高中物理磁场12个基础计算题专练(含答案)
[必刷题]2024高三物理下册电磁场专项专题训练(含答案)
![[必刷题]2024高三物理下册电磁场专项专题训练(含答案)](https://img.taocdn.com/s3/m/762b735e91c69ec3d5bbfd0a79563c1ec5dad7a3.png)
[必刷题]2024高三物理下册电磁场专项专题训练(含答案)试题部分一、选择题:A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动2. 下列关于电磁感应现象的描述,错误的是:A. 闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流B. 感应电流的方向与磁场方向有关C. 感应电流的大小与导体运动速度成正比D. 感应电流的大小与导体长度成正比A. 电势能减小B. 电势能增加C. 电势增加D. 电势减小A. 电容器充电时,电场能转化为磁场能B. 电容器放电时,电场能转化为磁场能C. 电感器中的电流增大时,磁场能转化为电场能D. 电感器中的电流减小时,磁场能转化为电场能A. 电磁波在真空中传播速度为3×10^8 m/sB. 电磁波的传播方向与电场方向垂直C. 电磁波的传播方向与磁场方向垂直D. 电磁波的波长与频率成正比A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动A. 洛伦兹力的方向垂直于带电粒子的速度方向B. 洛伦兹力的大小与带电粒子的速度成正比C. 洛伦兹力的大小与磁感应强度成正比D. 洛伦兹力的方向与磁场方向垂直8. 一个闭合线圈在磁场中转动,下列关于感应电动势的说法,正确的是:A. 感应电动势的大小与线圈面积成正比B. 感应电动势的大小与磁场强度成正比C. 感应电动势的大小与线圈转速成正比D. 感应电动势的方向与磁场方向平行A. 变化的电场会产生磁场B. 变化的磁场会产生电场C. 静止的电荷会产生磁场D. 静止的磁场会产生电场A. 电场强度与磁场强度成正比B. 电场强度与磁场强度成反比C. 电场强度与电磁波频率成正比D. 电场强度与电磁波波长成正比二、判断题:1. 带电粒子在电场中一定受到电场力的作用。
()2. 电磁波在传播过程中,电场方向、磁场方向和传播方向三者相互垂直。
()3. 在LC振荡电路中,电容器充电完毕时,电场能最大,磁场能为零。
高中物理磁场练习题及答案
![高中物理磁场练习题及答案](https://img.taocdn.com/s3/m/a82dbff1fab069dc5022014b.png)
Oxy V 0 a b《磁场》单元练习一.选择题:每小题给出的四个选项中,每小题有一个选项、或多个选项正确。
1、如图所示,两根垂直纸面、平行且固定放置的直导线M 和N ,通有同向等值电流;沿纸面与直导线M 、N 等距放置的另一根可自由移动的通电导线ab ,则通电导线ab 在安培力作用下运动的情况是 A.沿纸面逆时针转动 B.沿纸面顺时针转动C.a 端转向纸外,b 端转向纸里D.a 端转向纸里,b 端转向纸外2.两根长直通电导线互相平行,电流方向相同.它们的截面处于一个等边三角形ABC 的A 和B 处.如图所示,两通电导线在C 处的磁场的磁感应强度的值都是B ,则C 处磁场的总磁感应强度是( )A.2BB.BC.0D.3B3、空间存在竖直向下的匀强电场和水平方向(垂直纸面向里)的匀强磁场,如图所示,已知一离子在电场力和洛仑兹力共同作用下,从静止开始自A 点沿曲线ACB 运动,到达B点时速度为零,C 为运动的最低点.不计重力,则 A.该离子带负电B.A 、B 两点位于同一高度C.C 点时离子速度最大D.离子到达B 点后,将沿原曲线返回A 点4、一带电粒子以一定速度垂直射入匀强磁场中,则不受磁场影响的物理量是: A 、速度 B 、加速度 C 、动量 D 、动能5、MN 板两侧都是磁感强度为B 的匀强磁场,方向如图,带电粒子(不计重力)从a 位置以垂直B 方向的速度V 开始运动,依次通过小孔b 、c 、d ,已知ab = bc = cd ,粒子从a 运动到d 的时间为t ,则粒子的荷质比为: A 、tB π B 、tB 34π C 、π2tB D 、tBπ3 6、带电粒子(不计重力)以初速度V 0从a 点进入匀强磁场,MN a bc dVB B如图。
运动中经过b 点,oa=ob 。
若撤去磁场加一个与y 轴平行的匀强电场,仍以V 0从a 点进入电场,粒子仍能通过b 点,那么电场强度E 与磁感强度B 之比E/B 为: A 、V 0 B 、1 C 、2V 0 D 、2V 7、如图,MN 是匀强磁场中的一块薄金属板,带电粒子(不计重力)在匀强磁场中运动并穿过金属板,虚线表示其运动轨迹,由图知:A 、粒子带负电B 、粒子运动方向是abcdeC 、粒子运动方向是edcbaD 、粒子在上半周所用时间比下半周所用时间长8、带负电的小球用绝缘丝线悬挂于O 点在匀强磁场中摆动,当小球每次通过最低点A 时: A 、摆球受到的磁场力相同 B 、摆球的动能相同 C 、摆球的动量相同D 、向右摆动通过A 点时悬线的拉力大于向左摆动通过A 点时悬线的拉力9、如图,磁感强度为B 的匀强磁场,垂直穿过平面直角坐标系的第I 象限。
高中物理题型分类汇总含详细答案--磁场
![高中物理题型分类汇总含详细答案--磁场](https://img.taocdn.com/s3/m/91f3ec1feffdc8d376eeaeaad1f34693dbef1051.png)
高中物理题型分类汇总含详细答案--磁场共:15题时间:50分钟一、单选题1.如图所示,A、B、C是等边三角形的三个顶点,O是A、B连线的中点。
以O为坐标原点,A、B连线为x轴,O、C连线为y轴,建立坐标系。
过A、B、C、O四个点各有一条长直导线垂直穿过纸面,导线中通有大小相等、方向向里的电流,则过O点的通电直导线所受安培力的方向为()A.沿y轴正方向B.沿y轴负方向C.沿x轴正方向D.沿x轴负方向2.如图所示,有一通电直导线放在蹄形电磁铁的正上方,导线可以自由移动,当电磁铁线圈与直导线中通以图示的电流时,有关直导线运动情况的说法中正确的是(从上往下看)()A.顺时针方向转动,同时下降B.时针方向转动,同时上升C.逆时针方向转动,同时下降D.逆时针方向转动,同时上升3.关于磁感应强度,下列说法中正确的是()A.由B=知,B与F成正比,与IL成反比B.若长为L、通有电流为I的导体在某处受到的磁场力为F,则该处的磁感应强度必为C.由B=知,若一小段通电导体在某处不受磁场力,则说明该处一定无磁场D.磁感应强度的方向就是小磁针北极所受磁场力的方向4.1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示。
这台加速器由两个铜质D形盒D1、D2构成,其间留有空隙,下列说法正确的是()A.离子在回旋加速器中做圆周运动的周期随半径的增大而增大B.离子从磁场中获得能量C.增大加速电场的电压,其余条件不变,离子离开磁场的动能将增大D.增大加速电场的电压,其余条件不变,离子在D型盒中运动的时间变短5.如图,一段导线abcd位于磁感应强度大小为B的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直.线段ab、bc和cd的长度均为L,且∠abc=∠bcd=135º.流经导线的电流为I,方向如图中箭头所示.导线段abcd所受到的磁场的作用力的合力()A.方向沿纸面向上,大小为( +1)ILBB.方向沿纸面向上,大小为( -1)ILBC.方向沿纸面向下,大小为( +1)ILBD.方向沿纸面向下,大小为( -1)ILB6.下列各图中,通电直导线或带电粒子所受磁场力方向正确的是()A. B. C. D.7.如图所示,用电阻率为ρ、横截面积为S、粗细均匀的电阻丝折成平面梯形框架,ab、cd 边均与ad边成60°角,。
高中物理题型分类汇总含详细答案-磁场
![高中物理题型分类汇总含详细答案-磁场](https://img.taocdn.com/s3/m/4c8801e9d4bbfd0a79563c1ec5da50e2524dd128.png)
高中物理题型分类汇总含详细答案考点必练-磁场共:15题时间:50分钟一、单选题1.关于磁场对通电导线的作用力,下列说法正确的是()A.磁场对放置在其中的通电导线一定有力的作用B.放置在磁场中的导线越长,其所受的磁场力越大C.放置在磁场中的导线通过的电流越大,其所受的磁场力越大D.通电导线在磁场中所受的磁场力的方向一定与磁场方向垂直2.一段通电直导线,长度为l,电流为I,放在同一个匀强磁场中,导线和磁场的相对位置有如图所示的四种情况,通电导线所受到的安培力的大小情况将是()A.丙和丁的情况下,导线所受到的安培力都大于甲的情况B.乙的情况下,导线不受力C.乙、丙的情况下,导线都不受力D.甲、乙、丁的情况下,导线所受安培力大小都相等3.如图所示,在竖直绝缘的平台上,一个带正电的小球以水平速度v0抛出,落在地面上的A 点,若加一垂直纸面向里的匀强磁场,则小球的落点()A.仍在A点B.在A点左侧C.在A点右侧D.无法确定4.关于下列四幅图的说法正确的是()A.图甲是用来加速带电粒子的回旋加速器的示意图,要想粒子获得的最大动能增大,可增加电压B.图乙是磁流体发电机的结构示意图,可以判断出B极板是发电机的正极,A极板是发电机的负极C.图丙是速度选择器的示意图,带电粒子(不计重力)能够沿直线匀速通过速度选择器的条件是,即D.图丁是质谱仪的结构示意图,粒子打在底片上的位置越靠近狭缝说明粒子的比荷越小5.如图甲所示,水平面上固定一个粗糙的“U”形金属框架,金属杆ab横跨其上并与之接触良好,整个装置处于竖直向上的磁场中,磁感应强度B随时间t的变化规律如图乙所示,在金属杆ab保持静止的时间段内()A.金属杆ab中感应电流方向一定从b到aB.回路中产生的感应电动势一定增加C.金属杆ab所受摩擦力的方向一定水平向右D.金属杆ab所受安培力一定变大6.如图所示,三根通电长直导线P、Q、R均垂直纸面放置,ab为直导线P、Q连线的中垂线,P、Q中电流强度的大小相等、方向均垂直纸面向里,R中电流的方向垂直纸面向外,则R 受到的磁场力可能是()A.F1B.F2C.F3D.F47.长为L的通电直导线放在倾角为θ的光滑斜面上,并处在磁感应强度为B的匀强磁场中,如图所示,当B方向竖直向上,电流为I1时导体处于平衡状态,若B方向改为垂直斜面向上,则电流为I2时导体处于平衡状态,电流比值应为()A. B. C. D.8.如图所示,三根通电长直导线P、Q、R互相平行且通过正三角形的三个顶点,三条导线中通入的电流大小相等,方向垂直纸面向里;通过直导线产生磁场的磁感应强度B=kI / r,I为通电导线的电流大小,r为距通电导线的垂直距离,k为常量;则通电导线R受到的磁场力的方向是()A.垂直R,指向y轴正方向B.垂直R,指向y轴负方向C.垂直R,指向x轴正方向D.垂直R,指向x轴负方向二、多选题9.在磁场中的同一位置放置一条直导线,导线的方向与磁场方向垂直。
高中物理磁场练习题(含解析)
![高中物理磁场练习题(含解析)](https://img.taocdn.com/s3/m/8b1c88f5d05abe23482fb4daa58da0116c171f98.png)
D.库仑通过与万有引力类比,在实验的基础上验证得出库仑定律
4.电磁炮是利用电磁系统中电磁场产生的安培力来对金属炮弹进行加速,使其达到打击目标所需的巨大动能,如图甲所示。原理图可简化为如图乙所示,其中金属杆表示炮弹,磁场方向垂直轨道平面向上,则当弹体中通过如图乙所示的电流时,炮弹加速度的方向为( )
高中物理磁场练习题
学校:___________姓名:___________班级:___________
一、单选题
1.假设一个力单独作用的效果跟某几个力共同作用的效果相同,这个力就叫作那几个力的合力,以下概念的建立方法与合力相同的是( )
A.瞬时速度B.交流电的有效值
C.电场强度D.磁通量
2.如图所示,匀强磁场方向垂直纸面向里,匀强电场方向竖直向下,有一正离子恰能沿直线从左向右水平飞越此区域。不计重力,则( )
16.“用霍尔元件测量磁场”的实验中,把载流子为带负电的电子e的霍尔元件接入电路如图,电流为I,方向向左,长方体霍尔元件长宽高分别为 、 、 ,处于竖直向上的恒定匀强磁场中。
(1)前后极板M、N,电势较高的是___________。(选填“M板”或“N板”)
(2)某同学在实验时,改变电流的大小,记录了不同电流下对应的 值,如下表
14.如图所示,面积为10m2的正方形导线框处于磁感应强度为 的匀强磁场中。在线框平面以ad边为轴转过180°的过程中,线圈中________感应电流产生(选填“有”或“无”),整个过程中,磁通量变化量为________Wb。
四、实验题
15.奥斯特研究电和磁的关系的实验中,通电导线附近的小磁针发生偏转的原因是______ 实验时为使小磁针发生明显偏转,通电前导线应放置在其上方,并与小磁针保持______ 选填“垂直”、“平行”、“任意角度” .元电荷的电量是______C.
物理磁场练习题(含答案)
![物理磁场练习题(含答案)](https://img.taocdn.com/s3/m/d45aeeeca76e58fafbb00391.png)
物理高二磁场练习题一、单选题1.关于电场强度和磁感应强度,下列说法正确的是A.电场强度的定义式适用于任何电场B.由真空中点电荷的电场强度公式可知,当r→0时,E→无穷大C.由公式可知,一小段通电导线在某处若不受磁场力,则说明此处一定无磁场D.磁感应强度的方向就是置于该处的通电导线所受的安培力方向2.如图所示,条形磁铁放在水平粗糙桌面上,它的正中间上方固定一根长直导线,导线中通过方向垂直纸面向里(即与条形磁铁垂直)的电流,和原来没有电流通过时相比较,磁铁受到的支持力N和摩擦力f将A、N减小,f=0B、N减小,f≠0C、N增大,f=0D、N增大,f≠03、有电子、质子、氘核、氚核,以同样速度垂直射入同一匀强磁场中,它们都作匀速圆周运动,则轨道半径最大的粒子是A.氘核 B.氚核 C.电子 D.质子4.一带正电荷的小球沿光滑、水平、绝缘的桌面向右运动,如图所示,速度方向垂直于一匀强磁场,飞离桌面后,最终落在地面上. 设飞行时间为t1、水平射程为s1、着地速率为v1;现撤去磁场其它条件不变,小球飞行时间为t2、水平射程为s2、着地速率为v2.则有:A、 v1=v2B、 v1>v2C、 s1=s2D、t1<t25.有一个带正电荷的离子,沿垂直于电场方向射入带电平行板的匀强电场.离子飞出电场后的动能为Ek,当在平行金属板间再加入一个垂直纸面向内的如图所示的匀强磁场后,离子飞出电场后的动能为Ek/,磁场力做功为W,则下面各判断正确的是A、EK <EK',W=0B、EK >EK',W=0C、EK =EK',W=0D、EK>EK',W>06.图是质谱仪的工作原理示意图。
带电粒子被加速电场加速后,进入速度选择器。
速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E。
平板S 上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2。
平板S下方有强度为B0的匀强磁场。
高中物理磁场12个基础计算题专练(含答案)
![高中物理磁场12个基础计算题专练(含答案)](https://img.taocdn.com/s3/m/3d45e495f5335a8103d2205b.png)
2018.1。
15磁场12个计算题参考答案与试题解析一.解答题(共12小题)1.图中虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感强度为B的匀强磁场,方向垂直纸面向外.O是MN上的一点,从O点可以向磁场区域发射电量为+q、质量为m、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向.已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P 到O的距离为L,不计重力及粒子间的相互作用.(1)求所考察的粒子在磁场中的轨道半径.(2)求这两个粒子从O点射入磁场的时间间隔.【分析】(1)粒子射入磁场后做匀速圆周运动,洛伦兹力充当向心力,根据牛顿第二定律列式即可求得半径;(2)根据时间与转过的角度之间的关系求得两个粒子从O点射入磁场的时间间隔之差值.【解答】解:(1)设粒子在磁场中做圆周运动的轨道半径为R,由牛顿第二定律,有:得:(2)如图所示,以OP为弦可画两个半径半径相同的圆,分别表示在P点相遇的两个粒子的轨道,圆心和直径分别为O1、O2和OO1Q1、OO2Q2,在O处两个圆的切线分别表示两个粒子的射入方向,用θ表示它们之间的夹角.由几何关系可知:∠PO1Q1=∠PO2Q2=θ从O点射入到相遇,粒子1的路程为半个圆周加弧长Q1PQ1P=Rθ粒子2的路程为半个圆周减弧长PQ2PQ2=Rθ粒子1运动的时间:粒子2运动的时间:两粒子射入的时间间隔:因得解得:答:(1)所考察的粒子在磁场中的轨道半径是.(2)这两个粒子从O点射入磁场的时间间隔是.【点评】本题考查带电粒子在磁场中的运动,关键是明确洛伦兹力提供向心力,根据牛顿第二定律求解出半径,然后结合几何关系列式求解,属于带电粒子在磁场中运动的基础题型.2.如图所示,两根光滑平行的金属导轨相距5m,固定在水平面上,导轨之间接有电源盒开关,整个装置处于磁感应强度为2T,方向与导轨平行的匀强磁场中.当开关闭合时,一根垂直放在导轨上的导体棒MN恰好对金属导轨没有压力.若导体棒MN的质量为4kg,电阻为2Ω,电源的内阻为0。
高中物理磁场习题200题(带答案解析)
![高中物理磁场习题200题(带答案解析)](https://img.taocdn.com/s3/m/51cc9ad8f61fb7360b4c653c.png)
WORD格式整理一、选择题1.如图所示,一电荷量为q的负电荷以速度v射入匀强磁场中.其中电荷不受洛仑兹力的是( )A. B. C. D.【答案】C【解析】由图可知,ABD图中带电粒子运动的方向都与粗糙度方向垂直,所以受到的洛伦兹力都等于qvB,而图C中,带电粒子运动的方向与磁场的方向平行,所以带电粒子不受洛伦兹力的作用.故C正确,ABD错误.故选C.2.如图所示为电流产生磁场的分布图,其中正确的是( )A. B. C. D.【答案】D【解析】A中电流方向向上,由右手螺旋定则可得磁场为逆时针(从上向下看),故A错误;B图电流方向向下,由右手螺旋定则可得磁场为顺时针(从上向下看),故B错误;C图中电流为环形电流,由由右手螺旋定则可知,内部磁场应向右,故C错误;D图根据图示电流方向,由右手螺旋定则可知,内部磁感线方向向右,故D正确;故选D.点睛:因磁场一般为立体分布,故在判断时要注意区分是立体图还是平面图,并且要能根据立体图画出平面图,由平面图还原到立体图.3.下列图中分别标出了一根放置在匀强磁场中的通电直导线的电流I、磁场的磁感应强度B和所受磁场力F的方向,其中图示正确的是( )A. B. C. D.【答案】C【解析】根据左手定则的内容:伸开左手,使大拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向,可得:A、电流与磁场方向平行,没有安培力,故A错误;B、安培力的方向是垂直导体棒向下的,故B错误;C、安培力的方向是垂直导体棒向上的,故C正确;D、电流方向与磁场方向在同一直线上,不受安培力作用,故D错误.故选C.点睛:根据左手定则直接判断即可,凡是判断力的方向都是用左手,要熟练掌握,是一道考查基础的好题目.4.如图所示,水平地面上固定着光滑平行导轨,导轨与电阻R连接,放在竖直向上的匀强磁场中,杆的初速度为v0,不计导轨及杆的电阻,则下列关于杆的速度与其运动位移之间的关系图像正确的是()A. B. C. D.【答案】C【解析】导体棒受重力、支持力和向后的安培力;感应电动势为:E=BLv感应电流为:I=II安培力为:I=III=I 2I2II=II=I△I△I故:I 2I2II△I=I△I求和,有:I 2I2I∑I△I=I∑△I故:I 2I2II=I(I0−I)故v与x是线性关系;故C正确,ABD错误;故选:C.5.如图所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,粒子仅受磁场力作用,分别从AC边上的P、Q两点射出,则( )A. 从P射出的粒子速度大B. 从Q射出的粒子速度大C. 从P射出的粒子,在磁场中运动的时间长D. 两粒子在磁场中运动的时间一样长【答案】BD【解析】试题分析:粒子在磁场中做圆周运动,根据题设条件作出粒子在磁场中运动的轨迹,根据轨迹分析粒子运动半径和周期的关系,从而分析得出结论.WORD 格式整理粒子在磁场中做匀速圆周运动,根据几何关系(图示弦切角相等),粒子在磁场中偏转的圆心角相等,根据粒子在磁场中运动的时间:I =I 2II ,又因为粒子在磁场中圆周运动的周期I =2II II ,可知粒子在磁场中运动的时间相等,故D 正确,C 错误;如图,粒子在磁场中做圆周运动,分别从P 点和Q 点射出,由图知,粒子运动的半径I I <I I ,又粒子在磁场中做圆周运动的半径I =II II知粒子运动速度I I <I I ,故A 错误B 正确;【点睛】带电粒子在匀强磁场中运动时,洛伦兹力充当向心力,从而得出半径公式I =II II ,周期公式I =2II II ,运动时间公式I =I 2I I ,知道粒子在磁场中运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题,6.在等边三角形的三个顶点a 、b 、c 处,各有一条长直导线垂直纸面放置,导线中通有大小相等的恒定电流,方向如图所示.过c 点的导线所受安培力的方向( )A. 与ab 边平行,竖直向上B. 与ab 边垂直,指向右边C. 与ab 边平行,竖直向下D. 与ab 边垂直,指向左边【答案】D【解析】试题分析:先根据右手定则判断各个导线在c 点的磁场方向,然后根据平行四边形定则,判断和磁场方向,最后根据左手定则判断安培力方向导线a 在c 处的磁场方向垂直ac 斜向下,b 在c 处的磁场方向垂直bc 斜向上,两者的和磁场方向为竖直向下,根据左手定则可得c 点所受安培力方向为与ab 边垂直,指向左边,D 正确;7.下列说法中正确的是( )A. 电场线和磁感线都是一系列闭合曲线B. 在医疗手术中,为防止麻醉剂乙醚爆炸,医生和护士要穿由导电材料制成的鞋子和外套,这样做是为了消除静电C. 奥斯特提出了分子电流假说D. 首先发现通电导线周围存在磁场的科学家是安培【答案】B【解析】电场线是从正电荷开始,终止于负电荷,不是封闭曲线,A 错误;麻醉剂为易挥发性物品,遇到火花或热源便会爆炸,良好接地,目的是为了消除静电,这些要求与消毒无关,B 正确;安培发现了分子电流假说,奥斯特发现了电流的磁效应,CD 错误;8.在如图所示的平行板电容器中,电场强度E 和磁感应强度B 相互垂直,一带正电的粒子q 以速度v 沿着图中所示的虚线穿过两板间的空间而不偏转(忽略重力影响)。
高中物理奥林匹克竞赛专题——磁场部分精选题(有详细解答)
![高中物理奥林匹克竞赛专题——磁场部分精选题(有详细解答)](https://img.taocdn.com/s3/m/80502a1d192e45361066f5b2.png)
电流与磁场、电磁感应、自感互感、磁场能量一、选择题1.如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的 (A )12L H dl I =⎰(B )2L H dl I =⎰(C )3L H dl I =-⎰(D )4L H dl I =-⎰分析:选D ,根据安培环路定理LB dl I μ=∑⎰,当电论。
2.如图,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线。
外磁场垂直水平面向上。
当外力使ab 向右平移时,cd(A )不动。
(B )转动(C )向左移动(D )向右移动 分析:选D ,根据楞次定律即判定。
3. A,B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动,A 电子的速率是B 电子速率的两倍,设A R ,B R 分别为A 电子与B 电子的轨道半径,A T ,B T 分别为它们各自的周期,则(A ):2,:2AB A B R R T T == (B )1:,:12A B A B R RT T ==(C )1:1,:2A B A B R R T T == (D ):2,:1A B A B R R T T ==分析:根据公式2,mv mR T eB eBπ==,即可得到答案,选D 4.真空中一根无限长直细导线上通电流I ,则距导线垂直距离拉为a 的空间某点处的磁能密度为(A )2001()22I aμμπ (B )2001()22I a μμπ (C )2012()2a I πμ (D )2001()22I a μμ 分析:212m B w μ=,而02IBaμπ=。
代入可得答案B 5.如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将 (A ) 向着长直导线平移(B )离开长直导线平移 (C)转动 (D)不动 分析:利用安培力的方向判定,选A6.如图所示,螺线管内轴上放入一小磁针,当电键K 闭合时,小磁针的N (A)向外转90(B)向里转90(C)保持图示位置不动(D)旋转180。
高中物理综合训练题(磁场)有答案
![高中物理综合训练题(磁场)有答案](https://img.taocdn.com/s3/m/9d2dcb7627284b73f2425015.png)
高中物理综合训练题(磁场)一、选择题1、空间存在方向垂直于纸面向里的匀强磁场,图1中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O 点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力.下列说法正确的是( BD ) A .入射速度不同的粒子在磁场中的运动时间一定不同 B .入射速度相同的粒子在磁场中的运动轨迹一定相同 C .在磁场中运动时间相同的粒子,其运动轨迹一定相同 D .在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大【解析】 由于粒子比荷相同,由R =m vqB 可知速度相同的粒子轨迹半径相同,运动轨迹也必相同,B 正确;对于入射速度不同的粒子在磁场中可能的运动轨迹如图所示,由图可知,粒子的轨迹直径不超过磁场边界一半时转过的圆心角都相同,运动时间都为半个周期,而由T =2πmqB 知所有粒子在磁场运动周期都相同,故A 、C 皆错误;再由t =θ2πT =θmqB可知D 正确。
2、如图2所示,分布在半径为r 的圆形区域内的匀强磁场,磁感应强度为B ,方向垂直纸面向里.电量为q 、质量为m 的带正电的粒子从磁场边缘A 点沿圆的半径AO 方向射入磁场,离开磁场时速度方向偏转了60°.由此可知( BD )A .粒子进入磁场后必将在AO 下方离开磁场区域B .带电粒子在匀强磁场中做匀速圆周运动的半径为3rC .带电粒子在磁场中运动的时间为其周期的13D .若仅改变粒子的带电性质,则粒子离开磁场时的速度方向依旧将偏转60°【解析】 粒子带正电、故沿AO 方向射入磁场后将向上偏转,A 错误;带电粒子在匀强磁场中做匀速圆周运动如图所示,由几何关系可得其半径为R =3r ,B 正确;由于带电粒子离开磁场时速度方向偏转了60°,可得其圆周运动的圆心角也为60°,故在磁场中运动的时间为其周期的16,C 错误;若仅改变粒子的带电性质,则粒子在磁场中的偏转方向将发生改变,但对其他条件没有影响,D 正确.图1图23、如图3所示,在xOy 平面内,匀强电场的方向沿x 轴正向,匀强磁场的方向垂直于纸面向里.一电子在xOy 平面内运动时,速度方向保持不变.则电子的运动方向沿( C ) A .x 轴正向 B .x 轴负向 C .y 轴正向D .y 轴负向【解析】 速度方向不变,则合外力为零,对电子受力分析如图所示,根据左手定则,判断电子的运动方向为沿y 轴正向.4、如图4所示,粗糙的足够长的竖直木杆上套有一个带电的小球,整个装置处在由水平匀强电场和垂直纸面向外的匀强磁场组成的足够大的复合场中,小球由静止开始下滑,在整个运动过程中小球的v -t 图象如下图所示,其中正确的是()【解析】 对带电小球进行受力分析如图所示,刚开始速度v 比较小,F 洛=q v B 比较小,F >F 洛,G -F f =ma ,即ma =G -μ(F -q v B ),随着速度v 的不断增大,a 也不断增大.当F =F 洛时,a 最大,为重力加速度g .再随着速度v 的不断增大,F <F 洛即ma =G -μ(q v B -F ),加速度a 不断减小,当a 减到零时,G =F f ,再往后做匀速运动.5、如图5所示,空间某区域中有一匀强磁场,磁感应强度方向水平,且垂直于纸面向里,磁场上边界b 和下边界d 水平.在竖直面内有一矩形金属线圈,线圈上下边的距离很短,下边水平.线圈从水平面a 开始下落.已知磁场上下边界之间的距离大于a 、b 之间的距离.若线圈下边刚通过水平面b 、c (位于磁场中)和d 时,线圈所受到的磁场力的大小分别为F b 、F c 和F d ,则( ) A .F d >F c >F b B .F c <F d <F b C .F c >F b >F dD .F c <F b <F d【解析】 线圈自由下落,到b 点受安培力,线圈全部进入磁场,无感应电流,则线圈不受安培力作用,线圈继续加速,到d 点出磁场时受到安培力作用,由F =B 2L 2v R知,安培力和线圈的速度成正比,D 项对.二、计算题6、如图6所示,在坐标系xOy 中,y 轴左方有垂直于纸面向外的匀强磁场,y 轴右方没有磁场,在坐标为(-d,0)的A 处放一粒子源,向各方向放出质量为m ,电荷量为+q ,速度为v 的粒子流.要使粒子恰好不能打到y 轴右方,磁感应强度B 0应为多大?【解析】 (1)要使带电粒子恰好不能打到y 轴右方,则其在磁场中运动半径为r 0=d2由q v B 0=m v 2r 0,解得B 0=2m vqd .图3图4图57、如图7所示,电源电动势E 0=15 V ,内阻r 0=1 Ω,电阻R 1=30 Ω,R 2=60 Ω.间距d =0.2 m 的两平行金属板水平放置,板间分布有垂直于纸面向里、磁感应强度B =1 T 的匀强磁场.闭合开关S ,板间电场视为匀强电场,将一带正电的小球以初速度v =0.1 m/s 沿两板间中线水平射入板间.设滑动变阻器接入电路的阻值为R x ,忽略空气对小球的作用,取g =10 m/s 2. (1)当R x =29 Ω时,电阻R 2消耗的电功率是多大?(2)若小球进入板间做匀速圆周运动并与板相碰,碰时速度与初速度的夹角 为60°,则R x 是多少?【解析】 (1)设R 1和R 2的并联电阻为R ,有:R =R 1R 2R 1+R 2①R 2两端的电压为:U =E 0Rr 0+R +R x ②R 2消耗的电功率为:P =U 2R 2③当R x =29 Ω时,联立①②③式,代入数据,解得: P =0.6 W .④(2)设小球质量为m ,电荷量为q ,小球做匀速圆周运动时,有: qE =mg ⑤E =U d⑥设小球做圆周运动的半径为r ,有:q v B =m v 2r⑦由几何关系有:r =d ⑧联立①②⑤⑥⑦⑧式,代入数据,解得: R x =54 Ω.⑨8、如图8甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图8乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),试求: (1)当t =1.5 s 时,重力对金属棒ab 做功的功率;(2)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量; (3)磁感应强度B 的大小。
高考物理带电粒子在磁场中的运动题20套(带答案)含解析
![高考物理带电粒子在磁场中的运动题20套(带答案)含解析](https://img.taocdn.com/s3/m/bbefe91233687e21af45a9f0.png)
高考物理带电粒子在磁场中的运动题20套(带答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.3.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。
人教版 高中物理 选修1-1 第2章 磁场 课时同步练习习题(含答案解析)
![人教版 高中物理 选修1-1 第2章 磁场 课时同步练习习题(含答案解析)](https://img.taocdn.com/s3/m/7ad74c4a650e52ea551898e9.png)
人教版高中物理选修1-1 第2章磁场课时同步练习习题(含答案解析)第一节指南针与远洋航海第二节电流的磁场典型例题例1、把一条导线(南北方向)平行地放在小磁针的上方,给导线中通入电流。
问将发生什么现象?解析:当导线中通入电流,导线下方的小磁针发生转动。
除磁体周围有磁场外,丹麦物理学家奥斯特首先发现电流周围也存在着磁场。
导线下方的小磁针发生转动,说明电流周围的周围也有磁场。
例2、如图所示,在通有恒定电流的螺线管内有一点P,过P点的磁感线方向一定是:(CD)A.从螺线管的N极指向S极;B.放在P点的小磁针S极受力的方向;C.静止在P点的小磁针N极指的方向;D.在P点放一通电小线圈,磁感线一定看不起于小线圈平面.解析:由右手螺旋定则判定出螺线管磁场左S右N,在其内部磁感线由S→N,则:P点的磁感线是由S 极指向N极的,是静止在P点的小磁针N极指的方向,在P点放一小通电线圈,由环形电流安培定则知磁感线一定垂直于小线圈平面.例3、一个轻质弹簧,上端悬挂,下端与水银槽中的水银面接触,将上述装置安在电路中,如图所示,当闭合开关后会出现什么现象?如何解释?解析:小灯炮忽明忽暗.当开关闭合后,由于水银导电,所以轻质弹簧上有电流通过,每一匝线圈都可以看成一个单独的螺线管,上端为N极,下端为S极,相邻部分为异名磁极,各线圈间相互吸引.因为弹簧上端固定,弹簧长度缩短,A点离开水银面,电路断开,线圈失去磁性,弹簧恢复原长,又和水银面接触,于是又重复上述过程.这样由于弹簧不断上下振动,使A点时而接触水银面,时而离开水银面,所以看到灯泡忽明忽暗基础练习一、选择题1、首先发现电流磁效应的科学家是( B )A.安培B.奥斯特C.库仑D.麦克斯韦2、正在通电的条形电磁铁的铁心突然断成两截,则两截铁心将( A )A.互相吸引. B.互相排斥. C.不发生相互作用. D.无法判断.3、如图,一束带电粒子沿着水平方向平行地飞过磁针上方时,磁针的S极向纸内偏转,这一束带电粒子可能是( BC )A.向右飞行的正离子. B.向左飞行的正离子.C.向右飞行的负离子. D.向左飞行的负离子.4、如图两个同样的导线环同轴平行悬挂,相隔一小段距离,当同时给两导线环通以同向电流时,两导线环将:(A)A.吸引. B.排斥.C.保持静止. D.边吸引边转动.5、如图所示,甲、乙两地间用两条导线连一个直流电路,将小磁针放在两导线之间时,N极向读者偏转,接在A与B间的电压表向B接线柱一侧偏转(此电压表指针总偏向电流流进时的一侧),由此可知( C )A.甲处可能是负载也可能是电源B.甲处一定是电源,乙处一定是负载C.甲处一定是负载,乙处一定是电源D.乙处可能是负载也可能是电源6、关于磁场和磁力线的描述,下列说法中正确的是(AB)A.磁感线可以形象地描述各点磁场的方向.B.磁极之间的相互作用是通过磁场发生的.C.磁感线是磁场中客观存在的线.D.磁感线总是从磁铁的北极出发,到南极终止二、填空题1、如图所示,环形导线的A、B处另用导线与直导线ab相连,图中标出了环形电流磁场的方向,则C 和D接电源正极的是______,放在ab下方的小磁针的________极转向纸外.(c端为电源正极,d端为电源负极)2、如图所示所在通电螺丝管内部中间的小磁针,静止时N极指向右端,则电源的c端为________极,螺线管的a端为_________极.(正,S)3、如图所示,可以自由转动的小磁针静止不动时,靠近螺线管的是小磁针_________极,若将小磁针放到该通电螺线管内部,小磁针指向与图示位置时的指向相___________(填“同”或“反”).(N,同)三、计算题1、有两根外形基本相同的铁条,已知其中一根是永磁体,另一根是普通软铁,单凭视觉是无法将它们区分开的.若不用其他任何器材,如何才能把它们区分开来?(用手拿一根铁条,用它的一端接近另一根铁条的中部,如果吸引力较强,则手拿的一根为永久磁体,如吸力较弱则手拿的一根为软铁棒.)2、氢原子的核外电子绕原子核按顺时针方向做圆周运动时,设想在原子核处放一小磁针,则小磁针N极指向何方?(垂直纸面向外)3、在下面如图所示的各图中画出导线中通电电流方向或通电导线周围磁感线的方向.其中(a)、(b)为平面图,(c)、(d)为立体图.(答案:)能力提升一、选择题1、如图所示,A为电磁铁,C为胶木秤盘,A和C(包括支架)的总质量为M,B为铁片,质量为m,整个装置用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻绳拉力F 的大小为:(D )A.F =mgB.mg <F <(M+m )gC.F =(M +m )gD.F >(M +m )g2、如图所示:在一个平面内有六根绝缘的通电导线,电流强度大小相同,1、2、3、4为面积相等的正方形区域,其中指向纸面内的磁场最强的区域是(D )A.1区B.2区C.3区D.4区3、如图16-1-10所示,弹簧秤下挂一条形磁铁,其中条形磁铁N 极的一部分位于未 通电的螺线管内,则下列说法正确的是(AC )A.若将a 接电源正极,b 接负极,弹簧秤的示数将减小B.若将a 接电源正极,b 接负极,弹簧秤的示数将增大C.若将b 接电源正极,a 接负极,弹簧秤的示数将增大D.若将b 接电源正极,a 接负极,弹簧秤的示数将减小二、填空题1、通电螺线管的极性跟螺线管中的________有关,它们之间的关系可以用________来判定.内容是:用________手握住螺线管,让________弯向螺线管中电流的方向,则所指的那端就是螺线管的北极.(电流方向 安培定则 右 四指 大拇指)三、计算题1、在条形或蹄形铁芯上绕有线圈,根据如图所示小磁针指向在图中画出线圈的绕线方向.答案:第三节 磁场对通电导线的作用 典型例题例1、如图所示,三根通电直导线垂直纸面放置,位于b 、c 、d 处,通电电流大小相同,方向如图。
高中物理电磁感应基础练习题(含答案)
![高中物理电磁感应基础练习题(含答案)](https://img.taocdn.com/s3/m/7ffa096ecdbff121dd36a32d7375a417866fc1f6.png)
高中物理电磁感应基础练习题(含答案)一、单选题1.如图所示,导体ab是金属线框的一个可动边,ab边长L=0.4m,磁场的磁感应强度B=0.1T,当ab边以速度v=5m/s向右匀速移动时,下列判断正确的是()A.感应电流的方向由a到b,感应电动势的大小为0.2VB.感应电流的方向由a到b,感应电动势的大小为0.4VC.感应电流的方向由b到a,感应电动势的大小为0.2VD.感应电流的方向由b到a,感应电动势的大小为0.4V2.某同学用粗细均匀的金属丝弯成如图所示的图形,两个正方形的边长均为L,A、B t∆223.如图所示,在水平桌面上有一金属圆环,在它圆心正上方有一条形磁铁(极性不明),当条形磁铁下落时,可以判定()A.环中将产生俯视顺时针的感应电流B.环对桌面的压力将增大C.环有面积增大的趋势D.磁铁将受到竖直向下的电磁作用力4.如图所示,闭合线圈abcd 在磁场中运动到如图所示位置时,bc 边的电流方向由b →c ,此线圈的运动情况是( )A .向右进入磁场B .向左移出磁场C .向上移动D .向下移动5.如图所示,通电导线旁边同一平面有矩形线圈abcd ,则( )A .当线圈向导线靠近时,其中感应电流方向是a →b →c →dB .若线圈竖直向下平动,有感应电流产生C .若线圈向右平动,其中感应电流方向是a →b →c →dD .当线圈以导线边为轴转动时,其中感应电流方向是a →b →c →d6.如图所示,在磁感应强度大小为B 、方向垂直纸面向里的匀强磁场中,长为L 的金属杆MN 在平行金属导轨上以速度v 向右匀速滑动。
金属导轨电阻不计,金属杆与导轨的夹角为θ,电阻为2R ,ab 间电阻为R ,M 、N 两点间电势差为U ,则M 、N 两点电势BLv7.如图所示,先后以速度1v 和2v 匀速把一矩形线圈水平拉出有界匀强磁场区域,122v v =,则在先后两种情况下( )A .线圈中的感应电动势之比为21:1:2E E =B .线圈中的感应电流之比为12:1:2I I =C .线圈中产生的焦耳热之比12:2:1Q Q =D .通过线圈某截面的电荷量之比122:1q q =:8.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行。
高中物理题型分类汇总含详细答案-磁场
![高中物理题型分类汇总含详细答案-磁场](https://img.taocdn.com/s3/m/fa465837c381e53a580216fc700abb68a982ad13.png)
高中物理题型分类汇总含详细答案-磁场共:15题时间:50分钟一、单选题1.如图所示,M、N、P和Q是以MN为直径的半圆弧上的四点,O为半圆弧的圆心,∠MOQ =60°,∠NOP=60°,在N、Q处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O点的磁感应强度大小为B1,若将Q处长直导线移至P 处,则O点的磁感应强度大小为B2,那么B1与B2之比为()A.1:1B.1:2C.D.2.有一小段通电导线,长为1cm,电流强度为5A,把它置入某磁场中某点,受到的磁场力为0.05N,则该点的磁感应强度B一定是()A.B=1TB.B≥1TC.B≤1TD.以上情况都有可能3.如图,固定在光滑半圆轨道上的导体棒M通有垂直纸面向里的电流(较大),导体棒N通有垂直纸面向外的电流,M在N处产生的磁场磁感应强度为B1,N刚好静止,此时M、N关于过O点的竖直轴对称,且∠MON=60°;若调整M的电流大小和位置并固定,当N再次平衡时,∠MON=120°,且M、N仍关于过O点的竖直轴对称,则调整后M在N处产生的磁场磁感应强度B2与B1的比值为()A.0.5B.2C.3D.4.如图所示,在带负电荷的橡胶圆盘附近悬挂一个小磁针。
现驱动圆盘绕中心轴高速旋转,小磁针发生偏转。
下列说法正确的是()A.偏转原因是圆盘周围存在电场B.偏转原因是圆盘周围产生了磁场C.仅改变圆盘的转动方向,偏转方向不变D.仅改变圆盘所带电荷的电性,偏转方向不变5.如图甲所示,线圈abcd固定于匀强磁场中,磁场方向垂直纸面向外,磁感应强度随时间的变化情况如图乙所示。
下列所示关于ab边所受安培力随时间变化的F-t图象中(规定安培力方向向左为正),可能正确的是()A. B. C. D.6.如图甲所示,间距为L的光滑导轨水平放置在竖直向下的匀强磁场中,磁感应强度为B,轨道左侧连接一定值电阻R。
水平外力F平行于导轨,随时间t按图乙所示变化,导体棒在F作用下沿导轨运动,始终垂直于导轨,在0~t0时间内,从静止开始做匀加速直线运动。
高中物理--磁场 测试题(含答案)
![高中物理--磁场 测试题(含答案)](https://img.taocdn.com/s3/m/0b3e0bc531b765ce050814ee.png)
高中物理--磁场 测试题(含答案)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题(本题共12小题,每小题4分.在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分)1.下列说法中不正确的是( )A .磁体在空间能产生磁场,磁场使磁体间不必接触便能相互作用B .在磁场中的某一点,小磁针仅在磁场力作用下静止时北极所指的方向,就是那一点的磁场方向C .当两个磁体的同名磁极相互靠近时,两条磁感线有可能相交D .磁体周围的磁感线都是闭合的曲线2.磁场中某区域的磁感线如图所示,则( )A .a 、b 两处的磁感应强度的大小不等,B a >B b B .a 、b 两处的磁感应强度的大小不等,B a <B bC .同一通电导线放在a 处受力一定比放在b 处受力大D .同一通电导线放在a 处受力一定比放在b 处受力小3.在匀强磁场中某处P 放一个长度为L =20 cm,通电电流I =0.5 A 的直导线,测得它受到的最大磁场力F =1.0 N,其方向竖直向上.现将该通电导线从磁场中撤走,则P 处的磁感应强度为( )A .零B .10 T,方向竖直向上C .0.1 T,方向竖直向下D .10 T,方向肯定不沿竖直向上的方向4.图中a 、b 、c 为三根与纸面重直的固定长直导线,其截面位于等边三角形的三个顶点上,沿水平方向,导线中均通有大小相等的电流,方向如图所示,O 点为三角形的中心(O到三个顶点的距离相等),则( )A .O 点的磁感应强度为零B .O 点的磁场方向垂直Oc 向上C .导线a 受到的安培力方向竖直向上D .导线b 受到的安培力方向沿bc 连线方向指向c5.一个带电粒子在磁场力的作用下做匀速圆周运动,要想确定该带电粒子的比荷,则只需要知道( )A .运动速度v 和磁感应强度B B .磁感应强度B 和运动周期TC .轨迹半径R 和运动速度vD .轨迹半径R 和磁感应强度B 6.如图所示,匀强磁场的磁感应强度为B ,有一矩形线圈abcd ,且ab =L 1,ad =L 2,通有逆时针方向的电流I ,让它绕cd 边转过某一角度时,使线圈平面与磁场夹角为θ,则( )A .穿过线圈的磁通量为Φ=BL 1L 2sin θB .穿过线圈的磁通量为Φ=BL 1L 2cos θC .cd 边受到的安培力为F =BIL 1sin θD .ab 边受到的安培力为F =BIL 1cos θ此卷只装订不密封7.如图所示,空间存在水平向里、磁感应强度大小为B的匀强磁场,磁场内有一绝缘的足够长的直杆,它与水平面的倾角为θ,一带电荷量为-q、质量为m的带负电小球套在直杆上,从A点由静止沿杆下滑,小球与杆之间的动摩擦因数μ<tan θ.则在下图中小球运动过程中的速度-时间图像可能是()8.如图所示,带电粒子以初速度v0从a点进入匀强磁场,运动过程中经过b点,Oa=Ob.若撤去磁场加一个与y轴平行的匀强电场,带电粒子仍以速度v0从a点进入电场,仍能通过b 点,则电场强度E和磁感应强度B的比值为()A.v0B .1 v0C.2v0D.v0 29.如图所示,一根通电直导线垂直放在磁感应强度为1 T的匀强磁场中,以导线截面的中心为圆心,半径为r的圆周上有a、b、c、d四个点,已知a点的实际磁感应强度为零,则下列叙述正确的是( )A.直导线中的电流方向垂直纸面向里B.b点的实际磁感应强度为 2 T,方向斜向上,与B的夹角为45°C.c点的实际磁感应强度也为零D.d点的实际磁感应强度跟b点的相同10.为了测量某化工厂的污水排放量,技术人员在该厂的排污管末端安装了如图所示的流量计,该装置由绝缘材料制成,长、宽、高分别为a、b、c,左右两端开口,在垂直于上、下底面方向加磁感应强度为B的匀强磁场,在前、后两个内侧固定有金属板作为电极,污水充满管口从左向右流经该装置时,电压表将显示两个电极间的电压U.若用Q表示污水流量(单位时间内排出的污水体积),下列说法中正确的是()A.若污水中正离子较多,则前表面比后表面电势高B.前表面的电势一定低于后表面的电势,与哪种离子多少无关C.污水中离子浓度越高,电压表的示数将越大D.污水流量Q与U成正比,与a、b无关11.空间存在方向垂直于纸面向里的匀强磁场,如图所示的正方形虚线为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其荷质比相同,且都包含不同速率的粒子.不计重力.下列说法正确的是()A.入射速度不同的粒子在磁场中的运动时间一定不同B.入射速度相同的粒子在磁场中的运动轨迹一定相同C.在磁场中运动时间相同的粒子,其运动轨迹一定相同D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大12.如图所示,一个绝缘且内壁光滑的环形细圆管,固定于竖直平面内,环的半径为R(比细管的内径大得多),在圆管内的最低点有一个直径略小于细管内径的带正电小球处于静止状态,小球的质量为m,带电荷量为q,重力加速度为g.空间存在一磁感应强度大小未知(不为零),方向垂直于环形细圆管所在平面且向里的匀强磁场.某时刻,给小球一方向水平向右、大小为5v gR,则以下判断正确的是( )A.无论磁感应强度大小如何,获得初速度后的瞬间,小球在最低点一定受到管壁的弹力作用B.无论磁感应强度大小如何,小球一定能到达环形细管的最高点,且小球在最高点一定受到管壁的弹力作用C.无论磁感应强度大小如何,小球一定能到达环形细管的最高点,且小球到达最高点时的速度大小都相同D.小球在从环形细圆管的最低点运动到所能到达的最高点的过程中,机械能不守恒二、非选择题(本题共6小题,共52分.把答案填在题中的横线上或按题目要求作答.解答题应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)6.(4分)劳伦斯制成了世界上第一台回旋加速器,其原理如图所示.这台加速器由两个铜质D形盒构成,其间留有空隙.若D形盒的半径为R,所加交变电压的频率为f,要加速质量为m,电荷量+q的粒子,则所加磁场的磁感应强度B=_________,带电粒子离开加速器时能获得的最大动能E k=__________.14.(7分)霍尔效应是电磁基本现象之一,近期我国科学家在该领域的实验研究上取得了突破性进展.如图甲所示,在一矩形半导体薄片的P、Q间通入电流I,同时外加与薄片垂直的磁场B,在M、N间出现电压U H,这个现象称为霍尔效应,U H称为霍尔电压,且满足U H=IBkd,式中d为薄片的厚度,k为霍尔系数.某同学通过实验来测定该半导体薄片的霍尔系数.(1)若该半导体材料是空穴(可视为带正电粒子)导电,电流与磁场方向如图甲所示,该同学用电压表测量U H时,应将电压表的“+”接线柱与______(填“M”或“N”)端通过导线相连.(2)已知薄片厚度d=0.40 mm,该同学保持磁感应强度B=0.10 T不变,改变电流I的大小,测量相应的U H值,记录数据如下表所示.根据表中数据在图给的表格中画出U H-I图线,利用图线求出该材料的霍尔系数为______×10-3 V·m·A-1·T-1.(保留2位有效数字)I(×10-3A)3.06.09.012.015.018.0U H(×10-3V)1.11.93.44.56.26.8(3)值,可以减小霍尔系数的测量误差,为此该同学设计了如图乙所示的测量电路,S1、S2均为单刀双掷开关,虚线框内为半导体薄片(未画出).为使电流从Q端流入,P端流出,应将S1掷向________(填“a”或“b”),S2掷向________(填“c”或“d”).为了保证测量安全,该同学改进了测量电路,将一合适的定值电阻串联在电路中.在保持其它连接不变的情况下,该定值电阻应串联在相邻器件________和________(填器件代号)之间.15.(6分)如图所示,在x轴上方有匀强磁场B,一个质量为m,带电荷量为-q的粒子,以速度v从O点射入磁场,角θ已知,粒子重力不计,求:(1)粒子在磁场中运动的时间;(2)粒子离开磁场的位置与O点间的距离.16.(9分)水平面上有电阻不计的U形导轨NMPQ,它们之间的宽度为L,M和P之间接入电动势为E的电源(不计内阻).现垂直于导轨搁一根质量为m、电阻为R的金属棒ab,并加一个范围较大的匀强磁场,磁感应强度大小为B,方向与水平面夹角为θ且指向右上方,如图所示,问:(1)当ab棒静止时,受到的支持力和摩擦力各为多少?(2)若B的大小和方向均能改变,则要使ab棒所受支持力为零,B的大小至少为多少?此时B的方向如何?17.(10分)如图所示,两块水平放置、相距为d的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断地喷出质量均为m、水平速度均为v0、带相等电荷量的墨滴.调节电源电压至U,墨滴在电场区域恰能水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M点.(1)判断墨滴所带电荷的种类,并求其电荷量;(2)求磁感应强度B的值;(3)现保持喷口方向不变,使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板M 点,应将磁感应强度调至B′,则B′的大小为多少?18.(16分)空间存在两个垂直于Oxy平面的匀强磁场,y轴为两磁场的边界,磁感应强度分别为2B0、3B0.甲、乙两种比荷不同的粒子同时从原点O沿x轴正向射入磁场,速度均为v.甲第1次、第2次经过y轴的位置分别为P、Q,其轨迹如图所示.甲经过Q时,乙也恰好同时经过该点.已知甲的质量为m,电荷量为q.不考虑粒子间的相互作用和重力影响.求:(1)Q到O的距离d;(2)甲两次经过P点的时间间隔Δt;(3)乙的比荷qm''可能的最小值.物理答案一、选择题(本题共12小题,每小题4分.在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分)1.【答案】C【解析】磁体间的作用力是通过磁场传递的,可以不用接触便产生相互作用,A 项正确;小磁针仅在磁场力作用下静止时北极的指向是北极受力的方向,就是那一点的磁场方向,B 项正确;磁感线是闭合的曲线且不能相交,C 项错误,D 项正确.2.【答案】B【解析】a 处的磁感线比b 处疏,则a 点磁感强度比b 点小,所以A 错误,B 正确;当将一小段通电导线放入磁场时,磁场力大小和磁场与电流的角度有关,当通电导线垂直磁场时,受到的磁场力最大,平行时为零.因为不知道电流如何放置,所以C 、D 错误.3.【答案】D【解析】导体受到的是最大磁场力F =1.0 N,可判知导体与磁场方向垂直,由B =FIl ,解得B =10 T.由于磁场力的方向是竖直向上的,故可判定磁场的方向一定不会竖直向上,因为二者是互相垂直的关系,方向可有多种情况.撤走导线后,P 处的磁感应强度不变,仍为10 T.故正确答案为D.4.【答案】B【解析】根据右手螺旋定则,电流a 在O 产生的磁场平行于bc 向右,b 电流在O 产生的磁场平行ac 指向左上方,电流c 在O 产生的磁场平行ab 指向右上方,由于三导线电流相同,到O 点的距离相同,根据平行四边形定则,则O 点合场强的方向垂直Oc 向上,故A 错误,B 正确;根据左手定则,结合矢量合成法则,导线a 受到的安培力方向水平向左,而导线b 受到的安培力方向平行于ac 斜向左上方,故C 、D 错误.5.【答案】B【解析】带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得qvB =m v 2r ,解得T =2πr v =2πm qB ,q m =2πBT ,由此可知,求比荷需要知道粒子的线速度、磁感应强度、轨道半径,或磁感应强度、周期,故ACD 错误,B 正确.6.【答案】A【解析】在图示位置,穿过线圈的磁通量为零,当转过θ时,此时穿过线圈的磁通量为Φ=BL 1L 2sin θ,故A 正确,B 错误;由于cd 边始终和磁场垂直,故受到的安培力F =BIL 1,故C 错误;由于ab 边始终和磁场垂直,所以受到的安培力F =BIL 1,故D 错误.7.【答案】C【解析】带电小球静止时受到竖直向下的重力G 、垂直斜面向上的支持力N 和沿斜面向上的摩擦力f ,小球下滑后,再受到一个垂直斜面向上的洛伦兹力F ,沿斜面方向有:mg sin θ-μ(mg cos θ-F )=ma ,在垂直于斜面方向有:N +F =mg cos θ,由于球加速运动,据F =qvB ,F 增大而支持力N 减小,据f =μN ,摩擦力减小,导致加速度a 增加;当速度v 增到某个值时,mg cos θ-F =0,有mg sin θ=ma ,此时加速度最大;此后,F >mg cos θ,支持力N 反向,且速度继续增大,支持力N 增大,摩擦力f 也随着增大,最后出现mg sin θ=f ,之后小球匀速下滑;所以只有C 选项正确.8.【答案】C【解析】设Oa =Ob =d ,因带电粒子在匀强磁场中做匀速圆周运动,所以圆周运动的半径正好等于d 即d =mv 0qB ,得B =mv 0qd .如果换成匀强电场,带电粒子做类平抛运动,那么有d =qE 2m (d v 0)2,得E =2mv 02qd ,所以EB =2v 0.选项C 正确.9.【答案】AB【解析】由a 点合磁感应强度为零知,该电流在a 点的磁感应强度方向向左,大小为1 T,由安培定则知A 项对,另由平行四边形定则知B 项也正确.10.【答案】BD【解析】由左手定则可知,正离子受洛伦兹力向后表面偏,负离子向前表面偏,前表面的电势一定低于后表面的电势,流量Q =V t =vbctt =vbc ,其中v 为离子定向移动的速度,当前后表面电压一定时,离子不再偏转,所受洛伦兹力和电场力达到平衡,即qvB =Ub q ,得v =U bB ,则流量Q =U Bb bc =U B c ,故Q 与U 成正比,与a 、b 无关.11.【答案】BD【解析】由于粒子荷质比相同,由r =mvqB 可知速度相同的粒子运动半径相同,运动轨迹也必相同,B 正确;对于入射速度不同的粒子在磁场中可能的运动轨迹如图所示,由图可知,粒子的轨迹直径不超过磁场边界一半时转过的圆心角都相同,运动时间都为半个周期,而由T =2πm qB 知所有粒子在磁场运动周期都相同,A 、C 皆错误;再由t =θ2πT =θmqB 可知D 正确.12.【答案】BC【解析】由左手定则可判定小球受到的洛伦兹力始终指向圆心,假设小球受到管道的支持力N ,小球获得05v gR =的初速度后,由圆周运动可得qv 0B +N -mg =m v 02R ,得N =mg +m v 02R -qv 0B ,可见,只要B 足够大,满足mg +m v 02R =qv 0B ,支持力N 就为零,故A 错误;由于洛伦兹力不做功,只有重力对小球做功,故小球能不能到最高点与磁感应强度大小无关,从最低点到最高抵过程中,由动能定理得-mg ‧2R =12mv 2-12mv 02,解得v =gR ,可知小球能到最高点小球受到的向心力等于mg ,故此时小球除受到重力,向下的洛伦兹力之外,一定还有轨道向上的支持力大小等于洛伦兹力,故BC 正确;对小球的运动过程中受到的洛伦兹力和支持力不做功,只有重力做功,故机械能守恒,故D 错误.二、非选择题(本题共6小题,共52分.把答案填在题中的横线上或按题目要求作答.解答题应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)6.(4分) 【答案】2πfmq2π2mf 2R 2 【解析】粒子在加速器中运动的频率等于所加交变电压的频率为 f ,则12πmT f qB==,解得所加磁场的磁感应强度2πfmB q=;当粒子的运动半径等于D 型盒的半径R 时,粒子的动能最大,此时2mv qvB m R=,且E k =12mv m 2,解得E k =2π2mf 2R 2.14.(7分)【答案】(1)M (2)如图所示 1.5(1.4~1.6) (3)b c S 1(或S 2) E 【解析】(1)根据左手定则得,正电荷向M 端偏转,所以应将电压表的“+”接线柱与M 端通过导线相连.(2) 如图所示,根据U H =IB k d 知,图线的斜率为30.10.3750.410B k k d -==⨯,解得霍尔系数k =1.5×10-3V ‧m ‧A -1‧T -1.(3)为使电流从Q 端流入,P 端流出,应将S 1掷向b ,S 2掷向c ,为了保护电路,定值电阻应串联在S 1和E (或S 2和E )之间.15.(6分)【解析】(1)粒子在磁场中运动的轨迹如图所示,有几何关系可知:圆心角为2π-2θ 又T =2πmqB 所以运动时间t =2π-2θ2πT =2(π)mqBθ-. (2)粒子在磁场中运动的半径r =mvqB则离开磁场的位置与入射点的距离s =2r sin θ=2mv sin θqB . 16.(9分)【解析】从b 向a 看侧视图如图所示.(1)水平方向:f =F 安sin θ 竖直方向:N +F 安cos θ=mg 又F 安=BIL =B ER L 联立解得:N =mg -BLE cos θR ,f =BLE sin θR. (2)要使ab 棒受支持力为零,且让磁场最小,可知安培力竖直向上,则有F 安′=mg B min =mgREL ,根据左手定则判定磁场方向水平向右. 17.(10分)【解析】(1)墨滴在电场区域做匀速直线运动,有:q Ud =mg 解得:q =mgdU由于电场方向向下,电荷所受电场力向上,可知墨滴带负电荷.(2)墨滴垂直进入电场、磁场共存区域后,重力仍与电场力平衡,合力等于洛伦兹力,墨滴做匀速圆周运动,有:qv 0B =m v 20R考虑墨滴进入电场、磁场共存区域和下板的几何关系,可知墨滴在该区域恰完成四分之一圆周运动,则半径R =d 得B =v 0U gd 2.(3)根据题设,墨滴运动轨迹如图所示,设墨滴做圆周运动的半径为R ′,有:qv 0B ′=m v 20R ′由图可得:R ′2=d 2+(R ′-d2)2 联立解得:B ′=4v 0U5gd 2. 18.(16分)【解析】(1)带电粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由qvB =m v 2R 得:102mv R qB =,203mvR qB = 且120223mvd R R qB =-=. (2)甲粒子先后在两磁场中做匀速圆周运动,设运动时间分别为t 1、t 2,由T =2πmqB 得10π2m T qB =,20π3mT qB = 且Δt =2t 1+3t 2解得:02πmt qB ∆=. (3)由洛伦兹力提供向心力,由qvB =m v 2R 得:102m v R q B ''=',203m vR q B ''=' d =2R 1′-R 2′若乙粒子从第一象限进入第二象限的过程中与甲粒子在Q 点相遇,则: 2R 1′+nd′=OQ =d12112()22222T T T T T n '''++=+ 结合以上式子,n 无解.若乙粒子从第二象限进入第一象限的过程中与甲离子在Q 点相遇,则: nd′=OQ1212()2222T T T T n ''+=+ 计算可得q qn m m'='(n =1,2,3……) 由于甲乙粒子比荷不同,则n =2时,乙的比荷q m ''最小,为2q qm m'='.。
高中物理-磁场 练习(含答案)
![高中物理-磁场 练习(含答案)](https://img.taocdn.com/s3/m/d604127589eb172ded63b7e4.png)
高中物理-磁场 练习(含答案)磁场1、如图所示,弹簧测力计下挂一铁球,将弹簧测力计自左向右逐渐移动时,弹簧测力计的示数( )A .不变B .逐渐减小C .先减小后增大D .先增大后减小2、如图所示,一个边长L 、三边电阻相同的正三角形金属框放置在磁感应强度为B 的匀强磁场中,若通以图示方向的电流,电流强度为I,则金属框受到的磁场力为( )A .0B .ILBC .43ILBD .2ILB3、物理学中有许多物理量的定义,可用公式来表示,不同的概念定义的方法不一样,下列四个物理量中,定义法与其他物理量不同的一组是( )A .电场强度E =F qB .导体的电阻R =ρl SC .电容C =Q UD .磁感应强度B =F IL4、如图所示,有界匀强磁场边界线SP ∥MN,速度不同的同种带电粒子从Q 点沿SP 方向同时射入磁场,其中穿过a 点的粒子速度v 1与MN 垂直,穿过b 点的粒子,其速度方向与MN 成60°角,设两粒子从S 到a 、b 所需的时间分别为t 1、t 2,则t 1∶t 2为( )A .1∶3B .4∶3C.1∶1 D.3∶25、(双选)如图所示是磁流体发电机的原理示意图,金属板M、N正对平行放置,且板面垂直于纸面,在两极板之间接有电阻R.在极板间有垂直于纸面向里的匀强磁场.当等离子束(分别带有等量正、负电荷的离子束)从左向右进入极板时,下列说法中正确的是(不计粒子所受重力)()A.N板的电势高于M板的电势B.M板的电势高于N板的电势C.R中有由b向a方向的电流D.R中有由a向b方向的电流6、在如图所示的电路中,电池均相同,当开关S分别置于a、b两处时,导线MM′与NN′之间的安培力的大小分别为f a、f b,可判断这两段导线()A.相互吸引,f a>f b B.相互排斥,f a>f bC.相互吸引,f a<f b D.相互排斥,f a<f b7、(双选)如图所示,可自由转动的小磁针上方有一根长直导线,开始时二者在纸面内平行放置.当导线中通以如图所示电流I时,发现小磁针的N极向里,S极向外,停留在与纸面垂直的位置上.这一现象说明()A.小磁针感知到了电流的磁场B.小磁针处磁场方向垂直纸面向里C.小磁针处磁场方向垂直纸面向外D.若把小磁针移走,该处就没有磁场了8、(多选)一个带正电的小球沿光滑绝缘的水平桌面向右运动,小球离开桌面后进入一水平向里的匀强磁场,已知速度方向垂直于磁场方向,如图所示,小球飞离桌面后落到地板上,设飞行时间为t1,水平射程为x1,着地速度为v1.撤去磁场,其余的条件不变,小球飞行时间为t2,水平射程为x2,着地速度为v2.则下列论述正确的是()A.x1>x2B.t1>t2C.v1和v2大小相等D.v1和v2方向相同9、如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P为磁场边界上的一点.大量相同的带电粒子以相同的速率经过P点,在纸面内沿不同方向射入磁场.若粒子射入速率为v1,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速率为v2,相应的出射点分布在三分之一圆周上.不计重力及带电粒子之间的相互作用.则v2∶v1为()A.3∶2B.2∶1C.3∶1D.3∶ 210、如图所示,条形磁铁放在光滑斜面上,用平行于斜面的轻弹簧拉住而平衡,A为水平放置的直导线的截面,导线中无电流时磁铁对斜面的压力为F N1;当导线中有垂直纸面向外的电流时,磁铁对斜面的压力为F N2,则下列关于磁铁对斜面的压力和弹簧的伸长量的说法中正确的是()A.F N1<F N2,弹簧的伸长量减小B.F N1=F N2,弹簧的伸长量减小C.F N1>F N2,弹簧的伸长量增大D.F N1>F N2,弹簧的伸长量减小11、对磁现象的研究中有一种“磁荷观点”.人们假定,在N极上聚集着正磁荷,在S极上聚集着负磁荷.由此可以将磁现象与电现象类比,引入相似的概念,得出一系列相似的定律.例如磁的库仑定律、磁场强度、磁偶极矩等.在磁荷观点中磁场强度定义为:磁场强度的大小等于点磁荷在该处所受磁场力与点磁荷所带磁荷量的比值,其方向与正磁荷在该处所受磁场力方向相同.若用H表示磁场强度,F表示点磁荷所受磁场力,q m表示磁荷量,则下列关系式正确的是()A.F=Hq m B.H=Fq mC.H=Fq m D.q m=HF12、如图所示,导体杆ab的质量为m,电阻为R,放置在与水平面夹角为θ的倾斜金属导轨上,导轨间距为d,电阻不计,系统处在竖直向上的匀强磁场中,磁感应强度为B,电池内阻不计,问:若导轨光滑,电源电动势E多大才能使导体杆静止在导轨上?13、如图所示,在0≤x≤a、0≤y≤a2范围内有垂直于xOy平面向外的匀强磁场,磁感应强度大小为B.坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xOy平面内,与y轴正方向的夹角分布在0°~90°范围内.已知粒子在磁场中做圆周运动的半径介于a2到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做匀速圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的:(1)速度的大小;(2)速度方向与y轴正方向夹角的正弦.磁场1、如图所示,弹簧测力计下挂一铁球,将弹簧测力计自左向右逐渐移动时,弹簧测力计的示数()A.不变B.逐渐减小C.先减小后增大D.先增大后减小C[磁体上磁极的磁性最强,对铁球的吸引力最大,所以铁球自左向右逐渐移动时,所受磁体的引力先减小后增大,弹簧测力计的示数也随之先减小后增大.]2、如图所示,一个边长L、三边电阻相同的正三角形金属框放置在磁感应强度为B的匀强磁场中,若通以图示方向的电流,电流强度为I,则金属框受到的磁场力为()A.0B.ILBC.43ILB D.2ILBA[安培力公式F=BILsin θ中,L是通电导线的有效长度,是导线在磁场中两端点间的距离.由题图可知,正三角形金属框的有效长度是0,所以导线框受到的安培力为零.故选A.]3、物理学中有许多物理量的定义,可用公式来表示,不同的概念定义的方法不一样,下列四个物理量中,定义法与其他物理量不同的一组是()A .电场强度E =F qB .导体的电阻R =ρl SC .电容C =Q UD .磁感应强度B =F ILB [R =ρl S 是电阻定律,电阻的决定式,其它三个式子都是各量的定义式,故本题选B.]4、如图所示,有界匀强磁场边界线SP ∥MN,速度不同的同种带电粒子从Q 点沿SP 方向同时射入磁场,其中穿过a 点的粒子速度v 1与MN 垂直,穿过b 点的粒子,其速度方向与MN 成60°角,设两粒子从S 到a 、b 所需的时间分别为t 1、t 2,则t 1∶t 2为( )A .1∶3B .4∶3C .1∶1D .3∶2D [画出运动轨迹,过a 点的粒子转过90°,过b 点的粒子转过60°,故选项D 正确.]5、(双选)如图所示是磁流体发电机的原理示意图,金属板M 、N 正对平行放置,且板面垂直于纸面,在两极板之间接有电阻R.在极板间有垂直于纸面向里的匀强磁场.当等离子束(分别带有等量正、负电荷的离子束)从左向右进入极板时,下列说法中正确的是(不计粒子所受重力)( )A .N 板的电势高于M 板的电势B .M 板的电势高于N 板的电势C .R 中有由b 向a 方向的电流D .R 中有由a 向b 方向的电流BD [根据左手定则可知带正电荷的离子向上极板偏转,带负电荷的离子向下极板偏转,则M 板的电势高于N 板的电势.M 板相当于电源的正极,那么R 中有由a 向b 方向的电流.故选BD.]6、在如图所示的电路中,电池均相同,当开关S 分别置于a 、b 两处时,导线MM ′与NN ′之间的安培力的大小分别为f a 、f b ,可判断这两段导线( )A.相互吸引,f a>f b B.相互排斥,f a>f bC.相互吸引,f a<f b D.相互排斥,f a<f bD[当S接a时,电路的电源只用了一节干电池,当S接b时,电路的电源用了两节干电池,此时电路中的电流比S接a时大,所以有f a<f b;两导线MM′、NN′中的电流方向相反,依据安培定则和左手定则可知两者相互排斥.故正确选项为D.]7、(双选)如图所示,可自由转动的小磁针上方有一根长直导线,开始时二者在纸面内平行放置.当导线中通以如图所示电流I时,发现小磁针的N极向里,S极向外,停留在与纸面垂直的位置上.这一现象说明()A.小磁针感知到了电流的磁场B.小磁针处磁场方向垂直纸面向里C.小磁针处磁场方向垂直纸面向外D.若把小磁针移走,该处就没有磁场了AB[电流在导线周围产生了磁场,小磁针N极的指向为磁场的方向,所以A、B正确,C错误;该处的磁场与通电电流有关,与小磁针无关,所以D错误.]8、(多选)一个带正电的小球沿光滑绝缘的水平桌面向右运动,小球离开桌面后进入一水平向里的匀强磁场,已知速度方向垂直于磁场方向,如图所示,小球飞离桌面后落到地板上,设飞行时间为t1,水平射程为x1,着地速度为v1.撤去磁场,其余的条件不变,小球飞行时间为t2,水平射程为x2,着地速度为v2.则下列论述正确的是()A.x1>x2B.t1>t2C.v1和v2大小相等D.v1和v2方向相同ABC [当桌面右边存在磁场时,在小球下落过程中由左手定则知,带电小球受到斜向右上方的洛伦兹力作用,此力在水平方向上的分量向右,竖直方向上的分量向上,因此小球水平方向上存在加速度,竖直方向上加速度a<g,所以t 1>t 2、x 1>x 2,A 、B 正确;洛伦兹力对小球不做功,故C 正确;两次小球着地时速度方向不同,故D 错误.]9、如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P 为磁场边界上的一点.大量相同的带电粒子以相同的速率经过P 点,在纸面内沿不同方向射入磁场.若粒子射入速率为v 1,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速率为v 2,相应的出射点分布在三分之一圆周上.不计重力及带电粒子之间的相互作用.则v 2∶v 1为( )A .3∶2B .2∶1C .3∶1D .3∶ 2C [相同的带电粒子垂直匀强磁场入射均做匀速圆周运动.粒子以v 1入射,一端为入射点P,对应圆心角为60°(对应六分之一圆周)的弦PP ′必为垂直该弦入射粒子运动轨迹的直径2r 1,如图甲所示,设圆形区域的半径为R,由几何关系知r 1=12R.其他不同方向以v 1入射的粒子的出射点在PP ′对应的圆弧内.同理可知,粒子以v 2入射及出射情况,如图乙所示.由几何关系知r 2=R 2-⎝ ⎛⎭⎪⎫R 22=32R, 可得r 2∶r 1=3∶1.因为m 、q 、B 均相同,由公式r =m v qB 可得v ∝r,所以v 2∶v 1=3∶1.故选C.]10、如图所示,条形磁铁放在光滑斜面上,用平行于斜面的轻弹簧拉住而平衡,A 为水平放置的直导线的截面,导线中无电流时磁铁对斜面的压力为F N1;当导线中有垂直纸面向外的电流时,磁铁对斜面的压力为F N2,则下列关于磁铁对斜面的压力和弹簧的伸长量的说法中正确的是( )A.F N1<F N2,弹簧的伸长量减小B.F N1=F N2,弹簧的伸长量减小C.F N1>F N2,弹簧的伸长量增大D.F N1>F N2,弹簧的伸长量减小C[由于条形磁铁外部的磁感线是从N极出发到S极,所以导线A处的磁场方向是斜向左下方的,导线A中的电流垂直于纸面向外时,由左手定则可判断导线A必受斜向右下方的安培力F,由牛顿第三定律可知磁铁所受作用力F′的方向是斜向左上方的,所以磁铁对斜面的压力减小,即F N1>F N2.同时,F′有沿斜面向下的分力,使得弹簧弹力增大,可知弹簧的伸长量增大,所以选C.]11、对磁现象的研究中有一种“磁荷观点”.人们假定,在N极上聚集着正磁荷,在S极上聚集着负磁荷.由此可以将磁现象与电现象类比,引入相似的概念,得出一系列相似的定律.例如磁的库仑定律、磁场强度、磁偶极矩等.在磁荷观点中磁场强度定义为:磁场强度的大小等于点磁荷在该处所受磁场力与点磁荷所带磁荷量的比值,其方向与正磁荷在该处所受磁场力方向相同.若用H表示磁场强度,F表示点磁荷所受磁场力,q m表示磁荷量,则下列关系式正确的是()A.F=Hq m B.H=Fq mC.H=Fq m D.q m=HFB[题目已经说明磁场强度的大小等于点磁荷在该处所受磁场力与点磁荷所带磁荷量的比值,故:H=Fq m.]12、如图所示,导体杆ab的质量为m,电阻为R,放置在与水平面夹角为θ的倾斜金属导轨上,导轨间距为d,电阻不计,系统处在竖直向上的匀强磁场中,磁感应强度为B,电池内阻不计,问:若导轨光滑,电源电动势E多大才能使导体杆静止在导轨上?解析:由闭合电路欧姆定律得:E=IR导体杆受力情况如图所示,则由共点力平衡条件可得F安=mgtan θF安=BId由以上各式可得出E=mgRtan θBd.答案:mgRtan θBd13、如图所示,在0≤x≤a、0≤y≤a2范围内有垂直于xOy平面向外的匀强磁场,磁感应强度大小为B.坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xOy平面内,与y轴正方向的夹角分布在0°~90°范围内.已知粒子在磁场中做圆周运动的半径介于a2到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做匀速圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的:(1)速度的大小;(2)速度方向与y轴正方向夹角的正弦.解析:(1)设粒子的发射速度为v,粒子做圆周运动的轨道半径为R,由牛顿第二定律和洛伦兹力公式,得q v B=m v2R①当a2<R<a时,在磁场中运动时间最长的粒子其轨迹是圆心为C的圆弧,圆弧与磁场的上边界相切,如图所示.设该粒子在磁场中运动的时间为t,依题意t=T4,得∠OCA=π2②设最后离开磁场的粒子的发射方向与y轴正方向的夹角为α,由几何关系可得Rsin α=R-a2③Rsin α=a-Rcos α④又sin2α+cos2α=1 ⑤由③④⑤式得R=⎝⎛⎭⎪⎫2-62a ⑥由①⑥式得v=⎝⎛⎭⎪⎫2-62aqBm.(2)由③⑥式得sin α=6-610.答案:(1)⎝⎛⎭⎪⎫2-62aqBm(2)6-610。
高中物理 磁场计算专题(附答案详解)
![高中物理 磁场计算专题(附答案详解)](https://img.taocdn.com/s3/m/0b8f82bef111f18583d05aba.png)
专题:磁场计算题(附答案详解)1、如图所示,从离子源产生的甲、乙两种离子,由静止经加速电压U加速后在纸面内水平向右运动,自M点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直.已知甲种离子射入磁场的速度大小为v1,并在磁场边界的N点射出;乙种离子在MN的中点射出;MN长为l.不计重力影响和离子间的相互作用.求:(1)磁场的磁感应强度大小;(2)甲、乙两种离子的比荷之比.2、如图所示,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场.一个氕核11H和一个氘21H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向.已知11H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场.11H的质量为m,电荷量为q.不计重力.求:(1)11H第一次进入磁场的位置到原点O的距离;(2)磁场的磁感应强大小;(3)21H第一次离开磁场的位置到原点O的距离.3、一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l′,电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π6,求该粒子的比荷及其从M点运动到N点的时间.4、如图所示,竖直放置的平行金属板板间电压为U,质量为m、电荷量为+q的带电粒子在靠近左板的P点,由静止开始经电场加速,从小孔Q射出,从a点进入磁场区域,abde是边长为2L的正方形区域,ab边与竖直方向夹角为45°,cf与ab平行且将正方形区域等分成两部分,abcf中有方向垂直纸面向外的匀强磁场B1,defc中有方向垂直纸面向里的匀强磁场B2,粒子进入磁场B1后又从cf 上的M点垂直cf射入磁场B2中(图中M点未画出),不计粒子重力,求:(1)粒子从小孔Q射出时的速度;(2)磁感应强度B1的大小;(3)磁感应强度B2的取值在什么范围内,粒子能从边界cd间射出.5、如图所示,在真空中xOy平面的第一象限内,分布有沿x轴负方向的匀强电场,场强E=4×104 N/C,第二、三象限内分布有垂直于纸面向里且磁感应强度为B2的匀强磁场,第四象限内分布有垂直纸面向里且磁感应强度为B1=0.2 T的匀强磁场.在x轴上有一个垂直于y轴的平板OM,平板上开有一个小孔P,在y轴负方向上距O点为 3 cm的粒子源S可以向第四象限平面内各个方向发射α粒子,且OS>OP.设发射的α粒子速度大小v均为2×105 m/s,除了垂直于x轴通过P点的α粒子可以进入电场,其余打到平板上的α粒子均被吸收.已知α粒子的比荷为qm=5×107 C/kg,重力不计,试问:(1)P点距O点的距离;(2)α粒子经过P点第一次进入电场,运动后到达y轴的位置与O点的距离;(3)要使离开电场的α粒子能回到粒子源S处,磁感应强度B2应为多大?6、如图25所示,在xOy平面的0≤x≤23a范围内有沿y轴正方向的匀强电场,在x>23a范围内某矩形区域内有一个垂直于xOy平面向里的匀强磁场,磁感应强度大小为B.一质量为m、电荷量为+q的粒子从坐标原点O以速度v0沿x轴正方向射入电场,从M点离开电场,M点坐标为(23a,a).再经时间t=3mqB进入匀强磁场,又从M点正上方的N点沿x轴负方向再次进入匀强电场.不计粒子重力,已知sin 15°=6-24,cos 15°=6+24.求:(1)匀强电场的电场强度;(2)N点的纵坐标;(3)矩形匀强磁场的最小面积.7、如图甲所示,竖直挡板MN左侧空间有方向竖直向上的匀强电场和垂直纸面的匀强磁场,电场和磁场的范围足够大,电场强度E=40 N/C,磁感应强度B随时间t变化的关系图象如图乙所示,选定磁场垂直于纸面向里为正方向.t=0时刻,一质量m=8×10-4 kg、电荷量q=+2×10-4 C的微粒在O点具有竖直向下的速度v=0.12 m/s,O′是挡板MN上一点,直线OO′与挡板MN垂直,g取10m/s2.求:(1)微粒再次经过直线OO′时与O点的距离;(2)微粒在运动过程中离开直线OO′的最大高度.(3)水平移动挡板,使微粒能垂直射到挡板上,挡板与O点间的距离应满足的条件.8、如图所示,在竖直平面内,水平x轴的上方和下方分别存在方向垂直纸面向外和方向垂直纸面向里的匀强磁场,其中x轴上方的匀强磁场磁感应强度大小为B1,并且在第一象限和第二象限有方向相反、强弱相同的平行于x轴的匀强电场,电场强度大小为E1,已知一质量为m的带电小球从y轴上的A(0,L)位置斜向下与y轴负半轴成60°角射入第一象限,恰能做匀速直线运动。
高中物理磁场经典计算题训练(有答案)
![高中物理磁场经典计算题训练(有答案)](https://img.taocdn.com/s3/m/529fe3ab26fff705cd170a32.png)
高中物理磁场经典计算题训练(有答案)1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失.(1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来?2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示.发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点?(2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线通过等边三角形的中心O ,且a =)10133( L .要使S 点发出的粒子最终又回到S 点,带电粒子速度v 的大小应取哪些数值?3.在直径为d 的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q ,质量为m 的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v 0,方向与AC 成α.若此粒子恰好能打在磁场区域圆周上D 点,AD 与AC 的夹角为β,如图所示.求该匀强磁场的磁感强度B 的大小.a b cdACFD(a )(b )4.如图所示,真空中有一半径为R 的圆形磁场区域,圆心为O ,磁场的方向垂直纸面向内,磁感强度为B ,距离O 为2R 处有一光屏MN ,MN 垂直于纸面放置,AO 过半径垂直于屏,延长线交于C .一个带负电粒子以初速度v 0沿AC 方向进入圆形磁场区域,最后打在屏上D 点,DC 相距23R ,不计粒子的重力.若该粒子仍以初速v 0从A 点进入圆形磁场区域,但方向与AC 成600角向右上方,粒子最后打在屏上E 点,求粒子从A 到E 所用时间.5.如图所示,3条足够长的平行虚线a 、b 、c ,ab 间和bc 间相距分别为2L 和L ,ab 间和 bc 间都有垂直于纸面向里的匀强磁场,磁感应强度分别为B 和2B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018.1.15磁场12个计算题参考答案与试题解析一.解答题(共12小题)1.图中虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感强度为B的匀强磁场,方向垂直纸面向外.O是MN上的一点,从O点可以向磁场区域发射电量为+q、质量为m、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向.已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P到O的距离为L,不计重力及粒子间的相互作用.(1)求所考察的粒子在磁场中的轨道半径.(2)求这两个粒子从O点射入磁场的时间间隔.【分析】(1)粒子射入磁场后做匀速圆周运动,洛伦兹力充当向心力,根据牛顿第二定律列式即可求得半径;(2)根据时间与转过的角度之间的关系求得两个粒子从O点射入磁场的时间间隔之差值.【解答】解:(1)设粒子在磁场中做圆周运动的轨道半径为R,由牛顿第二定律,有:得:(2)如图所示,以OP为弦可画两个半径半径相同的圆,分别表示在P点相遇的两个粒子的轨道,圆心和直径分别为O1、O2和OO1Q1、OO2Q2,在O处两个圆的切线分别表示两个粒子的射入方向,用θ表示它们之间的夹角.由几何关系可知:∠PO1Q1=∠PO2Q2=θ从O点射入到相遇,粒子1的路程为半个圆周加弧长Q1PQ1P=Rθ粒子2的路程为半个圆周减弧长PQ2PQ2=Rθ粒子1运动的时间:粒子2运动的时间:两粒子射入的时间间隔:因得解得:答:(1)所考察的粒子在磁场中的轨道半径是.(2)这两个粒子从O点射入磁场的时间间隔是.【点评】本题考查带电粒子在磁场中的运动,关键是明确洛伦兹力提供向心力,根据牛顿第二定律求解出半径,然后结合几何关系列式求解,属于带电粒子在磁场中运动的基础题型.2.如图所示,两根光滑平行的金属导轨相距5m,固定在水平面上,导轨之间接有电源盒开关,整个装置处于磁感应强度为2T,方向与导轨平行的匀强磁场中.当开关闭合时,一根垂直放在导轨上的导体棒MN恰好对金属导轨没有压力.若导体棒MN的质量为4kg,电阻为2Ω,电源的内阻为0.5Ω,其余部分电阻忽略不计,g=10m/s2.求:(1)通过导体棒MN的电流大小;(2)电源的电动势.【分析】根据平衡条件求出安培力大小,进而电流大小;闭合电路欧姆定律求电动势的大小;【解答】解:(1)根据竖直方向受力平衡:mg=BIL得:I===4A(2)根据闭合电路欧姆定律:E=I(R+r)得:E=4×2.5=10V答:(1)通过导体棒MN的电流大小为4A;(2)电源的电动势为10V.【点评】本题是电路知识、力学知识的综合,掌握闭合电路欧姆定律、安培力公式是解题的关键,常规题,不容有失.3.如图所示,水平导体棒AB被两根竖直细线悬挂,置于垂直纸面向里的匀强磁场中,已知磁场的磁感应强度B=0.5T,导体棒长L=1m,质量m=0.5kg,重力加速度g=10m/s2.当导体棒中通以从A到B的电流时,①判断导体棒所受安培力的方向;当电流I=2A时,求导体棒所受安培力的大小F.②导体棒中通过的电流I′为多大时,细线中拉力刚好为0?【分析】(1)通过左手定则判断出方向,由公式F=BIL可以直接求出安培力大小.(2)根据受力平衡的条件即可求出电流的大小.【解答】解:(1)通过左手定则可知受到的安培力竖直向上,导体棒长为L=1m,磁感应强度B=2T,电流为2A,并且导体棒和磁场垂直,所以导体棒受到的安培力大小为:F=BIL=0.5×2×1N=1N,(2)若悬线拉力恰好为零,说明重力和安培力大小相等,即:mg=BIL所以有:I=,答:(1)安培力方向向上,此时棒AB受到的安培力F的大小为1N;(2)导体棒中通过的电流I′为10A时,细线中拉力刚好为0.【点评】本题是安培力的分析和计算问题.安培力大小的一般计算公式是F=BILsinα,α是导体与磁场的夹角,当B、I、L互相垂直的时候安培力最大为F=BIL.4.如图所示,一个质量为m、电荷量为q的粒子,从小孔S1飘入加速电场,其初速度可视为零,然后经点S3沿着与磁场垂直的方向进入磁感应强度为B的有界匀强磁场中,粒子恰能从磁场左边界的点S4射出,已知点S3、S4间距为L(不计粒子重力).求:(1)粒子所带的电性;(2)粒子在匀强磁场中运动的速度v;(3)加速电场两级板间的电势差U.【分析】(1)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,结合左手定则判断粒子的电性;(2)粒子在磁场中做匀速圆周运动,结合几何关系得到轨道半径,由牛顿第二定律可以求出粒子的速率;(3)由动能定理可以求出加速电场的电势差.【解答】解:(1)在点S3,磁场垂直向内,洛伦兹力向下,速度向右,结合左手定则,粒子带负电荷;(2)由题意可知,粒子轨道半径:,粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:,解得:v=;(3)粒子在加速电场中加速,由动能定理得:解得:答:(1)粒子带负电荷;(2)粒子在匀强磁场中运动的速度v为;(3)加速电场两级板间的电势差U为.【点评】本题考查了求粒子速率、加速电压,分析清楚粒子运动过程、应用左手定则、牛顿第二定律、动能定理即可正确解题.5.用两个一样的弹簧吊着一根铜棒,铜棒所在虚线范围内有垂直于纸面的匀强磁场,棒中通以自左向右的电流(如图所示),当棒静止时,两弹簧秤的读数为F1;若将棒中的电流方向反向(大小保持不变),当棒静止时,两弹簧秤的示数为F2,且F2>F1,根据这两个数据,试求:(1)磁场的方向;(2)安培力的大小;(3)铜棒的重力.【分析】由题意知,导体棒受到的磁场力方向在竖直方向,因为电流反向时磁场力同样反向,又因为反向时,弹簧秤读数增大,由此可知电流自左向右时,导体棒受磁场力方向向上,根据左手定则可知,磁场方向垂直纸面向里.因为电流反向,磁场力只改变方向,不改变大小,根据导体棒的平衡可以求出安培力的大小表达式.【解答】解:(1)因为电流反向时,弹簧秤的读数F2>F1,所以可以知道电流自左向右时,导体棒受到的磁场力方向向上,根据左手定则可以确定磁场的方向为垂直纸面向里;(2)令铜棒的重力为G,安培力的大小为F,则由平衡条件得:2F1=G﹣F ①当电流反向时,磁场力变为竖直向下,此时同样根据导体棒平衡有:2F2=G+F ②由①和②可得:棒的重力G=F1+F2安培力F的大小F=F2﹣F1答:(1)磁场的方向垂直纸面向里;(2)安培力的大小:F=F2﹣F1(3)铜棒的重力F=F2+F1【点评】对铜棒的受力变化情况可以得到安培力的方向,能正确使用左手定则反推磁场方向,并能根据平衡列出平衡方程解出重力和安培力的大小.熟练掌握左手定则是解题的关键.6.如图所示,匀强磁场方向垂直于纸面向里,长L=0.2m的直导线放在纸面内.当导线中通有I1=1A,方向如图所示的电流时,导线受到的安培力大小F1=4×10﹣2 N.(1)请在图中画出安培力的方向;(2)求磁场的磁感应强度大小;(3)若将电流大小变为I2=1.5A时,求此导线受到的安培力大小.【分析】(1)根据左手定则即可判断出安培力的方向;(2)根据公式B=求解磁感应强度;(3)根据公式F=BIL求解磁感应强度.【解答】解:(1)磁场的方向向里,电流的方向向右上方,由左手定则可知,安培力的方向垂直于电流的方向向左上方,如图;(2)当导线中通以I=5A的电流时,导线受到的安培力F=lN,故磁感应强度为:B=T(2)通电导线的电流增大到I2=1.5A时,磁感应强度不变,故导线受到的安培力F2为:F2=BI2L=0.2×1.5×0.2=6×10﹣2 N答:(1)通电导线所在空间的磁感应强度B的大小为0.2T;(2)导线受到的安培力F′的大小为6×10﹣2 N.【点评】本题关键明确电流元与磁场垂直时,安培力大小为F=BIL,磁感应强度与电流元无关.7.如图所示,在一个范围足够大、磁感应强度B=0.40T的水平匀强磁场中,用绝缘细线将金属棒吊起使其呈水平静止状态,且使金属棒与磁场方向垂直.已知金属棒长L=0.20m,质量m=0.020kg,取g=10m/s2.(1)若棒中通有I=2.0A的向左的电流,求此时金属棒受到的安培力F的大小;(2)改变通过金属棒的电流大小,若细线拉力恰好为零,求此时棒中通有电流的大小.【分析】(1)根据安培力大小公式,即可求解.(2)当细线拉力为零,则说明安培力与重力相等,因此由安培力大小公式可确定通电电流的大小.【解答】解:(1)此时金属棒受到的安培力大小F=BIL=0.16N(2)悬线拉力恰好为零,金属棒沿竖直方向受重力和安培力,由金属棒静止可知安培力F´=mg所以此时金属棒中的电流I´===2.5A答:(1)若棒中通有I=2.0A的向左的电流,求此时金属棒受到的安培力F的大小0.16N;(2)改变通过金属棒的电流大小,若细线拉力恰好为零,求此时棒中通有电流的大小2.5A.【点评】本题比较简单,借助于物体平衡,考查了有关安培力的大小和方向问题,要熟练应用左手定则判断安培力的方向,同时熟练应用公式F=BIL进行有关计算.8.如图所示,洛伦兹力演示仪由励磁线圈、玻璃泡、电子枪等组成.励磁线圈是一对彼此平行的共轴圆形线圈,通电时,在两线圈之间产生匀强磁场.玻璃泡内充有稀薄气体,电子枪在加速电压下发射电子,电子束通过泡内气体时能够显示出电子运动的径迹.当电子枪垂直于磁场方向发射电子时,调节加速电压或励磁线圈中的电流,可看到电子束的径迹呈圆形.设电子的电荷量为e,质量为m,电子枪的加速电压为U,电子在磁场中运动的轨道半径为r.忽略电子所受重力及电子间的相互作用.(1)求电子从电子枪射出时的速度大小v;(2)求两线圈之间的磁感应强度大小B;(3)研究电子在磁场中运动时,忽略了电子所受的重力,请利用下列数据分析说明可以忽略重力的原因.已知:v=8.0×106m/s,B=8.0×10﹣4T,m=9.1×10﹣31kg,e=1.6×10﹣19C.取重力加速度g=10m/s2.【分析】(1)电场对电子加速,应用动能定理可以求出电子的速度.(2)电子在磁场中做匀速圆周运动,洛伦兹力提供向心力,应用牛顿第二定律可以求出磁感应强度.(3)应用洛伦兹力公式与重力的计算公式比较两力的大小,然后分析答题.【解答】解:(1)电场对电子加速,根据动能定理得:eU=mv2﹣0,解得:v=;(2)带电粒子在磁场中做匀速圆周运动,根据牛顿第二定律得:evB=m,解得:B=;(3)洛伦兹力与重力的比值:==≈1.11×1014,因为电子所受的洛伦兹力远大于重力,所以可以忽略电子所受的重力.答:(1)电子从电子枪射出时的速度大小v为;(2)两线圈之间的磁感应强度大小B为;(3)洛伦兹力远大于重力,重力可以忽略不计.【点评】本题考查了电子在电场与磁场中的运动,知道电子在电场中加速、在磁场中做匀速圆周运动是解题的前提,应用动能定理与牛顿第二定律可以解题.9.如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸里,磁感应强度为B.一带负电的粒子(质量为m、电荷量为q)以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ.求:(1)该粒子射出磁场的位置;(2)该粒子在磁场中运动的时间.(粒子所受重力不计)【分析】(1)根据题意画出运动轨迹图,根据几何知识和洛伦兹力提供向心力求出粒子的坐标位置;(2)根据转过的角度和周期计算粒子在磁场中运动的时间.【解答】解:(1)带负电的粒子射入磁场后,由于受到洛伦兹力的作用,粒子将沿图示的轨迹运动,从A点射出磁场,O、A间的距离为L,射出时速度的大小仍为v0,射出方向与x轴的夹角仍为θ.由于洛伦兹力提供向心力,则:qv0B=m,R为圆轨道的半径,解得:R=①圆轨道的圆心位于OA的中垂线上,由几何关系可得:=Rsinθ ②联立①②两式解得L=;所以粒子离开磁场的位置为(﹣,0);(2)因为T=该粒子在磁场中运动的时间t==(1﹣);答:(1)该粒子射出磁场的位置为(﹣,0),(2)该粒子在磁场中运动的时间为(1﹣).【点评】此题考查带电粒子在磁场中的运动,找圆心,画出运动轨迹图是解决此问题的关键,作图越规范越好.10.如图所示,分布在半径为r的圆形区域内的匀强磁场,磁感应强度为B,方向垂直纸面向里.电荷量为+q、质量为m的带电粒子从磁场边缘A点沿圆半径AO方向射入磁场,粒子离开磁场时速度方向偏转了60˚角.求:(1)粒子做圆周运动的半径和入射速度;(2)粒子在磁场中的运动时间.【分析】电荷在匀强磁场中做匀速圆周运动,画出轨迹,由几何知识求出半径.洛伦兹力提供向心力,根据牛顿第二定律求出速度.定圆心角,求时间.【解答】解:(1)设粒子做匀速圆周运动的半径为R,如图所示,∠OO′A=30°,得到圆运动的半径R=O′A=根据牛顿运动定律有粒子的入射速度(2)由于粒子在磁场中的运动方向偏转了60˚角,所以粒子完成了个圆运动,根据线速度与周期的关系有粒子在磁场中的运动时间为.答:(1)粒子做圆周运动的半径为,入射速度为.(2)粒子在磁场中的运动时间为.【点评】带电粒子在匀强磁场中匀速圆周运动问题,关键是画出粒子圆周的轨迹,往往用数学知识求半径.11.如图所示,在竖直放置的M、N两极板间有一水平向右的匀强电场,N板右侧有方向垂直纸面向外的匀强磁场,磁感应强度为B.现有一质量为m、电荷量为q的粒子(重力不计)由静止被电场加速后,从N板上的小孔P以水平速度v 射出,并进入磁场,之后在磁场中运动并垂直打在N板正下方的竖直屏幕上的Q 点.(1)判断该粒子带正电还是带负电;(2)求粒子在磁场中运动的轨道半径R及P、Q间的距离x.【分析】(1)由题意可知,带电粒子在电场中加速,则可以判断粒子带电性质;(2)带电粒子在磁场中做匀速圆周运动,由由洛仑兹力充当向心力,可求得半径,再由几何关系可求得PQ间的距离.【解答】解:(1)由题意可知,带电粒子在电场中加速,故受力沿电场线方向,故该粒子带正电.(2)粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,则有Bqv=m解得粒子做匀速圆周运动的轨道半径R=P、Q间的距离x=2R=答:(1)该粒子带正电;(2)运动的轨道半径R=;P、Q间的距离.【点评】本题考查带电粒子在电场和磁场中的运动,在解答时要注意几何关系的应用,可以通过画图的形式帮助分析.12.如图所示,边长为a的正方形空腔内有垂直向内的匀强磁场,顶点处有小孔,质量为m、带电量为q的粒子从A点以速度v0垂直射入磁场.求:①要使粒子沿轨迹1从C点射出,粒子应带什么电?②要使粒子沿径迹2从B点射出,磁场的磁感应强度应为多少?【分析】①根据粒子的偏转方向可明确粒子受力方向,再根据左手定则可分析粒子的电性;②由图中几何关系可求得粒子半径,再根据洛伦兹力充当向心力即可求得磁感应强度B.【解答】解:①由图可知,粒子受力向左,则由左手定则可知,粒子带正电;②由图中几何关系可知:r=则由洛伦兹力充当向心力公式可知qv0B=m解得:B=答:①要使粒子沿轨迹1从C点射出,粒子应带正电;②要使粒子沿径迹2从B点射出,磁场的磁感应强度应为【点评】本题为带电粒子在磁场中运动问题,要注意带电粒子在磁场中运动的半径与周期的公式的应用.同时注意掌握由几何知识确定半径的方法.。