北师大版八年级下册数学[《三角形的证明》全章复习与巩固--重点题型巩固练习](提高)
北师大版八年级下册三角形证明复习含答案
北师大版八年级下册三角形证明复习含答案三角形证明专题复习一.选择题(共15小题)1.如图,AB=AC,AE=EC=CD,∠A=60°,若EF=2,则DF =()A.3B.4C.5D.62.如图,已知△ABC的面积为8,在BC上截取BD=BA,作∠ABC的平分线交AD于点P,连接PC,则△BPC的面积为()A.2B.4C.5D.63.如图,已知△ABC,AB=5,∠ABC=60°,D为BC边上的点,AD=AC,BD=2,则DC=()A.0.5B.1C.1.5D.24.如图,△ABC中,∠B=60°,AB=8,点D在BC边上,且AD =AC.若BD=,则CD的长为()A.4B.C.5D.5.如图,△ABC中,AB=AC,DE垂直平分AC,若△BCD的周长是14,BC=6,则AC 的长是()A.6B.8C.10D.146.如图,在△ABC中,∠ABC=60°,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且,则线段BE的长为()A.B.2C.3D.7.如图,在△ABC中,∠B=90°,AB=6,BC=8,AD为∠BAC 的角平分线,则三角形ADC的面积为()A.3B.10C.12D.158.如图,△ABC的一角被墨水污了,但小明很快就画出跟原来一样的图形,他所用定理是()A.SAS B.SSS C.ASA D.HL9.如图,上午8时,一艘船从A处出发以15海里/小时的速度向正北航行,10时到达B处,从A、B两点望灯塔C,测得∠NAC=42°,∠NBC=84°,则B处到灯塔C的距离为()A.15海里B.20海里C.30海里D.求不出来10.已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE,分别交AB,AC于点D,E.若AD=3,BC=5,则△BEC的周长为()A.8B.10C.11D.1311.如图,∠MON=60°,OA平分∠MON,P是射线OA上的一点,且OP=4,若点Q是射线OM上的一个动点,则PQ的最小值为()A.1B.2C.3D.412.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E 满足△OCE是等腰三角形,那么∠OEC的度数不可能为()A.120°B.75°C.60°D.30°13.已知实数a,b满足|a﹣2|+(b﹣4)2=0,则以a,b的值为两边的等腰三角形的周长是()A.10B.8或10C.8D.以上都不对14.如图,△ABC中,BO 平分∠ABC,CO平分∠ACB,M,N经过点O,且MN∥BC,若AB=5,△AMN的周长等于12,则AC的长为()A.7B.6C.5D.415.如图,在△ABC中,AB=AD=DC,∠BAD=26°,则∠C的度数是()A.36°B.38.5°C.64°D.77°二.填空题(共15小题)16.△ABC中,AD⊥BC于D,∠ACD=60°,若AD=2,AB=2,则BC=______.17.已知等腰三角形的周长是14,设其腰长是x,底边长是y,则y与x的函数关系式为y =______,自变量x的取值范围是______.18.如图,已知∠AOB=30°,点P在边OA上,OP=14,点E,F在边OB上,PE=PF,EF=6.若点D是边OB上一动点,则∠PDE =45°时,DF的长为______.19.如图,在等腰三角形ABC中,AB=AC,∠B=50°,D为BC 的中点,点E在AB上,∠AED=70°,若点P是等腰三角形ABC的腰上的一点,则当△DEP是以∠EDP为顶角的等腰三角形时,∠EDP的度数是______.20.如图,D为△ABC中BC边上一点,AB=CB,AC=AD,∠BAD=24°,则∠C=______°.21.已知等腰三角形的底角为15°,腰长为8cm,则这个三角形的面积为______cm2.22.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是______.23.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交AC于点E,若∠EBC =30°,则∠A的度数为______.24.如图,在△ABC中,∠C=90°,∠ADC=60°,∠B=30°,若CD=3cm,则BD=______cm.25.如图,在△ABC中,BA=BC,∠ABC=120°,BD⊥BC交AC 于点D,BD=1,则AC 的长______.26.在△ABC中,AB=AD=CD,且∠C=40°,则∠BAD的度数为______.27.如图,在△ABC中,AD=BD=BC,若∠A=x°,则∠ABC=______度(用含x的代数式表示).28.如图,在△ABC中,AC=AD=BD,∠B=28°,则∠CAD的度数为______°.29.如图,点O是边长为2的等边三角形ABC内任意一点,且OD⊥AC,OE⊥AB,OF⊥BC,则OD+OE+OF=______.30.如图,△ABC中,AD平分∠BAC,∠ACB=3∠B,CE⊥AD,AC=8,BC=BD,则CE=______.三.解答题(共20小题)31.如图,在Rt△ABC中,∠ACB=90°,∠A=36°,△ABC的外角∠CBD的平分线BE 交AC的延长线于点E.(1)求∠CBE的度数;(2)点F是AE延长线上一点,过点F作∠AFD=27°,交AB的延长线于点D.求证:BE∥DF.32.如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,分别交BC于点D、E,已知△ADE的周长5cm.(1)求BC的长;(2)分别连接OA、OB、OC,若△OBC的周长为13cm,求OA 的长.33.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,点P为AC的中点,点D为AB 边上一点,且AD=PD,延长DP交BC的延长线于点E,若AB=2,求PE的长.34.如图,△ABC是等边三角形,延长BC到E,使CE=BC.点D是边AC的中点,连接ED并延长ED交AB于F求证:(1)EF⊥AB;(2)DE=2DF.35.如图,在△ABC中,∠ACB=110°,∠B>∠A,D,E为边AB 上的两个点,且BD=BC,AE=AC.(1)若∠A=30°,求∠DCE的度数;(2)∠DCE的度数会随着∠A度数的变化而变化吗?请说明理由.36.已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC 上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.37.在△ABC中,AB=AC,点D是BC的中点,点E是AD上任意一点.(1)如图1,连接BE、CE,则BE=CE吗?说明理由;(2)若∠BAC=45°,BE的延长线与AC垂直相交于点F时,如图2,BD=AE吗?说明理由.38.如图,三角形ABC中,AC=BC,D是BC上的一点,连接AD,DF平分∠ADC交∠ACB的外角∠ACE的平分线于F.(1)求证:CF∥AB;(2)若∠DAC=40°,求∠DFC的度数.39.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,求BD的长.40.如图,在△ABC中,∠BAC=90°,BD平分∠ABC,CD∥AB 交BD于点D,已知∠1=32°,求∠D的度数.41.如图,在△ABC中,AB=AC,∠BAC=100°,BD平分∠ABC,且BD=AB,连接AD、DC.(1)求证:∠CAD=∠DBC;(2)求∠BDC的度数.42.如图,点O是△ABC边AC上的一个动点,过O点作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长.43.如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连结CD,DE,已知∠EDB=∠ACD.(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,BD=2时,求EB的长.44.如图,在△ABC中,∠BAC=120°,∠B=40°,边AB的垂直平分线与边AB交于点E,与边BC交于点D.(1)求∠ADC的度数;(2)求证:△ACD为等腰三角形.45.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数.(2)求证:FB=FE.46.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,过点O作EF∥BC,交AB 于E,交AC于F,若BE=3,EF=5,试求CF的值.47.如图,在△ABC中,AB=AC,点D在线段BC上,AD=BD,△ADC是等腰三角形,求△ABC三个内角的度数.48.如图,∠BAD=90°,AB=AC,AC的垂直平分线交BC于D.(1)求∠BAC的度数;(2)若AB=10,BC=10,求△ABD的周长.49.如图,已知∠1与∠2互为补角,且∠3=∠B,(1)求证:EF∥BC;(2)若AC=BC,CE平分∠ACB,求证:AF=CF.50.如图,等边△ABC的边长为12,D为AB边上一动点,过点D作DE⊥BC于点E.过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)当AD取何值时,DE=EF?三角形证明专题复习参考答案与试题解析一.选择题(共15小题)1.解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.2.解:∵BD=BA,BP是∠ABC的平分线,∴AP=PD,∴S△BPD=S△ABD,S△CPD=S△ACD,∴S△BPC=S△BPD+S△CPD=S△ABD+S△ACD=S△ABC,∵△ABC 的面积为8,∴S△BPC=×8=4.故选:B.3.解:过点A作AE⊥BC于点E,∵AD=AC,∴E是CD的中点,在Rt△ABE中,AB=5,∠ABC=60°,∴BE=,∵BD=2,∴DE=﹣2=,∴CD=1,故选:B.4.解:过点A作AE⊥BC,∵AD=AC,∴E是CD的中点,∵∠B=60°,AB=8,在Rt△ABE中,BE=4,∵BD=,∴DE=4﹣=,∴CD=5,故选:C.5.解:∵DE垂直平分AC,∴AD=CD.∵△BCD的周长是14,BC=6,∴AB=BD+CD=14﹣6=8,∵AB=AC,∴AC=8.故选:B.6.解:连接BD,如图,∵DE=DF,DE⊥AB,DF⊥BC,∴BD平分∠ABC,∴∠ABD=∠ABC=×60°=30°,在Rt△BDE中,BE=DE=×=3.故选:C.7.解:作DH⊥AC于H,如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,∴AC==10,∵AD为∠BAC的角平分线,∴DB=DH,∵×AB×CD=DH×AC,∴6(8﹣DH)=10DH,解得DH=3,∴S△ADC=×10×3=15.故选:D.8.解:作△DEF,使DE=AB,∠A=∠D,∠E=∠B,根据ASA定理可知,△DEF与原来的图形一样,他所用定理是ASA,故选:C.9.解:根据题意得:AB=2×15=30(海里),∵∠NAC=42°,∠NBC=84°,∴∠C=∠NBC﹣∠NAC=42°,∴∠C=∠NAC,∴BC=AB=30海里.即从海岛B到灯塔C的距离是30海里.故选:C.10.解:∵AB的垂直平分线DE分别交AB、AC于点D、E,∴AE =BE,∵AD=3,∴AB=6,∴AE+EC=AC=AB=6,∵BC=5,∴△EBC的周长=BC+BE+CE=BC+AE+CE=BC+AC=6+5=11;故选:C.11.解:作PQ′⊥OM于Q′,∵∠MON=60°,OP平分∠MON,∴∠POQ′=30°,∴PQ′=OP=2,由垂线段最短可知,PQ的最小值是2,故选:B.12.解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OCE=∠OEC=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;综上,∠OEC的度数不可能为60°,故选:C.13.解:根据题意得a﹣2=0,b﹣4=0,解得a=2,b=4,①a=2是底长时,三角形的三边分别为4、4、2,∵4、4、2能组成三角形,∴三角形的周长为10,②a=2是腰边时,三角形的三边分别为4、2、2,2+2=4,不能组成三角形.综上所述,三角形的周长是10.故选:A.14.解:∵BO平分∠CBA,CO平分∠ACB,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴MO=MB,NO=NC,∵AB=5,△AMN的周长等于12,∴△AMN的周长=AM+MN+AN=AB+AC=5+AC=12,∴AC=7,故选:A.15.解:在△ABC中,AB=AD=DC,∵在三角形ABD中,AB=AD,∠BAD=26°,∴∠B=∠ADB=(180°﹣26°)×=77°,又∵AD=DC,在三角形ADC中,∴∠C=∠ADB=77°×=38.5°.故选:B.二.填空题(共15小题)16.解:∵AD⊥BC,∴∠ADC=∠ADB=90°,∵∠ACD=60°,∴∠CAD=30°,∵AD=2,∴CD=AD=2,∵AB=2,∴BD===4,如图1,BC=BD+CD=6,如图2,BC=BD﹣CD=2,综上所述,BC=6或2,故答案为:6或2.17.解:∵2x+y=14,∴y=14﹣2x,即x<7,∵两边之和大于第三边∴x>,综上可得<x<7故答案为:y=﹣2x+14,<x<7.18.解:如图,过点P作PH⊥OB于点H,∵PE=PF,。
北师大版八年级数学下册第一章:三角形的证明 复习
北师大版八年级数学下册第一章三角形的证明同步测试一.选择题1.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是()A.AB=DC B.∠A=∠D C.∠B=∠C D.AE=BF 2.如图,点O在直线AE上,OC平分∠AOE,∠BOD是直角.若∠1=25°,那么∠BOE的度数是()A.90°B.145°C.155°D.165°3.如图,平面直角坐标系xOy中,点M的坐标为(2,2),点N在x轴上,若△OMN是等腰三角形,则满足条件的点N共有()个.A.3 B.4 C.5 D.84.如图,以的顶点为圆心,适当长为半径画弧,交于点,交于点.再分别以点为圆心,大于的长为半径画弧,两弧在内部交于点,过点作射线,连接.则下列说法错误的是()A. .两点关于所在直线对称B. .两点关于所在直线对称C. 是等腰三角形D. 射线是的平分线5.如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组6.如图,AB⊥BD,CD⊥BD,AD=BC,则能直接判断Rt△ABD≌Rt△CDB的理由是()A.HL B.ASA C.SAS D.SSS7.如图,已知∠ACB=60°,PC=12,点M,N在边CB上,PM=PN.若MN =3,则CM的长为()A.3 B.3.5 C.4 D.4.58.在如图中,,于,于,.交于点,则下列结论中不正确的是()A. B. 点在的平分线上C. D. 点是的中点9.如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE =EF+CF.A.①②③B.①②④C.②③④D.①②③④10.如图,电信部门要在公路l旁修建一座移动信号发射塔.按照设计要求,发射塔到两个城镇M,N的距离必须相等,则发射塔应该建()A.A处B.B处C.C处D.D处11.如图,公路互相垂直,公路的中点与点被湖隔开.若测得的长为,则两点间的距离为()A. B. C. D.12.下列命题是假命题的是()A.矩形的对角线相等且互相平分B.两点之间,线段最短C.垂直于同一条直线的两条直线互相垂直D.角平分线上的点到角两边的距离相等二.填空题13.如图,∠C=∠D=90°,添加一个条件:(写出一个条件即可),可使Rt△ABC与Rt△ABD全等.14.如图,正方形网格中,点A,B,C,D均在格点上,则∠ACD+∠BDC=°.15.如图,已知,垂直平分交.于.两点,若,,则的周长为.16.如图,在中,,平分,交于点,若,则.17.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE 是等腰三角形,那么∠OEC的度数为.18.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上.若AB=5cm,BC =6cm,则AC=,DE=.三.解答题19.已知:如图1,在Rt△ABC和Rt△A′B′C′中,AB=A′B′,AC=A′C′,∠C=∠C′=90°求证:Rt△ABC和Rt△A′B′C′全等.(1)请你用“如果…,那么…”的形式叙述上述命题;(2)如图2,将△ABC和A′B′C′拼在一起(即:点A与点B′重合,点B与点A′重合),BC和B′C′相交于点O,请用此图证明上述命题.20.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E.F,求证:DE=DF.21.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,FE是AC的垂直平分线,交AD于点F,连接BF.求证:AF=BF.22.已知:如图,在△BAC中,AB=AC,D,E分别为AB,AC边上的点,且DE∥BC,求证:△ADE是等腰三角形.23.如图,已知∠CPB=65°,AB∥CP,点D,E分别是PC,PB上一点,连接DE,使DE=PE,∠CDE的平分线与∠ABE的平分线交于点F.(1)∠BED=130°;(2)求∠BFD的度数.24.如图,∠ABC的两边分别平行于∠DEF的两条边,且∠ABC=45°.(1)图1中:∠DEF=45°,图2中:∠DEF=135°;(2)请观察图1.图2中∠DEF分别与∠ABC有怎样的关系,请你归纳出一个命题.北师大版八年级数学下册第一章三角形的证明同步测试答案一.选择题1.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是()A.AB=DC B.∠A=∠D C.∠B=∠C D.AE=BF解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选:A.2.如图,点O在直线AE上,OC平分∠AOE,∠BOD是直角.若∠1=25°,那么∠BOE的度数是()A.90°B.145°C.155°D.165°解:∵点O在直线AE上,OC平分∠AOE,∴∠AOC=∠COE=90°,∵∠DOB是直角,∠1=25°,∴∠BOC=∠DOB﹣∠1=90°﹣25°=65°,∴∠BOE=∠COE+∠BOC=90°+65°=155°.故选:C.3.如图,平面直角坐标系xOy中,点M的坐标为(2,2),点N在x轴上,若△OMN是等腰三角形,则满足条件的点N共有()个.A.3 B.4 C.5 D.8解:如上图:满足条件的点N共有(﹣2,0)(2,0)(2,0)(4,0).故选:B.4.如图,以的顶点为圆心,适当长为半径画弧,交于点,交于点.再分别以点为圆心,大于的长为半径画弧,两弧在内部交于点,过点作射线,连接.则下列说法错误的是()A. .两点关于所在直线对称B. .两点关于所在直线对称C. 是等腰三角形D. 射线是的平分线解:连接.,根据作图得到..在与中,(),,即射线是的平分线,正确,不符合题意;根据作图得到,是等腰三角形,正确,不符合题意;根据作图得到,又射线平分,是的垂直平分线,.两点关于所在直线对称,正确,不符合题意;根据作图不能得出平分,不是的平分线,.两点关于所在直线不对称,错误,符合题意.故答案为:.两点关于所在直线对称5.如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组解:①.∵△ABC中,AB=AC,∴△ABC是等腰三角形,故①正确;②.∵△ABC中,∠B=56°,∠BAC=68°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣68°﹣56°=56°,∴∠B=∠C,∴△ABC是等腰三角形,故②正确;③∵△ABC中,AD⊥BC,AD平分∠BAC,∴∠BAD=∠CAD,∠ADB=∠ADC,∵∠B+∠BAD+∠ADB=180°,∠C+∠CAD+∠ADC=180°,∴∠B=∠C,∴△ABC是等腰三角形,故③正确;④.∵△ABC中,AD⊥BC,AD平分边BC,∴AB=AC,∴△ABC是等腰三角形,故④正确;即正确的个数是4,故选:D.6.如图,AB⊥BD,CD⊥BD,AD=BC,则能直接判断Rt△ABD≌Rt△CDB的理由是()A.HL B.ASA C.SAS D.SSS解:∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),故选:A.7.如图,已知∠ACB=60°,PC=12,点M,N在边CB上,PM=PN.若MN=3,则CM的长为()A.3 B.3.5 C.4 D.4.5解:过点P作PD⊥CB于点D,∵∠ACB=60°,PD⊥CB,PC=12,∴DC=6,∵PM=PN,MN=3,PD⊥OB,∴MD=ND=1.5,∴CM=6﹣1.5=4.5.故选:D.8.在如图中,,于,于,.交于点,则下列结论中不正确的是()A. B. 点在的平分线上C. D. 点是的中点解:,于,于,,,故本选项正确;,,,,,,点在的平分线上,故本选项正确;,,,,,,正确;是的中点,无法判定,故本选项错误.9.如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE =EF+CF.A.①②③B.①②④C.②③④D.①②③④解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=CD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.10.如图,电信部门要在公路l旁修建一座移动信号发射塔.按照设计要求,发射塔到两个城镇M,N的距离必须相等,则发射塔应该建()A.A处B.B处C.C处D.D处解:根据作图可知:EF是线段MN的垂直平分线,所以EF上的点到M.N的距离相等,即发射塔应该建在C处,故选:C.11.如图,公路互相垂直,公路的中点与点被湖隔开.若测得的长为,则两点间的距离为()A. B. C. D.解:在中,,为的中点,.12.下列命题是假命题的是()A.矩形的对角线相等且互相平分B.两点之间,线段最短C.垂直于同一条直线的两条直线互相垂直D.角平分线上的点到角两边的距离相等解:A.矩形的对角线相等且互相平分,是真命题;B.两点之间,线段最短,是真命题;C.在同一平面内,垂直于同一条直线的两条直线互相平行,原命题是假命题;D.角平分线上的点到角两边的距离相等,是真命题;故选:C.二.填空题13.如图,∠C=∠D=90°,添加一个条件:AC=AD(写出一个条件即可),可使Rt△ABC与Rt△ABD全等.解:条件是AC=AD,∵∠C=∠D=90°,在Rt△ABC和Rt△ABD中,∴Rt△ABC≌Rt△ABD(HL),故答案为:AC=AD.14.如图,正方形网格中,点A,B,C,D均在格点上,则∠ACD+∠BDC=90°.解:在Rt△AEC和Rt△DAB中∴Rt△AEC≌Rt△DAB(HL),∴∠ACE=∠ABD,∵∠EAC+∠ACE=90°,∴∠EAC+∠ABD=90°,∴∠AFB=90°,即∠CFD=90°,∴∠ACD+∠BDC=90°,故答案为90.15.如图,已知,垂直平分交.于.两点,若,,则的周长为.解:垂直平分,,的周长.故答案为:.16.如图,在中,,平分,交于点,若,则.解:,,平分,,.17.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE 是等腰三角形,那么∠OEC的度数为120°或75°或30°.【解答】解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OEC=∠OCE=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;故答案为:120°或75°或30°.18.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上.若AB=5cm,BC =6cm,则AC=5cm,DE=8cm.解:∵BC=6cm,∴BD=DC=3(cm),∵AD⊥BC,BD=DC,AB=5cm,∴AC=AB=5(cm),∵点C在AE的垂直平分线上,∴EC=AC=5(cm),∴DE=DC+EC=8(cm),故答案为:5cm;8cm.三.解答题19.已知:如图1,在Rt△ABC和Rt△A′B′C′中,AB=A′B′,AC=A′C′,∠C=∠C′=90°求证:Rt△ABC和Rt△A′B′C′全等.(1)请你用“如果…,那么…”的形式叙述上述命题;(2)如图2,将△ABC和A′B′C′拼在一起(即:点A与点B′重合,点B与点A′重合),BC和B′C′相交于点O,请用此图证明上述命题.解:(1)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等;(2)在△ACO和直角△A'C'O′中,,∴△ACO≌△A′C′O,∴OC=C′O,AO=A′O,∴BC=B′C′,在△ABC与△A′B′C′中,∴△ABC≌△A'B'C'(SSS).20.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E.F,求证:DE=DF.证明:∵AB=AC,∴∠B=∠C,又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵点D为BC中点,∴DB=DC,∴在△DBE和△DCF中,∴△DBE≌DCF(AAS),∴DE=DF.21.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,FE是AC的垂直平分线,交AD于点F,连接BF.求证:AF=BF.证明:连接CF,∵AB=AC,AD平分∠BAC,∴BD=CD,AD⊥BC,∴BF=CF,∵FE垂直平分AC,∴AF=CF,∴AF=BF.22.已知:如图,在△BAC中,AB=AC,D,E分别为AB,AC边上的点,且DE∥BC,求证:△ADE是等腰三角形.证明:∵AB=AC,∴∠B=∠C,又∵DE∥BC,∴∠B=∠ADE,∠C=∠AED,∴∠ADE=∠AED,∴AD=AE,∴△ADE是等腰三角形.23.如图,已知∠CPB=65°,AB∥CP,点D,E分别是PC,PB上一点,连接DE,使DE=PE,∠CDE的平分线与∠ABE的平分线交于点F.(1)∠BED=130°;(2)求∠BFD的度数.解:(1)∵DE=PE,∴∠EDP=∠CPB=65°,∴∠BED=∠EDP+∠CPB=130°,故答案为:130;(2)∵AB∥CP,∴∠ABP+∠CPB=180°,∴∠ABP=115°,∵∠EDP=65°,∴∠CDE=115°,∵∠CDE的平分线与∠ABE的平分线交于点F.∴∠FBE=∠ABE=57.5°,∠FDE=∠CDE=57.5°,∴∠BFD=360°﹣57.5°﹣57.5°﹣130°=115°.24.如图,∠ABC的两边分别平行于∠DEF的两条边,且∠ABC=45°.(1)图1中:∠DEF=45°,图2中:∠DEF=135°;(2)请观察图1.图2中∠DEF分别与∠ABC有怎样的关系,请你归纳出一个命题.解:(1)图1,∵AB∥DE,∴∠B=∠DGC=45°,∵BC∥EF,∴∠DEF=∠DGC=45°;图2,∵AB∥DE,∴∠B=∠BGE=45°,∵BC∥EF,∴∠DEF+∠BGE=180°,∴∠DEF=180°﹣45°=135°;故答案为45°,135°;(2)∠DEF与∠ABC相等,∠DEF与∠ABC互补,结论:如果两个角的两边分别平行,那么这两个角相等或互补.。
北师大版八年级下册数学基础巩固训练:1.4 角平分线(包含答案)
第一章三角形的证明1.4 角平分线知识要点1.角平分线上的点到这个角的两边的距离.2.在一个角的内部,到角的两边距离相等的点在.3.三角形的三条角平分线,并且这一点到的距离.基础训练1.如图,OA是∠BAC的平分线,OM⊥AC于M,ON⊥AB于N,若ON=5,则OM长为() A.4 B.5 C.8 D.不能确定第1题第2题第3题第4题2.三条公路将A,B,C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是()A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点3.如图,在Rt△ABC中,∠A=90°,BD是△ABC的角平分线,若AC=10,CD=6,则点D到BC 的距离是()A.10 B.8 C.6 D.44.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE,则△APD与△APE全等的理由是() A.SAS B.AAA C.SSS D.HL5.如图,∠ACB的外角平分线与∠ABC的外角平分线相交于点P,则下列结论正确的是() A.P A平分∠CPB B.AP平分BC C.AP⊥BC D.AP平分∠CAB 6.(2018·常州期末)钝角三角形三条角平分线的交点在()A.三角形的外部B.三角形的内部C.三角形的一边上D.无法确定7.(2018·本溪溪湖区期末)如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是()A.PC=PD B.∠CPO=∠DOPC.∠CPO=∠DPO D.OC=OD8.(2019·曲阜师大附中期中)如图,在△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等,若∠A=70°,则∠BOC的度数为()A.35°B.125°C.55°D.135°9.如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为.第9题第10题第11题第12题第13题10.如图,在Rt△ABC中,∠C=90°,AM是∠CAB的平分线,CM=1.5 cm,若AB=8 cm,则S△AMB =cm2.11.如图,在△ABC中,∠ACB=90°,BD是△ABC的一条角平分线,DE⊥AB,垂足E,BC=6,AE=2,则AB=.12.(2018·沁阳期末)如图,已知△ABC的周长是18,BO,CO分别平分∠ABC和∠ACB,OD⊥BC 于点D,且OD=2,则△ABC的面积是________.13.(2019·杭州临安区期末)如图,AB∥CD,∠ABC和∠DCB的平分线BP,CP交于点P,过点P 作P A⊥AB于点A,P A的反向延长线交CD于点D.若AD=10,则点P到BC的距离是________,∠BPC=________°.14.如图,已知△ABC.(1)用圆规和直尺作∠A的平分线AD;(保留作图痕迹,不必证明)(2)在(1)的条件下,E是AB边上一点,连接DE,已知∠AED=∠C. 求证:AC=AE.15.如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,EF交AD于点O.求证:OE=OF.16.如图,BD⊥AM于点D,CE⊥AN于点E,BD,CE相交于点F,CF=BF. 求证:点F在∠A的平分线上.17.(2018·福州期末)如图,在四边形ABCD中,∠B=∠C=90°,∠CED=35°,DE平分∠ADC.(1)求∠DAB的度数;(2)若E为BC中点,求∠EAB的度数18.如图,∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P在射线OM上滑动,两直角边分别与OA,OB交于点C,D,PC和PD有怎样的数量关系?请说明理由.中考链接19. (2019大庆)如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 等于( )A. 15°B. 30°C. 45°D. 60°第19题 第20题 第21题20. (2019眉山)如图4-15-8,在△ABC 中,AD 平分∠BAC 交BC 于点D ,∠B =30°,∠ADC =70°,则∠C 的度数是( )A. 50°B. 60°C. 70°D. 80°21.(2019·张家界)如图,在△ABC 中,∠C =90°,AC =8,DC =13AD ,BD 平分∠ABC ,则点D 到AB 的距离等于( )A .4B .3C .2D .1答案1. B2. C3. D4. D5. D6. B7. B8. B9. 310.611.812.1813.5,9014.解:(1)如答图1-4-9,AD即为所求.(2)如答图,连接DE.∵AD平分∠CAB,∴∠CAD=∠EAD.在△ACD和△AED中,∠C=∠AED,AD=AD,∠CAD=∠EAD,∴△ACD≌△AED(ASA).∴AC=AE.15.证明:∵AD为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF. 在Rt△AED和Rt△AFD中,AD=AD,DE=DF,∴Rt△AED≌Rt△AFD(HL).∴AE=AF.∴AD是EF的垂直平分线.∴OE=OF.16.证明:如答图,连接AF.∵BD⊥AM,CE⊥AN,∴∠FDC=∠FEB=90°.又∵∠CFD=∠BFE,CF=BF,∴△CDF≌△BEF(AAS).∴FD=FE.∵BD⊥AM,CE⊥AN,∴∠CAF=∠BAF.∴AF平分∠BAC,即点F在∠A的平分线上.17.解:∵∠C=90°,∠CED=35°,∴∠CDE=55°.∵DE平分∠ADC,∴∠ADC=2∠CDE=110°.∵∠B=90°,∴∠DAB=360°-90°-90°-110°=70°.解:如答图,过点E作EF⊥AD于点F.∵DE平分∠ADC,∴CE=FE.∵E为BC中点,∴BE=CE=EF,∴AE平分∠DAB.∵∠DAB=70°,∴∠EAB=35°.18.解:PC=PD.理由:如答图,过点P分别作PE⊥OB于点E,PF⊥OA于点F,∴∠CFP =∠DEP =90°.∵OM 是∠AOB 的平分线, ∴PE =PF .∵∠AOB =90°,∴∠FPE =90°,∴∠2+∠FPD =90°.∵∠1+∠FPD =90°,∴∠1=∠2.在△CFP 和△DEP 中,⎩⎪⎨⎪⎧∠CFP =∠DEP ,PF =PE ,∠1=∠2,∴△CFP ≌△DEP (ASA),∴PC =PD .19. B20. C21. C。
新北师大版八年级下三角形的证明复习资料
12、
F
第一5.章直|角复三习角形的性质及判定 性质(1):在直角三角形中,如果一个锐角等于30°,
那么它所对的直角边等于斜边的___一__半____; 性质(2):直角三角形的两个锐角互余. 判定:有两个角互余的三角形是直角三角形. 6.勾股定理及其逆定理 勾股定理:直角三角形两条直角边的平方和等于斜
边的__平__方___.
售价为6元,则小明可能剩下多少
元( B )
A.12 B.4 C.8 D.2
11 如图YK1-5,在△ABC中,
图YK1-4
∠ABC,∠ACB的平分线交于点
E,过点E的直线交AB,AC于点
M,N,若BM=ME,则CN与EN的
关系是( A )
A. CN=EN B.CN > EN
图YK1-5
C. CN < EN D.无法确定
例2 图1ห้องสมุดไป่ตู้2
第一章 | 复习
第►考一章点三| 复习勾股定理的应用
例3
图1-3
[解析] 这个有趣的问题是勾股定理的典型应用,此问 题看上去是一个曲面上的路线问题,但实际上能通过圆 柱的侧面展开而转化为平面上的路线问题,值得注意的
是,在剪开圆柱侧面时,要从A开始并垂直于AB剪开,
这样展开的侧面是个矩形,才能得到直角,再利用勾股 定理解决此问题.
(1)定义:有两条边_相__等__的三角形是等腰三角形. (2)等角对等边:有两个角__相__等____的三角形是等腰
三角形.
第一章 | 复习
4.等边三角形的判定
(1)有一个角等于60°的_等___腰__三角形是等边三角形;
(2)三边相等的三角形叫做等边三角形; (3)三个角相等的三角形是等边三角形; (4)有两个角等于60°的三角形是等边三角形.
(北师版)八年级数学下册 第一章 三角形的证明 辅导讲义
第一阶梯三角形证明基础巩固训练一.角平分线的性质(共1小题)1.如图,已知∠A=90°,BD平分∠ABC,AD=1cm,BC=6cm,则△BDC的面积为()A.1cm2B.6cm2C.3cm2D.12cm2二.线段垂直平分线的性质(共5小题)2.△ABC中AC>BC,边AB的垂直平分线与AC交于点D,已知AC=5,BC=4,则△BCD的周长是()A.9B.8C.7D.63.到平面上三点A、B、C距离相等的点有()A.只有一个B.有两个C.有三个或三个以上D.有一个或没有4.△ABC中,∠C=90°,AB的垂直平分线交AB于E,交BC于点D,若CD:BD=1:2,BC=6cm,则点D到点A的距离为()A.1.5cm B.3cm C.2cm D.4cm5.如图所示,AB=AD,∠ABC=∠ADC=90°,则①AC平分∠BAD;②CA平分∠BCD;③AC垂直平分BD;④BD平分∠ABC,其中正确的结论有()A.①②B.①②③C.①②③④D.②③6.如果一个三角形一边上的中线和这边上的高重合,那么这个三角形是三角形.三.等腰三角形的性质(共9小题)7.等腰三角形周长是32cm,一边长为10cm,则其他两边的长分别为()A.10cm,12cm B.11cm,11cm C.11cm,11cm或10cm,12cm D.不能确定8.等腰三角形周长为36cm,两边长之比为4:1,则底边长为()A.16cm B.4cm C.20cm D.16cm或4cm9.一个等腰而非等边的三角形,它的所有的内角平分线、中线和高的条数为()A.9B.6C.7D.310.等腰三角形的周长为22cm,其中一边的长是8cm,则其余两边长分别为.11.顶角为60°的等腰三角形,两个底角的平分线相交所成的角是°.12.AB边上的中线CD将△ABC分成两个等腰三角形,则∠ACB=度.13.如果等腰三角形一腰上的高与腰的夹角为30°,则该三角形的顶角的度数为.14.如图,△ABC中,AB=AC,O是△ABC内一点,且∠OBC=∠OCB,求证:AO⊥BC.15.如图,在△ABC中,AB=AC,CD为AB边上的高,求证:∠BCD=∠A.四.等腰三角形的判定与性质(共1小题)16.△ABC中,AB=AC,∠ABC=36°,D,E是BC上的点,∠BAD=∠DAE=∠EAC,则图中等腰三角形有个.五.等边三角形的性质(共2小题)17.如图,等边△ABC中,E,D在AB,AC上,且EB=AD,BD与EC交于点F,则∠DFC=度,18.如图所示,△ABC、△ADE与△EFG都是等边三角形,D和G分别为AC和AE的中点,若AB=4时,则图形ABCDEFG外围的周长是.六.等边三角形的判定(共2小题)19.三角形中有两条中线分别平分它的两个内角,则这个三角形是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形20.已知a,b,c是△ABC的三边,且a2+b2+c2=ab+ac+bc,则△ABC是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形第二阶梯三角形证明能力提升训练一.直角三角形全等的判定(共1小题)1.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC =()A.28°B.59°C.60°D.62°二.角平分线的性质(共1小题)2.如图,已知∠A=90°,BD平分∠ABC,AD=1cm,BC=6cm,则△BDC的面积为()A.1cm2B.6cm2C.3cm2D.12cm2三.线段垂直平分线的性质(共3小题)3.已知△ABC中,AD⊥BC于点D,且BD=CD,若AB=3,则AC=.4.M、N、A、B是同一平面上的四个点,如果MA=MB,NA=NB,则点、在线段的垂直平分线上.5.△ABC中,AB比AC大2cm,BC的垂直平分线交AB于D,若△ACD的周长是14cm,则AB=,AC=.四.等腰三角形的性质(共6小题)6.等腰三角形周长为36cm,两边长之比为4:1,则底边长为()A.16cm B.4cm C.20cm D.16cm或4cm7.一个等腰而非等边的三角形,它的所有的内角平分线、中线和高的条数为()A.9B.6C.7D.38.已知:等腰三角形的周长为50厘米,若底边长为x厘米,则x的取值范围是.9.如图:△ABC中,∠B=∠C,E是AC上一点,ED⊥BC,DF⊥AB,垂足分别为D、F,若∠AED=140°,则∠C=度,∠A=度,∠BDF=度.10.分别以等腰三角形的腰与底边向三角形外作正三角形,其周长为24和36,求等腰三角形的周长.11.在△ABC中,AB=AC,它的两条边分别为3cm,4cm,那么它的周长为多少.五.等腰三角形的判定与性质(共5小题)12.如图,在△ABC中,已知∠ABC和∠ACB的平分线相交于点F.过点F作DF∥BC,交AB于点D,交AC于点E.若BD=4,DE=9,则线段CE的长为()A.3B.4C.5D.613.如图,在△ABC中,AB=AC=10,点D为BC上一点,过点D分别作DF∥AC交AB于点F,DE∥AB交AC于点E.求四边形AFDE的周长.14.在△ABC中,AB≠AC,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)如图1,写出图中所有的等腰三角形.猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图2,△ABC中∠ABC的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB 于E,交AC于F.图中还有等腰三角形吗?如果有,分别指出它们.写出EF与BE、CF关系,并说明理由.15.如图,AD是△ABC的角平分线,过点D作直线DF∥BA,交△ABC的外角平分线AF于点F,DF与AC交于点E.求证:DE=EF.16.如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BD=EC,请判断△ADE是不是等边三角形,并说明理由.六.等边三角形的性质(共3小题)17.如图,等边三角形ABC的边长为2,则它的高为.18.△ABC是等腰三角形,AB=AC,分别以两腰为边向外作等边△ADB和等边△ACE,若∠DAE=∠DBC,则∠BAC的度数为.19.如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.求证:△AMN的周长等于2.七.等边三角形的判定(共1小题)20.三角形中有两条中线分别平分它的两个内角,则这个三角形是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形第三阶梯三角形的证明综合训练(一)一、填空题1.如图,修建抽水站时,沿着倾斜角为30°的斜坡铺设管道,若量得水管AB的长度为80米,那么点B 离水平面的高度BC的长为米.2.如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是三角形.3.如图,已知AC=DB,要使△ABC≌△DCB,只需增加的一个条件是或.4.命题“全等三角形的对应角相等”的逆命题是,这个逆命题是(填“真”或“假”).5.如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=度.6.在△ABC中,已知AB=AC,AD是中线,∠B=70°,BC=15cm,则∠BAC=,∠DAC=,BD=cm.7.已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC 于E,若BC=10 cm,则△ODE的周长cm.第7题图第8题图8.如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB交于点D,则∠BCD的度数是度.9.如图,△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若DC=7,则点D到AB的距离DE=.10.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为.二、选择题11.等腰三角形底边上的高与底边的比是1:2,则它的顶角等于()A.60°B.90°C.120°D.150°12.下列两个三角形中,一定全等的是()A.有一个角是40°,腰相等的两个等腰三角形B.两个等边三角形C.有一个角是100°,底相等的两个等腰三角形D.有一条边相等,有一个内角相等的两个等腰三角形13.到△ABC的三条边距离相等的点是△ABC的()A.三条中线交点B.三条角平分线交点C.三条高的交点D.三条边的垂直平分线交点14.△ABC中,∠A:∠B:∠C=1:2:3,CD⊥AB于点D,若BC=a,则AD等于()A.B.C.D.15.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°三、解答题16.如图,AD⊥CD,AB=10,BC=20,∠A=∠C=30°.求:(1)∠ABC的度数;(2)AD、CD的长.17.已知:如图,△ABC中,AB=AC,∠A=120度.(1)用直尺和圆规作AB的垂直平分线,分别交BC、AB于点M、N(保留作图痕迹,不写作法).(2)猜想CM与BM之间有何数量关系,并证明你的猜想.四、证明题18.已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:D在∠BAC的平分线上.19.已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.五、阅读下面的题目及分析过程,并按要求进行证明.20.阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB =CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.第四阶梯三角形的证明综合训练(二)一、填空题:1.三角形三个角的度数之比为1:2:3,它的最大边长等于16cm,则最小边长是cm.2.已知等腰三角形的一个角是36°,则另两个角分别是.3.Rt△ABC中,锐角∠ABC和∠CAB的平分线交于点O,则∠BOA=.4.如图,在△ABC中,∠B=115°,AC边的垂直平分线DE与AB边交于点D,且∠ACD:∠BCD=5:3,则∠ACB的度数为度.第4题图第5题图5.如图,已知∠ABD=∠C=90°,AD=12,AC=BD,∠BAD=30°,则BC=.6.如图,将矩形纸片ABCD沿BD对折,使点C落在E处,BE与AD相交于点O,写出一组相等线段、相等角(不包括矩形的对边、对角).7.如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为.8.命题“全等三角形的对应角相等”的逆命题是,这个逆命题是(填“真”或“假”).9.如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB交于点D,则∠BCD的度数是度.10.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为.二、选择题:11.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B =∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个12.到△ABC的三条边距离相等的点是△ABC的()A.三条中线交点B.三条角平分线交点C.三条高的交点D.三条边的垂直平分线交点13.如图,在等边三角形ABC中,BD⊥BC,过A作AD⊥BD于D,已知△ABC周长为M,则AD=()A.B.C.D.14.在△ABC中,∠A:∠B:∠C=1:2:3,CD⊥AB于D,AB=a,则DB等于()A.B.C.D.15.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm216.如图,在△ABC中,AB=AC,AB的垂直平分线交BC的延长线于E,交AC于F,∠A=50°,AB+BC =16cm,则△BCF的周长和∠EFC分别为()A.16cm,40°B.8cm,50°C.16cm,50°D.8cm,40°17.如图所示,已知△ABC中,AB=AC,∠BAC=90°,直角△EPF的顶点P是BC中点,两边PE、PF 分别交AB、AC于点E,F,给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=S△ABC;④EF=AP.当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),上述结论中始终正确的有()A.①④B.①②C.①②③D.①②③④18.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°三、解证题:19.如图,在△ABC中,AB=AC,BC=12,∠BAC=120°,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N.(1)求△AEN的周长.(2)求∠EAN的度数.(3)判断△AEN的形状.20.已知:如图,D是等腰△ABC底边BC上一点,它到两腰AB、AC的距离分别为DE、DF,当D点在什么位置时,DE=DF?并加以证明.21.如图,在△ABD和△ACE中,有下列四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三个条件为题设,填入已知栏中,一个论断为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程.已知:.求证:.证明:22.如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D.(1)求证:∠PCD=∠PDC;(2)求证:OP是线段CD的垂直平分线.23.已知:如图,△ABC中,AB=AC,∠A=120度.(1)用直尺和圆规作AB的垂直平分线,分别交BC、AB于点M、N(保留作图痕迹,不写作法).(2)猜想CM与BM之间有何数量关系,并证明你的猜想.24.如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD.(1)求证:BE=AD;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?并说明理由.参考答案第一阶梯三角形证明基础巩固训练一.角平分线的性质(共1小题)1.C;二.线段垂直平分线的性质(共5小题)2.A;3.D;4.D;5.B;6.等腰;三.等腰三角形的性质(共9小题)7.C;8.B;9.C;10.7cm、7cm或8cm、6cm;11.60或120;12.90;13.120°或60°;四.等腰三角形的判定与性质(共1小题)16.6;五.等边三角形的性质(共2小题)17.60;18.15;六.等边三角形的判定(共2小题)19.C;20.C;第二阶梯三角形证明能力提升训练一.直角三角形全等的判定(共1小题)1.B;二.角平分线的性质(共1小题)2.C;三.线段垂直平分线的性质(共3小题)3.3;4.M;N;AB;5.8cm;6cm;四.等腰三角形的性质(共6小题)6.B;7.C;8.0<x<25;9.50;80;40;五.等腰三角形的判定与性质(共5小题)12.C;六.等边三角形的性质(共3小题)17.;18.20°;七.等边三角形的判定(共1小题)20.C;第三阶梯三角形的证明综合训练(一)一、填空题1.40;2.等腰;3.∠ABC=∠DCB;AC=DB;4.对应角相等的三角形是全等三角形;假;5.220;6.40°;20°;7.5;7.10;8.10;9.7;10.2;二、选择题11.B;12.C;13.B;14.C;15.B;第四阶梯三角形的证明综合训练(二)一、填空题:1.8;2.72°,72°或36°,108°;3.135°;4.40;5.6;6.DE=DC,∠OBD=∠ODB等.;7.;8.对应角相等的三角形是全等三角形;假;9.10;10.2;二、选择题:11.D;12.B;13.B;14.A;15.A;16.A;17.C;18.B;三、解证题:21.在△ABD和△ACE中,AB=AC,AD=AE,BD=CE;∠1=∠2;。
(完整版)北师大版八年级三角形证明课后题汇总
1.1 等腰三角形1、将下面证明中每一步的理由写在括号内:已知:如图,AB=CD,AD=CB.求证:∠A=∠C.证明:连接BD.在△BAD和△DCB中,∵AB=CD( )AD=CB( )BD=DB( )∴△BAD≌△DCB( )∴∠A=∠C( )2、已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.3、如图,在△ABC中,∠BAC=108°,AB=AC,AD⊥BC,垂足为D,求∠BAD的度数。
4、如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,点E是AD上一点,连接BE,CE,请找出图中所有相等的角。
5、如图,在△ABC中,AB=BC,点D,E都在BC上,且AD=AE,证明BD=CE.1、如图,在△ABC中,AB=AC,BD平分∠ABC,交AC于点D.若BD=BC,则∠A等于多少度?2、已知:如图,在△ABC中,AB=AC,D为BC中点,点E,F分别在AB和AC尚,并且AE=AF.求证:DE=DF3、已知:如图,D,E分别是等边三角形ABC的两边AB,AC上的点,且AD=CE。
求证:CD=BE4、如图,在一个风筝ABCD中,AB=AD,BC=DC⑴分别在AB,AD的中点E,F处拉两根彩线EC,FC.证明:这两根彩线的长度相等。
⑵如果AE=1/3AB,AF=1/3AD,那麼彩线的长度相等吗?如果AE=1/4AB,AF=1/4AD呢?由此你能得到什麼结论?1、已知:如图,∠CEA是△ABC的外角,AD平行BC,且∠1=∠2.求证:AB=AC.2、已知:如图,在△ABC中,AB=AC,点E在CA的延长线上,EP垂直于BC,垂足为P,EP交AB于点F。
求证:△AEF是等腰三角形。
3、如图,一艘船从A处出发,以18kn的速度向北航行,经过10h到处B处。
分别从A,B望灯塔C,测得∠NAC=42°,∠NBC=84°.求从B处到灯塔C 的距离.1、已知:如图,△ABC是等边三角形,与BC平行的直线分别交AB和AC于点D,E, 求证:△ADE是等边三角形。
备战中考数学(北师大版)巩固复习三角形的证明(含解析)
备战中考数学(北师大版)巩固复习三角形的证明(含解析)2019备战中考数学(北师大版)巩固复习-三角形的证明(含解析)一、单选题1.下列说法错误的是()A. 等腰三角形的高、中线、角平分线互相重合B. 三角形两边的垂直平分线的交点到三个顶点距离相等C. 等腰三角形的两个底角相等D. 等腰三角形顶角的外角是底角的二倍2.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是()A. 115°B. 75°C. 105°A. 线段的垂直平分线 B. 一个半径为定值的圆 C. 一条直线的平行线 D. 一个角等于已知角6.如图,在长方形ABCD中,AB=4,AD=6,点E 是线段AD上的一个动点,点P是点A关于直线BE的对称点,在点E的运动过程中,使△PBC为等腰三角形的点E的位置共有()A. 1个B. 2个C. 3D. 无数个7.等腰三角形腰上的高与底边的夹角等于()A. 底角B. 底角的一半C. 顶角D. 顶角的一半8.如图,在△ABC中,AB的垂直平分线分别交AB,AC于D,E两点,且AC=10,BC=4,则△BCE 的周长为()A. 6B. 14C. 24D. 259.腰长为10,一条中线长为6的等腰三角形的底边长为()A. 16B. 8C. 8或D. 16或10.已知等腰三角形的一内角度数为40°,则它的顶角的度数为( )A. 40°B. 80°C. 100°D. 40°或100°11.如图,在△ABC中,∠C=90°, AD平分∠CAB,BC=8cm,BD=5cm,那么D点到直线AB的距离是()A. 8cmB. 3cmC. 13cmD. 5cm二、填空题12.如图,在△ABC中,∠ACB=90°,AD平分∠ABC,BC=10cm,BD:DC=3:2,则点D到AB 的距离________cm.13.已知:如图,△ABC中,AB=AC,点D为BC的中点,连接AD.(1)请你写出两个正确结论:①________;②________;(2)当∠B=60°时,还可以得出正确结论:________ ;(只需写出一个)14.如图,已知OC是∠AOB的平分线,DC∥OB,那么△DOC一定是________三角形(填按边分类的所属类型).15.如图,CE平分∠ACB,且CE⊥D B,∠DAB=∠DBA,又知AC=18,△CDB的周长为28,则BD的长为________.16.如图,在△ABC中,AB=AC,∠A=36°,BD 是△ABC的角平分线,则∠ABD=________°.17.如图所示,BD是∠ABC的平分线,DE⊥AB于=144cm,则DE的点E,AB=36cm,BC=24cm,S△ABC长是________ .三、解答题18.如图,在三角形ABC中,∠B=∠C,D是BC上一点,且FD⊥BC,DE⊥AB,∠AFD=140°,你能求出∠EDF的度数吗?19.如图,△ABC中,AB=AC,点D是BC上一点,DE⊥AB于E,FD⊥BC于D,G是FC的中点,连接GD.求证:GD⊥DE.20.将一副直角三角板如图摆放,等腰直角板ABC 的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.求证:△CDO是等腰三角形四、综合题21.已知锐角三角形ABC内接于⊙O,AD⊥BC,垂足为D.(1)如图1,,BD=DC,求∠B的度数;(2)如图2,BE⊥AC,垂足为E,BE交AD于点F,过点B作BG∥AD交⊙O于点G,在AB边上取一点H,使得AH=BG.求证:△AFH是等腰三角形.22.如图,在△ABC中,AB=c,AC=b.AD是△ABC 的角平分线,DE⊥A于E,DF⊥AC于F,EF与AD 相交于O,已知△ADC的面积为1.(1)证明:DE=DF;(2)试探究线段EF和AD是否垂直?并说明理由;(3)若△BDE的面积是△CDF的面积2倍.试求四边形AEDF的面积.23.已知一个等腰三角形的两边长a、b满足方程组(1)求a、b的值.(2)求这个等腰三角形的周长.24.已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.(1)求证:△MED为等腰三角形(2)求证:∠EMD=2∠DAC.答案解析部分一、单选题1.【答案】A【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:A、等腰三角形底边上的高、底边上的中线、顶角的角平分线互相重合,故A 错误;B、三角形两边的垂直平分线的交点到三个顶点的距离相等,故B正确;C、等腰三角形的两个底角相等,故C正确;D、等腰三角形顶角的外角是底角的二倍,故D 正确,故选:A.【分析】利用等腰三角形的性质和线段垂直平分线的性质分别对四个选项进行判断后即可确定正确的选项.2.【答案】A【考点】线段垂直平分线的性质【解析】【解答】解:∵BE是∠ABC的平分线,∠ABC=50°,∴∠EBD=∠ABC=25°,∵AD垂直平分线段BC,∴EB=EC,∠ADC=90°,∴∠C=∠EBD=25°,∴∠AEC=∠ADC+∠C=115°.故选A.【分析】由BE是∠ABC的平分线,∠ABC=50°,可求得∠EBD的度数,然后由AD垂直平分线段BC,根据线段垂直平分线的性质,可得EB=ED,继而求得∠C的度数,然后由三角形外角的性质,求得答案.3.【答案】D【考点】直角三角形全等的判定【解析】【分析】两个三角形全等的一般方法:SSS、SAS、ASA、AAS、HL。
北师大版初中数学八年级下册知识讲解,巩固练习(教学资料,补习资料):第一章 三角形的证明(提高)
第一章三角形的证明(提高)等腰三角形(提高)知识讲解【学习目标】1. 了解等腰三角形、等边三角形的有关概念, 掌握等腰三角形的轴对称性;2. 掌握等腰三角形、等边三角形的性质,会利用这些性质进行简单的推理、证明、计算和作图.3. 理解并掌握等腰三角形、等边三角形的判定方法及其证明过程. 通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力.4. 理解反证法并能用反证法推理证明简单几何题.【要点梳理】要点一、等腰三角形的定义1.等腰三角形有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.2.等腰三角形的作法已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.作法:1.作线段BC=a;2.分别以B,C为圆心,以b为半径画弧,两弧相交于点A;3.连接AB,AC.△ABC为所求作的等腰三角形3.等腰三角形的对称性(1)等腰三角形是轴对称图形;(2)∠B=∠C;(3)BD=CD,AD为底边上的中线.(4)∠ADB =∠ADC =90°,AD 为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4.等边三角形三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A =180°-2∠B ,∠B =∠C = . (2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”. 推论:等边三角形的三个内角都相等,并且每个内角都等于60°.性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.2.等腰三角形中重要线段的性质等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等.要点诠释:这条性质,还可以推广到以下结论:(1)等腰三角形底边上的高上任一点到两腰的距离相等。
北师大版初中数学八年级下册知识讲解,巩固练习(教学资料 ):第5讲《三角形的证明》全章复习与巩固(提高)
《三角形的证明》全章复习与巩固(提高)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,不如边长为a;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.要点二、直角三角形1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;正确的逆命题就是逆定理.3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL )要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,一共有5种判定方法.要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A 、B 为圆心,以大于AB 的长为半径作弧,两弧交于点M 、N ;作直线MN ,则直线MN 就是线段AB 的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;②利用线段的垂直平分线定理可解决两条线段的和距离最短问题.要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.3.如何用尺规作图法作出角平分线要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形.212【典型例题】类型一、能证明它们么1. 如图,△ACD 和△BCE 都是等腰直角三角形,∠ACD=∠BCE=90°,AE 交CD 于点F ,BD 分别交CE 、AE 于点G 、H .试猜测线段AE 和BD 的数量和位置关系,并说明理由.【思路点拨】由条件可知CD=AC ,BC=CE ,且可求得∠ACE=∠DCB ,所以△ACE ≌△DCB ,即AE=BD ,∠CAE=∠CDB ;又因为对顶角∠AFC=∠DFH ,所以∠DHF=∠ACD=90°,即AE ⊥BD .【答案与解析】猜测AE=BD ,AE ⊥BD ;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE ,即∠ACE=∠DCB ,又∵△ACD 和△BCE 都是等腰直角三角形,∴AC=CD ,CE=CB ,∵在△ACE 与△DCB 中,∴△ACE ≌△DCB (SAS ),∴AE=BD , ∠CAE=∠CDB ;∵∠AFC=∠DFH ,∠FAC+∠AFC=90°,∴∠DHF=∠ACD=90°,∴AE ⊥BD .故线段AE 和BD 的数量相等,位置是垂直关系.【总结升华】主要考查全等三角形的判定,涉及到等腰直角三角形的性质及对顶角的性质等知识点.举一反三:【变式】将两个全等的直角三角形ABC 和DBE 按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .(1)求证:AF+EF=DE ;(2)若将图1中的△DBE 绕点B 按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图2中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图1中的△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其它条件,AC DC ACE DCB EC BC =⎧⎪∠=∠⎨⎪=⎩不变,如图3.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.【答案】(1)证明:连接BF(如下图1),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.∵BF=BF,∴Rt△BFC≌Rt△BFE.∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图2.(1)中的结论AF+EF=DE仍然成立;(3)证明:连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF 和△BEF 是直角三角形,在Rt △BCF 和Rt △BEF 中,∴△BCF ≌△BEF ,∴CF=EF ;∵△ABC ≌△DBE ,∴AC=DE ,∴AF=AC+FC=DE+EF .类型二、直角三角形2. 下列说法正确的说法个数是( )①两个锐角对应相等的两个直角三角形全等,②斜边及一锐角对应相等的两个直角三角形全等,③两条直角边对应相等的两个直角三角形全等,④一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等.A.1B.2C.3D.4【思路点拨】根据全等三角形的判定方法及“HL”定理,判断即可;【答案】C.【解析】A 、三个角相等,只能判定相似;故本选项错误;B 、斜边及一锐角对应相等的两个直角三角形,符合两三角形的判定定理“AAS”;故本选项正确;C 、两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项正确;D 、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等;故本选项正确;所以,正确的说法个数是3个.故选C .【总结升华】直角三角形全等的判定,一般三角形全等的判定方法都适合它,同时,直角三角形有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法,使用时应该抓住“直角”这个隐含的已知条件.3.(2019•南开区一模)问题背景:,BC BE BFBF =⎧⎨=⎩在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)若△ABC三边的长分别为、、2(m>0,n>0,且m ≠n),运用构图法可求出这三角形的面积为.【思路点拨】(1)是直角边长为1,2的直角三角形的斜边;是直角边长为1,3的直角三角形的斜边;是直角边长为2,3的直角三角形的斜边,把它整理为一个矩形的面积减去三个直角三角形的面积;(2)结合(1)易得此三角形的三边分别是直角边长为m,4n的直角三角形的斜边;直角边长为3m,2n的直角三角形的斜边;直角边长为2m,2n的直角三角形的斜边.同样把它整理为一个矩形的面积减去三个直角三角形的面积可得.【答案与解析】解:(1)S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=;(2)构造△ABC如图所示,S△ABC=3m×4n﹣×m×4n﹣×3m×2n﹣×2m×2n=5mn.故答案为:(1)3;(2)5mn.【总结升华】此题主要考查了勾股定理应用,利用了数形结合的思想,通过构造直角三角形,利用勾股定理求解是解题关键,关键是结合网格用矩形及容易求得面积的直角三角形表示出所求三角形的面积进行解答. 类型三、线段垂直平分线4. 如图,在锐角△ABC 中,AD、CE 分别是BC 、AB 边上的高,AD 、CE 相交于F ,BF 的中点为P ,AC 的中点为Q ,连接PQ 、DE .(1)求证:直线PQ 是线段DE 的垂直平分线;(2)如果△ABC 是钝角三角形,∠BAC >90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.【思路点拨】(1)只需证明点P 、Q 都在线段DE 的垂直平分线上即可.即证P 、Q 分别到D 、E 的距离相等.故连接PD 、PE 、QD 、QE ,根据直角三角形斜边上的中线等于斜边的一半可证;(2)根据题意,画出图形;结合图形,改写原题.(2)当△ABC 为钝角三角形时,(1)中的结论仍成立.如图,△ABC 是钝角三角形,∠BAC >90°.原题改写为:如图,在钝角△ABC 中,AD 、CE 分别是BC 、AB 边上的高,DA 与CE 的延长线 交于点F ,BF 的中点为P ,AC 的中点为Q ,连接PQ 、DE .求证:直线PQ 垂直且平分线段DE .证明:连接PD ,PE ,QD ,QE ,则PD 、PE 分别是Rt △BDF 和Rt △BEF 的中线,∴PD=BF ,PE=BF , ∴PD=PE ,点P 在线段DE 的垂直平分线上.同理可证QD=QE ,∴点Q 在线段DE 的垂直平分线上.∴直线PQ 垂直平分线段DE .【总结升华】考查了线段垂直平分线的判定和性质、直角三角形斜边上的中线等于斜边的一举一反三:【变式】在△ABC 中,AB=AC ,AB 的垂直平分线交AB 于N ,交BC 的延长线于M ,∠A=40度.(1)求∠M 的度数;(2)若将∠A 的度数改为80°,其余条件不变,再求∠M 的大小;(3)你发现了怎样的规律?试证明;(4)将(1)中的∠A 改为钝角,(3)中的规律仍成立吗?若不成立,应怎样修改.1212【答案】类型四、角平分线5. 如图,△ABC中,∠A=60°,∠ACB的平分线CD和∠ABC的平分线BE交于点G.求证:GE=GD.【思路点拨】连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.由角平分线的性质及逆定理可得GN=GM=GF,AG是∠CAB的平分线;在四边形AMGN中,易得∠NGM=180°-60°=120°;在△BCG中,根据三角形内角和定理,可得∠CGB=120°,即∠EGD=120°,∴∠EGN=∠DGM,证明Rt△EGN≌Rt△DGM(AAS)即可得证GE=GM.【答案与解析】解:连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.∵∠A=60°,∴∠ACB+∠ABC=120°,∵CD,BE是角平分线,∴∠BCG+∠CBG=120°÷2=60°,∴∠CGB=∠EGD=120°,∵G是∠ACB平分线上一点,∴GN=GF,同理,GF=GM,∴GN=GM,∴AG是∠CAB的平分线,∴∠GAM=∠GAN=30°,∴∠NGM=∠NGA+∠AGM=60°+60°=120°,∴∠EGD=∠NGM=120°,∴∠EGN=∠DGM,又∵GN=GM,∴Rt△EGN≌Rt△DGM(AAS),∴GE=GD.【总结升华】此题综合考查角平分线的定义、三角形的内角和及全等三角形的判定和性质等知识点,难度较大,作辅助线很关键.举一反三:【变式】(2019春•澧县期末)如图:在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB 于E,F在AC上,BD=DF;证明:(1)CF=EB.(2)AB=AF+2EB.【答案】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.《三角形的证明》全章复习与巩固(提高)【巩固练习】一.选择题1.有一块边长为24米的正方形绿地,如图所示,在绿地旁边B处有健身器材,由于居住在A处的居民践踏了绿地,小明想在A处树立一个标牌“少走▇米,踏之何忍”请你计算后帮小明在标牌的“▇”填上适当的数字是()A. 3米 B. 4米C. 5米 D.6米2.(2019秋•仙游县期中)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60° D.有一个内角小于60°3. 如图,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点,有以下结论:(1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE。
北师大版初中数学八年级下册知识讲解,巩固练习(教学资料 ):第5讲《三角形的证明》全章复习与巩固(基础)
《三角形的证明》全章复习与巩固(基础)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个角等于30°,那么它所对的直角边等于斜边的一半. 要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,比如边长为a 的等边三角形它的高是,面积是;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.要点二、直角三角形1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL ).要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,HL 一共有5种判定方法.要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A 、B 为圆心,以大于AB 的长为半径作弧,两弧交于点M 、N ;作直线MN ,则直线MN 就是线段AB 的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;②利用线段的垂直平分线定理可解决两条线段的和距离最短问题.要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.3.如何用尺规作图法作出角平分线要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形.【典型例题】类型一、 三角形的证明2a 24a 121. 已知:点D 是△ABC 的边BC 的中点,DE⊥AC,DF⊥AB,垂足分别为E ,F ,且BF=CE . 求证:△ABC 是等腰三角形.【思路点拨】欲证△ABC 是等腰三角形,又已知DE⊥AC,DF⊥AB,BF=CE ,可利用三角形中两内角相等来证明.【答案与解析】证明:∵D 是BC 的中点,∴BD=CD,∵DE⊥AC,DF⊥AB,∴△BDF 与△CDE 为直角三角形,在Rt△BDF 和Rt△CDE 中,∴Rt△BFD≌Rt△CED(HL ),∴∠B=∠C,∴AB=AC,∴△ABC 是等腰三角形.【总结升华】考查等腰三角形的判定方法及全等三角形的判定及性质;充分利用条件证明三角形全等是正确解答本题的关键.举一反三:【变式1】(2019秋•江阴市校级期中)已知:如图,△AMN 的周长为18,∠B,∠C 的平分线相交于点O ,过O 点的直线MN∥BC 交AB 、AC 于点M 、N .求AB+AC 的值.【答案】解:∵MN∥BC,∴∠BOM=∠OBC,∠CON=∠OCB,∵∠B,∠C 的平分线相交于点O ,∴∠MBO=∠OBC,∠NCO=∠OCB,∴∠MBO=∠BOM,∠NCO=∠CON,∴BM=OM,CN=ON ,∵△AMN 的周长为18,,BF CE BD CD =⎧⎨=⎩∴AM+MN+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=18.【变式2】如图,在△ABC中,AB=AC,D、E在BC上,且AD=AE,求证:BD=CE.【答案】证明:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∵∠ADE=∠B+∠BAD,∠AED=∠C+∠EAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∴ BD=CE.类型二、直角三角形2. 如图,已知,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.(1)根据折叠的性质:△BCE≌△BDE,BC=BD,当点D恰为AB的重点时,AB=2BD=2BC,【思路点拨】又∠C=90°,故∠A=30°;当添加条件∠A=30°时,由折叠性质知:∠EBD=∠EBC=30°,又∠A=30°且ED⊥AB,可证D为AB的中点;(2)在Rt△ADE中,根据∠A及ED的值,可将AE、AD的值求出,又D为AB的中点,可得AB的长度,在Rt△ABC中,根据AB、∠A的值,可将AC和BC的值求出,代入S△ABC=AC×BC 进行求解即可.【答案与解析】解:(1)添加条件是∠A=30°.证明:∵∠A=30°,∠C=90°,所以∠CBA=60°,∵C点折叠后与AB边上的一点D重合,∴BE平分∠CBD,∠BDE=90°,∴∠EBD=30°,∴∠EBD=∠EAB,所以EB=EA;∵ED为△EAB的高线,所以ED也是等腰△EBA的中线,∴D 为AB 中点.(2)∵DE=1,ED⊥AB,∠A=30°,∴AE=2.在R t△ADE 中,根据勾股定理,得,,∵∠A=30°,∠C=90°,∴BC=在Rt△ABC中,=3,∴S △ABC =. 【总结升华】考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,根据轴对称的性质,折叠前后图形的形状和大小不变.3. 小林在课堂上探索出只用三角尺作角平分线的一种方法:如图,在已知∠AOB 的两边上分别取点M ,N ,使OM=ON ,再过点M 作OB 的垂线,过点N 作OA 的垂线,垂足分别为C 、D ,两垂线交于点P ,那么射线OP 就是∠AOB 的平分线.老师当场肯定他的作法,并且表扬他的创新.但是小林不知道这是为什么.①你能说明这样做的理由吗?也就是说,你能证明OP 就是∠AOB 的平分线吗?②请你只用三角板设法作出图∠AOB 的平分线,并说明你的作图方法或设计思路.【思路点拨】①在Rt △OCM 与Rt △ODN 中,依据ASA 得出OC=OD;在Rt △O CP 与Rt △O DP 中,因为OP=OP ,OC=OD 得出Rt△O C P≌Rt△O DP (HL ),所以∠C OP=∠DOP ,即OP 平分∠AOB. ②可作出两个直角三角形,利用HL 定理证明两角所在的三角形全等.【答案与解析】①证明:在Rt △OCM 和Rt △ODN 中,∴△OCM ≌△ODN (AAS ),∴OC=OD ,在△OCP 与△ODP 中,∵∴Rt △OCP ≌Rt △ODP (HL ),=1212COM DON OCM ODN OM ON ∠=∠⎧⎪∠=∠⎨⎪=⎩,OC OD OP OP=⎧⎨=⎩∴∠COP=∠DOP ,即OP 平分∠AOB ;②解:①利用刻度尺在∠AOB 的两边上分别取OC=OD ;②过C ,D 分别作OA ,OB 的垂线,两垂线交于点E ;③作射线OE ,OE 就是所求的角平分线.∵CE⊥OA,ED⊥OB,∴∠OCE=∠ODE=90°,在Rt△OCE 与Rt△ODE 中,∵,∴Rt△OCE≌Rt△ODE(HL ),∴∠EOC=∠EOD, ∴OE为∠AOB的角平分线.【总结升华】主要考查了直角三角形的判定,利用全等三角形的性质得出∠EOC=∠EOD 是解题关键.类型三、线段垂直平分线4.(2019秋•麻城市校级期中)如图所示:在△ABC 中,AB >BC ,AB=AC ,DE 是AB 的垂直平分线,垂足为D ,交AC 于E .(1)若∠ABE=50°,求∠EBC 的度数;(2)若△ABC 的周长为41cm ,边长为15cm ,△BCE 的周长.【思路点拨】(1)由DE 是AB 的垂直平分线,根据线段垂直平分线的性质,可得AE=BE ,继而求得∠A 的度数,又由AB=AC ,即可求得∠ABC 的度数,则可求得答案;(2)由△BCE 的周长=AC+BC ,然后分别从腰等于15cm 与底边等于15cm 去分析求解即可求得答案.【答案与解析】解:(1)∵DE 是AB 的垂直平分线,∴AE=BE,∴∠ABE=∠A=50°,∵AB=AC,OC OD OE OE=⎧⎨=⎩∴∠ABC=∠C=65°,∴∠EBC=∠ABC﹣∠ABE=15°;(2)∵AE=BE,∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC;∵△ABC的周长为41cm,∴AB+AC+BC=41cm,若AB=AC=15cm,则BC=11cm,则△BCE的周长为:15+11=26cm;若BC=15cm,则AC=AB=13cm,∵AB>BC,∴不符合题意,舍去.∴△BCE的周长为26cm.【总结升华】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.举一反三:【变式】如图所示,AD是△ABC中∠BAC的平分线,AD的垂直平分线EF交BC的延长线于F,试说明∠BAF=∠ACF的理由.【答案】解:∵EF垂直平分AD,∴AF=DF,∴∠FAD=∠FDA.又∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠BAF=∠BAD+∠FAD,∠ACF=∠DAC+∠FDA,∴∠BAF=∠ACF.类型四、角平分线5.(2019秋•兴化市期中)已知:如图,△ABC的角平分线BE、CF相交于点P.求证:点P在∠A的平分线上.【思路点拨】过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,根据角平分线上的点到角的两边距离相等可得PD=PM,同理可得PM=PN,从而得到PD=PN,再根据到角的两边距离相等的点在角的平分线上证明即可.【答案与解析】证明:如图,过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,∵BE平分∠ABC,点P在BE上,∴PD=PM,同理,PM=PN,∴PD=PN,∴点P在∠A的平分线上.【总结升华】本题考查了角平分线上的点到角的两边距离相等的性质,到角的两边距离相等的点在角的平分线上,熟记性质并作出辅助线是解题的关键.举一反三:【变式】如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()【答案】D.解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.《三角形的证明》全章复习与巩固(基础)【巩固练习】一、选择题1.△ABC中,AB=AC,BD平分∠ABC交AC边于点D,∠BDC=75°,则∠A的度数是()A. 35°B. 40°C. 70°D. 110°2.三角形的三个内角中,锐角的个数不少于()A. 1 个B. 2 个C. 3个D.不确定3.用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③正方形;④等腰三角形,其中一定可以拼成的图形的是()A.①②③B.②③④C.①③④D.①②④4.如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE ≌△ACD的是()A. AD=AE B.∠AEB=∠ADC C. BE=CD D. AB=AC5.(2019•青岛)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A. B.2 C.3 D.+26.(2019•湘西州)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对7.有两个角和其中一个角的对边对应相等的两个三角形()A.必定全等B.必定不全等C.不一定全等D.以上答案都不对8.面积相等的两个三角形()A.必定全等B.必定不全等C.不一定全等D.以上答案都不对二、填空题9.如果等腰三角形的一个底角是80°,那么顶角是_________ 度.10.△ABC中,∠A是∠B的2倍,∠C比∠A+∠B还大12°,那么∠B= _________ 度.11.(2019秋•洛阳校级月考)如果a,b,c为三角形的三边,且(a﹣b)2+(a﹣c)2+|b ﹣c|=0,则这个三角形是.12.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:_________ ,使△AEH≌△CEB.13.等腰直角三角形一条边长是1 cm,那么它斜边上的高是_________ .14.在△ABC和△ADC中,下列论断:①AB=AD;②∠BAC=∠DAC;③BC=DC,把其中两个论断作为条件,另一个论断作为结论,写出一个真命题:_________ .15.在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是_________ .16.已知△ABC中,∠A=90°,角平分线BE、CF交于点O,则∠BOC= _________ .三、解答题17.(2019秋•定州市期中)如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.18.(2019秋•太和县期中)如图:△ABC中,∠ABC和∠ACB的平分线交于F点,过F点作DE∥BC,分别交AB、AC于点D、E.求证:(1)BD=DF.(2)△ADE的周长等于AB+AC.19. 如图,D,E是△ABC边上的两点,且BD=DE=EC=AD=AE,求∠BAC的度数.20.(2019春•建昌县期末)已知:如图,有一块Rt△ABC的绿地,量得两直角边AC=8m,BC=6m.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8m为直角边长的直角三角形,求扩充后等腰△ABD的周长.(1)在图1中,当AB=AD=10m时,△ABD的周长为;(2)在图2中,当BA=BD=10m时,△ABD的周长为;(3)在图3中,当DA=DB时,求△ABD的周长.【答案与解析】一.选择题1.【答案】B;【解析】解:设∠A的度数是x,则∠C=∠B=,∵BD平分∠ABC交AC边于点D∴∠DBC=,∴++75=180°,∴x=40°.∴∠A的度数是40°.故选B.2.【答案】B;【解析】解:由三角形内角和为180度可知:三角形的三个内角中,锐角的个数不少于2个.故选B.3.【答案】D;【解析】解:两个全等的直角三角形,一定可以拼成平行四边形(直角边重合,两直角不邻),等腰三角形(直角边重合,两直角相邻),以及矩形(斜边重合);若为等腰直角三角形,则可拼成正方形;所以①②④一定可以拼接而成,③不一定拼成.4.【答案】B;【解析】解:A、根据AAS(∠A=∠A,∠C=∠B,AD=AE)能推出△ABE≌△ACD正确,故本选项错误;B、三角对应相等的两三角形不一定全等,错误,故本选项正确;C、根据AAS(∠A=∠A,∠B=∠C,BE=CD)能推出△ABE≌△ACD,正确,故本选项错误;D、根据ASA(∠A=∠A,AB=AC,∠B=∠C)能推出△ABE≌△ACD,正确,故本选项错误;5.【答案】C;【解析】解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=1,又∵直角△BDE中,∠B=30°,∴BD=2DE=2,∴BC=CD+BD=1+2=3.故选C.6.【答案】C;【解析】解:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C.7.【答案】A;【解析】解:有两个角和其中一个角的对边对应相等,符合“角角边”判定方法,所以,两个三角形必定全等.8.【答案】C;【解析】解:因为两个面积相等的三角形,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边、对应高不一定相等;故面积相等的两个三角形不一定全等.二、填空题9.【答案】 20;【解析】解:∵三角形是等腰三角形,∴两个底角相等,∵等腰三角形的一个底角是80°,∴另一个底角也是80°,∴顶角的度数为180°﹣80°﹣80°=20°.10.【答案】28;【解析】解:设∠B=x,则∠A=2x,∠C=3x+12°,∵∠A+∠B+∠C=180°,∴x+2x+3x+12°=180°,解得x=28°.故答案为:28.11.【答案】等边三角形;【解析】解:∵(a﹣b)2+(a﹣c)2+|b﹣c|=0,∴a﹣b=0,a﹣c=0,b﹣c=0,∴a=b,a=c,b=c,∴a=b=c,∴这个三角形是等边三角形;故答案为:等边三角形.12.【答案】AH=CB或EH=BE或AE=CE;【解析】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=BE;根据ASA添加AE=CE.可证△AEH≌△CEB.13.【答案】cm或cm;【解析】解:(1)当1cm是斜边,则其高就是斜边1的一半是cm;(2)当其直角边是1cm时,根据勾股定理得其斜边是cm,再根据其高是斜边的一半得高是cm;所以它斜边上的高是cm或cm.14.【答案】在△ABC和△ADC中,如果AB=AD,∠BAC=∠DAC,那么BC=DC.【解析】解:把①②作为条件③作为结论,∵AB=AD,∠BAC=∠DAC,又∵AC=AC,∴△ABC≌△ADC,∴BC=BD.故答案为:在△ABC和△ADC中,如果AB=AD,∠BAC=∠DAC,那么BC=DC.15.【答案】PA=PB=PC;【解析】∵边AB的垂直平分线相交于P,∴PA=PB,∵边BC的垂直平分线相交于P,∴PB=PC,∴PA=PB=PC.16.【答案】135°;【解析】解:∵∠A=90°,∴∠ABC+∠ACB=90°,∵角平分线BE、CF交于点O,∴∠OBC+∠OCB=45°,∴∠BOC=180°﹣45°=135°.故答案为135°.三、解答题17.【解析】解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.18.【解析】证明:(1)∵∠ABC和∠ACB的平分线交于F点,∴∠ABF=∠FBC,∠ACF=∠FCB.∵DE∥BC,∴∠FBC=∠BFD,∠FCB=∠EFC,∴∠DBF=∠DFB,∠ECF=∠EFC,∴DB=DF;(2)由(1)证得DB=DF,同理EC=EF.∵DE=DF+EF,∴DE=BD+CE,∵△ADE的周长=AD+DE+AE=AD+BD+CE+AE=AB+AC.19.【解析】解:因为AD=DE=AE,所以∠ADE=∠DEA=∠DAE=60°,所以∠ADB=120°,∠AEC=120°.因为BD=AD,AE=EC,所以∠B=∠BAD=(180°﹣∠ADB)=(180°﹣120°)=30°,∠C=∠CAE=(180°﹣∠AEC)=(180°﹣120°)=30°.所以∠BAC=∠BAD+∠DAE+∠CAE=30°+60°+30°=120°.20.【解析】解:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,∴DC==6(m),则△ABD的周长为:10+10+6+6=32(m).故答案为:32m;(2)如图2,当BA=BD=10m时,则DC=BD﹣BC=10﹣6=4(m),故AD==4(m),则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;故答案为:(20+4)m;(3)如图3,∵DA=DB,∴设DC=xm,则AD=(6+x)m,∴DC2+AC2=AD2,即x2+82=(6+x)2,解得;x=,∵AC=8m,BC=6m,∴AB=10m,故△ABD的周长为:AD+BD+AB=2(+6)+10=(m).。
北京四中八年级下册数学三角形的证明全章复习与巩固-巩固练习(提高)
《三角形的证明》全章复习与巩固(提高)【巩固练习】一.选择题1.有一块边长为24米的正方形绿地,如图所示,在绿地旁边B处有健身器材,由于居住在A处的居民践踏了绿地,小明想在A处树立一个标牌“少走▇米,踏之何忍”请你计算后帮小明在标牌的“▇”填上适当的数字是()A. 3米 B. 4米C. 5米 D.6米2. 设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个图中,能表示它们之间关系的是()A B C D3. 如图,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点,有以下结论:(1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE。
其中结论正确的是()A、(1),(3)B、(2),(3)C、(3),(4)D、(1),(2),(4)4. 如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A、4cmB、6cmC、8 cmD、10cm5.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A、30°B、36°C、45°D、70°6.如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上,如果添加一个条件,即可推出AB=AB′,那么该条件不可以是()A、BB′⊥ACB、BC=B′CC、∠ACB=∠ACB′D、∠ABC=∠AB′C7. 如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC边上一点若∠APD=60°,则CD的长为( )A.12 B.23C.34D.18. 在联欢晚会上,有A、B、C三名同学站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A、三边中线的交点B、三条角平分线的交点C、三边上高的交点D、三边中垂线的交点二、填空题9. 如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是__________ .10. 用反证法证明“三角形中至少有一个角不小于60°时,第一步为假设“”11. 如图,在Rt△ABC中.∠C=90°,BC=6,AC=8,点D在AC上,将△BCD沿BD折叠,使35点C恰好落在AB边的点C′处,则△ADC′的面积是_________.12. 如图,长方体的长为5,宽为3,高为12,点B离点C的距离为2,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是________.13. 已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是___________.14. 如图,在△ABC中,∠B=50°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=__15. 已知⊿ABC中,∠A = 90°,角平分线BE、CF交于点O,则∠BOC = .16. 如图:△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.三、解答题17. 如图:△ABD和△CDH都是等腰直角三角形,且D在BC上,BH的延长线与AC交于点E,请你在图中找出一对全等的三角形,并写出证明过程.18. 如图,在长方形ABCD 中,DC=5cm ,在DC 上存在一点E ,沿直线AE 把△AED 折叠,使点D 恰好落在BC 边上,设此点为F ,若△ABF 的面积为30cm 2,求折叠△AED 的面积.19. 如图1,点C 为线段AB 上一点,△ACM , △CBN 是等边三角形,直线AN ,MC 交于点E,直线BM 、CN 交与F 点.(1)求证:AN=BM ;(2)求证: △CEF 为等边三角形;(3)将△ACM 绕点C 按逆时针方向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明)20.阅读下题及其证明过程:已知:如图,D 是△ABC 中BC 边上一点,EB=EC ,∠ABE=∠ACE ,求证:∠BAE=∠CAE. 证明:在△AEB 和△AEC 中,⎪⎩⎪⎨⎧=∠=∠=AE AE ACE ABE EC EB∴△AEB ≌△AEC(第一步)∴∠BAE=∠CAE(第二步)问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.【答案与解析】一.选择题1. 【答案】D;【解析】解:因为是一块正方形的绿地,所以∠C=90°,由勾股定理得,AB=25米,计算得由A点顺着AC,CB到B点的路程是24+7=31米,而AB=25米,则少走31﹣25=6米.故选D.2. 【答案】A;3. 【答案】D;【解析】解:∵EA⊥AB,BC⊥AB,∴∠EAB=∠ABC=90°Rt△EAD与Rt△ABC∵D为AB中点,∴AB=2AD又EA=AB=2BC∴AD=BC∴Rt△EAD≌Rt△ABC∴DE=AC,∠C=∠ADE,∠E=∠FAD又∠EAF+∠DAF=90°∴∠EAF+∠E=90°∴∠EFA=180°-90°=90°,即DE⊥AC,∠EAF+∠DAF=90°,∠C+∠DAF=90°∴∠C=∠EAF,∠C=∠ADE∴∠EAF=∠ADE,故选D.4. 【答案】B;【解析】∵AD平分∠CAB交BC于点D∴CAD=∠EAD∵E⊥AB∴∠AED=∠C=90∵AD=AD∴△ACD≌△AED.(AAS)∴AC=AE,CD=DE∵∠C=90°,AC=BC∴∠B=45°∴DE=CE∵AC=BC,AB=6cm,∴2BC2=AB2,即BC=22AB=26322,∴BD=AB-AE=AB-AC=6-32,∴BC+BE= 32 +6- 32 =6(cm),∵△DEB的周长=DE+DB+BE=BC+BE=6(cm).另法:证明三角形全等后,∴AC=AE,CD=DE.∵AC=BC,∴BC=AE.∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6(cm).故选B.5. 【答案】B;【解析】解:∵AB=AC,AD=BD=BC,∴∠A=∠ABD,∠C=∠ABC=∠CDB,设∠A=x°,则∠ABD=∠A=x°,∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°∵∠A+∠C+∠ABC=180°,∴x+2x+2x=180,∴x=36,∴∠A=36°,∠ABC=∠C=72°.6. 【答案】B;【解析】添加A选项中条件可用ASA判定两个三角形全等;添加B选项中条件无法判定两个三角形全等;添加C选项中条件可用ASA判定两个三角形全等;添加D选项以后是ASA证明三角形全等.故选B.7. 【答案】B;【解析】解:∵∠APC=∠ABP+∠BAP=60+∠BAP=∠APD+∠CPD=60+∠CPD,∴∠BAP=∠CPD.又∵∠ABP=∠PCD=60,∴△ABP∽△PCD.∴AB BPCP CD=,即312CD=.∴CD=2/3.故选B.8. 【答案】D;【解析】三角形三边中垂线的运用.二.填空题9. 【答案】125°;【解析】解:∵AB=AC,∠B=35°,∴∠C=35°,∠A=110°,∵DE ⊥BC ,∴∠ADE=360°-110°-35°-90°=125°,∵125°>110°>90°>35°,∴四边形中,最大角的度数为:125°.故选C .10.【答案】三角形的三个内角都小于60°;【解析】第一步应假设结论不成立,即三角形的三个内角都小于60°.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.11.【答案】6;【解析】∵∠C=90°,BC=6,AC=8, ∴AB= 22AB BC +=10,∵△BCD 沿BD 折叠,使点C 恰好落在AB 边的点C′处,∴∠BC′D=∠C=90°,BC′=BC=6,DC′=DC,∴AC′=AB -BC′=10-6=4,∵S △ADB +S △DBC =S △ABC ,∴12 •AB•DC′+ 12 BC•DC= 12AC•BC, ∴10DC′+6DC′=6×8,∴DC′=3,∴S △ADC′= 12 DC′•AC′= 12×4×3=6. 【解析】将长方体展开,连接A 、B ,根据两点之间线段最短,BD=2+3=5,AD=12,由勾股定理得:AB= 22AD BD +=13.13.【答案】20;【解析】根据题意得,x-4=0,y-8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.14.【答案】65°;【解析】∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=12∠DAC,∠ECA=12∠ACF;又∵∠B=50°(已知),∠B+∠BAC+∠BCA=180°(三角形内角和定理),∴12∠DAC+12∠ACF=12(∠B+∠BCA)+12(∠B+∠BAC)=12(∠B+∠B+∠BCA+∠BAC)=2302(外角定理),∴∠AEC=180°-(12∠DAC+12ACF)=65°;故答案是:65°.15.【答案】135°;【解析】∵∠A=90°,∴∠ABC+∠ACB=90°,∵角平分线BE、CF交于点O,∴∠OBC+∠OCB=45°,∴∠BOC=180°-45°=135°.故答案为135°.16.【答案】AH=CB或EH=BE或AE=CE;【解析】∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°-∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°-∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=BE;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=BE或AE=CE.三.解答题17.【解析】解:△ACD≌△BHD;证明:∵△ABD和△CDH都是等腰直角三角形,∴CD=DH,AD=BD,∠ADC=∠ADB=90°,∴在△ACD和△BHD中,∴△ACD≌△BHD(SAS).18.【解析】解:由折叠的对称性,得AD=AF,DE=EF.由S△ABF=BF•AB=30,AB=5,得BF=12.在Rt△ABF中,由勾股定理,得.所以AD=13.设DE=x,则EC=5﹣x,EF=x,FC=1,在Rt△ECF中,EC2+FC2=EF2,即(5﹣x)2+12=x2.解得.故.19.【解析】(1)证明:∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∴∠ACN=∠MCB=120°,∴△ACN≌△MCB,∴AN=MB.(2)解:连接AN,BM,∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∵∠ACB=90°,∴∠ACN=∠MCB,∴△ACN≌△MCB,∴AN=MB.20.【解析】解:上面证明过程不正确;错在第一步.正确过程如下:在△BEC中,∵BE=CE∴∠EBC=∠ECB又∵∠ABE=∠ACE∴∠ABC=∠ACB∴AB=AC.在△AEB和△AEC中,AE=AE,BE=CE,AB=AC∴△AEB≌△AEC(SSS)∴∠BAE=∠CAE.。
北师大版八年级下册数学练习课件-第1章-三角形的证明 复习与巩固1
12
▪ ★考点2 等边三角形 ▪ 1.如图,在等边三角形ABC中,AB=2,点D为BC的中点,
的关键.
5
▪ 考点4 线段的垂直平分线
▪ 【典例4】如图,等腰△ABC中,AB=AC=8,BC=5,AB 的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周
长为( )
▪ A.13
B.14
▪ C.15
D.16
6
▪ 分析:∵DE是AB的垂直平分线, ▪ ∴AE=BE, ▪ ∴△BEC的周长=BE+CE+BC=AE+CE+BC=AC+BC. ▪ ∵AC=8,BC=5, ▪ ∴△BEC的周长=8+5=13. ▪ 答案:A
20
▪ ★考点5 角平分线
▪ 1.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N 是OB上的任意一点,C则线段PN的取值范围为( )
▪ A.PN<3
B.PN>3
▪ C.PN≥3
D.PN≤3
21
2.【2018·山西中考】如图,直线 MN∥PQ,直线 AB 分别与 MN、PQ 相交于点 A、B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交 AN 于点 C,交 AB 于点 D;②分别以 C、D 为圆心,以大于12CD 长为半径作弧,两 弧在∠NAB 内交于点 E;③作射线 AE 交 PQ 于点 F.若 AB=2,∠ABP=60°,则线 段 AF 的长为__2__3____.
C.22 cm
D.25 cm
北师大版八年级数学下册第一章三角形的证明章末复习课件(共70张)
章末复习
相关题2-1 [宜昌中考]如图1-Z-4, 在 △ ABC 中 , AB = A C , ∠A=30°, 以B为圆心, BC的长为半径 的圆弧交AC于点D, 连接BD, 则∠ABD的度数为
( B ). A.30° C.60°
B.45° D.90°
章末复习
相关题2-2 在△ABC中, AB=AC, 且过△ABC的某一顶点的直 线可将△ABC分成两个等腰三角形, 试求△ABC各内角的度数.
【要点指点】全等三角形的性质为证明线段(角)相等提供了根据. 一 般三角形全等的判定方法有四种:“SSS”“SAS”“ASA”和“AAS”. 直角 三角形是一种特殊的三角形, 它的判定方法除了上述四种之外, 还有 “HL”. 在具体问题中, 一般只直接给出一个或两个条件(有的甚至一个 条件也不直接给出), 其余条件常隐含于条件或图形中, 而找出这些隐 含条件是解答问题的关键.
章末复习
(ⅱ)如图④,过点 B 的直线交 AC 于点 G,且 BG=AG,CB=CG.
设∠A=β°,则∠ABG=β°,∠CBG=∠CGB=(2β)°,∠C=∠ABC=
直角 三角 形
角平 分线
三角形的证明
性 线段垂直平分线 质 上的点到这条线
段两个端点的距 离相等
判 到一条线段两个 定 端点距离相等的
点, 在这条线段 的垂直平分线上
性 质
角平分线上的点 到这个角的两边 的距离相等
在一个角的内部,
判 定
到角的两边距离 相等的点在这个 角的平分线上
章末复习
归纳整合
专题一 与全等三角形有关的计算与证明题
章末复习
例2 如图1-Z-3, 在△ABC中, AB=AC, ∠ABC, ∠ACB的平分线相交于点O, 过点O作EF∥BC, 分别交AB, AC于点E, F. 图中有几个等腰三角形? 请说明EF与BE, CF之间的关系.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习《三角形的证明》全章复习与巩固(提高)【巩固练习】一.选择题1.有一块边长为24米的正方形绿地,如图所示,在绿地旁边B处有健身器材,由于居住在A处的居民践踏了绿地,小明想在A处树立一个标牌“少走▇米,踏之何忍”请你计算后帮小明在标牌的“▇”填上适当的数字是()A. 3米 B. 4米C. 5米 D.6米2.(2016秋•仙游县期中)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60° D.有一个内角小于60°3. 如图,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点,有以下结论:(1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE。
其中结论正确的是()A、(1),(3)B、(2),(3)C、(3),(4)D、(1),(2),(4)4. 如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A、4cmB、6cmC、8 cmD、10cm5.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A、30°B、36°C、45°D、70°6.如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上,如果添加一个条件,即可推出AB=AB′,那么该条件不可以是()A、BB′⊥ACB、BC=B′CC、∠ACB=∠ACB′D、∠ABC=∠AB′C7.(2015•永州模拟)在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()A.1个 B.2个 C.3个 D.4个8. 在联欢晚会上,有A、B、C三名同学站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A、三边中线的交点B、三条角平分线的交点C、三边上高的交点D、三边中垂线的交点二、填空题9. 如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是__________ .3510.用反证法证明“三角形中至少有一个角不小于60°时,第一步为假设“”11. 如图,在Rt△ABC中.∠C=90°,BC=6,AC=8,点D在AC上,将△BCD沿BD折叠,使点C恰好落在AB边的点C′处,则△ADC′的面积是_________.12. 如图,长方体的长为5,宽为3,高为12,点B离点C的距离为2,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是________.13. 已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是___________.14.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=4cm,CE=3cm,则DE= cm.15.(2015•辽阳)如图,在△ABC中,BD⊥AC于D,点E为AB的中点,AD=6,DE=5,则线段BD的长等于.16. 如图:△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.三、解答题17.(2016秋•江都区校级期中)如图,已知BE⊥AC,CF⊥AB,垂足分别为E,F,BE,CF 相交于点D,若BD=CD.求证:AD平分∠BAC.18. 如图,在长方形ABCD 中,DC=5cm ,在DC 上存在一点E ,沿直线AE 把△AED 折叠,使点D 恰好落在BC 边上,设此点为F ,若△ABF 的面积为30cm 2,求折叠△AED 的面积.19. 如图1,点C 为线段AB 上一点,△ACM , △CBN 是等边三角形,直线AN ,MC 交于点E,直线BM 、CN 交与F 点.(1)求证:AN=BM ;(2)求证: △CEF 为等边三角形;(3)将△ACM 绕点C 按逆时针方向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明)20.阅读下题及其证明过程:已知:如图,D 是△ABC 中BC 边上一点,EB=EC ,∠ABE=∠ACE ,求证:∠BAE=∠CAE. 证明:在△AEB 和△AEC 中,⎪⎩⎪⎨⎧=∠=∠=AE AE ACE ABE EC EB∴△AEB ≌△AEC(第一步)∴∠BAE=∠CAE(第二步)问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.【答案与解析】一.选择题1. 【答案】D;【解析】解:因为是一块正方形的绿地,所以∠C=90°,由勾股定理得,AB=25米,计算得由A点顺着AC,CB到B点的路程是24+7=31米,而AB=25米,则少走31﹣25=6米.故选D.2. 【答案】A;【解析】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即都大于60°.故选:A.3. 【答案】D;【解析】解:∵EA⊥AB,BC⊥AB,∴∠EAB=∠ABC=90°Rt△EAD与Rt△ABC∵D为AB中点,∴AB=2AD又EA=AB=2BC∴AD=BC∴Rt△EAD≌Rt△ABC∴DE=AC,∠C=∠ADE,∠E=∠FAD又∠EAF+∠DAF=90°∴∠EAF+∠E=90°∴∠EFA=180°-90°=90°,即DE⊥AC,∠EAF+∠DAF=90°,∠C+∠DAF=90°∴∠C=∠EAF,∠C=∠ADE∴∠EAF=∠ADE,故选D.4. 【答案】B;【解析】∵AD平分∠CAB交BC于点D∴CAD=∠EAD∵E⊥AB∴∠AED=∠C=90∵AD=AD∴△ACD≌△AED.(AAS)∴AC=AE,CD=DE∵∠C=90°,AC=BC∴∠B=45°∴DE=CE∵AC=BC,AB=6cm,∴2BC2=AB2,即BC=22AB=26322,∴BD=AB-AE=AB-AC=6-32,∴BC+BE= 32 +6- 32 =6(cm),∵△DEB的周长=DE+DB+BE=BC+BE=6(cm).另法:证明三角形全等后,∴AC=AE,CD=DE.∵AC=BC,∴BC=AE.∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6(cm).故选B.5. 【答案】B;【解析】解:∵AB=AC,AD=BD=BC,∴∠A=∠ABD,∠C=∠ABC=∠CDB,设∠A=x°,则∠ABD=∠A=x°,∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°∵∠A+∠C+∠ABC=180°,∴x+2x+2x=180,∴x=36,∴∠A=36°,∠ABC=∠C=72°.6. 【答案】B;【解析】添加A选项中条件可用ASA判定两个三角形全等;添加B选项中条件无法判定两个三角形全等;添加C选项中条件可用ASA判定两个三角形全等;添加D选项以后是ASA证明三角形全等.故选B.7. 【答案】D;【解析】解:如图,∵以点O为圆心,以OA为半径画弧,交x轴于点B、C;以点A为圆心,以AO为半径画弧,交x轴于一点D(点O除外),∴以OA为腰的等腰三角形有3个;作OA的垂直平分线,交x轴于一点,∴以OA为底的等腰三角形有1个,综上所述,符合条件的点P共有4个,故选:D.8. 【答案】D ;【解析】三角形三边中垂线的运用.二.填空题9. 【答案】125°;【解析】解:∵AB=AC ,∠B=35°,∴∠C=35°,∠A=110°,∵DE ⊥BC ,∴∠ADE=360°-110°-35°-90°=125°,∵125°>110°>90°>35°,∴四边形中,最大角的度数为:125°.故选C .10.【答案】三角形的三个内角都小于60°;【解析】第一步应假设结论不成立,即三角形的三个内角都小于60°.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.11.【答案】6;【解析】∵∠C=90°,BC=6,AC=8, ∴AB= 22AB BC =10,∵△BCD 沿BD 折叠,使点C 恰好落在AB 边的点C′处,∴∠BC′D=∠C=90°,BC′=BC=6,DC′=DC,∴AC′=AB -BC ′=10-6=4,∵S △ADB +S △DBC =S △ABC ,∴12 •AB•DC′+ 12 BC•DC= 12AC•BC, ∴10DC′+6DC′=6×8,∴DC′=3,∴S △ADC′= 12 DC′•AC′= 12×4×3=6. 12.【答案】13;【解析】将长方体展开,连接A 、B ,根据两点之间线段最短,BD=2+3=5,AD=12,由勾股定理得:AB= 22AD BD =13.13.【答案】20;【解析】根据题意得,x-4=0,y-8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.14.【答案】7;【解析】解:∵在Rt△ABC 中,∠BAC=90°,∠ADB=∠AEC=90°∴∠BAD+∠EAC=90°,∠BAD+∠B=90°∴∠EAC=∠B∵AB=AC∴△ABD≌△ACE(AAS )∴AD=CE,BD=AE∴DE=AD+AE=CE+BD=7cm.故填7.15.【答案】8;【解析】解:∵BD⊥AC 于D ,点E 为AB 的中点,∴AB=2DE=2×5=10,∴在Rt△ABD 中,BD===8.故答案为:8.16.【答案】AH=CB 或EH=BE 或AE=CE;【解析】∵AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,∴∠BEC=∠AEC=90°,在Rt △AEH 中,∠EAH=90°-∠AHE ,又∵∠EAH=∠BAD ,∴∠BAD=90°-∠AHE ,在Rt △AEH 和Rt △CDH 中,∠CHD=∠AHE ,∴∠EAH=∠DCH ,∴∠EAH=90°-∠CHD=∠BCE ,所以根据AAS 添加AH=CB 或EH=BE ;根据ASA 添加AE=CE .可证△AEH ≌△CEB .故填空答案:AH=CB或EH=BE或AE=CE.三.解答题17.【解析】证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°.在△BDF与△CDE中,,∴△BDF≌△CDE(AAS).∴DF=DE,∴AD是∠BAC的平分线.18.【解析】解:由折叠的对称性,得AD=AF,DE=EF.由S△ABF=BF•AB=30,AB=5,得BF=12.在Rt△ABF中,由勾股定理,得.所以AD=13.设DE=x,则EC=5﹣x,EF=x,FC=1,在Rt△ECF中,EC2+FC2=EF2,即(5﹣x)2+12=x2.解得.故.19.【解析】(1)证明:∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∴∠ACN=∠MCB=120°,∴△ACN≌△MCB,∴AN=MB.(2)证明:由(1)得△ACN≌△MCB,∴∠1=∠2,又∠ACM=∠BCN=∠MCN=60°,CN=CM∴△ECN≌△FCB,∴EC=FC.∴△ECF是等边三角形.图1C B A图2B M(3)AN=MB 成立,△ECF 是等边三角形不成立.20.【解析】解:上面证明过程不正确;错在第一步.正确过程如下: 在△BEC 中,∵BE=CE∴∠EBC=∠ECB又∵∠ABE=∠ACE∴∠ABC=∠ACB∴AB=AC .在△AEB 和△AEC 中,AE=AE ,BE=CE ,AB=AC ∴△AEB ≌△AEC (SSS )∴∠BAE=∠CAE .。