2018成都市一诊考试数学试题与答案word(理科)
高考最新-成都市2018届高中毕业班第一次诊断性检测题数学(理) 精品
![高考最新-成都市2018届高中毕业班第一次诊断性检测题数学(理) 精品](https://img.taocdn.com/s3/m/1ced505eb307e87101f696ed.png)
绝密 ★ 启用前成都市2018届高中毕业班第一次诊断性检测题数学(理工类)参考公式:如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中恰好发生k次的概率:P n (k )=C n k P k (1-P )n -k球的表面积公式:S =4πR 2(其中R 表示球的半径) 正棱台、圆台的侧面积公式:S 台侧=12(c '+c )l (其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长)球的体积公式:V 球=43πR 3(其中R 表示球的半径)一、选择题:本大题共有12个小题,每小题5分;在每小题所给出的四个选项中,只有一项是符合题目要求的,把正确选项的代号填在机读卡的指定位置上. 1. 已知全集U ={0,1,3,5,7,9},U A ={0,5,9},B ={3,5,7},那么A ∩U B= A .{5}B .{1}C .ΦD .{1,5,7}解:A ={1,3,7},U B ={0,1,9},∴A ∩U B ={1}.选B 2. 设f (x )=⎩⎪⎨⎪⎧k (x =3)x 2-3x -3(x ≠3),若f (x )在x =3处连续,则k 的值等于A .3B .3C .0D .23解:n 2k ⇒ k =23.选D3. 若f (x )=⎩⎨⎧k (x <6)log 2x (x ≥6),则f (-1)的值为A .1B .2C .3D .4解:f (-1)=f (2)=f (5)=f (8)=log 28=3.选C 4. 若数列{a n }是等比数列,则数列{a n +a n +1}A .一定是等比数列B .可能是等比数列,也可能是等差数列C .一定是等差数列D .一定不是等比数列解:a n =a 1q n -1,故a n +a n +1=a 1q n -1(1+q ),当q =-1时,{a n +a n +1}恒为0,是等差数列但不是等比数列;当q ≠-1(且q ≠0)时,{a n +a n +1}是公比为q 的等比数列.选B5. 已知z =1+i ,则1+z-1+z 2等于A .45+35i B .45-35i C .iD .-i解:1+z -1+z 2=1+(1-i )1+2i =2-i 1+2i=-i .选D .6. 对于平面M 与平面N ,有下列条件:①M 、N 都垂直于平面Q ;②M 、N 都平行于平面Q ;③M 内不共线三点到N 的距离相等;④l 、m 是M 内的两条直线,且l ∥N ,m ∥N ;⑤l 、m 是异面直线,且l ∥M ,l ∥N ,m ∥M ,m ∥N .则可以判定平面M 与平面N 平行的条件的个数是 A .1B .2C .3D .4解:只有②⑤能判定M ∥N .选B7. 对于函数f (x )=x 2+2x ,在使f (x )≥M 成立的所有常数M 中,我们把M 的最大值M =-1叫做f (x )=x 2+2x 的下确界,则对于a 、b ∈R ,且a 、b 不全为0,a 2+b 2(a +b )2的下确界是 A .12B .2C .14D .4解:a 2+b 22≥(a +b 2)2,所以a 2+b 2(a +b )2≥12,即M =12.选A 8. 把直线x -2y +λ=0向左平移1个单位,再向下平移2个单位后,与曲线x 2+y 2+2x -4y =0正好相切,则实数λ的值为 A .-13或3B .13或-3C .13或3D .-13或-3解:平移后的直线方程为(x +1)-2(y +2)+λ=0,即x -2y +λ-3=0 圆的方程为(x +1)2+(y -2)2=5于是|-1-4+λ-3|5=5,解得λ=13或3.选C9. 已知向量a →=(8,12x ),b →=(x ,1),其中x >0,若(a →-2b →)∥(2a →+b →),则x的值为A .4B .8C .0D .2解:a →-2b →=(8-2x ,12x -2),2a →+b →=(16+x ,x +1)由(a →-2b →)∥(2a →+b →),得(8-2x ,12x -2)=λ(16+x ,x +1)即⎩⎪⎨⎪⎧8-2x =λ(16+x )12x -2=λ(x +1) ⇒ x =4.选A10. 有5支竹签,编号分别为1,2,3,4,5,从中任取3支,以ξ表示取出竹签的最大号码,则E ξ的值为 A .4B .4.5C .4.75D .5解:ξ∈{3,4,5},P (ξ=3)=1C 53=110;P (ξ=4)=C 32C 53=310;P (ξ=5)=C 42C 53=35∴E ξ=3×110+4×310+5×35=4.5.选B11. 同时具有以下性质:“①最小正周期实π;②图象关于直线x =π3对称;③在[-π6,π3]上是增函数”的一个函数是 A .y =sin (x 2+π6)B .y =cos (2x +π3)C .y =sin (2x -π6)D .y =cos (2x -π6) 解:由性质①排除A ,由性质②排除D ,由性质③排除B ,选C .12. 从-3,-2,-1,0,1,2,3,4折8个数中任选3个不同的数组成二次函数y =ax 2+bx +c 的系数a 、b 、c ,则可确定坐标原点在抛物线内部的抛物线有 A .72条B .96条C .128条D .144条解:原点在抛物线内部等价于ac <0(与b 无关)有C 31·C 41·A 22·A 61=144条.选D二、填空题:本大题共有4个小题,每小题4分,共计16分. 13. 二项式(3x -2x)15展开式中的常数项是第___________项. 解:T r +1=C 15r (-2x 1132)(rx -)15-r=C 15r (-2)rx 532r r--由5-r 3-r2=0,得r =6故展开式中的常数项是第7项.14. 已知f (x )=ln (2-3x )5,g (x )=f '(x ),则g (13)=___________.解:∵f (x )=ln (2-3x )5,∴g (x )=f '(x )=52-3x ·(-3)=153x -2∴g (13)=-15.15. 培植A 、B 两种药剂都需要甲、乙两种原料,用料要求如右表所示(单位:克).如果药剂A 、B 至少各配一剂,且药剂A 、B 每剂售价分别为2元、3元,现有原料甲20克,原料乙25克,那么可以获得的最大销售额为___________. 解:设药剂A 、B 分别配制x 剂、y 剂,目标函数为z =2x +3y则⎩⎨⎧2x +4y ≤204x +3y ≤25x ≥1y ≥1,作出可行域如图中阴影部分平行移动直线l :2x +3y =t (t 为参数)经过点A (4,3)时,z max =2×4+3×3=17(元)16. 给出下列命题:①若命题p :“x >1”是真命题,则命题q :“x ≥1”是真命题;②函数y =2-x (x >0)的反函数是y =-log 2x (x >0);③如果一个简单多面体的所有面都是四边形,那么F =V -2(其中,F 为面数,V 为顶点数);④“a ≠1或b ≠5”的充分不必要条件是“a +b ≠6”.其中所有的真命题序号是_________________. 解:①为真;②为假;因为反函数定义域应为x ∈(0,1);③为真,由2E =4F 代入V +F -E =2可得.④为真,考察其逆否命题即可.综上,应填①③④. 三、解答题:本大题共有6个小题,共计74分.解答应写出文字说明、证明过程或推演步骤.17. (11分)在△ABC 中,已知sin 2Asin 2B =34,tanAtanB =3,求角C .解:∵sin 2Asin 2B =34,∴sinAsinBcosAcosB =316 ……① ……3'由A 、B ∈(0,π),知sinAsinB >0,∴cosAcosB >0又tanAtanB =3,即sinAsinBcosAcosB =3 ……② ……6'由①②得:⎩⎨⎧sinAsinB =34cosAcosB =14∴cosC =-cos (A +B )=-cosAcosB +sinAsinB =12而C ∈(0,π),∴C =π3.18. (12分)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,点E 为CC 1的中点,点F为BD 1的中点.(1)求证:EF 为BD 1与CC 1的公垂线; (2)求异面直线BE 与C 1F 所成的角. 解:设AB =1,则AA 1=2, (1)证法一:连结ED 1,CF , 在Rt △BCE 中,BE =2在Rt △EC 1D 1中,ED 1=2,故△BED 1是等腰三角形 而F 是BD 1的中点,故EF ⊥BD 1.同理可得△CFC 1也是等腰三角形,E 是CC 1中点, 故EF ⊥CC 1.∴EF 为BD 1与CC 1的公垂线.证法二:∵F 是BD 1中点,即F 为长方体的中心, 故F 也是AC 1的中点,连结AC ,有EF ∥AC 在长方体AC 1中,AC ⊥CC 1,故EF ⊥CC 1.而BD 1在底面ABCD 上的射影为BD ,且底面ABCD 为正方形,故AC ⊥BD 由三垂线定理,得AC ⊥BD 1,即EF ⊥BD 1 ∴EF 为BD 1与CC 1的公垂线.证法三:分别以DA ,DC ,DD 1为x 轴,y 轴,z 轴建立空间直角坐标系, ∴B (1,1,0),C (0,1,0),C 1(0,1,2),D 1(0,0,2) ∵E 、F 分别为CC 1和BD 1的中点,可得E (0,1,1),F (12,12,1)∴EF →=(12,-12,0),CC 1→=(0,0,2),BD 1→=(-1,-1,2) AA 11于是:EF →·CC 1→=12×0+(-12)×0+0×2=0, EF →·BD 1→=12×(-1)+(-12)×(-1)+0×2=0 即EF ⊥CC 1,且EF ⊥BD 1. ∴EF 为BD 1与CC 1的公垂线.(2)解法一:取BD 中点O ,连结EO 、BO ∵F 是长方体的中心,∴C 1F ∥EO ,故∠BEO 就是异面直线BE 与C 1F 所成的角(或其补角) 于是,BE =2,EO =C 1F =62,BO =22cos ∠C 1FG =BE 2+EO 2-BO 22BE ·EO=2+32-122×2×62=323=32∠C 1FG =π6,即异面直线BE 与C 1F 所成的角为π6.解法二:∵BE →=(-1,0,1),C 1F →=(12,-12,-1) ∴BE →·C 1F →=(-1)×12+0×(-12)+1×(-1)=-32 ∴cos <BE →,C 1F →>=BE →·C 1F →|BE →||C 1F →|=-322·62=-32 ∴<BE →,C 1F →>=5π6 即BE 与C 1F 所成的角为π6.19. (12分)袋中有4个白球,6个红球,在抽取这些球的时候谁也无法看到球的颜色.现先由甲取出3个球,并且取出的球不再放回袋中,再由乙取出4个球,若规定取得白球多者获胜,试求甲获胜的概率. 解:甲获胜包含以下三个事件:(1)甲取得三个白球必胜.其概率为P 1=C 44C 410=130; ……3'(2)甲取出两个白球,而乙取出一白三红或四个红球,则甲也获胜,其概率为P 2=C 42C 61(C 21C 53+C 51)C 103C 71=314; ……6'(3)甲取出一个白球,而乙取出四个红球,甲也获胜,其概率为P 3=C 41C 62C 44C 103C 71=170……9'由于这三个事件互斥,所以甲获胜的概率为P 1+P 2+P 3=130+314+170=1142. ……12'20. (12分)已知等差数列{a n }的公差大于0,且a 3,a 5是方程x 2-14x +45=0的两根,数列{b n }的前n 项和为S n ,且S n =1-12 b n .(1)求数列{a n }、{b n ]的通项公式; (2)记c n =a n b n ,求证:c n +1≤c n .解:(1)因为a 3,a 5是方程x 2-14x +45=0的两根,且数列{a n }的公差d >0, ∴a 3=5,a 5=9,从而d =9-55-3=2∴a n =a 5+(n -5)d =2n -1 ……3' 又当n =1时,有b 1=S 1=1-12 b 1,∴b 1=23当n ≥2时,有b n =S n -S n -1=12(b n -1-b n )∴b n b n -1=13(n ≥2) ∴数列{b n }是等比数列,且b 1=23,q =13∴b n =b 1q n -1=23n ; ……8'(2)由(1)知:c n =a n b n =2(2n -1)3n ,c n +1=2(2n +1)3n +1 ……10' ∴c n +1-c n =2(2n +1)3n +1-2(2n -1)3n =8(1-n )3n +1≤0 ∴c n +1≤c n . ……12'21. (13分)如图,已知点P (3,0),点A 、B 分别在x 轴负半轴和y轴上,且BP →·BA →=0,AC →=2BA →,当点B 在y 轴上移动时,记点C 的轨迹为E . (1)求曲线E 的方程;(2)已知向量i →=(1,0),j →=(0,1),过点Q (1,0)且以向量i →+k j →(k ∈R )为方向向量的直线l 交曲线E 于不同的两点M 、N ,若D (-1,0),且DM→·DN →>0,求k 的取值范围. 解:(1)设A (a ,0)(a <0),B (0,b ),C (x ,y ) 则AC→=(x -a ,y ),BA →=(a ,-b ),BP →=(3,-b ), ∵BP→·BA →=0,AC →=2BA →, ∴⎩⎪⎨⎪⎧3a 2+b =0x -a =2a y =-2b……3' 消去a 、b 得:y 2=-4x ∵a <0,∴x =3a <0故曲线E 的方程为y 2=-4x (x <0) ……5' (2)设R (x ,y )为直线l 上一点,由条件知QR →=λ(i →+k j →) 即(x -1,y )=λ(1,k )∴⎩⎨⎧x -1=λy =k λ,消去λ得l 的方程为:y =k (x -1) ……7' 由⎩⎨⎧y =k (x -1)y 2=-4x⇒k 2x 2-2(k 2-2)x +k 2=0 ……(*) ∵直线l 交曲线E 与不同的两点M 、N∴△>0 ⇒ -1<k <1 ……① ……9' 设M (x 1,y 1),N (x 2,y 2),则DM →=(x 1+1,y 1),DN →=(x 2+1,y 2) ∵M 、N 在直线y =k (x -1)上,x∴y 1=k (x 1-1),y 2=k (x 2-1)又由(*),有x 1+x 2=2(k 2-2)k 2,x 1x 2=2∴DM →·DN →=(x 1+1)(x 2+1)+y 1y 2=(x 1+1)(x 2+1)+k 2(x 1-1)(x 2-1) =(k 2+1)x 1x 2+(1-k 2)(x 1+x 2)+k 2+1 =8k 2-4k2由条件知:8k 2-4k 2>0 k 2>12 ……② ……12'由①②知:-1<k <-22或22<k <1. ……13' 22. (14分)对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0成立,则称x 0为f (x )的不动点.已知f (x )=ax 2+(b +1)x +b -1(a ≠0)(1)若对b ∈R ,f (x )恒有两个相异的不动点,求实数a 的取值范围;(2)在(1)的条件下,若y =f (x )的图象上A 、B 两点的横坐标是函数f (x )的不动点,且A 、B 两点关于直线y =kx +(a 2-4a +4)对称,求b 的最小值. 解:(1)∵函数f (x )恒有两个相异的不动点,∴方程ax 2+(b +1)x +b -1=x 恒有两个相异的实数根, 即方程ax 2+bx +b -1=0恒有两个相异的实数根,∴△=b 2-4a (b -1)>0对b ∈R 恒成立 ……2' 令g (b )=b 2-4a (b -1),则△b =16a 2-16a <0∴0<a <1 ……4' (2)y =f (x )的不动点就是方程ax 2+(b +1)x +b -1=x 的两个根, 也就是y =ax 2+(b +1)x +b -1与y =x 交点的横坐标 设A (x 1,y 1),B (x 2,y 2) 则y 1=ax 12+(b +1)x 1+b -1 y 2=ax 22+(b +1)x 2+b -1 且x 1+x 2=-ba ,x 1x 2=b -1a∵y 1-y 2x 1-x 2=a (x 1+x 2)(x 1-x 2)+(b +1)(x 1-x 2)x 1-x 2=a (x 1+x 2)+b +1=a (-ba )+b +1=1∴k AB =1∵A 、B 两点关于直线y =kx +(a 2-4a +4)对称 ∴k =-1k AB=-1∴直线方程为y =-x +(a 2-4a +4) ……7' ∵y 1+y 2=a [(x 1+x 2)2-2x 1x 2]+(b +1)(x 1+x 2)+2(b -1) =a [(ba )2-2×b -1a ]-(b +1)b a +2(b -1)=-ba =x 1+x 2.∴AB 中点坐标为(-b 2a ,-b2a).由对称性知AB 中点在直线y =-x +(a 2-4a +4)上代入整理得:b =-a 3+4a 2-4a ……10' ∵b '=-3a 2+8a -4 令b '=0,得a =23或a =2但0<a <1,∴a =23 ……12'又当0<a <23时,b '<0;当23<a <1时,b '>0∴当a =23时,b 有最小值-3227 ……14'。
2018年四川省成都市青羊区中考数学一诊试卷(解析版)
![2018年四川省成都市青羊区中考数学一诊试卷(解析版)](https://img.taocdn.com/s3/m/ab26026ea417866fb84a8e23.png)
2018年四川省成都市青羊区中考数学一诊试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)cos30°=()A.B.C.D.2.(3分)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.3.(3分)下列说法正确的是()A.对角线相等的四边形是矩形B.有两边及一角对应相等的两个三角形全等C.对角线互相垂直的矩形是正方形D.平分弦的直径垂直于弦4.(3分)某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)2=60 B.50(1+x)2=120C.50+50(1+x)+50(1+x)2=120 D.50(1+x)+50(1+x)2=1205.(3分)函数y=自变量x的取值范围是()A.x≥3 B.x≤3 C.x>3 D.x<36.(3分)如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°B.50°C.65°D.75°7.(3分)对于抛物线y=(x﹣1)2+2的说法错误的是()A.抛物线的开口向上B.抛物线的顶点坐标是(1,2)C.抛物线与x轴无交点D.当x<1时,y随x的增大而增大8.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是()A.4 B.﹣4 C.8 D.﹣89.(3分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁10.(3分)如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A.2DE=3MN B.3DE=2MN C.3∠A=2∠F D.2∠A=3∠F二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“小于3”的概率为12.(4分)如图,已知斜坡AB 的坡度为1:3.若坡长AB=10m,则坡高BC= m.13.(4分)如图,在▱ABCD中,∠C=43°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为.14.(4分)如图,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB 在阳光下的投影BC=3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:(﹣1)2017﹣()﹣2•sin60°+|3﹣|(2)解方程:2(x﹣2)2=x2﹣416.(6分)如图,在Rt△ABC中,∠ACB=90°,D为AB中点,AE∥CD,CE∥AB.(1)试判断四边形ADCE的形状,并证明你的结论.(2)连接BE,若∠BAC=30°,CE=1,求BE的长.17.(8分)据新浪网调查,在第十二届全国人大二中全会后,全国网民对政府工作报告关注度非常高,大家关注的热点话题分别有:消费、教育、环保、反腐及其它共五类,且关注五类热点问题的网民的人数所占百分比如图l所示,关注该五类热点问题网民的人数的不完整条形统计如图2,请根据图中信息解答下列问题.(1)求出图l中关注“反腐”类问题的网民所占百分比x的值,并将图2中的不完整的条形统计图补充完整;(2)为了深度了解成都网民对政府工作报告的想法,新浪网邀请成都市5名网民代表甲、乙、丙、丁、戊做客新浪访谈,且一次访谈只选2名代表.请你用列表法或画树状图的方法,求出一次所选代表恰好是丙和丁的概率.18.(8分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)19.(10分)如图,在平面直角坐标系中,直线l与x轴相交于点M(3,0),与y轴相交于点N(0,4),点A为MN的中点,反比例函数y=(x>0)的图象过点A.(1)求直线l和反比例函数的解析式;(2)在函数y=(k>0)的图象上取异于点A的一点C,作CB⊥x轴于点B,连接OC交直线l于点P,若△ONP的面积是△OBC面积的3倍,求点P的坐标.20.(10分)如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆经过点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G,且D是的中点.(1)求证:AC是⊙O的切线;(2)如图2,延长CB交⊙O于点H,连接HD交OE于点P,连接CF,求证:CF=DO+OP;(3)在(2)的条件下,连接CD,若tan∠HDC=,CG=4,求OP的长.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)已知关于x的一元二次方程x2﹣mx+2m﹣1=0的两根x1、x2满足x12+x22=14,则m=22.(4分)如图,由点P(14,1),A(a,0),B(0,a)(0<a<14)确定的△PAB的面积为18,则a的值为.23.(4分)如图,在直角坐标系中,⊙A的圆心的坐标为(﹣2,0),半径为2,点P为直线y=﹣x+6上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ 的最小值是.24.(4分)如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.25.(4分)如图,已知正方形ABCD的边长是⊙O半径的4倍,圆心O是正方形ABCD的中心,将纸片按图示方式折叠,使EA'恰好与⊙O相切于点A',则tan ∠A'FE的值为.五、解答题(本大题共3小题,共30分)26.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.27.(10分)如图,已知一个三角形纸片ACB,其中∠ACB=90°,AC=8,BC=6,E、F分别是AC、AB边上的点,连接EF.(1)如图1,若将纸片ACB的一角沿EF=4S△EDF,求ED的长;折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF(2)如图2,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M 处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长;(3)如图3,若FE的延长线与BC的延长线交于点N,CN=2,CE=,求的值.28.(12分)如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标;(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M 为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.2018年四川省成都市青羊区中考数学一诊试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)cos30°=()A.B.C.D.【解答】解:由特殊角的三角函数值可知,cos30°=.故选:B.2.(3分)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.【解答】解:从左面可看到一个长方形和上面一个长方形.故选:A.3.(3分)下列说法正确的是()A.对角线相等的四边形是矩形B.有两边及一角对应相等的两个三角形全等C.对角线互相垂直的矩形是正方形D.平分弦的直径垂直于弦【解答】解:A、对角线相等的平行四边形是矩形,错误;B、有两边及夹角对应相等的两个三角形全等,错误;C、对角线互相垂直的矩形是正方形,正确;D、两条直径一定互相平分,但是不一定垂直,错误;故选:C.4.(3分)某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)2=60 B.50(1+x)2=120C.50+50(1+x)+50(1+x)2=120 D.50(1+x)+50(1+x)2=120【解答】解:设二、三月份每月的平均增长率为x,则二月份生产机器为:50(1+x),三月份生产机器为:50(1+x)2;又知二、三月份共生产120台;所以,可列方程:50(1+x)+50(1+x)2=120.故选:D.5.(3分)函数y=自变量x的取值范围是()A.x≥3 B.x≤3 C.x>3 D.x<3【解答】解:根据题意得:3﹣x>0,解得x<3.故选D.6.(3分)如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°B.50°C.65°D.75°【解答】解:∵AB是⊙O的切线,B为切点,∴OB⊥AB,即∠OBA=90°,∵∠BAO=40°,∴∠O=50°,∵OB=OC(都是半径),∴∠OCB=(180°﹣∠O)=65°.故选:C.7.(3分)对于抛物线y=(x﹣1)2+2的说法错误的是()A.抛物线的开口向上B.抛物线的顶点坐标是(1,2)C.抛物线与x轴无交点D.当x<1时,y随x的增大而增大【解答】解:∵a=1>0,∴抛物线开口向上,∵二次函数为y=a(x﹣h)2+k顶点坐标是(h,k),∴二次函数y=(x﹣1)2+2的图象的顶点坐标是(1,2),∵抛物线顶点(1,2),开口向上,∴抛物线与x轴没有交点,故A、B、C正确故选:D.8.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是()A.4 B.﹣4 C.8 D.﹣8【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S=S△ABC=4,△OAB=|k|,而S△OAB∴|k|=4,∵k<0,∴k=﹣8.故选:D.9.(3分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.10.(3分)如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A.2DE=3MN B.3DE=2MN C.3∠A=2∠F D.2∠A=3∠F【解答】解:∵正五边形FGHMN和正五边形ABCDE位似,∴DE:MN=AB:FG=2:3,∴3DE=2MN.故选:B.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“小于3”的概率为【解答】解:根据题意可得:标号小于3有1,2,两个球,共3个球,从中随机摸出一个小球,其标号小于3的概率为是:.故答案为:.12.(4分)如图,已知斜坡AB 的坡度为1:3.若坡长AB=10m,则坡高BC=m.【解答】解:设BC=xm,∵斜坡AB 的坡度为1:3,∴AC=3x,由勾股定理得,x2+(3x)2=102,解得,x=,故答案为:.13.(4分)如图,在▱ABCD中,∠C=43°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为47°.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C=43°.∵DF⊥AD,∴∠ADE=90°,∴∠AED=90°﹣43°=47°,∴∠BEF=∠AED=47°.故答案是:47°.14.(4分)如图,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB 在阳光下的投影BC=3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为10m.【解答】解:如图,在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,∵△ABC∽△DEF,AB=5m,BC=3m,EF=6m∴=∴∴DE=10(m)故答案为10m.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:(﹣1)2017﹣()﹣2•sin60°+|3﹣|(2)解方程:2(x﹣2)2=x2﹣4【解答】解:(1)原式==﹣4;(2)2(x﹣2)2=x2﹣4(x﹣2)(2x﹣4﹣x﹣2)=0(x﹣2)(x﹣6)=0解得:x1=2,x2=6.16.(6分)如图,在Rt△ABC中,∠ACB=90°,D为AB中点,AE∥CD,CE∥AB.(1)试判断四边形ADCE的形状,并证明你的结论.(2)连接BE,若∠BAC=30°,CE=1,求BE的长.【解答】解:(1)∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,∵∠ACB=90°,D为AB的中点,∴CD=AB=AD,∴四边形ADCE为菱形;(2)∵∠BAC=30°,四边形ADCE为菱形,∴∠BAE=60°=∠DCE,又∵∠ACB=90°,∴∠DBC=60°,而DB=DC,∴△BCD是等边三角形,∴∠DCB=60°,∴∠BCE=120°,又∵BC=CD=CE,∴∠CBE=30°,∴∠ABE=30°,∴△ABE中,∠AEB=90°,又∵AE=CE=1,∴AB=2,∴BE==.17.(8分)据新浪网调查,在第十二届全国人大二中全会后,全国网民对政府工作报告关注度非常高,大家关注的热点话题分别有:消费、教育、环保、反腐及其它共五类,且关注五类热点问题的网民的人数所占百分比如图l所示,关注该五类热点问题网民的人数的不完整条形统计如图2,请根据图中信息解答下列问题.(1)求出图l中关注“反腐”类问题的网民所占百分比x的值,并将图2中的不完整的条形统计图补充完整;(2)为了深度了解成都网民对政府工作报告的想法,新浪网邀请成都市5名网民代表甲、乙、丙、丁、戊做客新浪访谈,且一次访谈只选2名代表.请你用列表法或画树状图的方法,求出一次所选代表恰好是丙和丁的概率.【解答】解:(1)1﹣15%﹣30%﹣25%﹣10%=20%,所以x=20,总人数为:140÷10%=1400(人)关注教育问题网民的人数1400×25%=350(人),关注反腐问题网民的人数1400×20%=280(人),关注其它问题网民的人数1400×15%=210(人),如图2,补全条形统计图,(2)画树状图如下:由树状图可知共有20种等可能结果,其中一次所选代表恰好是丙和丁的有2种结果,所以一次所选代表恰好是丙和丁的概率为=.18.(8分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)【解答】解:Rt△ABC中,斜边AB=200米,∠α=16°,BC=AB•sinα=200×sin16°≈54(m),Rt△BDF中,斜边BD=200米,∠β=42°,DF=BD•sinβ=200×sin42°≈132,因此缆车垂直上升的距离应该是BC+DF=186(米).答:缆车垂直上升了186米.19.(10分)如图,在平面直角坐标系中,直线l与x轴相交于点M(3,0),与y轴相交于点N(0,4),点A为MN的中点,反比例函数y=(x>0)的图象过点A.(1)求直线l和反比例函数的解析式;(2)在函数y=(k>0)的图象上取异于点A的一点C,作CB⊥x轴于点B,连接OC交直线l于点P,若△ONP的面积是△OBC面积的3倍,求点P的坐标.【解答】解:(1)设直线l的解析式为y=mx+n(m≠0),将(3,0)、(0,4)代入y=mx+n,得,解得:,∴直线l的解析式为y=﹣x+4.∵点A为线段MN的中点,∴点A的坐标为(,2).将A(,2)代入y=,得k=×2=3,∴反比例函数解析式为y=;=|k|=,(2)∵S△OBC∴S=3S△OBC=.△ONP∵点N(0,4),∴ON=4.设点P的坐标为(a,﹣a+4),则a>0,∴S=ON•a=2a,△ONP∴a=,则﹣a+4=﹣×+4=1,∴点P的坐标为(,1).20.(10分)如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆经过点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G,且D是的中点.(1)求证:AC是⊙O的切线;(2)如图2,延长CB交⊙O于点H,连接HD交OE于点P,连接CF,求证:CF=DO+OP;(3)在(2)的条件下,连接CD,若tan∠HDC=,CG=4,求OP的长.【解答】(1)证明:如图1中,连接OC.∵OF⊥BC,∴∠B+∠BOF=90°,∵AC=BC,∴∠A+∠B=90°,∴∠A+∠BOF=90°,∵点D是的中点,∴,∴∠COD=∠EOD=∠BOF,∴∠A+∠COD=90°,∴∠ACO=9°,∴OC⊥AC,∴AC是⊙O的切线,(2)证明:如图2中,连接OC,∵EF⊥HC,∴CG=GH,∴EF垂直平分HC,∴FC=FH,∵∠CFP=∠COE,∵∠COD=∠DOE,∴∠CFP=∠COD,∵∠CHP=∠COD,∴∠CHP=∠CFP,∴点P在以F为圆心FC为半径的圆上,∴FC=FP=FH,∵DO=OF,∴DO+OP=OF+OP=FP=CF,即CF=OP+DO;(3)解:如图3,连接CO并延长交⊙O于M,连接MH,∴∠∠CMH=∠CDH,∠CHM=90°,∵OF⊥CH于G,∴CH=2CG=8,在Rt△CHN中,tan∠CMH==tan∠HDC=,∴,∴MH=,∴CM==,∴OD=OF=∵∠CGO=∠CHM=90°,∴OG∥MH,∵OC=OM,∴OG=MH=,∴FG=OF﹣OG=3,在Rt△CGF中,根据勾股定理得,CF==5,由(2)知,OP=CF﹣OD=5﹣=.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)已知关于x的一元二次方程x2﹣mx+2m﹣1=0的两根x1、x2满足x12+x22=14,则m=﹣2【解答】解:∵关于x的一元二次方程x2﹣mx+2m﹣1=0的两根是x1、x2,∴x1+x2=m,x1x2=2m﹣1,∴x12+x22=(x1+x2)2﹣2x1x2=m2﹣2(2m﹣1),∵x12+x22=14,∴m2﹣2(2m﹣1)=14,解得m=6或m=﹣2,当m=6时,方程为x2﹣6x+11=0,此时△=(﹣6)2﹣4×11=36﹣44=﹣8<0,不合题意,舍去,∴m=﹣2,故答案为:﹣2.22.(4分)如图,由点P(14,1),A(a,0),B(0,a)(0<a<14)确定的△PAB的面积为18,则a的值为3或12.【解答】解:当0<a<14时,如图,作PD⊥x轴于点D,∵P(14,1),A(a,0),B(0,a),∴PD=1,OD=14,OA=a,OB=a,=S梯形OBPD﹣S△OAB﹣S△ADP=×14(a+1)﹣a2﹣×1×(14﹣a)=18,∴S△PAB解得:a1=3,a2=12;故答案为:3或1223.(4分)如图,在直角坐标系中,⊙A的圆心的坐标为(﹣2,0),半径为2,点P为直线y=﹣x+6上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ 的最小值是4.【解答】解:如图,作AP⊥直线y=﹣x+6,垂足为P,作⊙A的切线PQ,切点为Q,此时切线长PQ最小,∵A的坐标为(﹣2,0),设直线与x轴,y轴分别交于B,C,∴B(0,6),C(8,0),∴OB=6,AC=,10,∴BC==10,在△APC与△BOC中,,∴△APC≌△BOC,∴AP=OB=6,∴PQ==4.故答案为424.(4分)如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.【解答】解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=4BC=4,∴==,=,∴=,∵∠ABI=∠ABC,∴△ABI∽△CBA;∵AB=AC,∴AI=BI=4;∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故答案为:.25.(4分)如图,已知正方形ABCD的边长是⊙O半径的4倍,圆心O是正方形ABCD的中心,将纸片按图示方式折叠,使EA'恰好与⊙O相切于点A',则tan∠A'FE的值为.【解答】解:如图,连接AA',EO,作OM⊥AB,A'N⊥AB,垂足分别为M、N.设⊙O的半径为r,则AM=MO=2r,设AF=FA'=x,在Rt△FMO中,∵FO2=FM2+MO2,∴(r+x)2=(2r﹣x)2+(2r)2,∴7r=6x,设r=6a则x=7a,AM=MO=12a,FM=5a,AF=FA1=7a,∵A'N∥OM,∴,∴,∴A'N=a,FN=a,AN=a,∵∠1+∠4=90°,∠4+∠3=90°,∠2=∠3,∴∠1=∠3=∠2,∴tan∠2=tan∠1=.∴tan∠A'FE=故答案为.五、解答题(本大题共3小题,共30分)26.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.【解答】解:(1)设y=kx+b,将(50,100)、(60,80)代入,得:,解得:,∴y=﹣2x+200 (40≤x≤80);(2)W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∴当x=70时,W取得最大值为1800,答:售价为70元时获得最大利润,最大利润是1800元.(3)当W=1350时,得:﹣2x2+280x﹣8000=1350,解得:x=55或x=85,∵该抛物线的开口向上,所以当55≤x≤85时,W≥1350,又∵每千克售价不低于成本,且不高于80元,即40≤x≤80,∴该商品每千克售价的取值范围是55≤x≤80.27.(10分)如图,已知一个三角形纸片ACB,其中∠ACB=90°,AC=8,BC=6,E、F分别是AC、AB边上的点,连接EF.(1)如图1,若将纸片ACB的一角沿EF 折叠,折叠后点A落在AB边上的点D处,且使S=4S△EDF,求ED的长;四边形ECBF(2)如图2,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M 处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长;(3)如图3,若FE的延长线与BC的延长线交于点N,CN=2,CE=,求的值.【解答】解:(1)∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D 处,∴EF⊥AB,△AEF≌△DEF,∴S△AEF ≌S△DEF,∵S四边形ECBF=4S△EDF,∴S△ABC=5S△AEF,在Rt△ABC中,∵∠ACB=90°,AC=8,BC=6,∴AB=10,∵∠EAF=∠BAC,∴Rt△AEF∽Rt△ABC,∴=()2,即()2=,∴AE=2,由折叠知,DE=AE=2(2)连结AM交EF于点O,如图2,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴AE=EM,AF=MF,∠AFE=∠MFE,∵MF∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=EM=MF=AF,∴四边形AEMF为菱形,设AE=x,则EM=x,CE=8﹣x,∵四边形AEMF为菱形,∴EM∥AB,∴△CME∽△CBA,∴==,即,解得x=,CM=,在Rt△ACM中,AM==,=EF•AM=AE•CM,∵S菱形AEMF∴EF=2×=;(3)如图③,作FH⊥BC于H,∵EC∥FH,∴△NCE∽△NFH,∴,∴∴设FH=4x,NH=7x,则CH=7x﹣2,BH=6﹣(7x﹣2)=8﹣7x,∵FH∥AC,∴△BFH∽△BAC,∴,∴,∴x=∴FH=4x=,BH=8﹣7x=,在Rt△BFH中,BF==4,∴AF=AB﹣BF=10﹣4=6,∴==.28.(12分)如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标;(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M 为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【解答】解:(1)当x=0时,y=4,∴B(0,4),当y=0时,﹣x+4=0,x=6,∴C(6,0),把B(0,4)和C(6,0)代入抛物线y=ax2+x+c中得:,解得:,∴抛物线的解析式为:y=﹣x2+x+4;(2)如图1,过E作EG∥y轴,交直线BC于G,设E(m,﹣m2+m+4),则G(m,﹣m+4),∴EG=(﹣m2+m+4)﹣(﹣m+4)=﹣+4m,=EG•OC=×6(﹣+4m)=﹣2(m﹣3)2+18,∴S△BEC∵﹣2<0,∴S有最大值,此时E(3,8);(3)y=﹣x2+x+4=﹣(x2﹣5x+﹣)+4=﹣(x﹣)2+;对称轴是:x=,∴A(﹣1,0)∵点Q是抛物线对称轴上的动点,∴Q的横坐标为,在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形;①如图2,以AM为边时,由(2),可得点M的横坐标是3,∵点M在直线y=﹣x+4上,∴点M的坐标是(3,2),又∵点A的坐标是(﹣1,0),点Q的横坐标为,根据M到Q的平移规律:可知:P的横坐标为﹣,∴P(﹣,﹣);②如图3,以AM为边时,四边形AMPQ是平行四边形,由(2),可得点M的横坐标是3,∵A(﹣1,0),且Q的横坐标为,∴P的横坐标为,∴P(,﹣);③以AM为对角线时,如图4,∵M到Q的平移规律可得P到A的平移规律,∴点P的坐标是(﹣,),综上所述,在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形,点P的坐标是(﹣,﹣)或(,﹣)或(﹣,).。
2018年成都市2015级高中毕业班第一次诊断性检测“一诊”理科数学试卷+答案+答题卡
![2018年成都市2015级高中毕业班第一次诊断性检测“一诊”理科数学试卷+答案+答题卡](https://img.taocdn.com/s3/m/d10d7e9e83d049649b665832.png)
( 一㊁ 选择题 : 每小题 5 分 , 共6 0 分) 1. A 2. D 3. D 7. A 8. B 9. C 第 Ⅰ 卷( 选择题 , 共6 0 分) 4. C 1 0. C 5. C 1 1. B 6. B 1 2. D
成都市 2 0 1 5 级高中毕业班第一次诊断性检测
( 二㊁ 填空题 : 每小题 5 分 , 共2 0 分) 1 3. 4 0; ㊀㊀1 4. 1 2; ㊀㊀1 5. 6; ㊀㊀1 6. 6. ( 三. 解答题 : 共7 0 分) ( ) 解: 设数列 { 1 7. 1 a n } 的公差为d . ȵ a2 =3, S4 =1 6,ʑ a1 +d =3, 4 a1 +6 d =1 6. ������������������4 分 解得 d =2, a1 =1. ������������������6 分 ʑ a 2 n 1 . - n = 1 1 1 1 ( ) ) ������������������8 分 由题意 , 2 b . = ( - n = ( ) ( ) 2 n -1 2 n +1 22 n -1 2 n +1 ������ ������ ������ ʑTn = b b +b 1+ 2+ n 1é 1 1 1 1 1 ù ú ( ) ������ ������ ������ 1- ) = ê +( - ) + +( - ê 2ë û 3 3 5 2 n -1 2 n +1 ú 1 1 n ) ������������������1 1- . 2分 = ( = 2 2 n +1 2 n +1 ( ) 解: 记 从这 1 至多有 1 天是用水量超标 为 1 8. 1 2 天的数据中随机抽取 3 个 , 事件 A . 1 2 3 C C 1 6 8 4 2 4C 8 8 ������������������4 分 则 P( A )= 3 + 3 = = . 2 2 0 5 5 C C 1 2 1 2 1 ( ) 以这 1 易知其概率为 2 2 天的样本数据中用水量超标的频率作为概率 , . 3 随机变量 X 表示未来三天用水量超标的天数 , ʑ X 的所有可能取值为 0, 1, 2, 3. 1 1 2 k k 3 k - , 易知 X ~ B ( 3, ) P( X= k) k =0, 1, 2, 3. =C 3 ( )( ) , 3 3 3 8 4 2 1 ) ) ) ) ������������������8 分 则 P( X =0 P( X =1 P( X =2 P( X =3 = , = , = , = . 2 7 9 9 2 7 ʑ 随机变量 X 的分布列为
2018年四川省成都七中高考数学一诊试卷(理科)1
![2018年四川省成都七中高考数学一诊试卷(理科)1](https://img.taocdn.com/s3/m/31ab74154b73f242326c5f16.png)
2018年四川省成都七中高考数学一诊试卷(理科)11.(5分)在直角坐标平面xOy上的一列点A1(1,a1),A2(2,a2),…,A n(2,a n),…,简记为{A n}若由构成的数列{b n}满足b n+1>b n,n=1,2,…,其中为方向与y轴正方向相同的单位向量,则称{A n}为T点列.有下列说法①,为T点列;②若{A n}为T点列,且点A2在点A1的右上方.任取其中连续三点A k、A k+1、A k+2,则△A k A k+1A k+2可以为锐角三角形;③若{A n}为T点列,正整数若1≤m<n<p<q,满足m+q=n+p,则a q﹣a p≥(q ﹣p)b p;④若{A n}为T点列,正整数若1≤m<n<p<q,满足m+q=n+p,则.其中,正确说法的个数为()A.1 B.2 C.3 D.412.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.15.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,二面角S﹣AC ﹣B的余弦值是﹣,则该四面体的外接球的表面积是.16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.20.(12分)已知点C为圆(x+1)2+y2=8的圆心,P是圆上的动点,点Q在圆的半径CP上,且有点A(1,0)和AP上的点M,满足•=0,=2.(Ⅰ)当点P在圆上运动时,求点Q的轨迹方程;(Ⅱ)若斜率为k的直线l与圆x2+y2=1相切,直线l与(Ⅰ)中所求点Q的轨迹交于不同的两点F,H,O是坐标原点,且≤•≤时,求k的取值范围.21.(12分)已知函数f(x)=ae x+x2﹣bx(a,b∈R,e=2.71828…是自然对数底数),其导函数为y=f'(x).(1)设b=0,若函数y=f(x)在R上有且只有一个零点,求a的取值范围;(2)设b=2,且a≠0,点(m,n)(m,n∈R)是曲线y=f(x)上的一个定点,是否存在实数x0(x0≠m),使得成立?证明你的结论.2018年四川省成都七中高考数学一诊试卷(理科)11.C.12.C.15.6π.16..20.【解答】解:(I)由题意知MQ中线段AP的垂直平分线,∴,∴点Q的轨迹是以点C,A为焦点,焦距为2,长轴为的椭圆,,故点Q的轨迹方程是.(II)设直线l:y=kx+b,F(x1,y1),H(x2,y2)直线l与圆x2+y2=1相切联立,(1+2k2)x2+4kbx+2b2﹣2=0,△=16k2b2﹣4(1+2k2)2(b2﹣1)=8(2k2﹣b2+1)=8k2>0,可得k≠0,∴,===,∴为所求.21.【解答】解(1)当b=0时,f(x)=ae x+x2,由题意ae x+x2=0只有一解.由ae x+x2=0得,令,则,令G'(x)=0得x=0或x=2当x≤0时,G'(x)≤0,G(x)单调递减,G(x)的取值范围为[0,+∞);当0<x<2时,G'(x)>0,G(x)单调递增,G(x)的取值范围为;当x≥2时,G'(x)≤0,G(x)单调递减,G(x)的取值范围为;由题意,得﹣a=0或,从而a=0或,所以,当a=0或时,函数f(x)只有一个零点.(2)f(x)=ae x+x2﹣2x,f'(x)=ae x+2x﹣2,假设存在,则有即,∴,∵a≠0,∴,不妨设t=x0﹣m>0,则,两边同除e m,得(*),令,令,∴h(t)在(0,+∞)上单调递增,∵h(0)=0,∴h(0)>0对t∈(0,+∞)恒成立,∴g(t)在(0,+∞)上单调递增又g(0)=0,∴g(t)>0对t∈(0,+∞)恒成立,∴方程te=e t﹣1无解,∴不存在实数x0(x0≠m),使得成立.。
推荐-四川省成都市2018届高中毕业班第一次诊断性检测
![推荐-四川省成都市2018届高中毕业班第一次诊断性检测](https://img.taocdn.com/s3/m/8e959af7195f312b3169a5ae.png)
四川省成都市2018届高中毕业班第一次诊断性检测数学试题(理科)2018-01-18 15:00-17:00 考试时间:120分钟 总分:150分第Ⅰ卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B )球的表面积公式S =4πR 2其中R 表示球的半径如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B ) 球的体积公式V =334R π其中R 表示不的半径如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率 P n (k )=C kn k k nP P --)1(一、选择题(60分,每小题5分)1. 22231lim2n n n n →∞++=+ A 、2 B 、0 C 、1 D 、122.若角α的始边为x 轴非负半轴,顶点是原点,点(4,3)P -为其终边上一点,则cos α= A 、45 B 、35- C 、45- D 、35±3.在四边形ABCD 中,“2AB DC =”是“四边形ABCD 是梯形”的A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分又不必要条件 4.已知集合{}{},,,1,0,1P a b c Q ==-,映射:f P Q →中满足()0f b =的映射个数共有 A 、2个 B 、4个 C 、6个 D 、9个5. 已知数列{}n a 为等差数列,且17134a a a π++=,则212tan()a a +=A B 、 C 、 D 、3-6.若函数()f x 定义域为12x x ⎧⎫>⎨⎬⎩⎭,则函数1()f x 的定义域为 A 、12x x ⎧⎫>⎨⎬⎩⎭ B 、102x x x ⎧⎫<≠⎨⎬⎩⎭且 C 、{}{}20x x x x >< D 、{}02x x <<7.若函数4y x x=+在(0,)x a ∈上存在反函数,则实数a 的取值范围为A 、(1,4)B 、(]0,2C 、(]2,4D 、[)2,+∞ 8.把函数sin 2y x=的图象按向量(,3)6a π=--平移后得到sin()(0,0,)2y A x B A πωϕωϕ=++>>≤的图象,则ϕ和B 的值依次为A 、,312π- B 、,33πC 、,33π- D 、,312π-9.如图直线PA 垂直于O 所在平面,ABC ∆内接于O 且AB 为直径,M 为线段PB 中点,有以下命题:①BC PC ⊥ ②//OM 面APC ③B 到面PAC 的距离等于线段BC 的长。
(22套)2018年四川全省 含所有市 高考一模试卷汇总 (2)
![(22套)2018年四川全省 含所有市 高考一模试卷汇总 (2)](https://img.taocdn.com/s3/m/db25d1137375a417866f8f54.png)
(22套)2018年四川全省含所有市高考一模一诊试卷汇总2018年四川省成都七中高考数学一诊试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>22.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣23.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.156.(5分)在区间[1,5]随机地取一个数m,则方程m2x2+4y2=1表示焦点在y 轴上的椭圆的概率是()A.B.C.D.7.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.18.(5分)已知S为执行如图所示的程序框图输出的结果,则二项式(S﹣)6的展开式中常数项的系数是()A.﹣20 B.20 C.﹣D.609.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A.B.﹣ C.﹣1 D.110.(5分)已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣311.(5分)在直角坐标平面xOy上的一列点A1(1,a1),A2(2,a2),…,A n(2,a n),…,简记为{A n}若由构成的数列{b n}满足b n+1>b n,n=1,2,…,其中为方向与y轴正方向相同的单位向量,则称{A n}为T点列.有下列说法①,为T点列;②若{A n}为T点列,且点A2在点A1的右上方.任取其中连续三点A k、A k+1、A k+2,则△A k A k+1A k+2可以为锐角三角形;③若{A n}为T点列,正整数若1≤m<n<p<q,满足m+q=n+p,则a q﹣a p≥(q ﹣p)b p;④若{A n}为T点列,正整数若1≤m<n<p<q,满足m+q=n+p,则.其中,正确说法的个数为()A.1 B.2 C.3 D.412.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a=.14.(5分)已知递减等差数列{a n}中,a3=﹣1,a4为a1,﹣a6等比中项,若S n 为数列{a n}的前n项和,则S7的值为.15.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,二面角S﹣AC ﹣B的余弦值是﹣,则该四面体的外接球的表面积是.16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.18.(12分)在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB 的中点,AC∩EF=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图的五棱锥,且.(1)求证:BD⊥平面POA;(2)求二面角B﹣AP﹣O的余弦值.19.(12分)“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:(1)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?附:,(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有X人,超过10000步的有Y人,设ξ=|X﹣Y|,求ξ的分布列及数学期望.20.(12分)已知点C为圆(x+1)2+y2=8的圆心,P是圆上的动点,点Q在圆的半径CP上,且有点A(1,0)和AP上的点M,满足•=0,=2.(Ⅰ)当点P在圆上运动时,求点Q的轨迹方程;(Ⅱ)若斜率为k的直线l与圆x2+y2=1相切,直线l与(Ⅰ)中所求点Q的轨迹交于不同的两点F,H,O是坐标原点,且≤•≤时,求k的取值范围.21.(12分)已知函数f(x)=ae x+x2﹣bx(a,b∈R,e=2.71828…是自然对数底数),其导函数为y=f'(x).(1)设b=0,若函数y=f(x)在R上有且只有一个零点,求a的取值范围;(2)设b=2,且a≠0,点(m,n)(m,n∈R)是曲线y=f(x)上的一个定点,是否存在实数x0(x0≠m),使得成立?证明你的结论.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.2018年四川省成都七中高考数学一诊试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>2【解答】解:由题意,集合A={x|x<a},B={x|x2﹣3x+2<0}={x|1<x<2},∵A∩B=B,∴B⊆A,则:a≥2.∴实数a的取值范围[2,+∞).故选C.2.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣2【解答】解:∵复数z===1﹣2i,故此复数的虚部为﹣2,故选D.3.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件【解答】解:由“直线m∥平面α”,可得“直线m与平面α内无数条直线平行”,反之不成立.∴“直线m与平面α内无数条直线平行”是“直线m∥平面α”的必要不充分条件.故选:C.4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.【解答】解:由约束条件作出可行域如图,联立,得A(1,﹣1),联立,得B(1,3).由=,而.∴目标函数的取值范围是[,].故选:D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.15【解答】解:由题意类推,可知六十四卦中的“屯”卦符合“”表示二进制数的010001,转化为十进制数的计算为1×20+0×21+0×22+0×23+1×24+0×25=17.故选:B.6.(5分)在区间[1,5]随机地取一个数m,则方程m2x2+4y2=1表示焦点在y 轴上的椭圆的概率是()A.B.C.D.【解答】解:若方程m2x2+4y2=1表示焦点在y轴上的椭圆,则m2>4,解得:m>2,故满足条件的概率是p==,故选:D.7.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.1【解答】解:∵已知===,求得m=﹣6,或m=1,故选:A.8.(5分)已知S为执行如图所示的程序框图输出的结果,则二项式(S﹣)6的展开式中常数项的系数是()A.﹣20 B.20 C.﹣D.60【解答】解:模拟程序框图的运行过程,如下:i=0,s=1,i=1,i<4,是,s==﹣1;i=2,2<4,是,s==3;i=3,3<4,是,s==;i=4,4<4,否,退出循环,输出s的值为.∴二项式(﹣)6的展开式中的通项是T r+1=•()6﹣r•(﹣)r=(﹣1)r••()6﹣2r•x3﹣r;令3﹣r=0,得r=3;∴常数项是T4=(﹣1)3••()0=﹣20.故选:A.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A.B.﹣ C.﹣1 D.1【解答】解:∵y=f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),∵函数y=f(x+1)是定义在R上的偶函数,∴f(﹣x+1)=f(x+1)=﹣f(x﹣1),f(x+2)=﹣f(x),可得f(x+4)=﹣f(x+2)=f(x).则f(x)的周期是4,∴f()=f(4×4﹣)=f(﹣)=﹣f()=﹣[]=﹣1,故选C.10.(5分)已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣3【解答】解:不妨设g(m)=f(n)=t,∴e m﹣2=ln+=t,(t>0)∴m﹣2=lnt,m=2+lnt,n=2•e故n﹣m=2•e﹣2﹣lnt,(t>0)令h(t)=2•e﹣2﹣lnt,(t>0),h′(t)=2•e﹣,易知h′(t)在(0,+∞)上是增函数,且h′()=0,当t>时,h′(t)>0,当0<t<时,h′(t)<0,即当t=时,h(t)取得极小值同时也是最小值,此时h()=2•e﹣2﹣ln=2﹣2+ln2=ln2,即n﹣m的最小值为ln2;故选:B11.(5分)在直角坐标平面xOy上的一列点A1(1,a1),A2(2,a2),…,A n(2,a n),…,简记为{A n}若由构成的数列{b n}满足b n+1>b n,n=1,2,…,其中为方向与y轴正方向相同的单位向量,则称{A n}为T点列.有下列说法①,为T点列;②若{A n}为T点列,且点A2在点A1的右上方.任取其中连续三点A k、A k+1、A k+2,则△A k A k+1A k+2可以为锐角三角形;③若{A n}为T点列,正整数若1≤m<n<p<q,满足m+q=n+p,则a q﹣a p≥(q ﹣p)b p;④若{A n}为T点列,正整数若1≤m<n<p<q,满足m+q=n+p,则.其中,正确说法的个数为()A.1 B.2 C.3 D.4【解答】解:在①中,由题意可知,∴=﹣,∴b n+1>b n,∴{A n}是T点列,故①正确;在②中,在△A k A k+1A k+2中,=(﹣1,a k﹣a k+1),=(1,a k+2﹣a k+1),•=﹣1+(a k+2﹣a k+1)(a k﹣a k+1),∵点A2在点A1的右上方,∴b1=a2﹣a1>0,∵{A n}为T点列,∴b n≥b1>0,∴(a k+2﹣a k+1)(a k﹣a k+1)=﹣b k+1b k<0,∴•<0,∴∠A k A k+1A k+2为钝角,∴△A k A k+1A k+2为钝角三角形,故②错误;在③中,A n(n,a n),A n+1(n+1,a n+1),∴=(1,a n+1﹣a n).又∵=(0,1),∴b n=a n+1﹣a n.∵1≤m,且m+q=n+p.∴q﹣p=n﹣m>0.∴a q﹣q p=a q﹣q q﹣1+a q﹣1﹣a q﹣2+…+a p+1﹣a p=b q﹣1+b q﹣2+…+b p.∵{A n}为T点列,∴b n+1>b n.∴b q﹣1+b q﹣2+…+b m=(q﹣p)b p.即a q﹣a p≥(q﹣p)b p.故③正确;在④中,∵1≤m<n<p<q,m+q=n+p,∴q﹣p=n﹣m>0,(1)a q﹣a p=a q﹣a q﹣1+a q﹣1﹣a q﹣2+…+a p+1﹣a p=b q﹣1+b q﹣2+…+b p≥(q﹣p)b p,(2)同理a n﹣a m=b n﹣1+b n﹣2+…+b m≤(n﹣m)b n﹣1,(3)由于{A n}为T点列,于是b p>b n﹣1,(4)由(1)、(2)、(3)、(4)可推得a q﹣a p>a n﹣a m,∴a q﹣a n>a p﹣a m,即.故④正确.故选:C.12.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.【解答】解:双曲线的c2=a2+b2,e=,双曲线的渐近线方程为y=±x,与圆x2+y2=c2联立,解得M(a,b),与双曲线(a>0,b>0)联立,解得,∵直线MF1与直线ON平行时,即有,即(a+c)2(c2﹣a2)=a2(2c2﹣a2),即有c3+2ac2﹣2a2c﹣2a3=0,∴e3+2e2﹣2e﹣2=0,即e2+2e﹣=2,∴f(e)=e2+2e﹣=2,故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a= 2.【解答】解:抛物线的标准方程:y2=ax,焦点坐标为(,0),准线方程为x=﹣,由抛物线的焦半径公式|PF|=x0+=+=2,解得:a=2,故答案为:2.14.(5分)已知递减等差数列{a n}中,a3=﹣1,a4为a1,﹣a6等比中项,若S n 为数列{a n}的前n项和,则S7的值为﹣14.【解答】解:设递减等差数列{a n}的公差d<0,a3=﹣1,a4为a1,﹣a6等比中项,∴a1+2d=﹣1,=﹣a6×a1,即=﹣(a1+5d)×a1,联立解得:a1=1,d=﹣1.则S7=7﹣=﹣14.故答案为:﹣14.15.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,二面角S﹣AC ﹣B的余弦值是﹣,则该四面体的外接球的表面积是6π.【解答】解:由AB⊥BC,得△ABC的外接圆的圆心O′为AC中点,连接SO′,BO′,由SA=SC和AB=BC有SO′⊥AC,BO′⊥AC而四面体外接球的球心O在平面SO′B内,连接OO′,有OO′⊥底面ABC将平面SO′B取出,则BO′=1,SO′=,用余弦定理可得cos∠SO′B=﹣,∴SB=,作SB的中垂线,过O′作BO′的垂线,两者必相交于O,用余弦定理,cos∠O′BS=,如图,BE=O′B÷cos∠O′BS=,也就是D,E,O三点重合,外接圆的半径R=OB=,∴球的表面积是4πR2=6π故答案为:6π.16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.【解答】解:对任意x1,x2∈(0,+∞),不等式≤恒成立,则等价为≤恒成立,f(x)==x+≥2=2,当且仅当x=,即x=1时取等号,即f(x)的最小值是2,由g(x)=,则g′(x)==,由g′(x)>0得0<x<1,此时函数g(x)为增函数,由g′(x)<0得x>1,此时函数g(x)为减函数,即当x=1时,g(x)取得极大值同时也是最大值g(1)=,则的最大值为=,则由≥,得2ek≥k+1,即k(2e﹣1)≥1,则,故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.【解答】解:(1)△ABC中,∵2cosC(acosC+ccosA)+b=0,由正弦定理可得2cosC(sinAcosC+sinCcosA)+sinB=0,∴2cosCsin(A+C)+sinB=0,即2cosCsinB+sinB=0,又0°<B<180°,∴sinB≠0,∴,即C=120°.(2)由余弦定理可得,又a>0,a=2,∴,∴△ABC的面积为.18.(12分)在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB 的中点,AC∩EF=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图的五棱锥,且.(1)求证:BD⊥平面POA;(2)求二面角B﹣AP﹣O的余弦值.【解答】证明:(1)∵点E,F分别为CD,CB的中点,∴BD∥EF,∵菱形ABCD的对角线互相垂直,∴BD⊥AC,∴EF⊥AC,∴EF⊥AO,EF⊥PO,∵AO⊂平面POA,PO⊂平面POA,AO∩PO=O,∴EF⊥平面POA,∴BD⊥平面POA.解:(2)设AO∩BD=H,连接BO,∵∠DAB=60°,∴△ABD为等边三角形,∴,在Rt△BHO中,,在△PBO中,BO2+PO2=10=PB2,∴PO⊥BO,∵PO⊥EF,EF∩BO=O,EF⊂平面BFED,∴PO⊥平面BFED,以O为原点,OF所在直线为x轴,AO所在直线y轴,OP所在直线为z轴,建立空间直角坐标系O﹣xyz,则.∴,设平面PAB 的法向量为=(x,y,z),则,取y=1,得=(﹣),∵BD⊥平面POA,AO∩BD=H,∴平面PAO 的一个法向量为=(﹣2,0,0),设二面角B﹣AP﹣O的平面角为θ,则cosθ===,∴二面角B﹣AP﹣O 的余弦值为.19.(12分)“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:(1)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?附:,(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有X人,超过10000步的有Y人,设ξ=|X﹣Y|,求ξ的分布列及数学期望.【解答】解:(Ⅰ)根据题意完成下面的2×2列联表:解得,故没有95%以上的把握认为二者有关.(Ⅱ)由题知,小王的微信好友中任选一人,其每日走路步数不超过5000步的概率为,超过10000步的概率为,且当X=Y=0或X=Y=1时,ξ=0,,当X=1,Y=0或X=0,Y=1时,ξ=1,,当X=2,Y=0或X=0,Y=2时,ξ=2,,∴ξ的分布列为:Eξ==.20.(12分)已知点C为圆(x+1)2+y2=8的圆心,P是圆上的动点,点Q在圆的半径CP上,且有点A(1,0)和AP上的点M,满足•=0,=2.(Ⅰ)当点P在圆上运动时,求点Q的轨迹方程;(Ⅱ)若斜率为k的直线l与圆x2+y2=1相切,直线l与(Ⅰ)中所求点Q的轨迹交于不同的两点F,H,O是坐标原点,且≤•≤时,求k的取值范围.【解答】解:(I)由题意知MQ中线段AP的垂直平分线,∴,∴点Q的轨迹是以点C,A为焦点,焦距为2,长轴为的椭圆,,故点Q的轨迹方程是.(II)设直线l:y=kx+b,F(x1,y1),H(x2,y2)直线l与圆x2+y2=1相切联立,(1+2k2)x2+4kbx+2b2﹣2=0,△=16k2b2﹣4(1+2k2)2(b2﹣1)=8(2k2﹣b2+1)=8k2>0,可得k≠0,∴,===,∴为所求.21.(12分)已知函数f(x)=ae x+x2﹣bx(a,b∈R,e=2.71828…是自然对数底数),其导函数为y=f'(x).(1)设b=0,若函数y=f(x)在R上有且只有一个零点,求a的取值范围;(2)设b=2,且a≠0,点(m,n)(m,n∈R)是曲线y=f(x)上的一个定点,是否存在实数x0(x0≠m),使得成立?证明你的结论.【解答】解(1)当b=0时,f(x)=ae x+x2,由题意ae x+x2=0只有一解.由ae x+x2=0得,令,则,令G'(x)=0得x=0或x=2当x≤0时,G'(x)≤0,G(x)单调递减,G(x)的取值范围为[0,+∞);当0<x<2时,G'(x)>0,G(x)单调递增,G(x)的取值范围为;当x≥2时,G'(x)≤0,G(x)单调递减,G(x)的取值范围为;由题意,得﹣a=0或,从而a=0或,所以,当a=0或时,函数f(x)只有一个零点.(2)f(x)=ae x+x2﹣2x,f'(x)=ae x+2x﹣2,假设存在,则有即,∴,∵a≠0,∴,不妨设t=x0﹣m>0,则,两边同除e m,得(*),令,令,∴h(t)在(0,+∞)上单调递增,∵h(0)=0,∴h(0)>0对t∈(0,+∞)恒成立,∴g(t)在(0,+∞)上单调递增又g(0)=0,∴g(t)>0对t∈(0,+∞)恒成立,∴方程te=e t﹣1无解,∴不存在实数x0(x0≠m),使得成立.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.【解答】解:(1)由圆锥曲线C:(α为参数)化为,可得F2(1,0),∴直线AF2的直角坐标方程为:,化为y=.(2)设M(x1,y1),N(x2,y2).∵直线AF2的斜率为,∴直线l的斜率为.∴直线l的方程为:,代入椭圆的方程可得:=12,化为=0,t1+t2=,∴||MF1|﹣|NF1||=|t1+t2|=.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.【解答】解:(1)当m=5时,,由f(x)>2的不等式的解集为.(2)由二次函数y=x2+2x+3=(x+1)2+2,该函数在x=﹣1处取得最小值2,因为,在x=﹣1处取得最大值m﹣2,所以要使二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,只需m﹣2≥2,即m≥4.2018年四川省成都七中高考数学一诊试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>22.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣23.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.156.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.17.(5分)如图所示的程序框图,若输入m=8,n=3,则输出的S值为()A.56 B.336 C.360 D.14408.(5分)已知等差数列{an}的前n项和为Sn,且,a2=4,则数列的前10项和为()A.B.C.D.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A.B.﹣C.﹣1 D.110.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为()A.B.8πC. D.4π11.(5分)已知函数f(x)=ln+,g(x)=ex﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣312.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a=.14.(5分)已知递减等差数列{an}中,a3=﹣1,a4为a1,﹣a6等比中项,若Sn为数列{an}的前n项和,则S7的值为.15.(5分)Rt△ABC中,P是斜边BC上一点,且满足:,点M,N在过点P的直线上,若则λ+2μ的最小值为.16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.18.(12分)如图,四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明直线MN∥平面PAB;(II)求四面体N﹣BCM的体积.19.(12分)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km/h),现将其分成六组为[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(Ⅰ)某小型轿车途经该路段,其速度在70km/h以上的概率是多少?(Ⅱ)若对车速在[60,65),[65,70)两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[60,65)内的概率.20.(12分)已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足.(1)求出动点P的轨迹对应曲线C的标准方程;(2)直线l:x=ty+1与曲线C交于A、B两点,E(﹣1,0),试问:当t变化时,是否存在一直线l,使△ABE得面积为?若存在,求出直线l的方程;若不存在,说明理由.21.(12分)已知函数f(x)=kex﹣x2(其中k∈R,e是自然对数的底数)(1)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(2)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明:0<f(x1)<1.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.2018年四川省成都七中高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>2【解答】解:由题意,集合A={x|x<a},B={x|x2﹣3x+2<0}={x|1<x<2},∵A∩B=B,∴B⊆A,则:a≥2.∴实数a的取值范围[2,+∞).故选C.2.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣2【解答】解:∵复数z===1﹣2i,故此复数的虚部为﹣2,故选D.3.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【解答】解:由“直线m∥平面α”,可得“直线m与平面α内无数条直线平行”,反之不成立.∴“直线m与平面α内无数条直线平行”是“直线m∥平面α”的必要不充分条件.故选:C.4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.【解答】解:由约束条件作出可行域如图,联立,得A(1,﹣1),联立,得B(1,3).由=,而.∴目标函数的取值范围是[,].故选:D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.15【解答】解:由题意类推,可知六十四卦中的“屯”卦符合“”表示二进制数的010001,转化为十进制数的计算为1×20+0×21+0×22+0×23+1×24+0×25=17.故选:B.6.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.1【解答】解:∵已知===,求得m=﹣6,或m=1,故选:A.7.(5分)如图所示的程序框图,若输入m=8,n=3,则输出的S值为()A.56 B.336 C.360 D.1440【解答】解:执行程序框图,可得m=8,n=3,k=8,s=1不满足条件k<m﹣n+1,s=8,k=7,不满足条件k<m﹣n+1,s=56,k=6,不满足条件k<m﹣n+1,s=336,k=5,满足条件k<m﹣n+1,退出循环,输出s的值为336.故选:B.8.(5分)已知等差数列{an}的前n项和为Sn,且,a2=4,则数列的前10项和为()A.B.C.D.【解答】解:由及等差数列通项公式得a1+5d=12,又a2=4=a1+d,∴a1=2=d,∴Sn==n2+n,∴,∴=.故选:B.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x (3﹣2x),则f()=()A.B.﹣C.﹣1 D.1【解答】解:∵y=f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),∵函数y=f(x+1)是定义在R上的偶函数,∴f(﹣x+1)=f(x+1)=﹣f(x﹣1),f(x+2)=﹣f(x),可得f(x+4)=﹣f(x+2)=f(x).则f(x)的周期是4,∴f()=f(4×4﹣)=f(﹣)=﹣f()=﹣[]=﹣1,故选C.10.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为()A.B.8πC. D.4π【解答】解:取AC中点D,连接SD,BD,∵AB=BC=,∴BD⊥AC,∵SA=SC=2,∴SD⊥AC,AC⊥平面SDB.∴∠SDB为二面角S﹣AC﹣B的平面角,在△ABC中,AB⊥BC,AB=BC=,∴AC=2.∵平面SAC⊥平面BAC,∴∠SDB=90°,取等边△SAC的中心E,则E为该四面体外接球的球心,球半径R=SE==,∴该四面体外接球的表面积S=4πR2=4=.故选:A.11.(5分)已知函数f(x)=ln+,g(x)=ex﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣3【解答】解:不妨设g(m)=f(n)=t,∴em﹣2=ln+=t,(t>0)∴m﹣2=lnt,m=2+lnt,n=2•e故n﹣m=2•e﹣2﹣lnt,(t>0)令h(t)=2•e﹣2﹣lnt,(t>0),h′(t)=2•e﹣,易知h′(t)在(0,+∞)上是增函数,且h′()=0,当t>时,h′(t)>0,当0<t<时,h′(t)<0,即当t=时,h(t)取得极小值同时也是最小值,此时h()=2•e﹣2﹣ln=2﹣2+ln2=ln2,即n﹣m的最小值为ln2;故选:B12.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.【解答】解:双曲线的c2=a2+b2,e=,双曲线的渐近线方程为y=±x,与圆x2+y2=c2联立,解得M(a,b),与双曲线(a>0,b>0)联立,解得,∵直线MF1与直线ON平行时,即有,即(a+c)2(c2﹣a2)=a2(2c2﹣a2),即有c3+2ac2﹣2a2c﹣2a3=0,∴e3+2e2﹣2e﹣2=0,即e2+2e﹣=2,∴f(e)=e2+2e﹣=2,故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a=2.【解答】解:抛物线的标准方程:y2=ax,焦点坐标为(,0),准线方程为x=﹣,由抛物线的焦半径公式|PF|=x0+=+=2,解得:a=2,故答案为:2.14.(5分)已知递减等差数列{an}中,a3=﹣1,a4为a1,﹣a6等比中项,若Sn为数列{an}的前n项和,则S7的值为﹣14.【解答】解:设递减等差数列{an}的公差d<0,a3=﹣1,a4为a1,﹣a6等比中项,∴a1+2d=﹣1,=﹣a6×a1,即=﹣(a1+5d)×a1,联立解得:a1=1,d=﹣1.则S7=7﹣=﹣14.故答案为:﹣14.15.(5分)Rt△ABC中,P是斜边BC上一点,且满足:,点M,N在过点P的直线上,若则λ+2μ的最小值为.【解答】解:=+==+=+=,∵三点M,P,N三点共线,∴.∴λ+2μ=(λ+2μ)()=.故答案为:16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.【解答】解:对任意x1,x2∈(0,+∞),不等式≤恒成立,则等价为≤恒成立,f(x)==x+≥2=2,当且仅当x=,即x=1时取等号,即f(x)的最小值是2,由g(x)=,则g′(x)==,由g′(x)>0得0<x<1,此时函数g(x)为增函数,由g′(x)<0得x>1,此时函数g(x)为减函数,即当x=1时,g(x)取得极大值同时也是最大值g(1)=,则的最大值为=,则由≥,得2ek≥k+1,即k(2e﹣1)≥1,则,故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.【解答】解:(1)△ABC中,∵2cosC(acosC+ccosA)+b=0,由正弦定理可得2cosC(sinAcosC+sinCcosA)+sinB=0,∴2cosCsin(A+C)+sinB=0,即2cosCsinB+sinB=0,又0°<B<180°,∴sinB≠0,∴,即C=120°.(2)由余弦定理可得,又a>0,a=2,∴,∴△ABC的面积为.18.(12分)如图,四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明直线MN∥平面PAB;(II)求四面体N﹣BCM的体积.【解答】证明:(Ⅰ)∵四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.∴AM=,取BP的中点T,连结AT,TN,∴由N为PC的中点知TN∥BC,TN=BC=2,又AD∥BC,∴TN AM,∴四边形AMNT是平行四边形,∴MN∥AT,又AT⊂平面PAB,MN⊄平面PAB,∴MNⅡ平面PAB.解:(Ⅱ)∵PA⊥平面ABCD,N为PC的中点,∴N到平面ABCD的距离为=2,取BC的中点E,连结AE,由AB=AC=3,得AE⊥BC,AE==,由AM∥BC,得M到BC的距离为,∴S△BCM==2,∴四面体N﹣BCM的体积:==.19.(12分)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km/h),现将其分成六组为[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(Ⅰ)某小型轿车途经该路段,其速度在70km/h以上的概率是多少?(Ⅱ)若对车速在[60,65),[65,70)两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[60,65)内的概率.【解答】解:(Ⅰ)根据频率分布直方图,计算速度在70km/h以上的频率为1﹣(0.010+0.020)×5=0.85,估计速度在70km/h以上的概率是0.85;(Ⅱ)这40辆车中,车速在[60,70)的共有5×(0.01+0.02)×40=6辆,其中在[65,70)的有5×0.02×40=4辆,记为A,B,C,D,在[60,65)的有5×0.01×40=2辆,记为a,b;从车速在[60,70)的这6辆汽车中任意抽取2辆,可能结果是AB、AC、AD、Aa、Ab、BC、BD、Ba、Bb、CD、Ca、Cb、Da、Db、ab有15种不同的结果,其中抽出的2辆车车速至少有一辆在[60,65)内的结果是Aa、Ab、Ba、Bb、Ca、Cb、Da、Db、ab有9种;故所求的概率为P==.20.(12分)已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足.(1)求出动点P的轨迹对应曲线C的标准方程;(2)直线l:x=ty+1与曲线C交于A、B两点,E(﹣1,0),试问:当t变化时,是否存在一直线l,使△ABE得面积为?若存在,求出直线l的方程;若不存在,说明理由.【解答】解:(1)根据题意,因为.即,所以,所以,又因为|AB|=1所以即即所以椭圆的标准方程为(2)由方程组得(3t2+4)y2+6ty﹣9=0(*)设A(x1,y1),B(x2,y2),则所以因为直线x=ty+1过点F(1,0)所以△ABE的面积令则不成立,不存在直线l满足题意.21.(12分)已知函数f(x)=kex﹣x2(其中k∈R,e是自然对数的底数)(1)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(2)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明:0<f(x1)<1.【解答】解:(1)当k=2时,f(x)=2ex﹣x2,则f'(x)=2ex﹣2x,令h(x)=2ex﹣2x,h'(x)=2ex﹣2,由于x∈(0,+∞)故h'(x)=2ex﹣2>0,于是h(x)=2ex﹣2x在(0,+∞)为增函数,所以h(x)=2ex﹣2x>h(0)=2>0,即f'(x)=2ex﹣2x>0在(0,+∞)恒成立,从而f(x)=2ex﹣x2在(0,+∞)为增函数,故f(x)=2ex﹣x2>f(0)=2.(2)函数f(x)有两个极值点x1,x2,则x1,x2是f'(x)=kex﹣2x=0的两个根,即方程有两个根,设,则,当x<0时,φ'(x)>0,函数φ(x)单调递增且φ(x)<0;当0<x<1时,φ'(x)>0,函数φ(x)单调递增且φ(x)>0;当x>1时,φ'(x)<0,函数φ(x)单调递增且φ(x)>0;要使方程有两个根,只需,如图所示故实数k的取值范围是.又由上可知函数f(x)的两个极值点x1,x2满足0<x1<1<x2,由得,∴由于x1∈(0,1),故,所以0<f(x1)<1.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||。
2018届四川省成都市高三第一次高考模拟理科数学试题(解析版)
![2018届四川省成都市高三第一次高考模拟理科数学试题(解析版)](https://img.taocdn.com/s3/m/5aa32eda856a561252d36fb2.png)
绝密★启用前四川省成都市2018届高三第一次高考模拟考试数学(理科)试题(解析版)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则=( )A. B. C. D.【答案】A【解析】分析:求出集合 ,即可得到.详解:,选A.点睛:本题考查集合的交集运算,属基础题.2.在等差数列中,若,则的值为()A. 75B. 50C. 40D. 30【答案】D【解析】分析:根据等差数列的性质可得,可求的值.详解:由差数列的性质可得,故,故.故选D.点睛:本题考查等差数列的性质,属基础题.3.设有下面四个命题:若满足,则;:若虚数是方程的根,则也是方程的根::已知复数则的充要条件是:;若复数,则.其中真命题的个数为( )A. 1B. 2C. 3D. 4【答案】C【解析】分析:根据复数的基本概念和复数的几何特征,逐一分析,即可得到答案.详解:对于中若,设,则,所以是正确的;对于中,若虚数是方程的根,则也一定是方程的一个根,所以是正确的;对于中,例如则,此时,所以不正确;对于中,若,则必为实数,所以是正确的,综上正确命题的个数为三个,故选C.点睛:本题主要考查了复数的基本概念,其中熟记复数的基本概念和几何特征是解答的关键,着重考查了分析问题和解答问题的能力.4.已知偶函数在单调递增,若,则满足的的取值范围是()A. B.C. D.【答案】B【解析】分析:由题意结合函数的性质脱去符号,求解绝对值不等式即可求得最终结果.详解:由题偶函数在单调递增,若,则,即解得或.故选B.点睛:本题考查函数的奇偶性,函数的单调性等,重点考查学生对基础概念的理解和计算能力,属于中档题.5.展开式中的系数为( )A. 15B. 20C. 30D. 35【答案】A。
初2018届成都市高新区中考数学九年级一诊数学试卷(含答案)
![初2018届成都市高新区中考数学九年级一诊数学试卷(含答案)](https://img.taocdn.com/s3/m/a3531e86b14e852458fb57d6.png)
初2018届成都市高新区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列各数与﹣8 相等的是()A.|﹣8| B.﹣|﹣8| C.﹣42D.﹣(﹣8)2.2017年成都市经济呈现活力增强、稳中向好的发展态势.截止2017年12月,全市实现地区生产总值约14000亿元,将14000亿元用科学记数法表示是()A.14×1011元B.1.4×1011元C.1.4×1012元D.1.4×1013元3.如图是由五个大小相同的正方体组成的几何体,从左面看这个几何体,看到的图形的()A.B.C.D.4.下列计算正确的是()A.a3•a2=a6B.a3﹣a2=a C.(﹣a3)2=a6D.a6÷a2=a35.在下列四个标志中,既是中心对称又是轴对称图形的是()A.B.C.D.6.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30°B.40°C.50°D.60°7.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.1 9.1 9.1 9.1方差7.6 8.6 9.6 9.7根据表中数据,要从中选择一名成绩发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁8.如图,四边形 ABCD 和A′B′C′D′是以点 O 为位似中心的位似图形,若 OA′:A′A=2:1,四边形A′B′C′D′的面积为12cm2,则四边形 ABCD 的面积为()A.24cm2B.27cm2C.36cm2D.54cm29.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A.a<0 B.c<0 C.a+b+c<0 D.b2﹣4ac<010.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2D.3二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.在二次根式中,x的取值范围是.12.用反证法证明“若a>b>0,则a2>b2”,应假设.13.将抛物线y=x2+2x+3向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为.14.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:(2)解不等式组:16.(6分)关于x的方程x2﹣ax+a+1=0有两个相等的实数根,求的值.17.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有人,补全条形统计图;(2)D类学生人数占被调查总人数的%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.18.(8分)如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>的x的取值范围;(3)若点P在x轴上,且S△ACP=,求点P的坐标.20.(10分)如图,AB为⊙O的直径,C为⊙O上一点,作CD⊥AB,垂足为D,E为弧BC的中点,连接AE、BE,AE交CD于点F.(1)求证:∠AEC=90°﹣2∠BAE;(2)过点E作⊙O的切线,交DC的延长线于G,求证:EG=FG;(3)在(2)的条件下,若BE=4,CF=6,求⊙O的半径.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为.22.有9张卡片,分别写有0﹣8这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为m,能使关于x的分式方程的解为正数的概率为.23.如图,花园边墙上有一宽为1m的矩形门ABCD,量得门框对角线AC的长为2m,现准备打掉部分墙体,使其变成以AC为直径的圆弧形门,则打掉墙体后,弧形门洞的周长(含线段BC)为.24.如图,点A是反比例函数y=的图象上位于第一象限的点,点B在x轴的正半轴上,过点B作BC⊥x 轴,与线段OA的延长线交于点C,与反比例函数的图象交于点D.若直线 AD恰为线段 OC 的中垂线,则sinC=.25.如图,在△ABC中,∠C=60°,点D、E分别为边BC、AC上的点,连接DE,过点E作EF∥BC交AB于F,若BC=CE,CD=6,AE=8,∠EDB=2∠A,则BC=.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.27.(10分)【问题背景】在平行四边形ABCD中,∠BAD=120°,AD=nAB,现将一块含60°的直角三角板(如图)放置在平行四边形ABCD所在平面内旋转,其60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB、AD于点E、F(不包括线段的端点).【发现】如图1,当n=1时,易证得AE+AF=AC;【类比】如图2,过点C作CH⊥AD于点H,(1)当n=2时,求证:AE=2FH;(2)当n=3时,试探究AE+3AF与AC之间的等量关系式;【延伸】将60°角的顶点移动到平行四边形ABCD对角线AC上的任意点Q,其余条件均不变,试探究:AE、AF、AQ 之间的等量关系式(请直接写出结论).28.(12分)如图1,平面直角坐标系中,抛物线y=ax2﹣4ax+c与直线y=kx+1(k≠0)交于y轴上一点A 和第一象限内一点B,该抛物线顶点H的纵坐标为5.(1)求抛物线的解析式;(2)连接AH、BH,抛物线的对称轴与直线y=kx+1(k≠0)交于点K,若S△AHB=,求k的值;(3)在(2)的条件下,点P是直线AB上方的抛物线上的一动点(如图2),连接PA.当∠PAB=45°时,ⅰ)求点P的坐标;ⅱ)已知点M在抛物线上,点N在x轴上,当四边形PBMN为平行四边形时,请求出点M的坐标.参考答案与试题解析1.【解答】解:A.|﹣8|=8,与﹣8不相等,故此选项不符合题意;B.﹣|﹣8|=﹣8,与﹣8相等,故此选项符合题意;C.﹣42=﹣16,与﹣8不相等,故此选项不符合题意;D.﹣(﹣8)=8,与﹣8不相等,故此选项不符合题意;故选:B.2.【解答】解:14000亿元用科学记数法表示是1.4×1012元,故选:C.3.【解答】解:由图可得,从左面看几何体有2列,第一列有2块,第二列有1块,∴该几何体的左视图是:故选:D.4.【解答】解:A、a3•a2=a5,故此选项错误;B、a3﹣a2,无法计算,故此选项错误;C、(﹣a3)2=a6,正确;D、a6÷a2=a4,故此选项错误;故选:C.5.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.6.【解答】解:如图,由三角形的外角性质可得:∠3=30°+∠1=30°+30°=60°,∵AB∥CD,∴∠2=∠3=60°.故选:D.7.【解答】解:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选:D.8.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA′:A′A=2:1,∴OA′:OA=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:9:4,∵四边形A′B′C′D′的面积为12cm2,∴四边形 ABCD 的面积为:27cm2.故选:B.9.【解答】解:∵抛物线开口向上,∴a>0,故A错误;∵抛物线与y轴交于负半轴,∴c<0,故B正确;由图象可得:当x=1时,y>0,故C错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故D错误;故选:B.10.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB==2,故选:C.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:由题意可知:4﹣2x≥0,∴x≤2故答案为:x≤212.【解答】解:用反证法证明“若a>b>0,则a2>b2”的第一步是假设a2≤b2,故答案为:a2≤b2,13.【解答】解:y=x2+2x+3=(x+1)2+2,此抛物线的顶点坐标为(﹣1,2),把点(﹣1,2)向下平移3个单位长度,再向左平移2个单位长度后所得对应点的坐标为(﹣3,﹣1),所以平移后得到的抛物线的解析式为y=(x+3)2﹣1.故答案为:y=(x+3)2﹣1.14.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2+2×+﹣1﹣1=2++﹣1﹣1=2;(2)由不等式①得x≤8.由不等式②得x>﹣1;∴不等式组的解集为﹣1<x≤8.16.【解答】解:=×=×=﹣,∵关于x的方程x2﹣ax+a+1=0有两个相等的实数根,∴△=0,即(﹣a)2﹣4(a+1)=0,∴a2﹣4a=4,∴原式=﹣=﹣.17.【解答】解:(1)E类学生有50﹣(2+3+22+18)=5(人),补全图形如下:故答案为:5;(2)D类学生人数占被调查总人数的×100%=36%,故答案为:36;(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人做义工时间都在2<t≤4中的有AB、AC、BC这3种结果,∴这2人做义工时间都在2<t≤4中的概率为.18.【解答】解:过点C作CH⊥AB于点H,过点E作EF垂直于AB延长线于点F,设CH=x,则AH=CH=x,BH=CHcot68°=0.4x,由AB=49知x+0.4x=49,解得:x=35,∵BE=4,∴EF=BEsin68°=3.72,则点E到地面的距离为CH+CD+EF=35+28+3.72≈66.7(cm),答:点E到地面的距离约为66.7cm.19.【解答】解:(1)将A(m,3)代入反比例解析式得:m=2,则A(2,3),将B(﹣6,n)代入反比例解析式得:n=﹣1,则B(﹣6,﹣1),将A与B的坐标代入y=kx+b得:,解得:,则一次函数解析式为y=x+2;(2)由图象得:x+2>的x的取值范围是:﹣6<x<0或x>2;(3)∵y=x+2中,y=0时,x+2=0,解得x=﹣4,则C(﹣4,0),OC=4∴△BOC的面积=×4×1=2,∴S△ACP==×2=3.∵S△ACP=CP×3=CP,∴CP=3,∴CP=2,∵C(﹣4,0),∴点P的坐标为(﹣2,0)或(﹣6,0).20.【解答】证明:(1)连接AC、BC,∴∠CEA=∠CBA,∵E为的中点,∴=,∴∠CAE=∠BAE,∴∠CAB=2∠BAE,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∴2∠BAE+∠AEC=90°,∴∠AEC=90°﹣2∠BAE;(2)连接EO,∵OA=OE,∴∠OEA=∠OAE,设∠OEA=∠OAE=α,∵EG为切线,∴OE⊥EG,∴∠OEG=90°,∴∠GEA=90°﹣∠AEO=90°﹣α,∵DG⊥AB,∴∠FDA=90°,∴∠FAD+∠AFD=90°,∴∠AFD=90°﹣α=∠GFE,∴∠GFE=∠GEF=90°﹣α,∴GE=GF;(3)如图3,连接CE、CB、OE、OC,CB与AE交于点N,CB与OE交于点M,∵E为的中点,∴∠COM=∠BOM,∵OC=OB,∴OM⊥BC,∴∠OMB=90°,由(2)得∠GEM=90°,∴CM∥EG,∴∠GEF=∠CNF,∵∠GFE=∠GEF,∴∠CFE=∠CNF,∴CF=CN=6,设MN=x,则CM=BM=6+x,cos∠EBM=,∴=,解得:x1=2,x2=﹣11(舍),MB=6+x=6+2=8,由勾股定理得:ME===4,在△OBM中,设OM=m,则OE=OB=m+4,OM2+MB2=OB2,即m2+82=(m+4)2,∴OM=m=6,∴OE=OB=6+4=10.则⊙O的半径为10.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵3<+<4,∴[+]的值为3.故答案为:3.22.【解答】解:解方程得x=m﹣2,因为方程的解为正数,所以m﹣2>0,且m﹣2≠1,解得:m>2且m≠3,则在0﹣8这九个数字中符合条件的有5个,所以使关于x的分式方程的解为正数的概率为,故答案为:.23.【解答】解:设矩形外接圆的圆心为O,连接OB,∵矩形ABCD的AC=2m,BC=1m,∴OB=OC=BC=1m,∴△OBC是等边三角形,∴∠BOC=60°.∴弧形门洞的周长(含线段BC)为:+1=+1,故答案为:(+1)m.24.【解答】解:如图,连接OD,∵AD垂直平分OC,∴CD=OD,设A(a,b),则C(2a,2b),∴BC=2b,OB=2a,∴D(2a,b),∴BD=b,CD=b,∴OD=b,∵Rt△BOD中,BD2+OB2=OD2,∴(b)2+(2a)2=(b)2,∴b2=2a2,又∵Rt△BOC中,OC==2,∴sinC====.故答案为:.25.【解答】解:连接BE,在EC上截取EH=CD=6,作DM⊥EC于M.∵CB=CE,∠C=60°,∴△BCE是等边三角形,∴BE=EC,∠BEH=∠C=60°,∵EH=CD,∴△BEH≌△ECD,∴∠EHB=∠EDC,BH=ED∴∠BHC=∠BDE,∵∠BHC=∠A+∠ABH,∠EDB=2∠A,∴∠A=∠ABH,∴AH=BH=8+6=14,∴DE=BH=14,在Rt△DCM中,∵CD=6,∠CDM=30°,∴CM=3,DM=3,在Rt△DEM中,EM==13,∴EC=3+13=16,∴BC=EC=16,故答案为16.26.【解答】解:(1)∵接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1≤x≤10);(2)当1≤x≤5时,W=(2920﹣2000)×(40+2x)=1840x+36800,∵1840>0,∴W随x的增大而增大,∴当x=5时,W最大值=1840×5+36800=46000;当5<x≤10时,W=[2920﹣2000﹣20(40+2x﹣50)]×(40+2x)=﹣80(x﹣4)2+46080,此时函数图象开口向下,在对称轴右侧,W随着x的增大而减小,又天数x为整数,∴当x=6时,W最大值=45760元.∵46000>45760,∴当x=5时,W最大,且W最大值=46000元.综上所述:W=.27.【解答】解:【发现】:如图1,当n=1时,AD=AB,∴▱ABCD是菱形,∴AB=BC,∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∴△ABC、△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∵,∴△BCE≌△ACF(ASA),∴BE=AF,∴AE+AF=AE+BE=AB=AC;【类比】:(1)如图2,当n=2时,AD=2AB,设DH=x,由题意得:CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,由勾股定理得:AC===2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴,∵AC=2CH,∴AE=2FH;(2)如图3,当n=3时,AD=3AB,过C作CN⊥AD于N,过C作CM⊥AB于M,交AD于H,∴∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴,∵S▱ABCD=AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴,∵EM=3FN,设CN=a,FN=b,则CM=3a,EM=3b,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHD=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC===a,∴AE+3AF=(EM﹣AM)+3(AH+HN﹣FN),=EM﹣AM+3AH+3HN﹣3FN,=3AH+3HN﹣AM,=3×a+3a﹣a,=a,∴==;【延伸】如图4,AD=nAB,过Q作QG∥AD,作QH∥AB,则四边形AGQH是平行四边形,且AH=nAG,过C作CN⊥AD于N,过C作CM⊥AB于M,交AD于P,同理可得:△QFN∽△QEM,∴=,∵S▱AGQH=AG•QM=AH•QN,AH=nAG,∴QM=nQN,∴=,∵EM=nFN,设QN=a,FN=b,则QM=na,EM=nb,∵∠MAH=60°,∠M=90°,∴∠APM=∠QPD=30°,∴PQ=2a,PM=na﹣2a,PN=a,∴AM=(na﹣2a),AP=2AM,∴AQ===,∴AE+nAF=(EM﹣AM)+n(AP+PN﹣FN),=EM﹣AM+nAP+nPN﹣nFN,=nAP+nPN﹣AM,=2n•(na﹣2a)+an﹣(na﹣2a),=a(n2﹣n+1),∴==.28.【解答】解:(1)∵抛物线y=ax2﹣4ax+c与直线y=kx+1交于y轴上一点A ∴A(0,1),即c=1∵抛物线y=ax2﹣4ax+c=a(x﹣2)2﹣4a+c∴顶点坐标为(2,c﹣4a)∴c﹣4a=5∴a=﹣1∴抛物线解析式y=﹣x2+4x+1=﹣(x﹣2)2+5(2)∵抛物线与直线相交∴kx+1=﹣x2+4x+1∴x1=0,x2=4﹣k∴B点横坐标为4﹣k∵点B在第一象限∴4﹣k>0即k<4∵S△AHB=HK×(4﹣k)=∴(5﹣2k﹣1)×(4﹣k)=解得:k1=,k2=(不合题意舍去)(3)ⅰ)如图:将AB绕B点顺时针旋转90°到BC位置,过B点作BD⊥x轴,过点C点作CD⊥BD于D,过A点作AE⊥BD于E∵k=,∴B(,)∵A(0,1),B(,)∴AE=,BE=∵旋转∴BC=AB,∠ABC=90°∴∠CAB=45°,∠CBD+∠ABE=90°且∠CBD+∠DCB=90°∴∠ABE=∠DCB且AB=BC,∠D=∠AEB=90°∴△ABE≌△BCD∴AE=BD=,BE=CD=∴C(,)设AC解析式y=bx+1∴=b+1∴b=3∴AC解析式y=3x+1∵P是直线AC与抛物线的交点∴3x+1=﹣x2+4x+1∴x1=0,x2=1∴P(1,4)ⅱ)如图2:设PM与BN的交点为H∵四边形PBMN为平行四边形∴PH=NH,BH=MH∵设点M坐标为(x,y)∴=∴y=﹣∴﹣=﹣(x﹣2)2+5解得:x1=﹣,x2=∴点M坐标为(﹣,﹣),(,﹣)。
2018年四川省成都市高考数学一诊试卷(理科)(附解析)
![2018年四川省成都市高考数学一诊试卷(理科)(附解析)](https://img.taocdn.com/s3/m/a46a018df18583d0496459ff.png)
2018年成都市高2016届高三第一次诊断考试数学试题(理科)第I卷(选择题,共50 分) 、选择题:本大题共10小题,每小题5分, 共50分•在每小题给出的四个选项中 ,只有一项是符合题目要求的 1.已知集合A {x Z|(x 1)(x 2) 0},B {x| 2 x 2},则 AI B (A) {x| 1 x 2} (B ) { 1,0,1}(C ) {0,1,2} (D ){ 1,1}2.在 ABC 中,“A (A )充分不必要条件(B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 侧视图3.如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去 (B ) 2:1 (C ) 1:1(D ) 1:24.设 a (7) 14,b 9 -(9)5 ,c log 2T,则a , b , c 的大小顺序是 9 7 9(A ) b a c(B)c a b (C)c b a(D)b c a 5 .已 知m,n 为空间中两条不 同的直线 ,为空间中两个不同的 平面, 下列命题中正确的勺是(A ) 若m 〃 ,m 〃,则 //(B ) 若m ,m n ,则 n//(C ) 若m 〃,m //n ,则n //(D ) 若m ,m// ,则 部分的体积之比为 (A ) 3:1 6.执行如图所示程序框图,若使输出的结果不大于 50,则输入的整开始(A ) 4(B ) 5(C )6(D) 7UUU7 .已知菱 形 ABC D 边长为2B — ,点P 满足AP3UUUT UUUBD CP3 , 则 的值为(A ) 1(B )122(C )-(D )1332 2&过双曲线x a y1(a 0,b 0) 的 1勺页点 A 作斜率为1的直线UU 1 uuu条渐近线的点分别为 B,C 若AB 1 BC ,则 此双曲线的离心率为 2 (A ) ,10 (B ) 5(C ) ■ 3 (D )x y 4 0数k 的最大值为 D •若指数函数y 0表示的平面区域为 9 .设不等式组x ujur AB ,,该直线与双曲线两.2 图象经过区域 10 .如果数列 a x (a 0且 a 1)的 y D 上的点 ,则a 的取值范围是 1 (C ) (0, —] 3 { a n }中任意连续三项奇数项与连续三项偶数项均能构成一个三角形的边长—並三角形”数列;对于亚三角形”数列{a n }—如果函数y f(x)使得 (B)[3,) (D )I )则称{a n }为f (a n )仍为一个 並三角形”数列,则称y f(x)是数列{a n }的一个 保亚三角形函数 (n N *).记数列{C n }的前 n 项和为 S n , q 2016,且 5S n 1 4S n 10080 ,若 g(x) lg x 是数列{C n }的保亚三角形函数”,则{C n }的项数n 的最大值为 (参考数据:lg 2 0.301 , lg 2016 3.304 ) (A ) 33 ( B ) 34 (C ) 35 b n (D)36 第U 卷(非选择题,共100分)17 .(本小题满分12分)某类题库中有9道题,其中5道甲类题,每题10分,4道乙 类题,每题5分.现从中任意选取三道题组成问卷 ,记随机变量 X 为此问卷的总分.(I)求X 的分布列;(n)求X 的数学期望E(X).二、填空题:本大题共5小题,每小题 5分,共25分.11 .设复数z 满足 iz (3 2i)(1 i)(其 i 为虚数单位),则12(匸2)7的展开式中 ,X 2的系 13 .甲、乙两人在 5次综合测评中成绩的茎叶图如图所 示,其中一个数字被污损 ,记甲,乙的平均成绩分别为 是・ 甲乙 47 5 8 7 6 9 •9241x甲,x 乙,则 X 甲 x 乙的概率14 .如图,某房地产公司要在一块矩形宽阔地面上开发物业,阴影部分是不能开发的古4 2建筑群,且要求用在一条直线上的栏栅进行隔离 ,古建筑群的边界为曲线 y 1 -x 2的一 3部分,栏栅与矩形区域边界交于点M , N .则 MON 面积的最小值 为 __________________ . 15 .已知函数f (x) lOg 2(2 2 X ),0 X k.若存在k 使得函数f(x)的值域为[1,1], x 3 3x 2 3,k x a 则实数a 的取值范围是 ___________________ 三、解答题:本大题共6小题,共75分•解答应写出文字说明、证明过程或演算步骤 16 .(本小题满分12分) 已知等比数列{a n }的公比q 1,且2(a n a n 2) 5a . 1 .(I)求q 的值;求数列的前n 项和S n .18 .(本小题满分12分)f (x) mgn .(I)求函数f (x)取得最大值时x 取值的集合;31 (n)设A , B , C 为锐角三角形 ABC 的三个内角 若cosB , f (C) ,求54sin A 的值.19 .(本小题满分12分)如图,菱形ABCD 与正三角形BCE 的边长均为2,它们所在平面互相垂直,FD 平面 ABCD ,且 FD .3 .(I)求证:EF// 平面 ABCD ;(n)若 CBA 60 ,求二面角A FB E 的余弦值.20 .(本小题满分13分)2 2已知椭圆E:— 1的左右顶点分别为 A , B ,点P 为椭圆上异于 代B 的任意一3 2占八、、-(I)求直线PA 与PB 的斜率之积;(n)设Q(t,0)(t 、、3),过点Q 作与x 轴不重合的任意直线交椭圆 E 于M , N 两 点.则是否存在实数t ,使得以MN 为直径的圆恒过点 A ?若存在,求出t 的值;若不存 在,请说明理由.已知向量m(cos2x,in x2cos x) , n2(冷sin xgcosx),设函数21 .(本小题满分14分)1 2 已知函数f(x) ax2(1 a)x In x(a R).2(i)当a 0时,求函数f(x)的单调递减区间;1 (n)当a 0时,设函数g(x) xf (x).若存在区间[m,n][,),使得函数g (x)在[m,n]上的值域为[k(m 2) 2,k(n 2) 2],求实数k的取值范围数学(理科)参考答案及评分意见第I 卷(选择题,共50分)、选择题:(本大题共10小题,每小题5分,共50分) 1.B ;2.B ;3.C ;4.C ;5.D ;6.A ;7.A ;8.B ;9.D ; 10.A.第II 卷(非选择题,共100分)•••X 的分布列为填空题: (本大题共5小题,每小题5分,共25分) 211.1 5i ;12. 280 ;13.;52 _ 14. ;15.[2,1 、3].316.解:(I) Q 2(a n a n 2) 5a n 1, 由题意 ,得a n0 ,2q 2 5q2 0q2或丄2Q q 1, q2.(n 2)Qasa 。
(22套)2018年四川全省 含所有市 高考一模试卷汇总 (2)
![(22套)2018年四川全省 含所有市 高考一模试卷汇总 (2)](https://img.taocdn.com/s3/m/f7ce31fb240c844769eaeed6.png)
(22套)2018年四川全省含所有市高考一模一诊试卷汇总2018年四川省成都七中高考数学一诊试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>22.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣23.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.156.(5分)在区间[1,5]随机地取一个数m,则方程m2x2+4y2=1表示焦点在y 轴上的椭圆的概率是()A.B.C.D.7.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.18.(5分)已知S为执行如图所示的程序框图输出的结果,则二项式(S﹣)6的展开式中常数项的系数是()A.﹣20 B.20 C.﹣D.609.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A.B.﹣ C.﹣1 D.110.(5分)已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣311.(5分)在直角坐标平面xOy上的一列点A1(1,a1),A2(2,a2),…,A n(2,a n),…,简记为{A n}若由构成的数列{b n}满足b n+1>b n,n=1,2,…,其中为方向与y轴正方向相同的单位向量,则称{A n}为T点列.有下列说法①,为T点列;②若{A n}为T点列,且点A2在点A1的右上方.任取其中连续三点A k、A k+1、A k+2,则△A k A k+1A k+2可以为锐角三角形;③若{A n}为T点列,正整数若1≤m<n<p<q,满足m+q=n+p,则a q﹣a p≥(q ﹣p)b p;④若{A n}为T点列,正整数若1≤m<n<p<q,满足m+q=n+p,则.其中,正确说法的个数为()A.1 B.2 C.3 D.412.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a=.14.(5分)已知递减等差数列{a n}中,a3=﹣1,a4为a1,﹣a6等比中项,若S n 为数列{a n}的前n项和,则S7的值为.15.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,二面角S﹣AC ﹣B的余弦值是﹣,则该四面体的外接球的表面积是.16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.18.(12分)在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB 的中点,AC∩EF=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图的五棱锥,且.(1)求证:BD⊥平面POA;(2)求二面角B﹣AP﹣O的余弦值.19.(12分)“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:(1)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?附:,(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有X人,超过10000步的有Y人,设ξ=|X﹣Y|,求ξ的分布列及数学期望.20.(12分)已知点C为圆(x+1)2+y2=8的圆心,P是圆上的动点,点Q在圆的半径CP上,且有点A(1,0)和AP上的点M,满足•=0,=2.(Ⅰ)当点P在圆上运动时,求点Q的轨迹方程;(Ⅱ)若斜率为k的直线l与圆x2+y2=1相切,直线l与(Ⅰ)中所求点Q的轨迹交于不同的两点F,H,O是坐标原点,且≤•≤时,求k的取值范围.21.(12分)已知函数f(x)=ae x+x2﹣bx(a,b∈R,e=2.71828…是自然对数底数),其导函数为y=f'(x).(1)设b=0,若函数y=f(x)在R上有且只有一个零点,求a的取值范围;(2)设b=2,且a≠0,点(m,n)(m,n∈R)是曲线y=f(x)上的一个定点,是否存在实数x0(x0≠m),使得成立?证明你的结论.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.2018年四川省成都七中高考数学一诊试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>2【解答】解:由题意,集合A={x|x<a},B={x|x2﹣3x+2<0}={x|1<x<2},∵A∩B=B,∴B⊆A,则:a≥2.∴实数a的取值范围[2,+∞).故选C.2.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣2【解答】解:∵复数z===1﹣2i,故此复数的虚部为﹣2,故选D.3.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件【解答】解:由“直线m∥平面α”,可得“直线m与平面α内无数条直线平行”,反之不成立.∴“直线m与平面α内无数条直线平行”是“直线m∥平面α”的必要不充分条件.故选:C.4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.【解答】解:由约束条件作出可行域如图,联立,得A(1,﹣1),联立,得B(1,3).由=,而.∴目标函数的取值范围是[,].故选:D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.15【解答】解:由题意类推,可知六十四卦中的“屯”卦符合“”表示二进制数的010001,转化为十进制数的计算为1×20+0×21+0×22+0×23+1×24+0×25=17.故选:B.6.(5分)在区间[1,5]随机地取一个数m,则方程m2x2+4y2=1表示焦点在y 轴上的椭圆的概率是()A.B.C.D.【解答】解:若方程m2x2+4y2=1表示焦点在y轴上的椭圆,则m2>4,解得:m>2,故满足条件的概率是p==,故选:D.7.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.1【解答】解:∵已知===,求得m=﹣6,或m=1,故选:A.8.(5分)已知S为执行如图所示的程序框图输出的结果,则二项式(S﹣)6的展开式中常数项的系数是()A.﹣20 B.20 C.﹣D.60【解答】解:模拟程序框图的运行过程,如下:i=0,s=1,i=1,i<4,是,s==﹣1;i=2,2<4,是,s==3;i=3,3<4,是,s==;i=4,4<4,否,退出循环,输出s的值为.∴二项式(﹣)6的展开式中的通项是T r+1=•()6﹣r•(﹣)r=(﹣1)r••()6﹣2r•x3﹣r;令3﹣r=0,得r=3;∴常数项是T4=(﹣1)3••()0=﹣20.故选:A.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A.B.﹣ C.﹣1 D.1【解答】解:∵y=f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),∵函数y=f(x+1)是定义在R上的偶函数,∴f(﹣x+1)=f(x+1)=﹣f(x﹣1),f(x+2)=﹣f(x),可得f(x+4)=﹣f(x+2)=f(x).则f(x)的周期是4,∴f()=f(4×4﹣)=f(﹣)=﹣f()=﹣[]=﹣1,故选C.10.(5分)已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣3【解答】解:不妨设g(m)=f(n)=t,∴e m﹣2=ln+=t,(t>0)∴m﹣2=lnt,m=2+lnt,n=2•e故n﹣m=2•e﹣2﹣lnt,(t>0)令h(t)=2•e﹣2﹣lnt,(t>0),h′(t)=2•e﹣,易知h′(t)在(0,+∞)上是增函数,且h′()=0,当t>时,h′(t)>0,当0<t<时,h′(t)<0,即当t=时,h(t)取得极小值同时也是最小值,此时h()=2•e﹣2﹣ln=2﹣2+ln2=ln2,即n﹣m的最小值为ln2;故选:B11.(5分)在直角坐标平面xOy上的一列点A1(1,a1),A2(2,a2),…,A n(2,a n),…,简记为{A n}若由构成的数列{b n}满足b n+1>b n,n=1,2,…,其中为方向与y轴正方向相同的单位向量,则称{A n}为T点列.有下列说法①,为T点列;②若{A n}为T点列,且点A2在点A1的右上方.任取其中连续三点A k、A k+1、A k+2,则△A k A k+1A k+2可以为锐角三角形;③若{A n}为T点列,正整数若1≤m<n<p<q,满足m+q=n+p,则a q﹣a p≥(q ﹣p)b p;④若{A n}为T点列,正整数若1≤m<n<p<q,满足m+q=n+p,则.其中,正确说法的个数为()A.1 B.2 C.3 D.4【解答】解:在①中,由题意可知,∴=﹣,∴b n+1>b n,∴{A n}是T点列,故①正确;在②中,在△A k A k+1A k+2中,=(﹣1,a k﹣a k+1),=(1,a k+2﹣a k+1),•=﹣1+(a k+2﹣a k+1)(a k﹣a k+1),∵点A2在点A1的右上方,∴b1=a2﹣a1>0,∵{A n}为T点列,∴b n≥b1>0,∴(a k+2﹣a k+1)(a k﹣a k+1)=﹣b k+1b k<0,∴•<0,∴∠A k A k+1A k+2为钝角,∴△A k A k+1A k+2为钝角三角形,故②错误;在③中,A n(n,a n),A n+1(n+1,a n+1),∴=(1,a n+1﹣a n).又∵=(0,1),∴b n=a n+1﹣a n.∵1≤m,且m+q=n+p.∴q﹣p=n﹣m>0.∴a q﹣q p=a q﹣q q﹣1+a q﹣1﹣a q﹣2+…+a p+1﹣a p=b q﹣1+b q﹣2+…+b p.∵{A n}为T点列,∴b n+1>b n.∴b q﹣1+b q﹣2+…+b m=(q﹣p)b p.即a q﹣a p≥(q﹣p)b p.故③正确;在④中,∵1≤m<n<p<q,m+q=n+p,∴q﹣p=n﹣m>0,(1)a q﹣a p=a q﹣a q﹣1+a q﹣1﹣a q﹣2+…+a p+1﹣a p=b q﹣1+b q﹣2+…+b p≥(q﹣p)b p,(2)同理a n﹣a m=b n﹣1+b n﹣2+…+b m≤(n﹣m)b n﹣1,(3)由于{A n}为T点列,于是b p>b n﹣1,(4)由(1)、(2)、(3)、(4)可推得a q﹣a p>a n﹣a m,∴a q﹣a n>a p﹣a m,即.故④正确.故选:C.12.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.【解答】解:双曲线的c2=a2+b2,e=,双曲线的渐近线方程为y=±x,与圆x2+y2=c2联立,解得M(a,b),与双曲线(a>0,b>0)联立,解得,∵直线MF1与直线ON平行时,即有,即(a+c)2(c2﹣a2)=a2(2c2﹣a2),即有c3+2ac2﹣2a2c﹣2a3=0,∴e3+2e2﹣2e﹣2=0,即e2+2e﹣=2,∴f(e)=e2+2e﹣=2,故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a= 2.【解答】解:抛物线的标准方程:y2=ax,焦点坐标为(,0),准线方程为x=﹣,由抛物线的焦半径公式|PF|=x0+=+=2,解得:a=2,故答案为:2.14.(5分)已知递减等差数列{a n}中,a3=﹣1,a4为a1,﹣a6等比中项,若S n 为数列{a n}的前n项和,则S7的值为﹣14.【解答】解:设递减等差数列{a n}的公差d<0,a3=﹣1,a4为a1,﹣a6等比中项,∴a1+2d=﹣1,=﹣a6×a1,即=﹣(a1+5d)×a1,联立解得:a1=1,d=﹣1.则S7=7﹣=﹣14.故答案为:﹣14.15.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,二面角S﹣AC ﹣B的余弦值是﹣,则该四面体的外接球的表面积是6π.【解答】解:由AB⊥BC,得△ABC的外接圆的圆心O′为AC中点,连接SO′,BO′,由SA=SC和AB=BC有SO′⊥AC,BO′⊥AC而四面体外接球的球心O在平面SO′B内,连接OO′,有OO′⊥底面ABC将平面SO′B取出,则BO′=1,SO′=,用余弦定理可得cos∠SO′B=﹣,∴SB=,作SB的中垂线,过O′作BO′的垂线,两者必相交于O,用余弦定理,cos∠O′BS=,如图,BE=O′B÷cos∠O′BS=,也就是D,E,O三点重合,外接圆的半径R=OB=,∴球的表面积是4πR2=6π故答案为:6π.16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.【解答】解:对任意x1,x2∈(0,+∞),不等式≤恒成立,则等价为≤恒成立,f(x)==x+≥2=2,当且仅当x=,即x=1时取等号,即f(x)的最小值是2,由g(x)=,则g′(x)==,由g′(x)>0得0<x<1,此时函数g(x)为增函数,由g′(x)<0得x>1,此时函数g(x)为减函数,即当x=1时,g(x)取得极大值同时也是最大值g(1)=,则的最大值为=,则由≥,得2ek≥k+1,即k(2e﹣1)≥1,则,故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.【解答】解:(1)△ABC中,∵2cosC(acosC+ccosA)+b=0,由正弦定理可得2cosC(sinAcosC+sinCcosA)+sinB=0,∴2cosCsin(A+C)+sinB=0,即2cosCsinB+sinB=0,又0°<B<180°,∴sinB≠0,∴,即C=120°.(2)由余弦定理可得,又a>0,a=2,∴,∴△ABC的面积为.18.(12分)在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB 的中点,AC∩EF=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图的五棱锥,且.(1)求证:BD⊥平面POA;(2)求二面角B﹣AP﹣O的余弦值.【解答】证明:(1)∵点E,F分别为CD,CB的中点,∴BD∥EF,∵菱形ABCD的对角线互相垂直,∴BD⊥AC,∴EF⊥AC,∴EF⊥AO,EF⊥PO,∵AO⊂平面POA,PO⊂平面POA,AO∩PO=O,∴EF⊥平面POA,∴BD⊥平面POA.解:(2)设AO∩BD=H,连接BO,∵∠DAB=60°,∴△ABD为等边三角形,∴,在Rt△BHO中,,在△PBO中,BO2+PO2=10=PB2,∴PO⊥BO,∵PO⊥EF,EF∩BO=O,EF⊂平面BFED,∴PO⊥平面BFED,以O为原点,OF所在直线为x轴,AO所在直线y轴,OP所在直线为z轴,建立空间直角坐标系O﹣xyz,则.∴,设平面PAB 的法向量为=(x,y,z),则,取y=1,得=(﹣),∵BD⊥平面POA,AO∩BD=H,∴平面PAO 的一个法向量为=(﹣2,0,0),设二面角B﹣AP﹣O的平面角为θ,则cosθ===,∴二面角B﹣AP﹣O 的余弦值为.19.(12分)“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:(1)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?附:,(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有X人,超过10000步的有Y人,设ξ=|X﹣Y|,求ξ的分布列及数学期望.【解答】解:(Ⅰ)根据题意完成下面的2×2列联表:解得,故没有95%以上的把握认为二者有关.(Ⅱ)由题知,小王的微信好友中任选一人,其每日走路步数不超过5000步的概率为,超过10000步的概率为,且当X=Y=0或X=Y=1时,ξ=0,,当X=1,Y=0或X=0,Y=1时,ξ=1,,当X=2,Y=0或X=0,Y=2时,ξ=2,,∴ξ的分布列为:Eξ==.20.(12分)已知点C为圆(x+1)2+y2=8的圆心,P是圆上的动点,点Q在圆的半径CP上,且有点A(1,0)和AP上的点M,满足•=0,=2.(Ⅰ)当点P在圆上运动时,求点Q的轨迹方程;(Ⅱ)若斜率为k的直线l与圆x2+y2=1相切,直线l与(Ⅰ)中所求点Q的轨迹交于不同的两点F,H,O是坐标原点,且≤•≤时,求k的取值范围.【解答】解:(I)由题意知MQ中线段AP的垂直平分线,∴,∴点Q的轨迹是以点C,A为焦点,焦距为2,长轴为的椭圆,,故点Q的轨迹方程是.(II)设直线l:y=kx+b,F(x1,y1),H(x2,y2)直线l与圆x2+y2=1相切联立,(1+2k2)x2+4kbx+2b2﹣2=0,△=16k2b2﹣4(1+2k2)2(b2﹣1)=8(2k2﹣b2+1)=8k2>0,可得k≠0,∴,===,∴为所求.21.(12分)已知函数f(x)=ae x+x2﹣bx(a,b∈R,e=2.71828…是自然对数底数),其导函数为y=f'(x).(1)设b=0,若函数y=f(x)在R上有且只有一个零点,求a的取值范围;(2)设b=2,且a≠0,点(m,n)(m,n∈R)是曲线y=f(x)上的一个定点,是否存在实数x0(x0≠m),使得成立?证明你的结论.【解答】解(1)当b=0时,f(x)=ae x+x2,由题意ae x+x2=0只有一解.由ae x+x2=0得,令,则,令G'(x)=0得x=0或x=2当x≤0时,G'(x)≤0,G(x)单调递减,G(x)的取值范围为[0,+∞);当0<x<2时,G'(x)>0,G(x)单调递增,G(x)的取值范围为;当x≥2时,G'(x)≤0,G(x)单调递减,G(x)的取值范围为;由题意,得﹣a=0或,从而a=0或,所以,当a=0或时,函数f(x)只有一个零点.(2)f(x)=ae x+x2﹣2x,f'(x)=ae x+2x﹣2,假设存在,则有即,∴,∵a≠0,∴,不妨设t=x0﹣m>0,则,两边同除e m,得(*),令,令,∴h(t)在(0,+∞)上单调递增,∵h(0)=0,∴h(0)>0对t∈(0,+∞)恒成立,∴g(t)在(0,+∞)上单调递增又g(0)=0,∴g(t)>0对t∈(0,+∞)恒成立,∴方程te=e t﹣1无解,∴不存在实数x0(x0≠m),使得成立.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.【解答】解:(1)由圆锥曲线C:(α为参数)化为,可得F2(1,0),∴直线AF2的直角坐标方程为:,化为y=.(2)设M(x1,y1),N(x2,y2).∵直线AF2的斜率为,∴直线l的斜率为.∴直线l的方程为:,代入椭圆的方程可得:=12,化为=0,t1+t2=,∴||MF1|﹣|NF1||=|t1+t2|=.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.【解答】解:(1)当m=5时,,由f(x)>2的不等式的解集为.(2)由二次函数y=x2+2x+3=(x+1)2+2,该函数在x=﹣1处取得最小值2,因为,在x=﹣1处取得最大值m﹣2,所以要使二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,只需m﹣2≥2,即m≥4.2018年四川省成都七中高考数学一诊试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>22.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣23.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.156.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.17.(5分)如图所示的程序框图,若输入m=8,n=3,则输出的S值为()A.56 B.336 C.360 D.14408.(5分)已知等差数列{an}的前n项和为Sn,且,a2=4,则数列的前10项和为()A.B.C.D.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A.B.﹣C.﹣1 D.110.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为()A.B.8πC. D.4π11.(5分)已知函数f(x)=ln+,g(x)=ex﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣312.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a=.14.(5分)已知递减等差数列{an}中,a3=﹣1,a4为a1,﹣a6等比中项,若Sn为数列{an}的前n项和,则S7的值为.15.(5分)Rt△ABC中,P是斜边BC上一点,且满足:,点M,N在过点P的直线上,若则λ+2μ的最小值为.16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.18.(12分)如图,四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明直线MN∥平面PAB;(II)求四面体N﹣BCM的体积.19.(12分)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km/h),现将其分成六组为[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(Ⅰ)某小型轿车途经该路段,其速度在70km/h以上的概率是多少?(Ⅱ)若对车速在[60,65),[65,70)两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[60,65)内的概率.20.(12分)已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足.(1)求出动点P的轨迹对应曲线C的标准方程;(2)直线l:x=ty+1与曲线C交于A、B两点,E(﹣1,0),试问:当t变化时,是否存在一直线l,使△ABE得面积为?若存在,求出直线l的方程;若不存在,说明理由.21.(12分)已知函数f(x)=kex﹣x2(其中k∈R,e是自然对数的底数)(1)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(2)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明:0<f(x1)<1.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.2018年四川省成都七中高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>2【解答】解:由题意,集合A={x|x<a},B={x|x2﹣3x+2<0}={x|1<x<2},∵A∩B=B,∴B⊆A,则:a≥2.∴实数a的取值范围[2,+∞).故选C.2.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣2【解答】解:∵复数z===1﹣2i,故此复数的虚部为﹣2,故选D.3.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【解答】解:由“直线m∥平面α”,可得“直线m与平面α内无数条直线平行”,反之不成立.∴“直线m与平面α内无数条直线平行”是“直线m∥平面α”的必要不充分条件.故选:C.4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.【解答】解:由约束条件作出可行域如图,联立,得A(1,﹣1),联立,得B(1,3).由=,而.∴目标函数的取值范围是[,].故选:D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.15【解答】解:由题意类推,可知六十四卦中的“屯”卦符合“”表示二进制数的010001,转化为十进制数的计算为1×20+0×21+0×22+0×23+1×24+0×25=17.故选:B.6.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.1【解答】解:∵已知===,求得m=﹣6,或m=1,故选:A.7.(5分)如图所示的程序框图,若输入m=8,n=3,则输出的S值为()A.56 B.336 C.360 D.1440【解答】解:执行程序框图,可得m=8,n=3,k=8,s=1不满足条件k<m﹣n+1,s=8,k=7,不满足条件k<m﹣n+1,s=56,k=6,不满足条件k<m﹣n+1,s=336,k=5,满足条件k<m﹣n+1,退出循环,输出s的值为336.故选:B.8.(5分)已知等差数列{an}的前n项和为Sn,且,a2=4,则数列的前10项和为()A.B.C.D.【解答】解:由及等差数列通项公式得a1+5d=12,又a2=4=a1+d,∴a1=2=d,∴Sn==n2+n,∴,∴=.故选:B.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x (3﹣2x),则f()=()A.B.﹣C.﹣1 D.1【解答】解:∵y=f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),∵函数y=f(x+1)是定义在R上的偶函数,∴f(﹣x+1)=f(x+1)=﹣f(x﹣1),f(x+2)=﹣f(x),可得f(x+4)=﹣f(x+2)=f(x).则f(x)的周期是4,∴f()=f(4×4﹣)=f(﹣)=﹣f()=﹣[]=﹣1,故选C.10.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为()A.B.8πC. D.4π【解答】解:取AC中点D,连接SD,BD,∵AB=BC=,∴BD⊥AC,∵SA=SC=2,∴SD⊥AC,AC⊥平面SDB.∴∠SDB为二面角S﹣AC﹣B的平面角,在△ABC中,AB⊥BC,AB=BC=,∴AC=2.∵平面SAC⊥平面BAC,∴∠SDB=90°,取等边△SAC的中心E,则E为该四面体外接球的球心,球半径R=SE==,∴该四面体外接球的表面积S=4πR2=4=.故选:A.11.(5分)已知函数f(x)=ln+,g(x)=ex﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣3【解答】解:不妨设g(m)=f(n)=t,∴em﹣2=ln+=t,(t>0)∴m﹣2=lnt,m=2+lnt,n=2•e故n﹣m=2•e﹣2﹣lnt,(t>0)令h(t)=2•e﹣2﹣lnt,(t>0),h′(t)=2•e﹣,易知h′(t)在(0,+∞)上是增函数,且h′()=0,当t>时,h′(t)>0,当0<t<时,h′(t)<0,即当t=时,h(t)取得极小值同时也是最小值,此时h()=2•e﹣2﹣ln=2﹣2+ln2=ln2,即n﹣m的最小值为ln2;故选:B12.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.【解答】解:双曲线的c2=a2+b2,e=,双曲线的渐近线方程为y=±x,与圆x2+y2=c2联立,解得M(a,b),与双曲线(a>0,b>0)联立,解得,∵直线MF1与直线ON平行时,即有,即(a+c)2(c2﹣a2)=a2(2c2﹣a2),即有c3+2ac2﹣2a2c﹣2a3=0,∴e3+2e2﹣2e﹣2=0,即e2+2e﹣=2,∴f(e)=e2+2e﹣=2,故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a=2.【解答】解:抛物线的标准方程:y2=ax,焦点坐标为(,0),准线方程为x=﹣,由抛物线的焦半径公式|PF|=x0+=+=2,解得:a=2,故答案为:2.14.(5分)已知递减等差数列{an}中,a3=﹣1,a4为a1,﹣a6等比中项,若Sn为数列{an}的前n项和,则S7的值为﹣14.【解答】解:设递减等差数列{an}的公差d<0,a3=﹣1,a4为a1,﹣a6等比中项,∴a1+2d=﹣1,=﹣a6×a1,即=﹣(a1+5d)×a1,联立解得:a1=1,d=﹣1.则S7=7﹣=﹣14.故答案为:﹣14.15.(5分)Rt△ABC中,P是斜边BC上一点,且满足:,点M,N在过点P的直线上,若则λ+2μ的最小值为.【解答】解:=+==+=+=,∵三点M,P,N三点共线,∴.∴λ+2μ=(λ+2μ)()=.故答案为:16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.【解答】解:对任意x1,x2∈(0,+∞),不等式≤恒成立,则等价为≤恒成立,f(x)==x+≥2=2,当且仅当x=,即x=1时取等号,即f(x)的最小值是2,由g(x)=,则g′(x)==,由g′(x)>0得0<x<1,此时函数g(x)为增函数,由g′(x)<0得x>1,此时函数g(x)为减函数,即当x=1时,g(x)取得极大值同时也是最大值g(1)=,则的最大值为=,则由≥,得2ek≥k+1,即k(2e﹣1)≥1,则,故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.【解答】解:(1)△ABC中,∵2cosC(acosC+ccosA)+b=0,由正弦定理可得2cosC(sinAcosC+sinCcosA)+sinB=0,∴2cosCsin(A+C)+sinB=0,即2cosCsinB+sinB=0,又0°<B<180°,∴sinB≠0,∴,即C=120°.(2)由余弦定理可得,又a>0,a=2,∴,∴△ABC的面积为.18.(12分)如图,四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明直线MN∥平面PAB;(II)求四面体N﹣BCM的体积.【解答】证明:(Ⅰ)∵四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.∴AM=,取BP的中点T,连结AT,TN,∴由N为PC的中点知TN∥BC,TN=BC=2,又AD∥BC,∴TN AM,∴四边形AMNT是平行四边形,∴MN∥AT,又AT⊂平面PAB,MN⊄平面PAB,∴MNⅡ平面PAB.解:(Ⅱ)∵PA⊥平面ABCD,N为PC的中点,∴N到平面ABCD的距离为=2,取BC的中点E,连结AE,由AB=AC=3,得AE⊥BC,AE==,由AM∥BC,得M到BC的距离为,∴S△BCM==2,∴四面体N﹣BCM的体积:==.19.(12分)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km/h),现将其分成六组为[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(Ⅰ)某小型轿车途经该路段,其速度在70km/h以上的概率是多少?(Ⅱ)若对车速在[60,65),[65,70)两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[60,65)内的概率.【解答】解:(Ⅰ)根据频率分布直方图,计算速度在70km/h以上的频率为1﹣(0.010+0.020)×5=0.85,估计速度在70km/h以上的概率是0.85;(Ⅱ)这40辆车中,车速在[60,70)的共有5×(0.01+0.02)×40=6辆,其中在[65,70)的有5×0.02×40=4辆,记为A,B,C,D,在[60,65)的有5×0.01×40=2辆,记为a,b;从车速在[60,70)的这6辆汽车中任意抽取2辆,可能结果是AB、AC、AD、Aa、Ab、BC、BD、Ba、Bb、CD、Ca、Cb、Da、Db、ab有15种不同的结果,其中抽出的2辆车车速至少有一辆在[60,65)内的结果是Aa、Ab、Ba、Bb、Ca、Cb、Da、Db、ab有9种;故所求的概率为P==.20.(12分)已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足.(1)求出动点P的轨迹对应曲线C的标准方程;(2)直线l:x=ty+1与曲线C交于A、B两点,E(﹣1,0),试问:当t变化时,是否存在一直线l,使△ABE得面积为?若存在,求出直线l的方程;若不存在,说明理由.【解答】解:(1)根据题意,因为.即,所以,所以,又因为|AB|=1所以即即所以椭圆的标准方程为(2)由方程组得(3t2+4)y2+6ty﹣9=0(*)设A(x1,y1),B(x2,y2),则所以因为直线x=ty+1过点F(1,0)所以△ABE的面积令则不成立,不存在直线l满足题意.21.(12分)已知函数f(x)=kex﹣x2(其中k∈R,e是自然对数的底数)(1)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(2)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明:0<f(x1)<1.【解答】解:(1)当k=2时,f(x)=2ex﹣x2,则f'(x)=2ex﹣2x,令h(x)=2ex﹣2x,h'(x)=2ex﹣2,由于x∈(0,+∞)故h'(x)=2ex﹣2>0,于是h(x)=2ex﹣2x在(0,+∞)为增函数,所以h(x)=2ex﹣2x>h(0)=2>0,即f'(x)=2ex﹣2x>0在(0,+∞)恒成立,从而f(x)=2ex﹣x2在(0,+∞)为增函数,故f(x)=2ex﹣x2>f(0)=2.(2)函数f(x)有两个极值点x1,x2,则x1,x2是f'(x)=kex﹣2x=0的两个根,即方程有两个根,设,则,当x<0时,φ'(x)>0,函数φ(x)单调递增且φ(x)<0;当0<x<1时,φ'(x)>0,函数φ(x)单调递增且φ(x)>0;当x>1时,φ'(x)<0,函数φ(x)单调递增且φ(x)>0;要使方程有两个根,只需,如图所示故实数k的取值范围是.又由上可知函数f(x)的两个极值点x1,x2满足0<x1<1<x2,由得,∴由于x1∈(0,1),故,所以0<f(x1)<1.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||。
2018届四川省成都市高中毕业班第一次诊断性检测理科数学试题及答案
![2018届四川省成都市高中毕业班第一次诊断性检测理科数学试题及答案](https://img.taocdn.com/s3/m/70f0a736b4daa58da0114ae8.png)
成都市2018届高中毕业班第一次诊断性检测数学(理工类)本试卷分选择题和非选择题两部分。
满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用 橡皮擦擦干净后,再选涂其它答案标号。
礼答非选择题时,必须使用。
.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第工卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.已知集合A={-2,3},B= {}x x x =,则A B= (A ){-2} (B){3} (C){-2,3} (D )∅ 2.若复数z 满足z(1-2i)=5(i 为虚数单位),则复数z 为 (A)1255i + (B)1+2i (C) 1-2i (D) 1255i -3.计算1og 124-所得的结果为(A)1 (B) 52 (C) 72(D) 4 4.在等差数列中,a 8=15,则(A) 15 (B)30 (C) 45 (D)605.已知m ,n 是两条不同的直线,α为平面,则下列命题正确的是 (A)若m ∥α,n ∥α,则m ∥n (B)若m ⊥α,n ⊥α.则m ⊥n (C)若m ⊥α,n ∥α,则m ⊥n(D)若m 与α相交,n 与α相交,则m ,n 一定不相交6.如图,在平面直角坐标系xOy 中,角的顶点与坐标原点重合,始边与x 轴的非负半轴重合,它们的终边分别与单位圆相交于A,B 两点,若点A,B 的坐标为和,则的值为7、世界华商大会的某分会场有A,B,C,将甲,乙,丙,丁共4名“双语”志愿者分配到这三个展台,每个展台至少1人,其中甲,乙两人被分配到同一展台的不同分法的种数(A)12种(B)10种(C)8种(D) 6种i8一个长方体被一个平面截去一部分后所剩几何体的三视图如下图所示(单位:cm),则该几何体的体积为(A) 120 cm2 (B)80 cm2 (C)100 cm2 (D)60 cm29.如图①,利用斜二侧画法得到水平放置的△ABC的直观图△A'B'C',其中A'B'//y' 轴,B' C'//x’轴.若A'B'=B'C'=3,设△ABC的面积为S,△A'B'C的面积为S',记S=kS',执行如图②的框图,则输出T的值(A) 12(B)10(C) 9(D) 610.已知f(x)=-2|2|x|-1|+1和是定义在R上的两个函数,则下列命题正确的是(A)关于x的方程f (z)-k=0恰有四个不相等实数根的充要条件是(B)关于x的方程f (x)=g(x)恰有四个不相等实数根的充要条件是(C)当m=1时,对成立(D)若第II卷(非选择题,共 100分)二、填空题:本大题共5小题,每小学科网题5分,共25分.11.若是定义在R上的偶函数,则实数a=___12.已知13、设是函数的两个极值点,若,则实数a的取值范围是_____14.已知的概率为_____15.设⊙O为不等边△ABC的外接圆,△ABC内角A,B,C所对边的长分别为a,b,c,P是△ABC所在平面内的一点,且满足(P与A不重合).Q为△ABC所在平面外一点,QA=QB=QC.有下列命题:①若QA=QP,∠BAC=90°,则点Q在平面ABC上的射影恰在直线AP上;②若QA=QP,则;③若QA>QP,;④若QA>QP,则P在△ABC内部的概率为的面积).其中不正确的命题有_____(写出所有不正确命题的序号).三、解答题:本大题共6小题,共75分.16.(本小题满分12分)已知向量,设函数.(I)求函数f(x)的最小正周期;(II)在△ABC中,角A,B,C所对边的长分别为a,b,c,且,求A的大小.17.(本小题满分12分)已知数列的前n项和为Sn,且(I)求数列的通项公式;(II)设数满足,求数列的前n项和Tn.18.(本小题满分12分)某种特色水果每年的上市时间从4月1号开始仅能持续5个月的时间.上市初期价格呈现上涨态势,中期价格开始下跌,后期价格在原有价格基础之上继续下跌.现有三种价格变化的模拟陋夔因…详选择:其中p,q均为常数且q>1.(注:x表示上市时间,f(x)表示价格,记x=0表示4月1号,x=1表示5月1号,…,以此类推,)(I)在上述三个价格模拟函数中,哪一个更能体现该种水果的价格变化态势,请你选择,并简要说明理由;(II)对(I)中所选的函数f(x),若f(2)=11, f(3)=10,记,经过多年的统计发现,当函数g(x)取得最大值时,拓展外销市场的效果最为明显,请预测明年拓展外销市场的时间是几月1号?19.(本小题满分12分)如图①,四边形ABCD为等腰梯形,AE⊥DC,AB=AE=13DC,F为EC的中点,现将△DAE沿AE翻折到△PAE的位置,如图②,且平面PAE⊥平面ABCE.(I)求证:平面PAF⊥平面PBE;(II)求直线PF与平面PBC所成角的正弦值.20.(本小题满分13分)我国采用的PM2. 5的标准为:日均值在35微克/立方米以下的空气质量为一级;在35微克/立方米一75微克/立方米之间的空气质量为二级;75微克/立方米以上的空气质量为超标.某城市环保部门随机抽取该市m天的PM2. 5的日均值,发现其茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如下图所示.请据此解答如下问题:(I)求m的值,并分别计算:频率分布直方图中的[75,95)和[95,115]这两个矩形的高;(II)通过频率分布直方图枯计这m天的PM2. 5日均值的中位数(结果保留分数形式);(皿)从这m天的PM2. 5日均值中随机抽取2天,记X表示抽到PM2. 5超标的天数,求X的分布列和数学期望.21.(本小题满分14分)已知函数(I)若a=-1,求曲线y=f(x)在x=3处的切线方程;(II)若对任意的,都有f(x)≥g(x)恒成立,求a的最小值;(III)设p(x)=f(x-1),a>0,若为曲线y=p (x)的两个不同点,满足,使得曲线y=f(x)在x0处的切线与直线AB平行,求证:。
2018年3月四川省成都市高新区初2018届初三中考一诊数学试题参考答案
![2018年3月四川省成都市高新区初2018届初三中考一诊数学试题参考答案](https://img.taocdn.com/s3/m/645b5d23561252d380eb6ef9.png)
高新区!"#*届中考数学一诊试卷
!卷
(
#!!!!"%!%"%!&"#!'"$!("$!)"#!*"!! (
$"%!#""#
( (
##!*(!#!!-+"&*. ,*化简后-+". &.", (
. 亦 可 !#%!'04!#&!.*
(
(
#'!*解 原
式
+ 槡(
&*&(槡(
( ( (
",.!= #&
&
$%7
%8& $%
+
#8& #8%
即
" .
+
( (
. 解得 ",.
"*
+槡/ &*".
+
&槡/
&*舍
去
!
( (
= #$
& %& 7
##$#8
+
#$#8 %
( (
689#$#8%
+
$% #8%
+
.
槡/ &*,.
+
槡/ &* .
( ( (
7689##$#8+槡/.&*!
7 #+ + ) 槡/*0!由 垂 径 定 理得 #$ +
( ( (
.#+ +*./槡*0!
( (
#卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理科数学第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集U =R ,集合{}2=≤-A x x {}1,,=≥-B x x 则()=U ðU A BA.[]21,-B.21(,)--C.(][)21,,-∞--+∞UD.21(,)-2.复数21i z =+在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.空气质量指数AQI 是检测空气质量的重要参数,其数值越大说明空气污染状况越严重,空气质量越差.某地环保部门统计了该地区12月1日至12月24日连续24天空气质量指数AQI ,根据得到的数据绘制出如图所示的折线图.则下列说法错误的是A.该地区在12月2日空气质量最好B.该地区在12月24日空气质量最差C.该地区从12月7日到12月12日AQI 持续增大D.该地区的空气质量指数AQI 与日期成负相关4.已知锐角ABC ∆的三个内角分别为,,,A B C 则“sin >sin A B ”是“tan >tan A B ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5. “更相减损术”是我国古代数学名著《九章算术》中的算法案例,其对应的程序框图如图所示.若输入的x,y,k 的值分别为4,6,1,则输出的k 的值为A.2B.3C.4D.56.若关于x 的不等式2210x ax ++≥在[)0+∞,上恒成立,则实数a 的取值范围为A.0+∞(,)B.[)1-+∞,C.[]11-,D.[)0+∞,[)[)[][)26210001110.,()(,)(),(),(),x a A B C D ++≥+∞+∞ -+∞ - +∞若关于的不等式在上恒成立,则实数的取值范围为x ax7.如图,已知双曲线2222100x y E a b a b -=:(,)>>,长方形ABCD 的顶点A ,B 分别为双曲线E 的左,右焦点,且点C ,D 在双曲线E 上.若6AB =,52BC =,则此双曲线的离心率为A.2B. 32C.52D.522228100562.:(,),,,,,,,ABCD A B E C D E AB BC -===如图已知双曲线长方形的顶点分别为双曲线的左、右焦点且点在双曲线上若则双曲线的离心率为x y E a b a b>>8.已知3sin 0652ααππ-=∈(),(,),则cos α的值为 A.433- B.433+ C.433-D.334-9.在三棱锥P ABC -中,已知PA ⊥底面ABC ,1202BAC PA AB AC ︒∠====,.若该三棱锥的顶点都在同一个球面上,则该球的表面积为A.103πB.18πC.20πD.93π10.已知定义在R 上的奇函数f x ()满足20f x f x ++=()(),且当[]01x ∈,时,2log 1f x x =+()().则下列不等式正确的是A. ()()()2log 756f f f <-<B. ()()()2log 765f f f <<-C.()()()25log 76f f f -<< D.()()()256log 7f f f -<<11.设函数sin 23f x x π=+()(),若12x x 0,<且120f x f x +=()(),则21x x -的取值范围为A.6π∞(,+)B.3π∞(,+)C.23π+∞(,)D.43π+∞(,) 12.已知关于x 的方程e0e e xx x ++-x m =x 有三个不相等的实数根123x x x ,,,且1230x x <x <<,其中m ∈R ,e 271828=⋅⋅⋅.为自然对数的底数.则1232312111e e e x x x ---()()()x x x 的值为A.eB. 1C. 1m +D. 1m -第II 卷(非选择题,共90分)二、填空题:本大题共4道小题,每小题5分,共20分.13.52()y x+的展开式中的第三项系数为.14.若实数x y ,满足线性约束条件124+≥⎧⎪≤⎨⎪-≤⎩x y y x x y ,则2+x y 的最大值为.15.如图,在直角梯形ABDE 中,已知90ABD EDB ︒∠=∠=,C 是BD 上一点,315,AB ACB ︒=-∠=60,ECD ︒∠=45EAC ︒∠=,则线段DE 的长度为.16.在长方体1111ABCD A B C D -中,已知底面ABCD 为正方形,P 为11A D的中点,12AD AA ==,Q 是正方形ABCD所在平面内的一个动点,且=QC ,则线段BQ 的长度的最大值为.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{}n a 的前n 项和为Sn ,24316a S ==,,*n ∈N .(1)求数列{}n a 的通项公式;(2)设2n n n b a =,求数列{}n b 的前n 项和nT.18. (本小题满分12分)某部门为了解一企业在生产过程中的用水量情况,对每天的用水量作了记录,得到了大量的该企业的日用水量的统计数据.从这些统计数据中随机抽取12天的数据作为样本,得到如图所示的茎叶图(单位:吨). 若用水量不低于95(吨),则称这一天的用水量超标.(1)从这12天的数据中随机抽取3个,求至多有1天是用水量超标的概率; (2)以这12天的样本数据中用水量超标的频率作为概率,估计该企业未来3天中用水量超标的天数.记随机变量X 为未来这3天中用水量超标的天数,求X 的分布列和数学期望.19.(本小题满分12分)如图①,在边长为5的菱形ABCD 中,6AC =.现沿对角线AC 把ADC ∆翻折到APC ∆的位置得到四面体P ABC -,如图②所示.已知PB =(1)求证:平面PAC ⊥平面ABC ;(2)若Q 是线段AP 上的点,且13AQ =APu u u r u u u r ,求二面角Q BC A --的余弦值.图① 图②20.(本小题满分12分)已知椭圆222210x y C a b a b +=:()>>的右焦点0F ),长半轴与短半轴之比等于2. (1)求椭圆C 的标准方程;(2)设不经过点01(,)B 的直线l 与椭圆C 相交于不同的两点M N ,.若线段MN 的中点H 满足2MN =BH,证明直线l 过定点,并求出该定点的坐标.AA21.(本小题满分12分)已知函数e xf x =(),其中e 271828=⋅⋅⋅.为自然对数的底数.(1)若曲线()=y f x 在点00e xP x (,)处的切线方程为y kx b =+,求k b -的最小值;(2)当常数()2,+m ∈∞时,已知函数212g x x f x mx =--+()()()在0(,)+∞上有两个零点()1212x x x x ,<.证明:214ln e <-<x x m .请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22.(本小题满分10分)选修4-4:极坐标与参数方程在平面直角坐标系xOy 中,直线l的参数方程为12222x t t y ⎧=+⎪⎪⎨⎪=+⎪⎩(为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为2sin 4sin ρθθρ+=. (1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)已知点M 的直角坐标为22(,).若直线l 与曲线C 相交于不同的两点A B ,,求MA MB⋅的值.23.(本小题满分10分)选修4-5:不等式选讲已知函数21f x x k x k =-++∈(),R.(1)当1k=时,若不等式4f x ()<的解集为{}12x x x x |<<,求12x x +的值;(2)若关于x 的不等式f x k ≥()当x ∈R 时恒成立,求k 的最大值.数学(理科)参考答案及评分意见第I 卷(选择题,共60分)一.选择题:(每小题5分,共60分)1.B ;2.D ;3.D ;4.C ;5.C ;6.B ;7.B ;8.A ;9.C ;10.C ;11.B ;12.B.第II 卷(非选择题,共90分)二.填空题:(每小题5分,共20分)13.40;14.12;15.6;16.6.三.解答题:(共70分)17.解:(1)设数列{}n a的公差为d .24316a S ==,Q ,1134616a d a d ∴+=+=,.解得121d a ==,. ………4分21n a n ∴=-.………6分(2)由题意,212n n b n =-⨯().1211232232212n n n T n n -∴=⨯+⨯+⋅⋅⋅+-⨯+-⨯()(). ①21212232212n n n T n n +=⨯+⋅⋅⋅+-⨯+-⨯()(). ②由①-②,可得1231122222212n n n T n +-=⨯+⨯++⋅⋅⋅+--⨯()().………9分311122212126232n n n n T n n -++∴-=+---⨯=-+-+⨯()()().………11分16232n n T n +∴=+-⨯().………12分18.解:(1)记“从这12天的数据中随机抽取3个,至多有1天是用水量超标” 为 事件A .则123488331212C C C 16842C C 22055P A =+==().………4分 (2)以这12天的样本数据中用水量超标的频率作为概率,易知其概率为13. 随机变量X 表示未来三天用水量超标的天数,∴X 的取值分别为:0123,,,.易知3311230123333k k k X B P X k C k -===(,),()()(),,,,.:则84210123279927P X P X P X P X ========()(),(),()., ………8分∴随机变量X 的分布列为………10分数学期望1313E X =⨯=().………12分 19.解:(1)取AC 的中点O ,连接,PO BO 得到∆PBO .Q ABCD 是菱形,∴=PA PC ,PO AC ⊥.5634DC AC OC PO OB ==∴===,,Q ,,PB =Q222PO OB PB ∴+=.PO OB ∴⊥.BO AC O =Q I ,∴⊥PO 平面ABC . ⊂Q PO 平面PAC , ∴平面ABC ⊥平面PAC . ………4分X 01 2 3P827 49 29 127(2)AB BC BO AC =∴⊥.Q ,易知,,OB OC OP 两两相互垂直. 以O 为坐标原点,OB OC OP ,,u u u r u u u r u u u r分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系Oxyz ,如图所示.则400030004030B C P A -(,,),(,,),(,,),(,,). 设点(,,)Q x y z .由13AQ AP =u u u r u u u r , 得4023Q -(,,).………6分4430423BC BQ ∴=-=--(,,),(,,).u u u r u u u r 设1111x y z =(,,)n 为平面BCQ 的一个法向量.由11111114300442003x y BC x y z BQ -+=⎧⎧⋅=⎪⎪⇒⎨⎨--+⋅=⎪⎪⎩⎩.=u u u r u u u r n n 解得111134415x y y z ⎧=⎪⎪⎨⎪⎪⎩.= 取115z =,则13415=(,,).n ………8分取平面ABC 的一个法向量2001=(,,)n .121222212310cos ,103415⋅===++Q n n n n n n ,………11分∴二面角--Q BC A 的余弦值为31010.………12分20.解:(1)22232ac a b c b ===+,Q ,,∴21,==a b .∴椭圆的标准方程为2214x y +=.………4分(2)易知当直线l 的斜率不存在时,不合题意. 设直线l 的方程为1)y kx m m =+≠(,点1122M x y N x y (,),(,).联立2244y kx mx y =+⎧⎨+=⎩,消去y 可得222418440k x kmx m +++-=(). 2212221224108414441k m km x x k m x x k ⎧⎪∆=+->⎪-⎪∴+=⎨+⎪⎪-=⎪+⎩.由2MN =BH,可知点B 在以MN为直径的圆上.BM BN ∴⊥.0BM BN ∴⋅=.u u u u r u u u r ………7分112211(,)(,)⋅=+-⋅+-u u u u r u u u rQ BM BN x kx m x kx m2212121110k x x k m x x m =++-++-=()()()(),2222244811104141m kmk k m m k k --∴++-+-=++()()().整理,得25230m m --=. 解得35=-m 或1=m (舍去).∴直线l 的方程为35y kx =-.故直线l 经过定点,且该定点的坐标为305-(,).………12分 21.解:(1)曲线在点0e x P x (,)处的切线为0000e e e x x x y x x =-+.0000e e e x x x k b x ∴==-+,.00e x k b x ∴-=.………3分设e xH x x =().由1e 0x H x x '=+=()(),解得1x =-.当x >-1时,0H x '()>,∴H x ()单调递增; 当x <-1时, 0H x '<(),∴H x ()单调递减.H x ∴()的极小值(也是最小值)为11e H -=-().∴-k b 的最小值为1e-.………5分(2)当0>x 时,由e 20xg x x m '=-=()(),解得ln 2.x m =当ln 2x m >时,()0g x '>,∴()g x 在(ln 2,)+∞m 上单调递增; 当0ln 2x m <<时,()0g x '<,∴()g x 在(0,ln 2)m 上单调递减.∴()g x 的极小值为(ln 2).g m ………7分∵(1)20g m =-<,ln 2ln 41x m =>>,(ln 2)0.g m ∴< 又Q 010120(),(),=>=-<g g m ∴101(,),∃∈x 使得10g x =().2ln 2ln 4,x m >>Q 214ln 41ln .ex x ∴->-=………9分当x m =时,31e 22m g m m m m =--+()(),.>2e 3e 3m m g m m m m m '∴=-=-()().设e 32mG m m m =-(),.> e 30m G m '=-(),Q >()∴G m 在2(,)+∞上单调递增. 22e 60G m G ∴=-()().>>0()g m '∴>恒成立.22e 60g m g ∴=-()().>>2(ln 2,),x m m ∴∃∈使得20g x =(). 2m x ∴.>21m x x ∴-.>故214ln e <-<x x m 成立. ………12分22.解:(1)由12222x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩,消去参数t可得22y x =-+).∴直线l20y -+-=. ………2分2222sin 4sin sin 4sin .ρθθρρθρθρ+=∴+=Q ,222sin ,y x y ρθρ==+Q ,故曲线C 的直角坐标方程为24x y =. ………4分11 / 11 (2)将12222x t y ⎧=+⎪⎪⎨⎪=+⎪⎩代入抛物线方程24x y =,可得2124222t +=+()().即28160t t +--=(. ………8分设点,A B 对应的参数分别为12,t t .则12120,+8,16,∆>==-t t t t ∴1216MA MB t t ==.g ………10分23.解:(1)由题意,得214x x -++<.i ()当2x >时,原不等式即25x <.∴522x <<; ii ()当x <-1时,原不等式即23x -<.∴312-<<-x ;iii ()当2x -1≤≤时,原不等式即3<4.∴12x -≤≤.综上,原不等式的解集为3522x |x ⎧⎫-<<⎨⎬⎩⎭,即123522x x =-=,. 121x x ∴+=. ………5分(2)由题意,得21x k x k -++≥.当2=x 时,即不等式k k ≥3成立.0.k ∴≥ i ()当2-≤x 或0≥x 时, Q 11x +≥,∴不等式k x k x ≥++-|1||2|恒成立. ii ()当12-≤<-x 时,原不等式可化为2---≥x kx k k .可得241.22x k x x -≤=-+++ 3.k ∴≤ iii ()当01<<-x 时,原不等式可化为2.x kx k k -++≥可得21.k x ≤- 3.k ∴≤综上,可得03k ≤≤,即k 的最大值为3. ………10分。