高等数学必背公式大全
全部高等数学计算公式
全部高等数学计算公式高等数学是数学的一个分支,包括微积分、线性代数、数理方程、概率论、复分析等多个内容。
每个分支都有大量的计算公式,下面将分别介绍这些分支中一些经典的计算公式。
一、微积分公式1.极限公式:(1)函数极限公式:$lim(f(x)±g(x))=limf(x)±limg(x)$$lim(f(x)g(x))=limf(x)·limg(x)$$lim\frac{{f(x)}}{{g(x)}}=\frac{{limf(x)}}{{limg(x)}}$(2)常见函数极限:$lim\frac{{sinx}}{{x}}=1$$lim(1+\frac{1}{{n}})^n=e$$lim(1+\frac{1}{{n}})^{n(p-q)}=e^{(p-q)}$2.导数公式:(1)基本导数公式:$(c)'=0$$(x^n)'=nx^{n-1}$$(e^x)'=e^x$$(a^x)'=a^xlna$$(lnx)'=\frac{1}{{x}}$$(sinx)'=cosx$$(cosx)'=-sinx$$(tanx)'=sec^2x$(2)导数的四则运算:$(f(x)\pm g(x))'=f'(x)\pm g'(x)$$(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)$$(\frac{{f(x)}}{{g(x)}})'=\frac{{f'(x)g(x)-f(x)g'(x)}}{{g^2(x)}}$(3)链式法则:$(f(g(x)))'=f'(g(x))g'(x)$3.积分公式:(1)基本积分公式:$\int{cx^n}dx=\frac{{cx^{n+1}}}{{n+1}}+C$$\int{e^x}dx=e^x+C$$\int{a^x}dx=\frac{{a^x}}{{lna}}+C$$\int{\frac{{1}}{{x}}}dx=ln,x,+C$$\int{sinx}dx=-cosx+C$$\int{cosx}dx=sinx+C$$\int{sec^2x}dx=tanx+C$(2)常用积分公式:$\int{u}dv=uv-\int{v}du$$\int{sin^2x}dx=\frac{{x}}{2}-\frac{{sin2x}}{4}+C$$\int{cos^2x}dx=\frac{{x}}{2}+\frac{{sin2x}}{4}+C$4.泰勒展开公式:$f(x)=f(a)+f'(a)(x-a)+\frac{{f''(a)}}{{2!}}(x-a)^2+...+\frac{{f^{(n)}}}{{n!}}(x-a)^n+R_n(x)$二、线性代数公式1.行列式公式:(1)二阶行列式:$D=\begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc$(2)三阶行列式:$D=\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix}=aei+bfg+c dh-ceg-afh-bdi$2.矩阵运算公式:(1)两个矩阵的和:$A+B=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix }+\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}=\begin{bmatrix}a_{11}+b_{11}&a_{12}+b_{12}\\a_{21}+b_{21}&a_{22}+b_{2 2}\end{bmatrix}$(2)两个矩阵的乘积:$AB=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix} \begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}=\begin{ bmatrix}a_{11}b_{11}+a_{12}b_{21}&a_{11}b_{12}+a_{12}b_{22}\\a_{ 21}b_{11}+a_{22}b_{21}&a_{21}b_{12}+a_{22}b_{22}\end{bmatrix}$3.特征值与特征向量公式:$A-\lambda I=0$其中,A为矩阵,$\lambda$为特征值,I为单位矩阵。
高考数学必背公式
高考数学必背公式
高考数学必背公式包括但不限于:
1. 圆的公式:
圆体积=4/3(pi)(r^3)
面积=(pi)(r^2)
周长=2(pi)r
圆的标准方程(x-a)2+(y-b)2=r2,其中(a,b)是圆心坐标
圆的一般方程x2+y2+dx+ey+f=0,其中d2+e2-4f>0
2. 椭圆公式:
椭圆周长公式:l=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差
椭圆面积公式:s=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
3. 两角和公式、倍角公式、半角公式、和差化积等三角函数公式。
4. 等差数列、等比数列等数列公式。
5. 抛物线等几何图形公式。
以上信息仅供参考,建议查阅高中数学教材或教辅资料,获取更准确全面的信息。
大学高等数学公式大全
大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。
2. 导数的运算法则:常数函数的导数为0。
幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。
指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。
对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。
三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。
3. 高阶导数:函数的导数可以继续求导,得到高阶导数。
例如,f''(x)表示二阶导数。
二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。
2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。
幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。
指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。
对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。
三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。
3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。
积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。
积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。
高等数学重要公式(必记)
高等数学重要公式(必记)一、导数公式:二、基本积分表:三、三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C ax a x a x dx x a C a x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:四、三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高等数学常用公式大全
高等数学常用公式大全1.微分学公式:- 导数的定义:若函数y=f(x)在点x0处可导,则其导数为f'(x0)=lim(x→x0)(f(x)-f(x0))/(x-x0)-基本导数公式:- (1) 常数函数的导数:d(C)/dx = 0,其中C为常数- (2) 幂函数的导数:d(x^n)/dx = n*x^(n-1),其中n为实数- (3) 指数函数的导数:d(e^x)/dx = e^x- (4) 对数函数的导数:d(ln(x))/dx = 1/x- (5) 三角函数的导数:d(sin(x))/dx = cos(x),d(cos(x))/dx = -sin(x),d(tan(x))/dx = sec^2(x),d(cot(x))/dx = -csc^2(x),d(sec(x))/dx = sec(x)*tan(x),d(csc(x))/dx = -csc(x)* cot(x)2.积分学公式:- 不定积分的性质:∫(f(x)+g(x))dx = ∫f(x)dx + ∫g(x)dx,∫k*f(x)dx = k*∫f(x)dx,其中f(x)和g(x)是可积函数,k是常数-基本积分公式:- (1) 幂函数的不定积分:∫x^n dx = (1/(n+1))*x^(n+1) + C,其中n不等于-1- (2) 指数函数的不定积分:∫e^x dx = e^x + C,其中C为常数- (3) 对数函数的不定积分:∫1/x dx = ln,x, + C- (4) 三角函数的不定积分:∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C,∫tan(x) dx = -ln,cos(x), + C,∫cot(x) dx = ln,sin(x), + C,∫sec(x) dx = ln,sec(x)+tan(x), + C,∫csc(x) dx = ln,csc(x)-cot(x), + C3.微分方程公式:- 一阶线性微分方程:dy/dx + p(x)y = q(x),其中p(x)和q(x)是已知函数,分别称为系数函数和非齐次项函数。
关于高等数学公式大全几乎包含了所有
关于高等数学公式大全几乎包含了所有一、微分学公式1. 线性函数的导数:(kx)' = k2. 幂函数的导数:(x^n)' = nx^(n-1)3.e^x的导数:(e^x)'=e^x4. sinx 的导数:(sinx)' = cosx5. cosx 的导数:(cosx)' = -sinx6. tanx 的导数:(tanx)' = sec^2x7. cotx 的导数:(cotx)' = -csc^2x8. ln(x) 的导数:(ln(x))' = 1/x9. a^x 的导数:(a^x)' = ln(a) * a^x二、积分学公式1. 线性函数的积分:∫(kx)dx = (k/2)x^2 + C2. 幂函数的积分:∫(x^n)dx = (1/(n+1))x^(n+1) + C, (n≠-1)3. e^x 的积分:∫e^xdx = e^x + C4. sinx 的积分:∫sinxdx = -cosx + C5. cosx 的积分:∫cosxdx = sinx + C6. tanx 的积分:∫tanxdx = -ln,cosx, + C7. cotx 的积分:∫cotxdx = l n,sinx, + C8. 1/(x+a) 的积分:∫(1/(x+a))dx = ln,x+a, + C9. 1/(x^2+a^2) 的积分:∫(1/(x^2+a^2))dx = (1/a)arctan(x/a) + C三、级数和序列的公式1.等差数列的前n项和:Sn = n(a1+an)/22.等比数列的前n项和:Sn=a1(1-q^n)/(1-q)3.等差级数的和:S = (n/2)(a1+an)4.等比级数的和:S=a1/(1-q),,q,<15.幂级数的和:S=a/(1-r),,r,<16.泰勒级数:f(x)=f(a)+(x-a)f'(a)/1!+(x-a)^2f''(a)/2!+...四、微分方程的公式1. 一阶常微分方程:dy/dx + P(x)y = Q(x), y = C∫(e^(-∫P(x)dx))Q(x)dx2. 二阶常系数非齐次线性微分方程:ay''+by'+cy=g(x),其中非齐次解为 y = yc + yp3. 欧拉方程:x^n*d^n(y)/dx^n + a_(n-1)*x^(n-1)*d^(n-1)(y)/dx^(n-1) +...+ a_1*x*d(y)/dx + a_0*y = 0以上只是高等数学公式的一部分,包括微分学、积分学、级数和序列以及微分方程等方面的公式。
高等数学必背公式大全
高等数学必背公式大全1、勾股定理:a2+b2=c22、椭圆方程:(x-x0)2/a2+(y-y0)2/b2=13、两点公式:,P1P2,=√((x2-x1)2+(y2-y1)2)4、双曲线方程:a2(x2/b2)-(y2/c2)=15、圆的方程:(x-x0)2+(y-y0)2=r26、三角形公式:a2+b2=c27、直线方程:y = kx + b (斜率k和截距b)8、斜率定理:m1*m2=-1/K29、余弦定理:a2 = b2 + c2 - 2bc*cosA10、正弦定理:a * sinA = b * sinB = c * sinC11、贝塞尔曲线方程:(x-x0)4+(y-y0)4=r412、三角函数公式:sin2A + cos2A = 113、极坐标方程:r = a * e(acosθ + bsinθ)14、反正弦定理:y = arcsin(x/a) + c15、偏微分公式:dy/dx = (dy/du) * (du/dx)16、平面四边形公式:a2+b2=c2+d217、反余弦定理:y = arccos(x/a) + c18、三角形面积公式:S = 1/2 * a * b * sinC19、多边形内角和公式:(n-2)*π=∑(内角弧度)20、抛物线公式:y=ax2+bx+c21、多项式求导公式:f'(x) = an-1 * xn-1 + an-2 * xn-2 + …… + a1 * x + a022、函数变换公式:f(x+h) = f(x) + hf'(x)23、矩阵乘法公式:(AB)ij = ∑k=1n(Aik*Bkj)24、求和公式:∑(a1+an)*n/225、模除法:a / b = a mod b + b * (a div b)26、几何平均数公式:(a1*a2*a3*……*an)^(1/n)27、距离公式:L=(x2-x1)^2+(y2-y1)^228、几何中点公式:(x1+x2)/2,(y1+y2)/229、坐标转换公式:x = x0 + (x-x0)cosα - (y-y0)sinα。
高数公式大全
高等数学公式汇总第一章 一元函数的极限与连续1、一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=±和差角公式:sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式: 1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin coscos 22cos 1 12sin cos sin 2tan tan 21tan cot 1cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin 2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式:::ln(2::ln(211::ln21x xx xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x-----==++==±+-+===+-双曲正弦;反双曲正弦双曲余弦;反双曲余弦双曲正切;反双曲正切3322()()()a b a b a ab b ±=±+,222(1)(21)126n n n n +++++=22333(1)124n n n ++++=2、极限➢常用极限:1,lim 0n n q q →∞<=;1n a >=;lim 1n =➢ ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则➢ 两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+ ➢:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan 1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x x n a x a e x x ax x x--++++3、连续:定义:000lim 0;lim ()() x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或 第二章 导数与微分1、 基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (cot )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ); (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n x n x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)![ln()](1)[ln()]()(1)()n n n n n n nn n a x x a x x x-----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导第三章微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。
大学高等数学所有的公式大全精华
大学高等数学所有的公式大全精华在大学的数学学习中,高等数学是一门非常重要和广泛应用的学科。
学好高等数学,不仅需要理解和掌握其概念和原理,还需要熟练掌握其中的各种公式。
本文将为大家汇总并分享一份大学高等数学的公式大全,帮助大家更好地学习和运用这门学科。
一、导数和微分1. 函数y=f(x)的导函数:f'(x)2. 基本微分公式:(1)常数函数微分公式:d(cf(x))/dx = cf'(x),其中c为常数(2)幂函数微分公式:d(x^n)/dx = nx^(n-1),其中n为实数(3)指数函数微分公式:d(e^x)/dx = e^x(4)对数函数微分公式:d(lnx)/dx = 1/x(5)三角函数微分公式:a) d(sin x)/dx = cos xb) d(cos x)/dx = -sin xc) d(tan x)/dx = sec^2xd) d(cot x)/dx = -csc^2xe) d(sec x)/dx = sec x * tan xf) d(csc x)/dx = -csc x * cot x(6)反三角函数微分公式:a) d(arcsin x)/dx = 1/√(1-x^2)b) d(arccos x)/dx = -1/√(1-x^2)c) d(arctan x)/dx = 1/(1+x^2)d) d(arccot x)/dx = -1/(1+x^2)e) d(arcsec x)/dx = 1/(x√(x^2-1))f) d(arccsc x)/dx = -1/(x√(x^2-1))二、积分1. 基本积分表达式:(1)常数函数积分:∫c*dx = cx,其中c为常数(2)幂函数积分:∫x^n*dx = (1/(n+1))x^(n+1),其中n≠-1(3)指数函数积分:∫e^x*dx = e^x(4)对数函数积分:∫(1/x)*dx = ln|x|(5)三角函数积分:a) ∫sin x*dx = -cos xb) ∫cos x*dx = sin xc) ∫tan x*dx = -ln|cos x|d) ∫cot x*dx = ln|sin x|e) ∫sec x*dx = ln|sec x + tan x|f) ∫csc x*dx = ln|csc x - cot x|(6)反三角函数积分:a) ∫(1/√(1-x^2))*dx = arcsin xb) ∫(-1/√(1-x^2))*dx = arccos xc) ∫(1/(1+x^2))*dx = arctan xd) ∫(-1/(1+x^2))*dx = arccot xe) ∫(1/(x√(x^2-1)))*dx = sec^(-1)xf) ∫(-1/(x√(x^2-1)))*dx = csc^(-1)x三、级数1. 等差数列求和:(1)数列前n项和:Sn = (a1+an)*n/2(2)数列前n项和(已知首项和公差):Sn = (n/2)*(2a1+(n-1)d) 2. 等比数列求和:(1)数列前n项和(|q|<1):Sn = a1*(1-q^n)/(1-q)(2)无穷等比数列和(|q|<1):S = a1/(1-q)3. 幂级数收敛性:收敛:∑(n=0,∞)a^n(|a|<1)发散:∑(n=0,∞)a^n(|a|≥1)四、微分方程1. 常微分方程:(1)一阶线性常微分方程:dy/dx + P(x)y = Q(x)(2)一阶齐次线性常微分方程:dy/dx + P(x)y = 0(3)二阶齐次线性常微分方程:d^2y/dx^2 + P(x)dy/dx + Q(x)y = 0(4)常系数齐次线性常微分方程:d^n/dx^n + a_(n-1)d^(n-1)/dx^(n-1) + ... + a_1dy/dx + a_0y = 02. 偏微分方程:(1)一维波动方程:∂^2u/∂t^2=c^2∂^2u/∂x^2(2)二维泊松方程:∂^2u/∂x^2+∂^2u/∂y^2=f(x,y)(3)三维拉普拉斯方程:∂^2u/∂x^2+∂^2u/∂y^2+∂^2u/∂z^2=0五、概率与统计1. 古典概型计数原理:若一个事件可由n个步骤进行描述,第k个步骤有n_k种可能,则该事件共有n_1*n_2*...*n_k种可能2. 排列组合:(1)排列数公式:A(n,m) = n!/(n-m)!(2)组合数公式:C(n,m) = n!/(m!*(n-m)!)3. 随机事件概率计算:(1)基本事件概率公式:P(A) = n(A)/n(S),其中n(A)为事件A 发生的可能结果数,n(S)为样本空间S的可能结果数通过以上列举的公式,希望能够帮助大家更好地学习和理解大学高等数学。
高中数学公式大全(最整理新版)
高中数学公式大全(最整理新版)一、代数1. 一元一次方程:ax + b = 0,其中a ≠ 0。
解为 x = b/a。
2. 一元二次方程:ax^2 + bx + c = 0,其中a ≠ 0。
解为 x =[b ± sqrt(b^2 4ac)] / 2a。
3. 一元三次方程:ax^3 + bx^2 + cx + d = 0,其中a ≠ 0。
解为x = [b ± sqrt(b^2 3ac)] / 3a。
4. 一元四次方程:ax^4 + bx^3 + cx^2 + dx + e = 0,其中 a≠ 0。
解为x = [b ± sqrt(b^2 4ac)] / 2a。
5. 分式方程:分子和分母均为多项式。
解法为将方程两边乘以分母的乘积,得到一个等价的整式方程,然后求解。
6. 二元一次方程组:由两个一元一次方程组成的方程组。
解法为消元法或代入法。
7. 二元二次方程组:由两个一元二次方程组成的方程组。
解法为消元法或代入法。
8. 三元一次方程组:由三个一元一次方程组成的方程组。
解法为消元法或代入法。
9. 等差数列:首项为 a1,公差为 d。
第 n 项为 an = a1 + (n 1)d。
前 n 项和为 Sn = n/2(a1 + an)。
10. 等比数列:首项为 a1,公比为 q。
第 n 项为 an = a1q^(n 1)。
前 n 项和为 Sn = a1 (1 q^n) / (1 q),其中q ≠ 1。
二、几何1. 平面几何(1)直线:两点确定一条直线,直线方程为 y = mx + b,其中m 是斜率,b 是截距。
(2)圆:圆心为 (a, b),半径为 r。
圆的方程为 (x a)^2 +(y b)^2 = r^2。
(3)椭圆:中心为 (a, b),长轴为 2a,短轴为 2b。
椭圆的方程为 (x a)^2 / a^2 + (y b)^2 / b^2 = 1。
(4)双曲线:中心为 (a, b),实轴为 2a,虚轴为 2b。
最完整高数公式大全赶紧了以后用
最完整高数公式大全赶紧了以后用1.极限相关公式:- 极限定义:如果对于任意一个给定的正数ε,存在正数δ,使得只要x与a的距离小于δ,则必有f(x)与L的距离小于ε,即lim(x→a)f(x)=L。
2.一元函数相关公式:- 基本求导法则:(C)'=0,(xⁿ)'=nxⁿ⁻¹,(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec²x,(cotx)'=-csc²x,(secx)'=secxtanx,(cscx)'=-cscxcotx。
- 链式法则:设y=f(u),u=g(x),则y=f(g(x)),则y'=(dy)/(dx)=(dy)/(du)*(du)/(dx)=f'(u)*g'(x)。
-高阶导数:(fⁿ(x))'=fⁿ⁻¹(x)·f'(x),其中n为正整数。
-函数泰勒级数展开式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)²/2!+…+fⁿ(a)(x-a)ⁿ/n!+Rⁿ(x),其中Rⁿ(x)为剩余项。
- 微分方程:设y=f(x),则dy/dx=f'(x),d²y/dx²=f''(x),…3.多元函数相关公式:-偏导数:设z=f(x,y),则∂z/∂x表示在y固定的条件下对x的变化率,∂z/∂y表示在x固定的条件下对y的变化率。
-链式法则:设z=f(x,y),x=g(u,v),y=h(u,v),则∂z/∂u=∂z/∂x*∂x/∂u+∂z/∂y*∂y/∂u,…- 梯度:设z=f(x₁,x₂,…,xₙ),则gradz=(∂z/∂x₁,∂z/∂x₂,…,∂z/∂xₙ)。
- 散度:设F=(P,Q,R)为一个三维向量场,则divF=∂P/∂x+∂Q/∂y+∂R/∂z。
高数公式大全
高等数学公式总结第一章 一元函数的极限与连续1、一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=±和差角公式:s i n s i n 2s i n c o s22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式:1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin cos cos 22cos 112sin cos sin 2tan tan 21tan cot 1cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin 2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式: ::ln(2::ln(211::ln21x xx xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x-----==++==±+-+===+-双曲正弦;反双曲正弦双曲余弦;反双曲余弦双曲正切;反双曲正切3322()()()a b a b a ab b ±=±+,222(1)(21)126n n n n +++++=22333(1)124n n n ++++=2、极限常用极限:1,lim 0n n q q →∞<=;1,1n a >=;1n =ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan 1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x x n a x a e x x ax x x--++++3、连续:定义:000lim 0;lim ()() x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或 第二章 导数与微分1、 基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (cot )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ); (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n x n x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)![ln()](1)[ln()]()(1)()n n n n n n nn n a x x a x x x-----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导第三章微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。
高数必备公式
高数必备公式在学习高等数学的过程中,公式是帮助我们解题的重要工具,掌握了相关的公式,我们可以更加高效地解决问题。
下面是一些高等数学中常用的必备公式,希望对大家的学习有所帮助。
一、微积分1.导数公式导数是微积分中的重要概念,通过导数可以描述函数在某一点上的变化率。
以下是一些常见函数的导数公式:- 常数函数:(c)'= 0,其中 c 为常数- 幂函数:(x^n)'=n*x^(n-1),其中 n 为常数- 指数函数:(a^x)'=a^x * ln(a),其中 a 为常数且 a>0- 对数函数:(log_a(x))'=(1/x) * (1/ln(a)),其中 a>0 且a≠1- 三角函数:(sin(x))'=cos(x),(cos(x))'=-sin(x),(tan(x))'=(sec^2(x)),(cot(x))'=-(csc^2(x)),(sec(x))'=sec(x) * tan(x),(csc(x))'=-csc(x) * cot(x)2.积分公式积分可以看作是导数的逆运算,用于求解函数的原函数。
以下是一些常见函数的积分公式:- 幂函数积分:∫x^n dx = (1/(n+1)) * x^(n+1),其中n ≠ -1- 指数函数积分:∫e^x dx = e^x- 对数函数积分:∫(1/x) dx = ln|x| + C- 三角函数积分:∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C,∫tan(x) dx = -ln|cos(x)| + C3.泰勒级数展开公式泰勒级数是一种将函数展开成无穷多项式的方法,可以帮助我们在一定范围内近似计算复杂函数。
以下是一些常用函数的泰勒级数展开公式:- sin(x) = x - (x^3/3!) + (x^5/5!) - (x^7/7!) + ...- cos(x) = 1 - (x^2/2!) + (x^4/4!) - (x^6/6!) + ...- e^x = 1 + x + (x^2/2!) + (x^3/3!) + (x^4/4!) + ...二、线性代数1.向量运算公式向量是线性代数中的重要概念,通过一些向量运算公式可以方便地进行向量计算。
高考数学所有公式大全
高考数学所有公式大全一、集合。
1. 集合的基本运算。
- 交集:A∩ B = {xx∈ A且x∈ B}- 并集:A∪ B={xx∈ A或x∈ B}- 补集:∁_U A={xx∈ U且x∉ A}(U为全集)2. 集合间的关系。
- 若A⊆ B,则A中的元素都在B中,n(A)≤ n(B)(n(A)表示集合A的元素个数)- 若A = B,则A⊆ B且B⊆ A二、函数。
1. 函数的定义域。
- 分式函数y = (f(x))/(g(x)),其定义域为g(x)≠0的x的取值范围。
- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),其定义域为f(x)≥0的x的取值范围。
2. 函数的单调性。
- 设x_1,x_2∈[a,b]且x_1 < x_2- 增函数:f(x_1),则y = f(x)在[a,b]上是增函数,其导数f^′(x)≥0(x∈(a,b))。
- 减函数:f(x_1)>f(x_2),则y = f(x)在[a,b]上是减函数,其导数f^′(x)≤0(x∈(a,b))。
3. 函数的奇偶性。
- 奇函数:f(-x)= - f(x),图象关于原点对称。
- 偶函数:f(-x)=f(x),图象关于y轴对称。
4. 一次函数y = kx + b(k≠0)- 斜率k=(y_2 - y_1)/(x_2 - x_1)5. 二次函数y=ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})- 当a>0时,函数图象开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a < 0时,函数图象开口向下,在x=-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。
6. 指数函数y = a^x(a>0,a≠1)- 指数运算法则:a^m× a^n=a^m + n,frac{a^m}{a^n}=a^m - n,(a^m)^n=a^mn,(ab)^n=a^nb^n,((a)/(b))^n=frac{a^n}{b^n}- 当a > 1时,函数在R上单调递增;当0 < a<1时,函数在R上单调递减。
高等数学公式大全(几乎包含了所有)
高等数学公式大全1、导数公式:2、基本积分表:3、三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高等数学必背基本公式
sin cos 1 [sin( ) sin( )]
2
sin sin 1 [cos( ) cos( )]
2
cos cos 1 [cos( ) cos( )]
2
sin sin 2sin cos
2
2
sin sin 2cos sin
2
2
(arctan
x
)
1
1 x
2
( x ) x 1
(cos x) sin x
(cot x) csc2 x
(csc x) csc x cot x
(e x ) e x
(ln x) 1 x
(arccos x)
1 1 x2
(
arccot
x )
1
1 x2
11
微分的计算
dy f ( x)dx
(★)
xX g( x)
x X
则 lim f ( x) 0.
x X
f (x)
lim f ( x) lim[ g( x)]
xX
xX g( x)
f (x)
lim
lim g( x) a 0 0.
xX g( x) xX
3
a.多项式与分式函数代入法求极限;
b.消去零因子法求极限;
c.
当a0 0,b0 0, m和n为非负整数时有
(2) 1 cos x ~ 1 x2 2
(3) x ~ ln(1 x) ~ ex 1
(4) ax 1 ~ x ln a(a 0, a 1)
(5) (1 x) 1 ~ x( 0是常数) 特别, n(n Z ),n 1 x 1 ~ x .
n
(6) ln x ~ x 1 (x 1)
(完整版)高数常用公式手册
高等数学复习公式1、乘法与因式分解公式2、三角不等式■Ti3、一元二次方程U H-珀+巴=0 的解4、某些数列的前n项和5、二项式展开公式6、基本求导公式7、基本积分公式8—些初等函数两个重要极限9、三角函数公式正余弦定理10、莱布尼兹公式11、中值定理12、空间解析几何和向量代数13、多元函数微分法及应用14、多元函数的极值15、级数16、微分方程的相关概念1、乘法与因式分解公式1.1a3'—护=(口一卜)(& + b)1.2八土护干必十們n ■ n / ■ 、/ n 1 n 2.g a b (a b)(a a b2、三角不等式2.1 匕■. J -2.2 ■' > r - L2.3 二;•- * 门'2.4 ■- ■- ■- r - ■■- 2.6|训£ b 旨一常用高数公式(a-b)(a n~ (口十&)(厂十络十a" 皆---------------- a b n~2十矿+ ft Q —& t1+ '■' + fit —Q J伉为正整数)g为偶数)n 3 2 n 2 n 1、a b L ab b )( n 为奇数)3、一元二次方程 。
十+斑十的解3.2(韦达定理)根与系数的关系:r >0万程口恂定一黄恨, 3-3利别朮 沪-伽彳=0方程有相尊二买抿”I < U 方程有决辄肆琅.4、某些数列的前 n 项和4.1T r - 亦 + 1)1十2十3十…•十沖= ------ ---- 4.21 十3 + B+ —十(2⑺一1) = □& 4.32+4 + 5+ ■■■ + (2 外)=n (n 十 1)44[十沪十护十…十卅=巾+ 1)帥+ 1)64.5 f 十护十扌十…十(亦章=吧-1)a4.61彳+尸+*+…+异+44.7P+孑十用+…十(加一⑵^一 1)4.81卄也十L )=*十挈+可'J5、二项式展开公式5.1 (一时—+严时答2-沪十捫一%一宀…+7 !U p+止土色土^右 忖十十屮Jd!6、基本求导公式:(C) 0 (C为常数)(cot x) csc 2 xsin "2x (sec x)(csc x)sec x tan xesc x cot x (arcsin x)(log a x)1 1(ln x)x x ln a(sin x) cos x (cos x) sin x(tan x) sec2 x1 cos2 x(x ) x 1 (为实数) (a x) a x lna (e x) e x(arccos(arctan7、基本积分公式:0dx x) x)(arc cot x)1 x211 ~x7x dx 1)Idx xxe dx lnxsec xdx ln secx tan x Ccsc xdx ln cscx cot x Cdxarctan x C1 x2dxarcsin x C疋1e x Ca x dxx—C Inadx2~ cosx2sec xdx tancosxdx sin x Csin xdx cosx C 8、一些初等函数:两个重要极限:双曲正弦:shx 双曲余弦:chxx x e e2x x e e2双曲正切:thxshx x echx x e arshx ln (x x2 1) archx ln (x .x21)xeedx2sin x2csc xdx cot x Csec x tan xdxcscx cot xdxlimx 0lim(1丄厂x xsecxcscx Ce 2.718281828459045…arthx Iln 1_-2 1 x 9、三角函数公式:高等数学复习公式sinsin 2si n-cos22sinsin2 cos-sin22 coscos2 cos-cos-22 coscos 2 sin --sin -22■倍角公式:■半角公式:c os —21 cosV 2cot —21cos 1 cos sin 1 cossin 1 cos柯西中值定理: 当F(x) x 时,柯西中值定理就是 拉格朗日中值定理sin( )sin cos cos sin cos()cos cos sin sintan() tan tan 1 tan tan、 cot cot 1cot()cot cot■和差化积公式:sin2tan — 2■正弦定理: a sin A b sin B — 2R •余弦定理:c 2 sin C 2 2a b 2abcosC•反三角函数性质: arcs in x arccosx arcta n x —arc cot x2(uv)(n) n C :u (nkJ)u (n)v (n 1) nu v n(n 1)u(n 2)vn(n 1) (n k 1) (n k )v(k )10、高阶导数公式一一莱布尼兹( Leibniz )公式: 2!k!11、中值定理与导数应用: U V(n)拉格朗日中值定理: f(b) f(a) f ( )(b a)■和差角公式:si n2 cos2 cot2 tan22sin cos 22 cos 1 cot 2 12cot 2ta n 1 tan 21 2si n 22cos.2 sinsi n3 3sin4s in 3cos3 4CO £3 cos tan33ta n tan 321 3ta n12、空间解析几何和向量代数:空间2点的距离:d M 1M 2 向量在轴上的投影:Pr j u ABPrj u@1 a ?) Pr ja 1 Prja ?a b cos a x b xa zb z ,是一个数量,代表平行六面体的体积平面的方程:1、点法式:A(x X o ) B(y y o ) C(z z o ) 0,其中 n{代 B,C}, M o (x o , y o ,z o )2、一般方程:Ax By Cz D o3、截距世方程:△ y z -1a b c平面外任意一点到该平面的距离:|Ax o By o d -- ------------- Cz o D〜 、‘A 2 B 2 C 2x X o mt空间直线的方程:xX o y y ozzt,其中s {m,n, p};参数方程:y y o ntmnPPtz z o二次曲面:22 21、椭球面:y_ 刍1 ab 2 c222、抛物面:丄 y_ z,(p, q 同号)2p 2q3、双曲面:222单叶双曲面:务y_ 刍1 ab 2c 222双叶双曲面:qy ~~2刍1(马鞍abc13、多元函数微分法及应用两向量之间的夹角: cos axb : x 2 2 一 a xa y a yb y T~' 2 a z ... b x a z b z 2 2 b y b zcab a xb x ay b y k a z ,c b z a b sin 例:线速度: 向量的混合积: [abc] (a b) c a x b x ayb y C ya zb z Czc cos ,为锐角时, (X 2 X 1)2 Q2 yJ 2 (Z 2 Z 1)2 AB cos ,是AB 与u 轴的夹角。
大学高等数学公式大全
大学高等数学公式大全高等数学是大学数学学科中的一门重要课程,也是理工科学生必须掌握的基础知识。
在学习高等数学的过程中,数学公式是必不可少的工具。
本文将为大家提供一份大学高等数学公式大全,供学生们参考使用。
一、极限与连续1.1 极限的定义:$$\lim_{x \to a} f(x) = L$$1.2 极限的四则运算:$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a}g(x)$$1.3 极限的乘法法则:$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$1.4 极限的除法法则:$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x\to a} g(x)}, \lim_{x \to a} g(x) \neq 0$$1.5 极限的复合函数法则:$$\lim_{x \to a} f[g(x)] = f[\lim_{x \to a} g(x)]$$1.6 常见的极限公式:- 幂函数的极限:$$\lim_{x \to a} x^k = a^k$$- 自然对数函数的极限:$$\lim_{x \to +\infty} \ln(x) = +\infty$$- 正弦函数的极限:$$\lim_{x \to 0} \sin(x) = 0$$二、导数与微分2.1 导数的定义:$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$$2.2 常见函数的导数:- 幂函数的导数:$$\frac{d}{dx} x^n = nx^{n-1}$$- 指数函数的导数:$$\frac{d}{dx} e^x = e^x$$- 三角函数的导数:$$\frac{d}{dx} \sin(x) = \cos(x), \frac{d}{dx} \cos(x) = -\sin(x)$$2.3 导数的四则运算:- 和差规则:$$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$$- 积法则:$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$- 商法则:$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdotg'(x)}{[g(x)]^2}, g(x) \neq 0$$2.4 高阶导数:$$f''(x) = \frac{d^2}{dx^2} f(x), f'''(x) = \frac{d^3}{dx^3} f(x), \ldots$$三、定积分3.1 定积分的定义:$$\int_a^b f(x) dx = \lim_{\Delta x \to 0} \sum_{i=1}^n f(x_i^*) \Delta x_i$$3.2 定积分的性质:- 线性性质:$$\int_a^b [f(x) \pm g(x)] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$- 积分与常数的乘积:$$\int_a^b kf(x) dx = k\int_a^b f(x) dx$$3.3 常见函数的定积分:- 幂函数的定积分:$$\int x^n dx = \frac{1}{n+1}x^{n+1} + C$$- 正弦函数的定积分:$$\int \sin(x) dx = -\cos(x) + C$$- 指数函数的定积分:$$\int e^x dx = e^x + C$$四、级数4.1 等比级数的求和:$$S = \frac{a}{1-r}, |r|<1$$4.2 幂级数的收敛半径:$$R = \frac{1}{\lim \sup_{n \to \infty} \sqrt[n]{|a_n|}}$$ 4.3 常见级数:- 调和级数:$$\sum_{n=1}^{\infty} \frac{1}{n}$$- 几何级数:$$\sum_{n=0}^{\infty} ar^n$$五、常微分方程5.1 一阶线性常微分方程:$$\frac{dy}{dx} + P(x)y = Q(x)$$5.2 二阶常系数齐次线性微分方程:$$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = 0$$5.3 常见的解法:- 变量分离法- 齐次线性微分方程的特征方程法- 二阶线性微分方程的常数变易法以上仅为部分高等数学公式的示例,实际上高等数学的公式非常丰富多样。
高数重要公式
高数重要公式高数(高等数学)中涉及的公式众多,以下是一些基本且重要的公式:1. 极限部分- 极限存在准则:若f(x)当x趋于a时,无论从左边还是右边趋近,其值都为L,则称函数f(x)在x=a处的极限为L,记作lim(x→a)f(x)=L。
- 洛必达法则(L'Hôpital's Rule):如果f(x)/g(x)在x=a处的分子分母分别趋向于0或无穷大,且满足一定的条件,可以通过求导计算它们的极限。
2. 微积分基础- 导数定义:若函数f(x)在点x=a处可导,则f'(a) = lim(Δx->0) [f(a+Δx)-f(a)]/Δx。
- 常用导数公式:如幂函数、指数函数、对数函数、三角函数等的基本导数公式。
- 微积分基本定理:若函数f在区间[a, b]上连续,在(a, b)内可导,那么对于任意一点c ∈(a, b),有∫_a^b f'(x) dx = f(b) - f(a)。
3. 积分部分- 不定积分与定积分的关系:不定积分是求原函数的过程,记作∫f(x) dx=F(x)+C;而定积分则是求面积、体积等问题,记作∫_a^b f(x) dx。
- 积分性质和运算法则:线性性质、积分上限函数的导数等于被积函数、换元积分法、分部积分法等。
4. 多元函数微积分- 偏导数:如果z=f(x,y),则∂z/∂x就是在y保持不变的情况下,z关于x的局部变化率,类似的还有∂z/∂y。
- 链式法则、梯度、方向导数和多元函数的极值问题等。
5. 级数理论- 级数的收敛判别法:比值判别法、根值判别法、积分判别法、狄利克雷判别法等。
- 幂级数展开:如泰勒级数、麦克劳林公式等。
以上仅列举了部分重要公式,具体使用时需根据实际问题灵活运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一阶初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβα-+=--+=+βαβαβαβαβαβαβαβαtg tg tg ±=±=±±=±)(sin sin cos cos )cos(sin cos cos sin )sin(μxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。
:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααααααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110ΛΛΛΛ抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dx x f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。
代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。
是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u ϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖ⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-==(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A ϖϖ多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ϖϖωψϕωψϕωψϕ方向导数与梯度:上的投影。