初中数学(几何)知识点总结(北师大版)

合集下载

(完整版)北师大版初中数学知识点汇总(最全)

(完整版)北师大版初中数学知识点汇总(最全)

※统计图的特点:
折线统计图:能够清晰地反映同一事物在不同时期的变化情况。
条形统计图:能够清晰地反映每个项目的具体数目及之间的大小关系。
扇形统计图:能够清晰地表示各部分在总体中所占的百分比及各部分之间的大小关系
名称 图形
表示方法
端点
长度
直线
l
A
B
直线 AB( 或 BA) 直线l
无端点
无法度量
射线
O
M
射线 OM
1个
无法度量
4
l
线段 AB( 或 BA)
线段
2个
可度量长度
A
B
线段 l
※2. 直线公理 : 经过两点有且只有一条直线 .
二. 比较线段的长短
※1. 线段公理 : 两点间线段最短 ; 两之间线段的长度叫做这两点之间的距离 .
去乘括号里的每一项以达到去括号的目的。
※注意:
①去括号时,要连同括号前面的符号一起去掉;
②去括号时,首先要弄清楚括号前是“ +”号还是“-”号;
③改变符号时,各项都变号;不改变符号时,各项都不变号。
第四章 平面图形及位置关系
一. 线段、射线、直线
※1. 正确理解直线、射线、线段的概念以及它们的区别:
※乘方的运算性质:
①正数的任何次幂都是正数;
②负数的奇次幂是负数,负数的偶次幂是正数;
③任何数的偶数次幂都是非负数;
④1的任何次幂都得 1, 0 的任何次幂都得 0;
⑤-1 的偶次幂得 1;-1 的奇次幂得 -1 ;
⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。
※有理数混合运算法则:①先算乘方 , 再算乘除 , 最后算加减。

北师大版初中数学知识点归纳(初中完整版)

北师大版初中数学知识点归纳(初中完整版)

第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

7、三视图物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。

从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n 边形分割成(n-2)个三角形。

弧:圆上A 、B 两点之间的部分叫做弧。

扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

第二章 有理数及其运算1、有理数的分类 正有理数有理数 零 有限小数和无限循环小数负有理数或 整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

任何一个有理数都可以用数轴上的一个点来表示。

北师大版初中数学各册章节知识点总结

北师大版初中数学各册章节知识点总结

北师大版初中数学各册章节知识点总结第一册:《初二上册》1.直角三角形:直角三角形的定义、直角三角形的性质、勾股定理。

2.平面图形的表示:点、线、线段、射线、角度、平行线、垂直线、相交线等基本概念。

3.二次根式:二次根式的定义、运算法则。

4.初中平面几何基本定理:垂线定理、等腰三角形的性质、三角形中位线定理、角平分线定理等。

5.多边形:多边形的定义、正多边形、变位积分、多边形的内角和、多边形的外角和。

6.梅涅劳斯定理:梅涅劳斯定理的概念、定理的应用。

第二册:《初二下册》1.线性方程:线性方程的定义、解线性方程的常用方法。

2.三角函数的定义和初步认识:三角函数的定义、正弦函数、余弦函数、正切函数等。

3.平行线与相交线:平行线的性质、平行线之间的角对、相交线之间的角对等。

4.二次函数:二次函数的基本性质、二次函数图像的性质与应用。

5.海伦公式:海伦公式的概念、海伦公式的应用。

第三册:《初三上册》1.集合:集合的概念、集合的运算、集合的表示等。

2.图形的相似:图形相似的概念、相似比、相似三角形的性质等。

3.三角形的性质:三角形的角与边的关系、角边关系等。

4.空间几何基本概念:欧几里得空间几何学的基本概念、空间图形与平面图形的关系等。

5.高中数学预修知识:比例与相似、复数等。

第四册:《初三下册》1.数系的扩充:有理数和无理数的概念、实数的分类等。

2.几何体的计算:几何体的表面积、几何体的体积等。

3.空间几何基本定理:角的平分线、角的辅助线等。

4.三角恒等式:三角函数的反函数、三角函数的周期等。

第五册:《九年级上册》1.一次函数:一次函数的定义、一次函数图像的性质、线性规律等。

2.向量几何:向量的定义、向量的运算、向量的平行和垂直等。

3.数的四则运算:整数、有理数、无理数的四则运算等。

4.二次方程与不等式:二次方程的定义、解二次方程的方法等。

5.三角形的面积:三角形的名字、面积的计算公式等。

第六册:《九年级下册》1.指数与对数:指数、对数和底数的概念、指数与对数的性质等。

北师大版初中数学知识点归纳7~9年级

北师大版初中数学知识点归纳7~9年级

北师大版七年级上册数学各章节知识点总结第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形与平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们就是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们就是平面图形。

2、点、线、面、体(1)几何图形的组成点:线与线相交的地方就是点,它就是几何图形中最基本的图形。

线:面与面相交的地方就是线,分为直线与曲线。

面:包围着体的就是面,分为平面与曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能就是三角形,四边形,五边形,六边形。

7、三视图物体的三视图指主视图、俯视图、左视图。

主视图:从正面瞧到的图,叫做主视图。

左视图:从左面瞧到的图,叫做左视图。

俯视图:从上面瞧到的图,叫做俯视图。

8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。

从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n 边形分割成(n-2)个三角形。

弧:圆上A 、B 两点之间的部分叫做弧。

扇形:由一条弧与经过这条弧的端点的两条半径所组成的图形叫做扇形。

第二章 有理数及其运算1、有理数的分类 正有理数有理数 零 有限小数与无限循环小数负有理数或 整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数就是零3、数轴:规定了原点、正方向与单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

北师大版初中数学知识点汇总(最全)

北师大版初中数学知识点汇总(最全)

侧面是曲面底面是圆面圆柱,:⎩⎨⎧侧面是正方形或长方形底面是多边形棱体柱体,:侧面是曲面底面是圆面圆锥,:⎩⎨⎧侧面都是三角形底面是多边形棱锥锥体,:北师大版初中数学七年级上册知识点汇总第一章 丰富的图形世界¤1.¤2.¤3. 球体:由球面围成的(球面是曲面)¤4. 几何图形是由点、线、面构成的。

①几何体与外界的接触面或我们能看到的外表就是几何体的表面。

几何的表面有平面和曲面;②面与面相交得到线;③线与线相交得到点。

※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱.。

※6. 侧棱:相邻两个侧面的交线叫做侧棱..,所有侧棱长都相等。

¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。

¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧---)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数边形、六边形……¤9. 长方体和正方体都是四棱柱。

¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。

※12. 设一个多边形的边数为n(n≥3,且n 为整数),从一个顶点出发的对角线有(n-3)条;可以把n 边形成(n-2)个三角形;这个n 边形共有2)3(-n n 条对角线。

◎13. 圆上两点之间的部分叫做弧.,弧是一条曲线。

◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。

¤15. 凸多边形和凹多边形都属于多边形。

有弧或不封闭图形都不是多边形。

第二章 有理数及其运算※※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

北师大版初中数学知识点汇总

北师大版初中数学知识点汇总

北师大版初中数学知识点汇总
1.基础运算
-四则运算:加法、减法、乘法、除法
-平方和平方根运算
-分数运算:加法、减法、乘法、除法、比较大小、约分分数-百分数及其运算
2.数与代数
-数的分类:自然数、整数、有理数、无理数
-数的比较与大小关系
-数的因数与倍数
-分类及表示法
-整式与分式
-一次方程与一次方程的解
-二次根式
-二次方程与二次方程的解
3.几何图形
-平面几何图形分类
-线段、射线、直线
-角的分类及度量
-三角形、四边形及其性质
-平行四边形的性质
-直角三角形的性质
-圆的概念、圆心角、弧长、面积等
4.数据与统计
-统计图形的制作与解读
-平均数的计算与应用
-概率与事件
5.解决实际问题
-问题解决方法与策略
-解决实际问题的数学建模
-信息的收集与整理
-问题解决过程的表达与展示
此外,北师大版初中数学教材还涉及到丰富的习题、考点、题型等,以帮助学生深入理解和掌握相关知识。

以上只是一个简要的概述,而实际教材中的内容会更加详细和细致。

学生应按照教材的要求认真学习,勤做习题,通过练习巩固知识,提升解题能力。

(完整版)北师大版初一数学知识点梳理

(完整版)北师大版初一数学知识点梳理

侧面是曲面底面是圆面圆柱,:⎩⎨⎧侧面是正方形或长方形底面是多边形棱体柱体,:侧面是曲面底面是圆面圆锥,:⎩⎨⎧侧面都是三角形底面是多边形棱锥锥体,:⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数北师大版初一数学定理知识点汇总[七年级上册]第一章 丰富的图形世界¤1.¤2.¤3. 球体:由球面围成的(球面是曲面)¤4. 几何图形是由点、线、面构成的。

①几何体与外界的接触面或我们能看到的外表就是几何体的表面。

几何的表面有平面和曲面;②面与面相交得到线;③线与线相交得到点。

※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱.。

※6. 侧棱:相邻两个侧面的交线叫做侧棱..,所有侧棱长都相等。

¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。

¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形……¤9. 长方体和正方体都是四棱柱。

¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。

※12. 设一个多边形的边数为n(n≥3,且n 为整数),从一个顶点出发的对角线有(n-3)条;可以把n 边形成(n-2)个三角形;这个n 边形共有2)3(-n n 条对角线。

◎13. 圆上两点之间的部分叫做弧.,弧是一条曲线。

◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。

¤15. 凸多边形和凹多边形都属于多边形。

有弧或不封闭图形都不是多边形。

第二章 有理数及其运算 ※※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

北师大版初中数学知识点总结最新最全

北师大版初中数学知识点总结最新最全

北师大版初中数学知识点总结最新最全北师大版初中数学知识点总结一、数与式1.自然数、零、整数、有理数2.分数、小数的读法、写法及其相互转换3.数的四则运算及其性质:加减乘除4.整数余数定理:被几整除?5.计算含有带分数的算式6.代数式的认识:字母、常数、系数、次数、同类项、多项式7.代数式的计算:加减乘8.利用代数式来解决应用问题:等式、方程9.美元、欧元、人民币、英镑、日元、韩元等外币的汇率及相互换算。

10.银行利息与存款、贷款、信用卡账户余额之间的关系。

二、平面图形1.点、线、面2.直角、等腰、等边三角形3.矩形、正方形、长方形、菱形、梯形、圆、弧4.几何图形的支配性规则及其应用5.相似图形及其性质6.比例、比例关系及其应用7.勾股定理及其应用8.三角形和四边形的性质9.圆心角、中心角、弧、弦、切线、切角、异向角定义及特点10.三角形、四边形及圆的周长和面积的计算三、空间几何1. 全等和相似的三角形2. 空间内常见几何图形(长方体,正方体,棱台,圆柱,圆锥,球)之间的关系3. 空间几何公理及其它性质的应用4. 空间图形体积及表面积的计算4. 三视图及制图5. 空间图形剖分6. 空间图形的对称性及其应用四、单位换算和应用1. 长度、质量、容积、面积、时间、速度、密度、温度等各种物理量的单位换算2. 平均、比例、利率、利益、折扣、增长等问题的计算方法3. 房地产4. 理财5. 道路、桥梁6. 奇妙山7. 建筑物8. 旅游总结:以上是北师大版初中数学的主要知识点,需要注意的是数学知识的学习不是一朝一夕的事,也不是单纯的记忆,需要较长的时间不断练习和总结。

而且,学习数学的时候,应该根据自己的能力和兴趣选择适合自己的学习方法,并注意合理安排时间、多思考多质疑,培养自己的逻辑思维和解决实际问题的能力。

北师大版初中数学知识点汇总(最全)

北师大版初中数学知识点汇总(最全)

侧面是曲面底面是圆面圆柱,:⎩⎨⎧侧面是正方形或长方形底面是多边形棱体柱体,:侧面是曲面底面是圆面圆锥,:⎩⎨⎧侧面都是三角形底面是多边形棱锥锥体,:⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧---)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数北师大版初中数学七年级上册知识点汇总第一章 丰富的图形世界¤1.¤2.¤3. 球体:由球面围成的(球面是曲面)¤4. 几何图形是由点、线、面构成的。

①几何体与外界的接触面或我们能看到的外表就是几何体的表面。

几何的表面有平面和曲面;②面与面相交得到线;③线与线相交得到点。

※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱.。

※6. 侧棱:相邻两个侧面的交线叫做侧棱..,所有侧棱长都相等。

¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。

¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形……¤9. 长方体和正方体都是四棱柱。

¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。

※12. 设一个多边形的边数为n(n≥3,且n 为整数),从一个顶点出发的对角线有(n-3)条;可以把n 边形成(n-2)个三角形;这个n 边形共有2)3(-n n 条对角线。

◎13. 圆上两点之间的部分叫做弧.,弧是一条曲线。

◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。

¤15. 凸多边形和凹多边形都属于多边形。

有弧或不封闭图形都不是多边形。

第二章 有理数及其运算※※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

初中数学知识点总结北师大版

初中数学知识点总结北师大版

初中数学知识点总结北师大版初中数学知识点总结(北师大版)一、数与代数1. 有理数- 整数与分数- 正数、负数、零- 有理数的加法、减法、乘法、除法- 绝对值与有理数的大小比较2. 整数的性质- 素数与合数- 奇数与偶数- 整数的因数与倍数- 质因数分解3. 代数表达式- 单项式与多项式- 同类项与合并同类项- 代数式的加减运算4. 一元一次方程- 方程的概念与解法- 列方程解应用题5. 二元一次方程组- 代入法与消元法- 方程组的解与无穷多解、无解6. 不等式与不等式组- 不等式的性质与解集- 一元一次不等式与解应用题- 一元一次不等式组的解法7. 函数的概念与性质- 函数的定义与表示方法- 函数的图像与性质- 一次函数与反比例函数二、几何1. 图形初步- 点、线、面、体- 直线、射线、线段- 角的概念与分类2. 平面图形- 平行线与垂线- 三角形的分类与性质- 四边形的分类与性质- 圆的性质与圆周角3. 几何图形的计算- 三角形、四边形的面积计算- 圆的周长与面积计算- 体积的计算(长方体、立方体)4. 相似与全等- 全等三角形的判定与性质- 相似三角形的判定与性质- 相似多边形5. 解析几何初步- 坐标系的概念与应用- 直线与坐标轴的交点- 点与线的坐标关系三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读(条形图、折线图、饼图)2. 概率- 随机事件的概率- 等可能事件的概率- 概率的加法公式四、综合应用题1. 数列的基本概念- 等差数列与等比数列- 数列的通项公式与求和公式2. 应用题的解题策略- 列方程解应用题- 利用函数关系解应用题- 利用图形解应用题3. 数学思想方法的应用- 转化与化归- 分类与整合- 归纳与演绎以上总结了北师大版初中数学的主要知识点。

在学习过程中,应注重理论与实践相结合,通过大量的练习题来巩固知识点,并培养解决实际问题的能力。

同时,要注意数学思维的培养,提高逻辑推理和抽象思维的能力。

2024年北师大初中数学知识总结(2篇)

2024年北师大初中数学知识总结(2篇)

2024年北师大初中数学知识总结____年北师大初中数学知识总结一、数与代数1.正负数的认识与运算2.整数的四则运算与性质3.分数的四则运算与性质4.小数的四则运算与性质5.百分数的意义与运算6.代数式的认识与等式解法7.一元一次方程的解与应用8.二元一次方程组的解法与应用二、几何与空间1.角的基本概念与性质2.直线、线段与射线的基本性质3.平面图形的基本性质与分类4.平移、旋转、对称与相似的认识与性质5.圆的基本性质与应用6.三角形的基本性质与分类7.四边形的基本性质与分类8.平面坐标系的认识与应用三、函数与图像1.函数的概念与性质2.一次函数与其图像的认识与性质3.一次函数与二次函数的比较4.二次函数与对称轴的关系5.二次函数与解析式的应用6.函数关系式的变形与应用7.简单的函数图像的认识与性质8.函数与实际问题的应用四、数据与统计1.数据的收集与整理2.统计图的读取与绘制3.集中趋势与离散程度的度量4.统计与概率的应用5.事件的概率与统计6.抽样与调查的基本方法五、解题方法1.解答问题的思路与方法2.选择题的解题技巧与常见题型3.填空题与解答题的解题技巧与常见题型4.数学证明的基本方法与技巧以上是____年北师大初中数学知识的总结,涵盖了数与代数、几何与空间、函数与图像、数据与统计以及解题方法等方面的内容。

通过全面掌握这些知识,学生可以在数学学习中建立扎实的基础,并能够应对各种数学问题和解题方法。

2024年北师大初中数学知识总结(二)____年北师大初中数学知识点总结一、数与式1.自然数、整数、有理数、无理数、实数2.数的四则运算3.绝对值与相反数4.数的比较与大小关系5.数的表示方法及数量关系6.代数式的基本概念7.展开与化简代数式二、代数方程与方程式1.一元一次方程2.一元一次方程的解集3.一元一次方程的应用4.二元一次方程组5.二元一次方程组的解集6.二元一次方程组的应用7.一次方程与一次方程组的混合应用8.二次方程与根的概念9.二次方程的求解方法与解的分类10.二次方程的应用三、几何基础1.角的基本概念2.角的分类及性质3.角的运算4.平行线及其性质5.平行线与一组角的关系6.平行线与交线的性质7.三角形的基本概念8.三角形的分类与性质9.三角形的内角和10.直角三角形、等腰三角形、等边三角形及其性质11.三角形的判定12.三角形的相似性质与判定13.勾股定理及其应用14.几何推理与几何关系四、图形与变换1.图形的基本概念2.点、线、面及其相互关系3.平面图形的分类与性质4.相交直线的性质与分类5.相交线与角的关系6.相似图形及其判定7.比例与相似图形的性质8.对称图形与轴对称及其性质9.平移、旋转、翻折变换与其性质10.图形的拼接、剪裁及其应用五、数据与统计1.数据的搜集与整理2.统计图的制作与解读3.数据的分析与归纳4.概率与统计的基本概念5.简单事件的概率计算6.随机事件及其概率计算7.概率的性质与运算8.概率与统计的应用六、函数1.函数与变量的关系2.函数的表示及其性质3.函数的定义域与值域4.函数的图像与性质5.函数关系式的化简与变形6.函数的逆运算7.函数与方程的应用以上是____年北师大初中数学的知识点总结,总计____字左右。

北师大版初中数学知识点总结

北师大版初中数学知识点总结

北师大版初中数学知识点总结一、实数1. 有理数与无理数- 有理数:整数和分数统称为有理数,包括正有理数、0和负有理数。

- 无理数:无限不循环小数称为无理数,如√2、π等。

2. 实数的运算- 加法、减法、乘法和除法的基本规则。

- 运算律:交换律、结合律、分配律。

- 绝对值的概念及性质。

- 正数和负数的四则运算规则。

3. 科学记数法- 科学记数法的表示方法。

- 较大或较小数的快速计算。

4. 实数的性质和比较- 实数的大小比较。

- 区间和邻域的概念。

二、代数式1. 代数式的基本概念- 单项式、多项式的定义。

- 同类项和合并同类项。

2. 代数式的运算- 整式的加减乘除运算。

- 因式分解:提公因式法、公式法、分组分解法。

- 分式的运算:约分、通分、四则运算。

3. 代数方程- 一元一次方程、二元一次方程的解法。

- 一元二次方程的解法:开平方法、配方法、公式法、因式分解法。

三、函数1. 函数的概念- 函数的定义和表示方法。

- 函数的自变量和因变量。

2. 函数的性质- 函数的单调性、奇偶性、周期性。

- 函数图像的平移、对称变换。

3. 常见函数- 一次函数、二次函数的图像和性质。

- 反比例函数的性质和图像。

- 函数的应用题解法。

四、几何1. 平面几何- 点、线、面的基本性质。

- 三角形、四边形的性质和计算。

- 圆的性质和计算:圆周角、圆心角、弦切角等。

2. 立体几何- 立体图形的表面积和体积计算。

- 棱柱、棱锥、圆柱、圆锥的性质。

3. 几何变换- 平移、旋转、轴对称、中心对称的性质。

- 相似三角形的性质和应用。

4. 解析几何- 坐标系的基本概念。

- 直线和圆的解析表达式。

五、概率与统计1. 概率- 随机事件的概率计算。

- 条件概率和独立事件的概念。

- 概率分布和数学期望。

2. 统计- 数据的收集和整理。

- 统计量:平均数、中位数、众数、方差、标准差。

- 统计图表的绘制和解读。

六、数列1. 等差数列- 等差数列的定义和通项公式。

北师大版七年级(上)数学知识点归纳总结

北师大版七年级(上)数学知识点归纳总结

第一章丰富的图形世界七年级上册第1节生活中的立体图形一、生活中常见的几何体1、柱体:分为棱柱和圆柱(1)棱柱①相关概念(如图1-1-1所示)A、底面:两个互相平行的平面叫做棱柱的底面。

B、侧面:两个底面之外的平面叫做棱柱的侧面。

C、棱:相邻两个面的交线叫做棱柱的棱。

D、侧棱:相邻两个侧面的交线叫做棱柱的侧棱。

E、顶点:侧面与底面的公共顶点叫做棱柱的顶点。

F、高:两个底面的距离叫做棱柱的高。

②分类A、按侧棱是否与底面边垂直分为:直棱柱和斜棱柱。

(如图1-1-2所示)B、按底面图形的边数分为:三棱柱、四棱柱、五棱柱、六棱柱……(如图1-1-3所示),它们的底面图形的形状依次是三角形、四边形、五边形、六边形……【说明】长方体和正方体都是四棱柱。

③性质A、棱柱的上、下底面形状相同。

B、棱柱的侧面的形状都是平行四边形,直棱柱的侧面是长方形。

C、棱柱的侧棱都平行且相等,直棱柱的侧棱都平行且与高相等。

④元素间的关系A、底面多边形的边数n确定该棱柱是n棱柱B、n棱柱有2n个顶点,3n条棱,n条侧棱,(n+2)个面,n个侧面。

(2)圆柱①相关概念(如图1-1-4所示)以长方形的一边AB所在直线为旋转轴,其余三边旋转形成的面所围成的几何体叫做圆柱。

其中AB叫做圆柱的轴,AB的长叫做圆柱的高,所有平行于AB的线段,如DC,叫做圆柱的母线,AD与BC旋转形成的两个圆叫做圆柱的底面,DC旋转形成的曲面叫做圆柱的侧面。

②性质A、圆柱的上、下底面形状相同,是能够重合的两个圆。

B、圆柱有无数条母线,它们都平行且与高相等。

③圆柱与棱柱的异同A、相同点a、都有上、下两个底面,且两个底面的大小、形状完全相同;b、它们的高都是上、下底面的距离;c、它们的体积都等于底面积乘以高,侧表面积都等于底面周长乘以高。

B、不同点a、圆柱的底面是圆,而棱柱的底面是多边形;b、圆柱侧面是光滑的曲面,而棱柱侧面是有一条边互相重合的顺次相连的四边形。

2、锥体:分为棱锥和圆锥(1)棱锥①相关概念(如图1-1-5所示)A、底面:棱锥的多边形叫做棱锥的底面,如四边形ABCD。

北师大版初中数学知识点总结

北师大版初中数学知识点总结

北师大版初中数学知识点总结一、数与代数部分1.整数:包括整数的加减乘除运算,整数的乘除混合运算,绝对值等概念。

2.分数:分数的加减乘除运算,带分数和假分数的相互转化,分数与整数的混合运算。

3.实数:实数的定义和性质,实数的加减乘除运算。

4.线性方程与不等式:一元一次方程与一元一次不等式的解法,含有括号的一元一次方程与一元一次不等式的解法。

二、几何部分1.平面几何:点、线、面的性质和判定,平行线、垂直线的判定,角的性质和判定。

2.相似与全等:相似三角形的判定和性质,全等三角形的判定和性质。

3.三角形:三角形的构造,三角形的面积与周长,勾股定理和其应用。

4.四边形:平行四边形的性质,矩形、菱形和正方形的性质,梯形的性质和判定,同一个底的两个梯形的面积比。

5.圆:圆的性质和判定,圆的周长和面积。

三、数据与统计部分1.数据的收集和整理:数据的收集方法,数据的整理和统计。

2.数据的描述性统计:频率表和频率分布直方图,中心位置的度量(平均数、中位数、众数),简单统计图的绘制和分析。

3.概率:随机事件的基本概念,概率的计算方法,概率的基本性质。

四、函数部分1.函数的概念:函数的定义和性质,自变量和函数值的关系。

2.一次函数:一次函数的定义、图象、性质和应用,一次函数的解析式,对应关系和表示法。

3.二次函数:二次函数的定义、图象、性质和应用,二次函数的解析式,对应关系和表示法。

4.幂函数:幂函数的定义、图象、性质和应用,幂函数的解析式,对应关系和表示法。

五、解决应用问题部分1.问题形式的转化与算法的应用:将实际问题转化为数学问题,利用数学知识解决实际问题。

2.数学思维与方法:灵活运用数学知识和方法解决实际问题,培养问题解决的能力和思维方式。

北师大版初中数学知识点汇总最全

北师大版初中数学知识点汇总最全
③一个数同0相加,仍得这个数。
※加法的交换律、结合律在有理数运算中同样适用。
¤灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;
②符号相同的数,可以先相加;
③分母相同的数,可以先相加;
④几个数相加能得到整数,可以先相加。
※有理数减法法则: 减去一个数,等于加上这个数的相反数。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;
②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;
③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
※代数式的书写格式:
①代数式中出现乘号,通常省略不写,如vt;
②利用加法则,加法交换律、结合律简化计算。
(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。)
※有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘,积仍为0。
※如果两个数互为倒数,则它们的乘积为1。(如:-2与 、 …等)
※乘法的交换律、结合律、分配律在有理数运算中同样适用。
¤有理数乘法运算步骤:①先确定积的符号;
②求出各因数的绝对值的积。
¤乘积为1的两个有理数互为倒数。注意:
①零没有倒数
②求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。
③正数的倒数是正数,负数的倒数是负数。
※有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。
②0除以任何非0的数都得0。0不可作为除数,否则无意义。
※有理数的乘方
※注意:①一个数可以看作是本身的一次方,如5=51;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学(几何)知识点总结考点六、投影与视图1、投影投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。

平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。

中心投影:由同一点发出的光线所形成的投影称为中心投影。

2、视图当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。

物体的三视图特指主视图、俯视图、左视图。

主视图:在正面内得到的由前向后观察物体的视图,叫做主视图。

俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图。

左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。

第九章三角形考点一、三角形1三角形的概念:由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

3、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。

4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“∆”表示,顶点是A、B、C的三角形记作“∆ABC”,读作“三角形ABC”。

5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。

它是两条直角边相等的直角三角形。

6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形。

②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

推论:①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

③三角形的一个外角大于任何一个和它不相邻的内角。

注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

8、三角形的面积:三角形的面积=21×底×高 考点二、全等三角形 1、全等三角形的概念能够完全重合的两个图形叫做全等形。

能够完全重合的两个三角形叫做全等三角形。

两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。

2、全等三角形的表示和性质全等用符号“≌”表示,读作“全等于”。

如△ABC ≌△DEF ,读作“三角形ABC 全等于三角形DEF ”。

注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。

3、三角形全等的判定 三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”) (2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”) (3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。

直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”) 4、全等变换只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。

全等变换包括一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。

(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。

(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。

考点三、等腰三角形 1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。

(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A∠-︒2、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

这个判定定理常用于证明同一个三角形中的边相等。

推论1:三个角都相等的三角形是等边三角形推论2:有一个角是60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

4、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用: 位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:三角形一条中线和与它相交的中位线互相平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

第十章 四边形考点一、四边形的相关概念1、四边形:在同一平面内,由不在同一直线上的四条线段首尾顺次相接的图形叫做四边形。

2、凸四边形:把四边形的任一边向两方延长,如果其他个边都在延长所得直线的同一旁,这样的四边形叫做凸四边形。

3、对角线:在四边形中,连接不相邻两个顶点的线段叫做四边形的对角线。

4、四边形的不稳定性:三角形的三边如果确定后,它的形状、大小就确定了,这是三角形的稳定性。

但是四边形的四边确定后,它的形状不能确定,这就是四边形所具有的不稳定性,它在生产、生活方面有着广泛的应用。

5、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。

四边形的外角和定理:四边形的外角和等于360°。

多边形的内角和定理:n 边形的内角和•-)2(n 180°;多边形的外角和定理:任意多边形的外角和360° 6、多边形的对角线条数的计算公式:设多边形的边数为n ,则多边形的对角线条数为2)3(-n n 。

考点二、平行四边形1、平行四边形的概念:两组对边分别平行的四边形叫做平行四边形。

平行四边形用符号“□ABCD ”表示,如平行四边形ABCD 记作“□ABCD ”,读作“平行四边形ABCD ”。

2、平行四边形的性质(1)平行四边形的邻角互补,对角相等。

(2)平行四边形的对边平行且相等。

推论:夹在两条平行线间的平行线段相等。

(3)平行四边形的对角线互相平分。

(4)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。

3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形;定理2:两组对边分别相等的四边形是平行四边形;定理3:对角线互相平分的四边形是平行四边形;定理4:一组对边平行且相等的四边形是平行四边形4、两条平行线的距离:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

平行线间的距离处处相等。

5、平行四边形的面积:S 平行四边形=底边长×高=ah 考点三、矩形 1、矩形的概念有一个角是直角的平行四边形叫做矩形。

2、矩形的性质(1)具平行四边形的一切性质;(2)矩形的四个角都是直角;(3)矩形的对角线相等;(4)矩形是轴对称图形 3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形;定理2:对角线相等的平行四边形是矩形 4、矩形的面积:S 矩形=长×宽=ab 考点四、菱形 1、菱形的概念有一组邻边相等的平行四边形叫做菱形 2、菱形的性质(1)具有平行四边形的一切性质;(2)菱形的四条边相等;(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角;(4)菱形是轴对称图形 3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形;定理2:对角线互相垂直的平行四边形是菱形 4、菱形的面积:S 菱形=底边长×高=两条对角线乘积的一半 考点五、正方形1、正方形的概念:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质 (2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角 (4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形 (6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:①先证它是矩形,再证有一组邻边相等。

②先证它是菱形,再证有一个角是直角。

(2)判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形;再证明它是菱形(或矩形);最后证明它是矩形(或菱形)4、正方形的面积:设正方形边长为a ,对角线长为b , S 正方形=222b a考点六、梯形 1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形。

相关文档
最新文档