遗传与变异
初中生物生物的遗传和变异知识点整理
初中生物生物的遗传和变异知识点整理第一节基因控制生物的性状知识速记遗传与变异1.遗传:(1)概念:亲子间的。
(2)实例:种瓜得瓜,种豆得豆;孩子的五官跟父亲或母亲很像等。
2.变异:(1)概念:亲子间及子代个体间的。
(2)实例:一母生九子,连母十个样;豌豆的红花与白花等。
生物的性状1.性状:(1)概念:生物体的、生理和等特征的统称。
(2)实例:豌豆的形状、番茄果实的颜色、人的单眼皮或双眼皮等。
2.相对性状:(1)概念: 生物的性状的表现形式。
(2)实例:豌豆有圆粒和粒,头发有黑色和棕色等。
基因控制生物的性状1.验证实验——转基因鼠:(1)研究的性状:鼠的。
(2)控制该性状的基因: 基因。
(3)结论:基因决定生物的。
(4)推论:生物在传种接代的过程中,传递的是。
2. 技术:把一种生物的某个基因,用生物技术的方法转入到另一种生物的基因组中,培育出的转基因生物就有可能表现出转入基因的性状。
3.生物的性状由控制,还受的影响。
随堂练习( )1.下列描述的现象属于变异的是①种瓜得瓜,种豆得豆②一母生九子,连母十个样③两只黑猫生了一只白猫④母亲双眼皮,女儿也是双眼皮A.②③B.①④C.③④D.②④( )2.下列各组性状中属于相对性状的是A.南瓜的黄色和南瓜的绿色B.金鱼的泡眼和鲫鱼的突眼C.猪的黑毛和羊的白毛D.水稻的直叶与小麦的卷叶( )3.在人类ABO血型系统中,有A型、B型、AB型和O型四种血型。
决定人的血型特定遗传功能单位是A.细胞核B.染色体C.DNAD.基因( )4.科学家将一种来自发光水母的基因整合到普通小鼠的基因中,培育出的小鼠外表与普通小鼠无异,但到了夜晚却能够发出绿色荧光。
科学家培育新品种小鼠采用了A.转基因技术B.克隆技术C.杂交技术D.传统生物技术( )5.如图,同一株水毛茛,裸露在空气中的叶和浸在水中的叶,表现出两种不同的形态,前者呈扁平状,后者深裂而呈丝状,这种现象说明A.生物的性状不受基因影响B.生物性状是基因和环境相互作用的结果C.生物的性状只受基因影响D.生物的性状只受环境影响6.(资料分析题)据报道,我国科学家已经开发出一种富含牛肉蛋白质的“马铃薯”新品种。
遗传和变异的例子
遗传和变异的例子遗传和变异是生物界中普遍存在的现象。
遗传是指生物的基因从一代传递到下一代的过程,而变异则是指基因在传递过程中发生的改变。
下面将分别介绍遗传和变异的例子。
1. 遗传的例子以人类为例,我们的身体特征和生理功能很大程度上取决于父母的遗传信息。
例如,我们的眼睛颜色、身高、体重、甚至智商等都受到父母的影响。
这就是遗传的力量。
在遗传学中,我们通常用显性和隐性基因来描述这种遗传特征的传递方式。
例如,双眼皮是一个显性基因,而单眼皮则是隐性基因。
如果一个人继承了双眼皮的显性基因,他很可能会拥有双眼皮。
除了人类,其他生物也具有相似的遗传特征。
例如,豌豆的种子形状、花的颜色等都受到豌豆基因的影响。
科学家们通过研究这些遗传特征的传递方式,得出了许多关于遗传的规律和原理。
2. 变异的例子变异是指基因在传递过程中发生的改变。
这种改变可能是由于环境因素引起的,也可能是由于基因内部的随机变化引起的。
变异性是生物多样性的重要来源,也是生物适应环境变化的重要手段。
以人类的皮肤颜色为例,不同地区的人种具有不同的皮肤颜色。
这种差异主要是由于环境因素引起的变异。
在阳光较强的地区,人们皮肤中的黑色素较多,以保护皮肤不受紫外线伤害;而在阳光较弱的地区,人们的皮肤颜色较浅,以便更好地吸收阳光中的紫外线。
除了人类,其他生物也具有变异的特征。
例如,玉米是一种常见的农作物,其种子形状、大小、颜色等都可能发生变异。
科学家们通过研究这些变异特征的传递方式,得出了许多关于变异的规律和原理。
总之,遗传和变异是生物界中普遍存在的现象。
遗传是指生物的基因从一代传递到下一代的过程,而变异则是指基因在传递过程中发生的改变。
这两种现象在生物界中发挥着重要的作用,并共同推动了生物多样性的发展。
遗传与变异的辩证关系
遗传与变异的辨证关系:遗传和变异是生物界的共同特征,它们之间是辩证统一的。
遗传比较保守,变异要求变革、发展,矛盾的两方面是相互制约相互发展的。
生物如果没有变异,那么生物就不能进化,而遗传只是简单的重复;生物如果没有遗传,就是产生了变异也不能遗传下去,变异不能积累,变异就失去了意义,生物也不能进化。
变异是在遗传的范围内进行变异,遗传也受变异的制约;只能使后代和上代之间相似而不相同。
所以说,遗传与变异是生物进化的内因,但遗传是相对的,保守的,而变异是绝对的,发展的。
在遗传的过程中始终存在着变异,遗传和变异是伴随着生物的生殖而发生的(遗传学上的生殖多指有性生殖)。
遗传变异对立统一的矛盾运动,共同推动生物向前发展进行。
简而言之,遗传与变异的关系是:(1)遗传是相对的,变异是绝对的。
(2)遗传是保守的,变异是变革的、发展的。
(3)遗传和变异是相互制约又是相互依存的。
(4)遗传变异伴随着生物的生殖而发生。
遗传与变异的名词解释
遗传与变异的名词解释在生物学中,遗传与变异是两个非常重要的概念。
遗传是指生物个体间传递特征和性状的过程,而变异则是个体间因遗传物质的差异而表现出来的不同特征。
本文将为读者解释遗传与变异的含义,并探讨它们在生物世界中的重要性。
一、遗传遗传是生物个体间传递特征和性状的过程。
在遗传学领域,人们通过研究遗传物质的分子机制和遗传信息的传递方式来探索这个过程。
遗传物质指的是携带基因的DNA分子,在细胞中形成染色体。
基因则是指携带遗传信息的DNA片段,它决定了个体内许多特征和性状的表现。
遗传的传递主要通过生殖细胞(精子和卵子)进行。
当两个生物个体进行生殖时,它们的基因会以不同方式组合,并传递给下一代。
这种基因的组合是随机的,因此下一代的特征和性状会有所不同。
此外,遗传也不仅限于个体与个体间的传递,还可以发生在同一个个体内不同细胞之间的传递,从而形成体细胞和生殖细胞的区别。
遗传在生物界中起着重要的作用。
它使得生物个体能够从父母继承有利的性状,适应环境并生存下来。
同时,遗传也为种群的进化提供了基础,通过基因的传递和累积,推动物种的演化和多样化。
二、变异变异是指个体间因遗传物质的差异而表现出来的不同特征。
在生物界中,个体之间无法完全相同,就是因为它们携带的遗传物质存在差异。
变异主要有两种类型:遗传变异和环境诱导变异。
遗传变异是由基因的不同组合和突变引起的,它是遗传过程中的自然结果。
环境诱导变异则是由外部环境因素引发的个体表型和性状的改变,这种变异通常不会被传递给下一代。
通过变异,生物个体能够适应环境的不断变化。
一些变异可能会带来优势,使个体在竞争中更具生存能力;而一些变异则可能对个体造成不利,甚至致命。
在自然选择的过程中,有利的变异会得到保留和传递,从而影响整个种群的特征和演化。
变异在生物界中也促进了生物多样性的产生。
由于每个个体都有可能发生变异,因此种群内的个体在某些特征上会呈现出一定的差异,这样就增加了物种的适应性和生态可持续性。
第二单元 《遗传与变异》 知识点
第二单元《遗传与变异》第1课生物的遗传现象1、遗传:子女和父母之间一般都或多或少地保持着一些相似的特征,这种现象叫遗传。
2、遗传和变异是生命的最基本的两种特征,是生物界普遍存在的生命现象。
3、动物有遗传现象,植物也有遗传现象,所以说生物都有遗传现象。
4、动物亲代的相似点包括外形、毛色、花纹、神态及食物、生活习性等。
5、有关遗传现象的谚语和俗语有:(1)桂实生桂,桐实生桐。
(2)种豆得豆,种瓜得瓜。
(3)物生自类本种。
(4)龙生龙,凤生凤,老鼠的儿子会打洞。
第2课生物的变异现象1、变异:子代与父代之间,同一物种之间一般都或多或少地保持着一些不相似的特征,这种现象叫变异。
2、同变异遗传现象一样,变异现象在生物界也是普遍存在的。
3、一猪生九子,连母十个样,三叶草长出四片叶子都是变异现象。
4、变异现象的两种形式:可遗传的变异和不可遗传的变异。
可遗传的变异是遗传物质发生变化而引起的变异。
如:高茎碗豆和矮茎碗豆。
5、不可遗传的变异:是在不同环境条件下产生的变异,其遗传物质没有发生变化。
如:用眼不当造成近视,车祸导致的残疾。
6、有关变异的谚语或俗语如:一树之果,有苦有甜;一母之子,有愚有贤;黄鼠狼生鼠辈,一代不如一代;龙生九子,个个不同;一猪生九子,连母十个样;7、形态各异的金鱼是人们有意识的利用野生鲫鱼的后代与亲代存在的变异培育而成的。
第3课寻找遗传和变异的秘密1、孟德尔是著名的遗传学家,被称为现代遗传学之父。
2、孟德尔发现豌豆有着不同的形态特征,他还发现这些豌豆的后代形态特征大都和它们的上代相似。
3、孟德尔的研究结论不能圆满的解释诸如有些动物其父母的皮毛都是褐色的,但它们的孩子却是白色皮毛这样的现象。
4、生物除父母的结合会出现变异外,生物自身也会产生变异,有的变异对生物有害,有的变异对生物有益,有的变异对生物即无害也无益。
5、袁隆平是我国著名水稻专家,被称为杂交水稻之父,他经过多年选育培育杂交水稻新品种,使粮食产量大幅度提高,解决了世界农业科研难题,2001年2月,他荣获首届“国家最高科学技术奖”。
遗传与变异
遗传是生物进化的基础,保证了物种 的稳定性和连续性。同时,遗传也是 生物多样性的来源,为生物适应环境 和自然选择提供了可能。
变异定义及分类
变异定义
变异是指生物体在遗传过程中发生的基因型或表现型的改变 ,导致亲子代之间或同一物种不同个体之间存在差异。
变异分类
变异可分为基因突变、基因重组和染色体变异三种类型。其 中,基因突变是基因内部结构的改变,基因重组是控制不同 性状的基因重新组合,染色体变异则涉及染色体结构和数目 的改变。
转座子引起的重组在生物进化中 起重要作用,可以促进基因的交 流和物种的适应性演化。同时, 转座子的活动也可能对生物体产 生负面影响,如导致基因组不稳 定或引发疾病等。
04 基因突变
点突变
01
02
03
定义
点突变是指DNA分子中单 一碱基对的替换、插入或 缺失。
类型
包括错义突变、无义突变 和同义突变。
遗传与变异关系
遗传是变异的基础
生物的遗传物质在传递过程中会发生改变,导致后代出现变异。因此,没有遗传就没有变 异。
变异是遗传的补充和发展
变异使得生物能够适应不断变化的环境条件,有利于生物的生存和繁衍。同时,变异也为 生物进化提供了原材料,推动了物种的演化和进步。
遗传与变异相互作用
在生物进化过程中,遗传和变异是相互作用的。一方面,遗传保证了物种的稳定性和连续 性;另一方面,变异为生物适应环境和自然选择提供了可能。这种相互作用共同推动了生 物的进化和多样性发展。
06 生物进化中遗传与变异作 用
遗传在生物进化中作用
遗传信息的传递
01
通过DNA的复制,将亲代的遗传信息传递给子代,保证了物种
的连续性和稳定性。
遗传与变异的概念
遗传与变异的概念一、遗传的概念遗传,通常是指亲代将自己的遗传物质传递给子代,使后代表现出与亲代相似的性状和行为。
这种由父母遗传给子女的现象,在生物学上称为遗传。
遗传是生物界普遍存在的规律,也是物种繁衍和生物进化的基础。
遗传物质是指携带遗传信息的物质,主要是指DNA和RNA。
DNA 是生物体的主要遗传物质,它由四种不同的碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶)组成,通过特定的排列组合形成基因,从而控制生物体的性状和特征。
基因通过复制将遗传信息传递给下一代,从而维持物种的遗传连续性。
二、变异的概忿变异是指生物体在遗传的基础上,因环境因素、遗传因素或其他未知因素的影响,导致个体间的差异或同一物种不同个体间的差异。
变异可以分为可遗传变异和不可遗传变异两类。
可遗传变异是指基因突变、基因重组等能够遗传给后代的变异,而不可遗传变异则是指因环境因素或其他非遗传因素引起的变异,如环境适应性变异等。
基因突变是指基因在复制过程中发生碱基对的增添、缺失或替换,导致基因结构的改变。
基因突变是产生新基因的途径,也是生物变异的根本来源。
基因突变通常是不定向的,但也可以表现为一定方向的定向突变。
基因突变在自然状态下,一般是有害的或者中性的,但在人为诱变因素的影响下,可以产生有益的突变。
三、遗传与变异的相互关系遗传和变异是一对矛盾的统一体,它们相互依存、相互影响。
一方面,遗传保证了物种的相对稳定性和连续性,使得生物体能保持一定的形态和特征;另一方面,变异则使得物种具有多样性和适应性,使得生物体能适应不同的环境和生活条件。
在生物进化过程中,遗传和变异共同作用,使物种能够不断地适应环境变化并在生存竞争中获得优势。
没有遗传,物种就无法保持一定的形态和特征;没有变异,物种就无法适应新的环境变化。
正是由于变异的存在,物种可以在不断变化的环境中生存下来并不断进化。
在人类的遗传和变异中,也存在着类似的规律。
人类的遗传使得人类具有一定的生物学特征和行为模式;而人类的变异则使得人类具有不同的个体差异和多样性。
遗传与变异
病原生物的毒力变异可表现为毒力减弱或
毒力增强。最典型的例子是广泛应用于预
防结核病的卡介苗,它是卡氏、介氏两人将
有毒的牛型结核分枝杆菌用长期人工培养
的方法,经13年连续230次传代后获得的毒 力减弱但仍保持免疫原性的变异菌株。
又如,不产生白喉外毒素的白喉棒状杆菌,
当感染β -棒状杆菌噬菌体后,可将该噬菌 体的毒力基因整合到宿主菌中,再由毒力基 因编码产生白喉外毒素,致使细菌的毒力增 强。
二、 遗传性变异的发生机制
由于微生物个体微小、易于人工培养、繁
殖速度快、遗传物质较为简单,变异容易识 别,因而常以微生物(尤其是细菌)进行遗传 变异的规律和应用方面的研究。
(一)遗传性变异的物质基础
细菌遗传变异的物质基础是DNA,包括细
菌的染色体、染色体外的质粒、寄生在 某些细菌体内的噬菌体和基因转座子等。
很大困难。
知识拓展
细菌耐药性的产生机制
细菌耐药性的产生已成为当代医学研究的重要内容,了解细菌 耐药性产生的机制,有助于正确使用和开发新型抗菌药物。细菌的 耐药机制有: 1.固有耐药性 由存在于染色体上的基因决定的。 2.获得耐药性 由于细菌的基因突变或细菌基因发生转移造成。 3.钝化酶作用 耐药菌株通过合成钝化酶作用,使抗菌药物失去抗 菌活性。 4.药物作用 靶位的改变细菌通过产生诱导酶对抗生素的作用靶 位进行化学修饰或改变。
岛素、生长激素、干扰素等。
遗传工程技术还可应用于生产具有抗原性 的无毒性的疫苗,这是预防传染病的一种新 的途径。
知识拓展
由玉米退化得到的启示
20世纪初,科学家们为了征服可恶的结核病,伤透了脑筋,法国 的细菌学家卡尔美和介林就是其中两位。他们为研制征服结核病 的疫苗,经历了一次又一次失败。一天,卡尔美和介林路过一个农 场,看到地里玉米穗小叶黄了,便问农场主:“是玉米缺肥 吗?”“不,先生们,这种玉米引种到这里已经十几代,有些退化了。 哎,一代不如一代了。”场主苦笑着回答。卡尔美和介林立即从玉 米种子的退化联想到,如果把毒性很强的结核病菌一代接一代 定向培育下去,它们的毒性是不是也会退化?若将毒性退化了的结 核病菌制成疫苗,接种到人体不就可以预防结核病了吗?想到这里, 俩人十分兴奋,匆匆回到自己的实验室,开始了结核病菌的定向培 育试验,这试验一做就是漫长的13年。经过230次的传代,终于获得 了减毒的结核病菌并制成疫苗。肆虐人类的结核病终于被驯服了。 为了纪念这两位科学家,人们把预防结核病的疫苗叫“卡介苗”。
遗传和变异的概念
遗传和变异的概念
遗传是有机体、物种或性状在生殖繁殖后,其后代代代相传的过程。
在进化生物学及
育种学中,遗传是指代代相传的特征,也就是后代继承其祖先的某些性状。
遗传概念经常
利用在生物繁殖上,使得物种能够获得优势,增加生物多样性,以及增强物种的竞争性能。
变异是指一个有机体,物种或性状在进化过程中所发生的变化。
变异可能是真正的遗
传变异,也可能是有机体适应环境的局部变化。
在变异的过程中,某些物种的特征可能发
生较大的变化,这样物种就能够更好地适应环境,从而有利于物种的进化。
因此,变异在
生物学中是至关重要的,对物种的繁殖有益处,是其进化前提,也是可变生物部列的发育
和多样性的重要原因。
遗传与变异之间既有联系又有联系,也可以说是相辅相成的关系。
首先,遗传把物种
之间的差异传递给后代,使得物种能够产生多样化的个体。
其次,变异意味着遗传传递的
现役会改变,从而产生新的特征。
因此,遗传和变异在物种的发育过程中都起着重要的作用,有助于物种的多样性,不发现其互为补充,使物种进化得更迅速,更具适应性。
另外,遗传与变异也各有特点,遗传是一种相当慢的过程。
只有当继承者拥有优越性
状时,才会传播下去,而不可忽视的弱点也极易传播下去,因此疾病的传播主要是出现在
遗传中,物种容易遭受危害和灭绝。
而变异则是一种更加迅速的过程,有利有弊,使物种
得以迅速的适应环境,能够控制继续。
因此,遗传和变异在物种的发育进化过程中,都
发挥着非常重要的作用,只有通过将二者共同发挥,才能让物种能够得到更好的发展和多
样性。
生物的遗传和变异的知识要点
1、不遗传的变异:环境因素引起的变异,遗传物质没有改变,不能进一步遗
传给后代。
2、可遗传的变异:遗传物质所引起的变异。
3、可遗传的变异基因突变、基因重组、染色体畸变。
4、基因突变:是指基因结构的改变,包括DNA碱基对的增添、缺失或改变。
5、基因突变
①类型:包括形态突变、生化突变和致死突变。
②特点:普遍性;多方向性;稀有性;可逆性;有害性。
④原因:在一定的'外界条件或者生物内部因素的作用下,使得DNA复制过程出现差错,造成了基因中脱氧核苷酸排列顺序的改变,最终导致原来的基因变为它的等位基因。
⑤实例:人类镰刀型贫血病、白化病、太空椒(利用宇宙空间强烈辐射而发生
基因突变培育的新品种。
⑥引起基因突变的因素:
a、物理因素:主要是各种射线。
b、化学因素:主要是各种能与DNA发生化学反应的化学物质。
c、生物因素:主要是某些寄生在细胞内的病毒。
6、基因重组:指控制不同性状基因的重新组合,导致后代不同于亲本类型的
现象或过程。
①类型:基因自由组合(非同源染色体上的非等位基因)、基因交换(同源染色
体上的非姐妹染色单体间的交换)。
②意义:是通过有性生殖过程实现的,导致生物性状的多样性。
中考复习:生物的遗传与变异
生物的遗传与变异1.生物的遗传和变异(1)遗传:指间的相似性。
例如,龙生龙,凤生凤,老鼠生儿会打洞;种瓜得瓜,种豆得豆。
(2)变异:指间和间的差异。
例如,一母生九子,连母十个样;金鱼品种多。
【点拨】遗传和变异是生物界普遍存在的,生物的遗传和变异是通过生殖和发育实现的。
2.生物的性状(1)生物的性状:生物体的、、等方面的特征。
例如,眼睛的颜色,头发的颜色、形状,身高,血型,能否卷舌。
(2)相对性状:种生物性状的表现形式。
例如,豌豆的圆粒和皱粒,人的血型有A 型、B 型、O 型和AB 型,狗的白毛和黑毛。
3.基因控制生物的性状(1)转基因超级鼠:①过程:利用技术将转入核未融合的受精卵内,再将受精卵注入代孕小鼠的内,生出的小鼠个体较大。
②所用生物技术:技术。
把一种生物的某个基因,用生物技术的方法转入到另一种生物的基因组中,培育出的转基因生物就有可能表现出转入基因所控制的性状。
③结论:控制生物的性状。
(2)生物的性状是由基因控制的,但有些性状是否表现,还受到的影响。
生物体有许多性状是和共同作用的结果。
(3)在生物传种接代的过程中,传下去的是控制性状的而不是性状。
【小试牛刀】1.性状是生物体形态结构、生理和行为等特征的统称。
下列有关说法错误的是()A.生物体性状的表现是基因和环境共同作用的结果B.人的A 型血与B 型血是一对相对性状C.性别也属于人体的性状D.在生物传宗接代的过程中,传下去的是性状2.下列关于遗传变异的叙述,错误的是()A.性状的遗传实质上是亲代通过生殖过程把基因传递给子代B.变异的实质是生殖过程中亲代与子代之间遗传物质发生变化C.生男生女取决于与卵细胞结合的精子中所含的性染色体D.同种生物同一性状的不同表现形式称为相对性状3.(2021北京房山二模,18)俗语“龙生龙,凤生凤,老鼠的儿子会打洞”,说明生物界普遍存在()A.遗传现象 B.繁殖现象C.变异现象 D.进化现象1基因控制生物的性状手段。
遗传与变异
Wild-type Heterozygous Bar Homozygous Bar Heterozygous Doublebar B+ / B+ B / B+ B/B BB / B+
800 facets
350 facets
70 facets
45 facets
二、②染色体数目的变异
1.染色体组:遗传上把一个配子含有的染色 体数称为一个染色体组或基因组。 2.整 倍 体:如果细胞核内含有染色体组整 数倍的染色体,称为整倍体; 3.非整倍体:如果含有的染色体数不是染色 体组的整数倍,称为非整倍体。
C.在减数分裂中,可能发生同源染色体的非姊妹 染色单体之间对应片段的交叉互换,一旦交换发 生在连锁基因之间,使位于交换片段上的等位基 因互换,从而导致非等位基因间的基因重组。由 于同源染色体之间发生交换,而使原来在同一染 色体上的基因不再伴同遗传的现象称为基因交换。 连锁的基因之间能够发生交换,称为不完全连锁。 例如,F1灰身长翅雌蝇的基因型为BV/bv, 在形成配子时,如果在B—V之间发生交换,那么 它将产生BV、bv、Bv、bV四种配子。
结合到DNA分子上的化合物
吖啶类化合物的分子构型较扁平,能 插入到DNA相邻碱基之间使它们分开,导 致碱基对的增加引起移码突变。
2.物理因素
物理因素中紫外线是常见且常用的诱 变剂。其作用机制是,当它照射到DNA分 子上时,使邻近碱基形成二聚体(主要是胸 腺嘧啶二聚体TT)。二聚体的形成使DNA双 链呈现不正常构型,从而带来致死的效应 或导致基因突变,其中包括多种类型的碱 基置换。
突变发生的机制
1. 化学因素:碱基类似物、诱变剂、结合到DNA 分子上的化合物;
诱变剂
微生物学:第七章微生物的遗传和变异
第二节、微生物的突变
基因突变
染色体畸变
DNA损伤的修复
概念
突变:指遗传物质发生数量或结构变化的现象。 变异:突变导致性状的改变叫变异。 基因突变:指一个基因内部遗传物质结构或 DNA序列的任何变化,包括一对或少数几对的 缺失、插入或置换,导致遗传性状的变化。 基因型:指贮藏在遗传物质中的信息,即DNA 碱基序列。 表型:指可观察或检测到的个体性状或特征,是 特定的基因型在一定环境条件下的表现。
实验室里通过提取获得 双链DNA有转化能力,单链没有.
感受态
受体细胞能接受转化的生理状态称为感受态, 只有处于感受态的细菌才能接受转化因子, 从出现到消失约为40分钟(对数期的中期)
感觉态出现原因
细菌失去部分细胞壁的结果 细菌在细胞表面产生某种E引起
感受态的决定决定因素
细胞遗传性决定 和菌龄有关 环腺苷酸CAMP可提高1000 倍 Ca2+能促使细胞进入感受态
原理 步骤
DNA只含P不含S
Pr 只含S不含P
1:用含同位素S35, P32的培养基培养大肠杆菌 2:让T2感染上述大肠杆菌使其打是S35P32标记
3: 吸附
10分钟后 搅动
离心
上清液 沉淀
结果:上清液中含15%放射击性;沉淀中含85%放射性
植物病毒的重建实验
植物病毒蛋白质和RNA可以人为地分开, 同时又可把它们重新组合成具感染性的病毒.
喷入T1保温
6个平板共353个菌落
6个平板共28个菌落
影印培养试验
原始敏 感菌种
无药 培养基
含药 培养基
基因突变机制
碱基的置换 移码突变
染色体畸变
1 诱变的机制
(1)碱基的置换
生物的遗传和变异
1、下列关于生物遗传变异的描述,错误的是( ) A.如果生物不发生变异,就不能适应变化着的环境 B.生物界遗传现象十分普遍,变异不断变化发展 D.生物的变异有些是可遗传的,有些是不可遗传的 2、下列现象不属于遗传的是( ) A.种瓜得瓜,种豆得豆 B.子女和父母相像 C.母女俩的发型相同 D.母亲是色盲,儿子是色盲 3、下列现象不属于遗传的是( ) A.子女的一些性状跟他们的父母相似 B.老鼠生来会打洞 C.龙生龙,凤生凤 D.一猪生九仔,连母十个样
(1)表格中所涉及的单双眼皮、有无耳垂等到特征在遗 传学上称为( ). (2)父母为双眼皮,而女儿为单眼皮,此现象称为( ); 父母的舌头能卷曲,女儿的舌头也能卷曲,此现象 称为( ). (3)假若双眼皮基因为A,写出家庭成员控制眼睑形状 的基因组成是:父( ),母( ),女儿( ). (4)这对夫妇若再生一个孩子,孩子的眼睑是单眼皮的 机率是( ).
7. 下列不属于遗传现象的是( ) A.母牛产下小牛 B.种瓜得瓜,种豆得豆 C.一对双眼皮夫妇生下一个单眼皮孩子 D.一对夫妇有耳垂,生下一个有耳垂的女儿
解:选项中“种瓜得瓜,种豆得豆”“母牛产下小 牛”“一对夫妇有耳垂,生下一个有耳垂的女儿” 都说明了生物的亲子代之间在性状上的相似性,是 生物的遗传现象;而“一对双眼皮夫妇生下一个单 眼皮孩子”是亲代与子代之间在性状上的差异,属 于变异现象,因此不属于遗传现象. 故选:C.
• 5. “龙生龙,凤生凤,老鼠生来会打洞.” 说明自然界中普遍存在着. A.遗传现象 B.变异现象 C.进化现象 D.生殖和发育现象
解:遗传是指亲子间的相似性,性状的遗传实质 上是亲代通过生殖过程把基因传递给了子代.变 异是指亲子间和子代间的差异.生物的遗传和变 异都是普遍存在的.生物通过遗传、变异和自然 选择,不断进化.生殖是指产生生殖细胞,繁殖 新个体的过程. 发育是指从受精卵形成胚胎并且 长成为性成熟个体的过程. 故选:A
遗传与变异
生物的亲代能产生与自己相似的后代的现象叫做遗传。
遗传物质的基础是脱氧核糖核酸(DNA),亲代将自己的遗传物质DNA传递给子代,而且遗传的性状和物种保持相对的稳定性。
生命之所以能够一代一代地延续的原因,主要是由于遗传物质在生物进程之中得以代代相承,从而使后代具有与前代相近的性状。
只是,亲代与子代之间、子代的个体之间,是绝对不会完全相同的,也就是说,总是或多或少地存在着差异,这样现象叫变异。
遗传是指亲子间的相似性,变异是指亲子间和子代个体间的差异。
生物的遗传和变异是通过生殖和发育而实现的。
遗传从现象来看是亲子代之间的相似的现象,即俗语所说的“种瓜得瓜,种豆得豆”。
它的实质是生物按照亲代的发育途径和方式,从环境中获取物质,产生和亲代相似的复本。
遗传是相对稳定的,生物不轻易改变从亲代继承的发育途径和方式。
因此,亲代的外貌、行为习性,以及优良性状可以在子代重现,甚至酷似亲代。
而亲代的缺陷和遗传病,同样可以传递给子代。
遗传是一切生物的基本属性,它使生物界保持相对稳定,使人类可以识别包括自己在内的生物界。
变异是指亲子代之间,同胞兄弟姊妹之间,以及同种个体之间的差异现象。
俗语说“一母生九子,九子各异”。
世界上没有两个绝对相同的个体,包括挛生同胞在内,这充分说明了遗传的稳定性是相对的,而变异是绝对的。
生物的遗传与变异是同一事物的两个方面,遗传可以发生变异,发生的变异可以遗传,正常健康的父亲,可以生育出智力与体质方面有遗传缺陷的子女,并把遗传缺陷(变异)传递给下一代。
遗传和变异的物质基础生物的遗传和变异是否有物质基础的问题,在遗传学领域内争论了数十年之久。
在现代生物学领域中,一致公认生物的遗传物质在细胞水平上是染色体,在分子水平上是基因,它们的化学构成是脱氧核糖核酸(DNA),在极少数没有DNA的原核生物中,如烟草花叶病毒等,核糖核酸(RNA)是遗传物质。
真核生物的细胞具有结构完整的细胞核,在细胞质中还有多种细胞器,真核生物的遗传物质就是细胞核内的染色体。
生物的遗传和变异
生物的遗传和变异(第七单元第二章)第一节基因控制生物的性状一、遗传的概念及遗传现象的判定:1、遗传的概念:是指亲子间的相似性(“亲子间”是指父母亲与儿子女儿之间)或亲代与子代之间的相似性。
2、遗传现象的判定:(1)“种瓜得瓜种豆得豆”。
(2)“母亲有酒窝,自己也有酒窝”。
(3)“龙生龙,凤生凤,老鼠生的儿子会打洞”。
二、变异的概念及其变异现象的判定:1、变异的概念:是指亲子间和子代个体间的差异(“子代个体间”是指“兄弟姐妹之间”)2、变异现象的判定:(1)“一母生九子,连母十个样”。
(2)“千姿百态的菊花”。
(3)“不同品种的玉米果穗”。
三、生物的遗传和变异实现的途径:生物的遗传和变异时通过“生殖与发育”来实现的。
四、生物的性状概念:是指生物体所有特征的总和,包括三个方面的内容:(1)形态结构特征(如:高矮胖瘦等)(2)生理特征(如:人的ABO血型等)(3)行为方式(如:各种先天性行为等)五、相对性状的概念及判定:1、相对性状的概念:是指同种生物同一性状的不同表现形式(即:“二同一不同”,在这里要特别注意:“二同一不同”中的“不同”既可以是相反的,也可以是不相反的,如黑和白,黑和蓝都可以。
)2、相对性状的判定:依据概念中的“二同一不同”来判断。
例题:(1)山羊的毛较少,绵羊的毛较多。
(Ⅹ)→不是同种生物相比较。
(2)小强长得较高,小刚长得较瘦。
(Ⅹ)→不是同种性状相比较。
高是身高,瘦是体重。
(3)小红和小丽都有酒窝。
(Ⅹ)→不是不同的表现形式。
(4)公鸡的肉冠有玫瑰冠和单冠。
(√)六、生物性状的控制1、基因控制生物的性状,即各种生物的性状都是由基因控制的。
2、“基因控制生物的性状”也可以说“生物的性状受遗传物质的控制(因为基因是遗传物质的一部分)”。
3、生物的性状受遗传物质的控制,但也会受生活环境的影响,如麦田中水肥充足的地方,麦苗比正常的要粗壮;同卵双胞胎因生活环境不一样,皮肤有明显的差异。
七、在生物的传种接代中,传递下去的是控制性状的基因而不是性状本身。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、自由组合律
图6-2 豌豆两对性状的自由组合
二、自由组合律
图6-3 豌豆两对性状的自由组合测交
三、连锁与互换律
图6-4 果蝇的完全连锁
图6-5 果蝇的不完全连锁
第二节 人类的单基因遗传
图6-6 常用的系谱绘制符号
一、常染色体显性遗传
图6-7 一个常染色体显性遗传性多囊肾家族的系谱图 图6-8 常染色体显性遗传病杂合子患者与正常人婚配图解
一、分离律
相对性状 种子子形颜状色 子叶颜色 种皮颜色 豆荚形状 豆荚颜色 (未成熟时) 花的部位 茎的长度
表 6-1 孟德尔豌豆杂交试验结果
亲本表型 圆圆滑形××皱皱缩 黄色×绿色 褐色×白色 饱满×缢缩 绿色×黄色
F1 全部圆形 全部黄色 全部褐色 全部饱满 全部绿色
F2 5 474 圆圆形滑,,11885500 皱皱缩缩 6 022 黄色,2 001 绿色
三、影响遗传平衡的因素
(一)突变 (二)选择 (三)突变率的计算 (四)平衡多态 (五)随机遗传漂变 (六)迁移 (七)非随机婚配 (八 )遗传负荷
三、影响遗传平衡的因素——非随机婚配
(一)常染色体近婚系数
图6-23 表兄妹婚配中基因传递图解
图6-24 二级表兄妹婚配中基因传递图解
三、影响遗传平衡的因素——非随机婚配
Aa(2pq) AA×Aa(2p3q) Aa×Aa(4p2q2) aa×Aa(2pq3)
aa(q2) AA×aa(p2q2) Aa×aa(2pq3)
aa×aa(q4)
表 6-8 第二代随机婚配类型频率
婚配类型
频率
后代
AA
Aa
aa
AA×AA
p4
p4
—
—
AA×Aa
4p3q
2p3q
2p3q
—
AA×aa
2p2q2
六、线粒体遗传病
图6-18 一个携带MT-ND4基因 G11778A突变的LHON家系
六、线粒体遗传病
图6-19 母系遗传药物性耳聋大家系
第三节 人类的多基因遗传
一、数量性状
图6-20 一组美国20岁男性和女性身高分布图 注:1英尺≈ 0.3 m
二、多基因遗传病
图6-21 群体易患性变异分布图
二、常染色体隐性遗传
图6-9 常染色体隐性遗传杂合子(携带者)相互婚配图解
图6-10 一个常染色体隐性遗传的耳聋家系
三、X连锁遗传
(一)X连锁显性遗传病
图6-11 X连锁显性遗传的抗维生素D佝偻病系谱
三、X连锁遗传
(一)X连锁显性遗传病
图6-12 X连锁显性遗传病女性杂合子患者 与正常男性婚配图解
合计 1994 1994
2=2.01
二、遗传平衡定律 (二)Hardy-Weinberg定律的应用
2.基因频率的计算 (1)常染色体隐性遗传病
二、遗传平衡定律 (二)Hardy-Weinberg定律的应用
2.基因频率的计算 (2)常染色体显性遗传病 (3)X连锁隐性遗传病 (4)X连锁显性遗传病
图6-17 外耳道多毛症的系谱
五、非经典孟德尔遗传及相关概念
1. 表现度(expressivity) 2. 遗传印记(genetic ) imprinting 3. 遗传早现(anticipation) 4. 从性遗传(sex-conditioned inheritance) 5. 遗传异质性(genetic heterogeneity)
—
2p2q2
—
Aa×Aa
4p2q2p2q2 Nhomakorabea2p2q2
p2q2
Aa×aa
4pq3
—
2pq3
2pq3
aa×aa
q4
—
—
q4
注:AA= p4+2p3q+ p2q2= p2;Aa=2p3q+2p2q2+2p2q2+2pq3=2pq;aa= p2q2+2pq3+q4= q2。
二、遗传平衡定律
1.Hardy-Weinberg平衡的判定
(二)X连锁基因的近婚系数
图6-23 表兄妹婚配中基因传递图解
图6-24 二级表兄妹婚配中基因传递图解
(a)姨表兄妹婚配
(b)舅表兄妹婚配
(c)姑表兄妹婚配
图6-25 近亲婚配的X连锁基因的传递图解
(d)堂表兄妹婚配
三、影响遗传平衡的因素——非随机婚配
(三)近亲婚配的危害
第五节 分子病与酶蛋白病
表 6-6 亲代等位基因频率和子代基因型频率
卵子 A(p) 卵子 a(q)
精子 A(p) AA(p2) Aa(pq)
精子 a(q) Aa(pq) aa(q2)
二、遗传平衡定律
(一)Hardy-Weinberg平衡定律
AA(p2) Aa(2pq) aa(q2)
表 6-7 第一代随机婚配类型频率
AA(p2) AA×AA(p4) Aa×AA(2p3q) aa×AA(p2 q2)
本节目录
2.熟悉
熟悉各 种分子 病及酶 蛋白病 的种类
1.掌握
分子病 与酶蛋 白病的 概念
(二)Hardy-Weinberg定律的应用
表 6-10 MN 血型调查资料的遗传平衡2 检验
LMLM
LMLN
LNLN
观察值(O)
433
960
591
预期值(E)
427.27(np2)
991.51
575.22(nq2)
(n×2pq)
(O-E)2/E
0.58
1.00
0.43
注:p=(433×2+960)/1994=0.46;q=(591×2+960)/1994=0.54
图6-22 正态分布曲线中与的关系
三、多基因遗传病发病率估计
1. 发病率与群体发病率和遗传度的关系
2. 发病率与亲缘关系的远近有关
3.患者亲属再发风险与亲属中受累人数有关
4.病情严重程度与再发风险 5.性别与再发风险
第四节 群体中的基因
一、基因频率
二、遗传平衡定律
(一)Hardy-Weinberg平衡定律
图6-13 X连锁显性遗传病半合子男性患者 与正常女性婚配图解
三、X连锁遗传
(二)X连锁隐性遗传病
图6-14 X连锁隐性遗传的血友病A系谱
三、X连锁遗传
(二)X连锁隐性遗传病
图6-15 X连锁隐性遗传病女性携带者 与正常男性婚配图解
图6-16 X连锁隐性遗传病半合子男性患者 与正常女性婚配图解
四、Y连锁遗传
705 褐色,224 白色 882 饱满,299 溢缢缩缩 428 绿色,152 黄色
F2 比率 2.96∶1 3.01∶1 3.15:1 2.95:1 2.82:1
腋生×顶生 长茎×短茎
全部腋生 全部长茎
651 腋生,207 顶生 787 长茎,277 短茎
3.14:1 2.84:l
一、分离律
图6-1 豌豆种子性状的分离