高一度采取抗震构造措施,丙类建筑按本地区抗震设防烈度采取抗震构造措施,丁类建筑可按本地区抗震设防烈度降低一度采取抗震构造措施;3、4类场地时,甲乙类建筑应按本地区抗震设防烈度提高两个等级采取抗震构造措施,丙类建筑7度半和8度半分别按8度9度采取抗震构造措施,丁类建筑7度和8度分别按6度7度采取抗震构造措施)。
6、计算振型个数,【高规5.1.13】计算振型数应使各振型参与质量之和不小于总质量的90%(振型数应为3的倍数,与结构的自由度有关,所选振型数不应大于结构的自由度,当结构按侧刚模型分析时,每层的刚性楼板有三个自由度,总自由度为3n,当按总刚模型分析时,每个节点有两个自由度,总自由度为2mn)。
PKPM七大控制指标及调整方法
PKPM七大控制指标及调整方法PKPM是工程结构设计软件,其七大控制指标是指结构设计中需要关注的七个主要要素,包括构件强度、位移控制、设计可靠性、现场施工、效果评估、结构体系合理性和经济效益。
下面将详细介绍这七大控制指标及其调整方法。
一、构件强度控制构件强度是指构件在设计荷载下所能承受的最大应力。
为确保结构的安全性,必须对构件的强度进行控制。
调整方法有:1.增加构件的截面尺寸,增加其抗弯和抗剪的承载力;2.合理设置加劲筋,增加构件的抗弯刚度和强度;3.采用高强度材料,提高构件的抗弯和抗压强度;4.增加钢筋配筋率,提高构件的承载力。
二、位移控制位移控制是指在设计荷载作用下,结构产生的变形应满足规定的要求。
位移过大会影响结构的使用性能和安全性。
调整方法有:1.增加构件的刚度,减小其变形;2.采用预应力或钢筋混凝土组合结构,提高结构整体的刚度;3.增加支撑系统,限制结构的变形;4.优化结构参数,减小结构的变形。
三、设计可靠性设计可靠性是指在规定的荷载和极限状态下,结构满足强度、刚度和稳定性的概率。
提高设计可靠性可以增强结构的安全性。
调整方法有:1.采用可靠性设计方法,考虑荷载和材料参数的不确定性;2.对结构进行全过程监测,及时发现并修复结构缺陷;3.加强施工质量控制,确保结构的设计要求得到满足;4.增加荷载组合中荷载的安全系数,提高结构的抗荷能力。
四、现场施工控制现场施工控制是指在施工过程中,要保证结构能够按照设计要求进行安装和施工。
调整方法有:1.正确设置支撑体系,保证结构的稳定性;2.控制混凝土浇筑的施工工艺和质量,确保结构的强度和耐久性;3.严格控制施工过程中的各项关键工序,如配筋、板模安装等;4.不断加强施工现场的管理与监督,提高施工质量和安全性。
五、效果评估控制效果评估是指对已建成的结构进行性能评估和验收,以确保结构的设计目标得到实现。
调整方法有:1.设置监测系统,定期对结构的健康状况进行评估;2.进行结构的静力和动力试验,获得结构的力学性能参数;3.针对结构存在的问题,进行相应的技术改进和修复;4.加强结构的维护和管理,延长结构的使用寿命。
PKPM参数限值控制
提要:在使用中国建筑科学研究院PKPMCAD工程部开发研制的PKPM系列软件中的高层建筑结构空间有限元分析软件(SATWE)进行高层结构的配筋计算后,可以得到一些计算结构图形和文本。
本文仅以SATWE程序的电算结果,结合现行规范条文的要求,谈谈如何对高层结构电算结果进行判读、分析、控制与调整。
关键字:高层建筑,建筑结构,SATWE,电算结果,限值,分析,调整引言:高层建筑结构空间有限元分析软件(SATWE)是中国建筑科学研究院PKPMCAD 工程部专门为高层结构分析与设计而开发的基于壳元理论的三维组合结构有限元分析软件。
根据SATWE电算结果文件,可以方便快捷的对《建筑抗震设计规范GB50011—2001(2008版)》(以下简称为抗规);《高层建筑混凝土结构技术规程JGJ3—2002》(以下简称为高规)中规定一些重要参数的限值,如位移、周期、轴压比、层刚度比、剪重比、刚重比、层间受剪承载力比等的限值进行判读、分析、调整与控制。
本文对电算结果中最重要的三个文本输出文件和一个图形输出文件,逐条进行分析。
一、结构设计信息WMASS。
OUT本文本信息需要分析与调整的主要包括刚度比、刚重比和层间受剪承载力之比。
1。
1刚度比的控制1。
1.1规范条文及其控制意义见《高规》4。
4.2、5.1.14条及《抗规》3。
4。
2条。
控制刚度比主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层.1。
1.2电算结果判读分析剪切刚度主要用于底部大空间为一层的转换结构(例如一层框支)及地下室嵌固条件的判定,判断地下室嵌固时,依据《高规》5.3。
7,地下室其上一层的计算信息中Ratx,Raty结果不应大于0.5。
剪弯刚度主要用于底部大空间为多层的转换结构(例如二层以上框支);通常工程都采用地震剪力与地震层间位移比.在各层刚心、偏心率、相邻层侧移刚度比等计算信息中Ratx1,Raty1结果大于等于1。
即满足规范要求。
1.1.3不满足时的调整方法应适当加强本层墙柱、梁的刚度,适当削弱上部相关楼层墙柱、梁的刚度。
PKPM如何调整参数和选用(完整版)
2010版SATWE计算参数选用一、2010版计算参数的选用(PKPM及SATWE):免责声明:炒饭个人总结,仅用作参考。
以下内容需与PKPM2010版satwe 说明书结合使用。
参数在PKPM中如何实现需参考satwe说明书。
1、总信息:A、“水平力与整体坐标夹角”,此参数一般不做修改。
而是将周期计算结果中输出的“地震作用最大的方向角”填到“斜交抗侧力构件方向附加地震数,相应角度”。
B、PM里的“混凝土容重”框架取26,剪力墙取27。
(现在版本软件PM与SATWE的“混凝土容重”联动),故在PM中布置楼面恒载时一般不勾选“自动计算现浇板厚”,恒载输入数值为“人工计算板自重+装修荷载重”。
C、“钢材容重”暂时默认78,未研究。
D、“裙房层数”此参数仅用来判定底部加强区:即对剪力墙和框剪结构PKPM 总是将裙房以上一层作为加强区判定的一个条件。
框架结构均可输入0,其他结构未研究。
此参数包含地下室层数。
(如3层地下室,4层裙房,此参数应输入7。
)E“转换层所在层号”含地下室层数,详见2010satwe说明书,未深入研究。
F、“嵌固端所在层数”自然地面为嵌固端时填“1”,地下室顶板作为嵌固端时填“地下室层数+1”。
G、“地下室层数”按实际输入。
H、“墙元细分最大控制长度”取“1”。
影响计算精度,对含剪力墙的结构有影响。
I、“对所有楼层强制采用刚性楼板假定”仅在计算位移比和周期比时勾选,其他不勾选。
J、“地下室强制采用刚性楼板假定”勾选。
K、“墙梁跨中节点作为刚性楼板从节点”此参数本人尚不能合理选择,只把网上比较后的结果贴出来。
勾选该参数后,结构周期减小,连梁内力增大,内力平衡校核轴力。
L、“计算墙倾覆力矩时只考虑腹板和有效翼缘”勾选。
对于L型、T型等截面形式,垂直于地震作用方向的墙段称为翼缘,平行于地震作用方向的墙段称为腹板,翼缘可以区分为有效翼缘和无效翼缘两部分。
无效翼缘内力计入框架,这对于结构中框架、短肢墙、普通墙的倾覆力矩指标计算,通常更为合理。
pkpm参数意义与调整
pkpm参数意义与调整高层结构设计中六个“比”的控制与调整-----SATWE电算结果与规范条文的对照理解1. 位移比(层间位移比):1.1 名词释义:(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。
(2) 层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。
其中:最大水平位移:墙顶、柱顶节点的最大水平位移。
平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。
层间位移角:墙、柱层间位移与层高的比值。
最大层间位移角:墙、柱层间位移角的最大值。
平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。
1.3 控制目的:高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:1 保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。
2 保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。
3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。
1.2 相关规范条文的控制:[抗规]3.4.2条规定,建筑及其抗侧力结构的平面布置宜规则,对称,并应具有良好的整体性,当存在结构平面扭转不规则时,楼层的最大弹性水平位移(或层间位移),不宜大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍。
[高规]4.3.5条规定,楼层竖向构件的最大水平位移和层间位移,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且***高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。
[高规]4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求:结构休系Δu/h限值框架 1/550框架-剪力墙,框架-核心筒 1/800筒中筒,剪力墙 1/1000框支层 1/10001.4 电算结果的判别与调整要点:PKPM软件中的SATWE程序对每一楼层计算并输出最大水平位移、最大层间位移角、平均水平位移、平均层间位移角及相应的比值,详位移输出文件WDISP.OUT。
PKPM控制调整篇
三、补充:平面扭转不规则............................................................................................ 5
Helchan
控制参数调整
一、结构整体合理性参数体现 01. 结构延性:轴压比; 02. 扭转效应:周期比、位移比; 03. 竖向不规则:层间刚度比、楼层受剪承载力之比、剪重比; 04. 结构整体稳定:刚重比; 05. 各构件配筋合理,做到刚度适中、配筋率在经济配筋率范围之内。
Helchan 重比过大,说明结构的经济技术指标太差,宜适当减小墙、柱等竖向构件的截面 面积。 《高规》5.4.1、5.4.4。结构抗倾覆验算和整体稳定验算在“结构设计信息” 里查看。 调整:不满足时,只能通过人为调整改变结构布置,调整结构高宽比,加强 墙柱等竖向构件的刚度。 注意:刚重比对重力二阶效应的影响,刚重比过小时需要考虑重力二阶效应 (程序提示) ,在 SATWE 参数设置中要考虑。 08. 经济配筋率 梁:跨中 1%~1.7%较经济,支座 1.5%~2%较经济;梁端支座纵向受拉钢筋 配筋率不大于 2.5%,当大于 2%时需加大箍筋。 板的经济配筋率 0.2%~0.4%较经济。 柱的经济配筋率 1%~3%较经济。 三、补充:平面扭转不规则 [多层] 1.不考虑水平地震作用偶然偏心的多层:扭转位移比大于 1.2→平面扭转不规则。 2.不考虑水平地震作用偶然偏心的多层: 扭转位移比大于 1.3 且不大于 1.5→特别 不规则。 3.不考虑水平地震作用偶然偏心的多层:扭转位移比大于 1.5 时→严重不规则 (平面特别不规则→需要考虑双向地震作用) [高层] 1. 考虑偶然偏心的高层:扭转位移比大于 1.2→平面扭转不规则。 2. 考虑偶然偏心的普通高层:扭转位移比大于 1.4 不大于 1.5→特别不规则。 3. 考虑偶然偏心的混合结构高层、 《高规》 指定的复杂高层: 扭转位移比大于 1.3 不大于 1.4→特别不规则。 (特别不规则的高层建筑: 必须同时计算偶然偏心和双向地震作用下的扭转影响) (二者对构件设计的影响不同,所以对不同构件取最不利情况设计) (一般情况:不考虑偶然偏心的多层结构位移比大于 1.3、考虑偶然偏心的高层 结构位移比大于 1.4 时都需要考虑双向地震作用) (SATWE 程序: 程序有同时计算两种情况并比较得出最不利进行结构构件设计的 功能→同时勾选即可)
pkpm高层建模精髓
高层结构设计的控制参数及调整方法该帖被浏览了5102次 | 回复了79次一、轴压比:主要为限制结构的轴压比,保证结构的延性要求,规范对墙肢和柱均有相应限值要求。
见抗规6.3.7和6.4.6,高规 6.4.2和7.2.14及相应的条文说明。
轴压比不满足规范要求,结构的延性要求无法保证;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积。
轴压比不满足规范要求时的调整方法:1、程序调整:SATWE程序不能实现。
2、结构调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
二、剪重比:主要为限制各楼层的最小水平地震剪力,确保周期较长的结构的安全。
见抗规5.2.5,高规3.3.13及相应的条文说明。
剪重比不满足规范要求,说明结构的刚度相对于水平地震剪力过小;柠梅瘦身怎么样但剪重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。
剪重比不满足规范要求时的调整方法:1、程序调整:当剪重比偏小但与规范限值相差不大(如剪重比达到规范限值的80%以上)时,可按下列方法之一进行调整:1)在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2)在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数,增大地震作用,以满足剪重比要求。
3)在SATWE的“地震信息”中的“周期折减系数”中适当减小系数,增大地震作用,以满足剪重比要求。
2、结构调整:当剪重比偏小且与规范限值相差较大时,宜调整增强竖向构件,加强墙、柱等竖向构件的刚度。
三、刚重比:规范上限主要用于确定重力荷载在水平作用位移效应引起的二阶效应是否可以忽略不计。
版pkpm参数设置规范对照版及高层六大比值的控制(绝对经典)
版pkpm参数设置规范对照版及高层六大比值的控制(绝对经典)结构模型输入及参数设置1、总信息:1.1水平力与整体坐标系夹角:0根据抗规(GB*****-20XX年)5.1.1条规定,“一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进行抗震验算,各方向的水平地震作用应由该方向的抗侧力构件承担;有斜交抗侧力构件的结构,当相交角度大于15度时,应分别计算各抗侧力构件方向的水平地震作用”。
当计算地震夹角大于15度时,给出水平力与整体坐标系的夹角(逆时针为正),程序改变整体坐标系,但不增加工况数。
同时,该参数不仅对地震作用起作用,对风荷载同样起作用。
通常情况下,当Satwe文本信息“周期、振型、地震力”中地震作用最大方向与设计假定大于15度(包括X、Y两个方向)时,应将此方向重新输入到该参数进行计算。
注意事项:(1)为避免填入该角度后图形旋转带来的不便,也可以将最不利地震作用方向在多方向水平地震参数中输入。
(2)本参数不是规范要求的,供设计人员选用。
(3)本参数也可以考虑最大风力作用的方向,但需要用户自行设定多个角度进行计算,比较多次计算结构取最不利值。
1.2混凝土容重:26本参数用于程序近似考虑其没有自动计算的结构面层重量。
同时由于程序未自动扣除梁板重叠区域的结构荷载,因而该参数主要近似计算竖向构件的面层重量。
通常对于框架结构取26;框架-剪力墙结构取27;剪力墙结构,取28。
注意事项:如果结构分析是不想考虑混凝土构件自重荷载,可以填0。
20XX年版pkpm中Satwe参数设置规范对照版一级高层设计中六大比值的控制1. 3钢容重:78一般情况下取78,当考虑饰面设计时可以适当增加。
1. 4裙房层数:按实际填入1. 混凝土高规(JGJ3-20XX年)第4.8.6条规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施。
2. 同时抗规(GB*****-20XX年)6.1.10条条文说明要求:带有大底盘的高层抗震墙(筒体)结构,抗震墙的底部加强部位可取地下室顶板以上H/8,向下延伸一层,大底盘顶板以上至少包括一层。
PKPM如何调整参数和选用(完整版)
2010版SATWE计算参数选用一、2010版计算参数的选用(PKPM及SATWE):免责声明:炒饭个人总结,仅用作参考。
以下内容需与PKPM2010版satwe说明书结合使用。
参数在PKPM中如何实现需参考satwe说明书。
1、总信息:A、“水平力与整体坐标夹角”,此参数一般不做修改。
而是将周期计算结果中输出的“地震作用最大的方向角”填到“斜交抗侧力构件方向附加地震数,相应角度”。
B、PM里的“混凝土容重”框架取26,剪力墙取27。
(现在版本软件PM与SATWE的“混凝土容重”联动),故在PM中布置楼面恒载时一般不勾选“自动计算现浇板厚”,恒载输入数值为“人工计算板自重+装修荷载重”。
C、“钢材容重”暂时默认78,未研究。
D、“裙房层数”此参数仅用来判定底部加强区:即对剪力墙和框剪结构PKPM 总是将裙房以上一层作为加强区判定的一个条件。
框架结构均可输入0,其他结构未研究。
此参数包含地下室层数。
(如3层地下室,4层裙房,此参数应输入7。
)E“转换层所在层号”含地下室层数,详见2010satwe说明书,未深入研究。
F、“嵌固端所在层数”自然地面为嵌固端时填“1”,地下室顶板作为嵌固端时填“地下室层数+1”。
G、“地下室层数”按实际输入。
H、“墙元细分最大控制长度”取“1”。
影响计算精度,对含剪力墙的结构有影响。
I、“对所有楼层强制采用刚性楼板假定”仅在计算位移比和周期比时勾选,其他不勾选。
J、“地下室强制采用刚性楼板假定”勾选。
K、“墙梁跨中节点作为刚性楼板从节点”此参数本人尚不能合理选择,只把网上比较后的结果贴出来。
勾选该参数后,结构周期减小,连梁内力增大,内力平衡校核轴力。
L、“计算墙倾覆力矩时只考虑腹板和有效翼缘”勾选。
对于L型、T型等截面形式,垂直于地震作用方向的墙段称为翼缘,平行于地震作用方向的墙段称为腹板,翼缘可以区分为有效翼缘和无效翼缘两部分。
无效翼缘内力计入框架,这对于结构中框架、短肢墙、普通墙的倾覆力矩指标计算,通常更为合理。
PKPM模型参数调整方法
一、位移比超限宜≤1.2、应≤1.5
注:【全楼强制刚性楼板假定】设置
首先需要判断是某个楼层的局部节点位移超了所造成,还是整个楼层的位移都超了所造成的
<一>、楼层最大位移超限
1、参看哪个节点位移超,加大该处柱截面尺寸、该处节点相关梁的尺寸。
2、或者减小该节点周围柱的截面尺寸。
3、尽量避免框架中只有单向拉结的柱存在,这种柱子地震作用下位移较大。
4、另外也可能是建筑的刚度布置不均匀,构件布置过于集中,比如剪力墙结构则是刚心和质心偏移过大。
<二>、层间位移比(整个建筑的刚度布置不均匀)
如果层间位移角很小,相邻层的位移比值要求可以放宽。
如果整个层间位移都偏大,则需加大相关的截面(如四个角的柱截面)。
二、周期比应≤0.9
周期比超限处理:
1、最有效原则:削弱内部刚度,增强周边刚度,尽量周边均匀对称连续
2、有较大凹入的部位加拉梁
3、看看位移,将位移大的地方加拉梁,或者加大梁截面,加厚板
4、增加外围梁截面,特别加强角部,和抗震墙部位的梁截面。
三、刚度比相邻层70%,相邻三层的平均80%
1、如果是薄弱层,乘以1.25增大系数。
2、增加竖向承重构件的截面
四、刚重比
框架应≥10,宜框架≥20;剪力墙应≥1.4,宜≥2.7
1、增加竖向承重构件的截面刚度
2、在SATWE中勾选考虑P-Δ效应,程序会自动考虑。
五、剪重比(最小地震力系数)
6度区0.008,7度区0.016(0.024),对于薄弱层乘以1.15倍系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P K P M高层模型控制参数及调整精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-satwe处理后最主要控制以下几个参数就可以了。
高层结构设计需要控制的七个比值及调整方法高层设计的难点在于竖向承重构件(柱、剪力墙等)的合理布置,设计过程中控制的目标参数主要有如下七个:一、轴压比:主要为限制结构的轴压比,保证结构的延性要求,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,高规 6.4.2和及相应的条文说明。
轴压比不满足要求,结构的延性要求无法保证;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积。
轴压比不满足时的调整方法:1、程序调整:SATWE程序不能实现。
2、人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
二、剪重比:主要为限制各楼层的最小水平地震剪力,确保周期较长的结构的安全,见抗规5.2.5,高规及相应的条文说明。
这个要求如同最小配筋率的要求,算出来的水平地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。
剪重比不满足时的调整方法:1、程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2、人工调整:如果还需人工干预,可按下列三种情况进行调整:1)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度。
2)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标。
3)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。
三、刚度比:主要为限制结构竖向布置的不规则性,避免结构刚度沿竖向突变,形成薄弱层,见抗规3.4.2,高规4.4.2及相应的条文说明;对于形成的薄弱层则按高规予以加强。
刚度比不满足时的调整方法:1、程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE自动将该楼层定义为薄弱层,并按高规将该楼层地震剪力放大1.15倍。
2、人工调整:如果还需人工干预,可按以下方法调整:1)适当降低本层层高,或适当提高上部相关楼层的层高。
2)适当加强本层墙、柱和梁的刚度,或适当削弱上部相关楼层墙、柱和梁的刚度。
四、位移比:主要为限制结构平面布置的不规则性,以避免产生过大的偏心而导致结构产生较大的扭转效应。
见抗规3.4.2,高规 4.3.5及相应的条文说明。
位移比不满足时的调整方法:1、程序调整:SATWE程序不能实现。
2、人工调整:只能通过人工调整改变结构平面布置,减小结构刚心与形心的偏心距;调整方法如下:1)由于位移比是在刚性楼板假定下计算的,最大位移比往往出现在结构的四角部位;因此应注意调整结构外围对应位置抗侧力构件的刚度;同时在设计中,应在构造措施上对楼板的刚度予以保证。
2)利用程序的节点搜索功能在SATWE的“分析结果图形和文本显示”中的“各层配筋构件编号简图”中快速找到位移最大的节点,加强该节点对应的墙、柱等构件的刚度;也可找出位移最小的节点削弱其刚度;直到位移比满足要求。
五、周期比:主要为限制结构的抗扭刚度不能太弱,使结构具有必要的抗扭刚度,减小扭转对结构产生的不利影响,见高规4.3.5及相应的条文说明。
周期比不满足要求,说明结构的抗扭刚度相对于侧移刚度较小,扭转效应过大,结构抗侧力构件布置不合理。
周期比不满足时的调整方法:1、程序调整:SATWE程序不能实现。
2、人工调整:只能通过人工调整改变结构布置,提高结构的抗扭刚度;总的调整原则是加强结构外围墙、柱或梁的刚度,适当削弱结构中间墙、柱的刚度;利用结构刚度与周期的反比关系,合理布置抗侧力构件,加强需要减小周期方向(包括平动方向和扭转方向)的刚度,或削弱需要增大周期方向的刚度。
当结构的第一或第二振型为扭转时可按以下方法调整:1)SATWE程序中的振型是以其周期的长短排序的。
2)结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。
见抗规3.5.3条3款及条文说明“结构在两个主轴方向的动力特性(周期和振型)宜相近”。
3)当第一振型为扭转时,说明结构的抗扭刚度相对于其两个主轴(第二振型转角方向和第三振型转角方向,一般都靠近X轴和Y轴)的抗侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,并适当削弱结构内部的刚度。
4)当第二振型为扭转时,说明结构沿两个主轴方向的抗侧移刚度相差较大,结构的抗扭刚度相对其中一主轴(第一振型转角方向)的抗侧移刚度是合理的;但相对于另一主轴(第三振型转角方向)的抗侧移刚度则过小,此时宜适当削弱结构内部沿“第三振型转角方向”的刚度,并适当加强结构外围(主要是沿第一振型转角方向)的刚度。
5)在进行上述调整的同时,应注意使周期比满足规范的要求。
6)当第一振型为扭转时,周期比肯定不满足规范的要求;当第二振型为扭转时,周期比较难满足规范的要求。
六、刚重比:主要是控制在风荷载或水平地震作用下,重力荷载产生的二阶效应不致过大,避免结构的失稳倒塌,见高规5.4.1和5.4.4及相应的条文说明。
刚重比不满足要求,说明结构的刚度相对于重力荷载过小;但刚重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。
刚重比不满足时的调整方法:1、程序调整:SATWE程序不能实现。
2、人工调整:只能通过人工调整增强竖向构件,加强墙、柱等竖向构件的刚度。
七、层间受剪承载力比:主要为限制结构竖向布置的不规则性,避免楼层抗侧力结构的受剪承载能力沿竖向突变,形成薄弱层,见抗规3.4.3-2,高规4.4.3及相应的条文说明;对于形成的薄弱层应按高规予以加强。
层间受剪承载力比不满足时的调整方法:1、程序调整:在SATWE的“调整信息”中的“指定薄弱层个数”中填入该楼层层号,将该楼层强制定义为薄弱层,SATWE按高规将该楼层地震剪力放大1.15倍。
2、人工调整:如果还需人工干预,可适当提高本层构件强度(如增大柱箍筋和墙水平分布筋、提高混凝土强度或加大截面)以提高本层墙、柱等抗侧力构件的抗剪承载力,或适当降低上部相关楼层墙、柱等抗侧力构件的抗剪承载力。
如果结构竖向较规则,第一次试算时可只建一个结构标准层,待结构的周期比、位移比、剪重比、刚度比等满足之后再添加其它标准层;这样可以减少建模过程中的重复修改,加快建模速度。
上述几个参数的调整涉及构件截面、刚度及平面位置的改变,在调整过程中可能相互关联,应注意不要顾此失彼。
上述调整方法针对的是一般的高层结构,对于复杂的高层结构还需要更多的经验和专业知识才能解决问题。
刚度比主要为限制结构竖向布置的不规则性,避免结构刚度沿竖向突变,形成薄弱层,见抗规3.4.2,高规4.4.2及相应的条文说明;对于形成的薄弱层则按高规予以加强。
规定:F新抗震规范附录E2.1规定,筒体结构转换层上下层的侧向刚度比不宜大于2。
F新高规的4.4.3条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相邻上部楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%。
F新高规的5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍。
F新高规的10.2.6条规定,底部大空间剪力墙结构,转换层上部结构与下部结构的侧向刚度,应符合高规附录D的规定。
FE.0.1底部大空间为一层的部分框支剪力墙结构,可近似采用转换层上、下层结构等效刚度比γ表示转换层上、下层结构刚度的变化,非抗震设计时γ不应大于3,抗震设计时不应大于2。
FE.0.2底部为2~5层大空间的部分框支剪力墙结构,其转换层下部框架-剪力墙结构的等效侧向刚度与相同或相近高度的上部剪力墙结构的等效侧向刚度比γe宜接近1,非抗震设计时不应大于2,抗震设计时不应大于1.3。
层刚度比的计算方法:F高规附录E.0.1建议的方法——剪切刚度Ki = Gi Ai / hiF高规附录E.0.2建议的方法——剪弯刚度Ki = Fi / ΔiF抗震规范的3.4.2和3.4.3条文说明中建议的计算方法:Ki = Vi / Δui层刚度比的控制方法:新规范要求结构各层之间的刚度比,并根据刚度比对地震力进行放大,所以刚度比的合理计算很重要。
新规范对结构的层刚度有明确的要求,在判断楼层是否为薄弱层、地下室是否能作为嵌固端、转换层刚度是否满足要求等等,都要求有层刚度作为依据,所以层刚度计算的准确性就比较重要。
程序提供了三种计算方法:Ø1。
楼层剪切刚度Ø2。
单层加单位力的楼层剪弯刚度Ø3。
楼层平均剪力与平均层间位移比值的层刚度三种计算方法有差异是正常的,可以根据需要选择。
Ø只要计算地震作用,一般应选择第 3 种层刚度算法Ø不计算地震作用,对于多层结构可以选择剪切层刚度算法,高层结构可以选择剪弯层刚度Ø不计算地震作用,对于有斜支撑的钢结构可以选择剪弯层刚度算法转换层结构按照“高规”要求计算转换层上下几层的层刚度比,一般取转换层上下等高的层数计算。
层刚度作为该层是否为薄弱层的重要指标之一,对结构的薄弱层,规范要求其地震剪力放大1.15,这里程序将由用户自行控制。
当采用第3种层刚度的计算方式时,如果结构平面中的洞口较多,这样会造成楼层平均位移的计算误差增加,此时应选择“强制刚性楼板假定”来计算层刚度。
选择剪切、剪弯层刚度时,程序默认楼层为刚性楼板。
层刚度比即结构必须要有层的概念,但是,对于一些复杂结构,如坡屋顶层、体育馆、看台、工业建筑等,这些结构或者柱、墙不在同一标高,或者本层根本没有楼板,所以在设计时,可以不考虑这类结构所计算的层刚度特性。
对于大底盘多塔结构,或上联多塔结构,在多塔和单塔交接层之间的层刚度比是没有意义的。
如大底盘处因为离塔较远的构件,对该塔的层刚度没有贡献,所以遇到多塔结构时,层刚度的计算应该把底盘切开,只能保留与该塔2到3跨的底盘结构。
对于错层结构或带有夹层的结构,层刚度比有时得不到合理的计算,这是因为层的概念被广义化了。
此时,需要采用模型简化才能计算出层刚度比。
刚重比刚重比与结构的侧移刚度成正比关系;周期比的调整将导致结构侧移刚度的变化,从而影响到刚重比。
因此调整周期比时应注意,当某主轴方向的刚重比小于或接近规范限值时,应采用加强刚度的方法;当某主轴方向刚重比大于规范限值较多时,可采用削弱刚度的方法。