概率论与数理统计-第1讲

合集下载

概率论与数理统计 第一章1.1随机事件

概率论与数理统计 第一章1.1随机事件

事件的关系与运算
注:(1) 事件的关系与运算可用维恩图形象表之
(2) 事件的和与积的运算可推广到有限个事 件或可数无限个事件的情形.
A B A B, (3) 事件的和与积的另一记法:
A B AB.
事件的关系与运算
8. 完备事件组 设 A1 , A2 ,, An , 是有限或可数个事件,若其 满足:

随机事件
在随机试验中,人们除了关心试验的结果本身外,
往往还关心试验的结果 是否具备某一指定的可观
察的特征,概率论中将这一可观察的特征称为一 个事件 , 它分三类:
随机事件
1. 随机事件:在试验中可能发生也可能不发生的 事件; 2. 必然事件:在每次试验中都必然发生的事件; 3. 不可能事件:在任何一次试验中都不可能发 生的事件. 例如,在抛掷一枚骰子的试验中,我们也许会关
A : “点数为奇数”,B : “点数小于5”.
则 A B {1,2,3,4,5}; A B {1,3};
A - B {5}.
6. 若 A B , 则称事件 A 与 B 是互不相 容的(或互斥的).
7. 若 A B S 且 A B ,
事件的关系与运算
由于随机现象的结果事先不能预知, 初看似乎 毫无规律. 然而人们发现 同一随机现象大量重 其每种可能的结果 出现的频率具有 复出现时,
稳定性, 从而表明随机现象也有其固有的规律
性. 人们把随机现象在大量重复出现时 所表现 出的量的规律性 称为随机现象的统计规律性.
随机现象的统计规律性
概率论与数理统计是研究 随机现象统计规律性 的一门学科. 为了对随机现象的统计规律性进行研究,就需 对随机现象进行重复观察,我们把对随机现象

概率论与数理统计第1章随机事件及其概率

概率论与数理统计第1章随机事件及其概率
骰子朝上的点数为 i ,第二颗骰子朝上的点数为 j . (3) (i) S1 {( 正品,次品 ),( 正品,正品 ),( 次品,正品 )} ;
(ii) S2 {( 正品,次品 ),( 正品,正品 )} .
若用“1 ”表示“正品”,“ 0 ”表示“次品”,这里的两个样本空
间又可表示为
(i) S1 {(1,0),(1,1),(0,1)} ;(ii) S2 {(1,0),(1,1)}. (4) (i) S1 {t t 0};(ii) S2 { 合格品, 不合格品} . 若用“1 ”表示“合格品”,“ 0 ”表示“不合格品”, S2 又可表示为 S2 {1,0} . (5) S5 {(x, y) x2 y2 100}.
字母 E T A O I N S R H
使用频率 0.126 8 0.097 8 0.078 8 0.077 6 0.070 7 0.070 6 0.063 4 0.059 4 0.057 3
字母 L D U C F M W Y G
使用频率 0.039 4 0.038 9 0.028 0 0.026 8 0.025 6 0.024 4 0.021 4 0.020 2 0.018 7
第1章 随机事件及其概率
§1.1 随机事件
1.1.1 随机现象
在自然界以及生产实践和科学实验中普遍存在着两类现象.一类是 在一定条件下,重复进行试验,某一结果必然发生或必然不发生,即是可 以事前预言的,称为确定性现象.
除去确定性现象,人们发现还存在另一类现象,它是事前不可预言 的,即在相同条件下重复进行试验,每次的结果不一定相同,这一类现象 我们称之为偶然性现象或随机现象.
在一定条件下,随机现象有多种可能的结果发生,事前不能预知 将出现哪种结果,但通过大量的重复观察,出现的结果会呈现出某种 规律,称为随机现象的统计规律性.

概率1-1 概率论与数理统计

概率1-1   概率论与数理统计

§1.2 样本空间、随机事件
一、样本空间
1.样本空间: 随机试验E的所有可能结果组成的集合. 记为S.
2.样本点: 样本空间S的元素,即E的每个可能结果.
例 写出§1.1节中所列的试验Ei 的样本空间: 试验E1: 抛一枚硬币,观察正面H、反面T出现的情况.
S1={H, T},(H表示出现正面, T表示出现反面)
A∩(B∪C)=(A∩B)∪(A∩C) . 4. 德.摩根律(对偶原理) : A∪B=A∩B, A∩B=A∪B
n
n
n
n
类似有: Ai Ai ,
Ai Ai
i 1
i 1
i 1
i 1
5. 对必然事件的运算法则:A∪S=S, A∩S=A
6.对不可能事件的运算法则:A∪Φ=A,A∩Φ=Φ.
实验序号
n=5
m fn (A)
1 2 0.4
2 3 0.6 3 1 0.2
4 5 1.0
n=50 m fn (A) 22 0.44
25 0.50 21 0.42 25 0.50
n=500
m
fn ( A)
251 0.502
249 0.498 256 0.512 253 0.506
从上面的例子可以看出,试验次数n越大,出现正 面的频率越接近0.5,即频率稳定于1/2 .经验表明:只要 试验是在相同的条件下进行的,则随机事件出现的频率 稳定于一个固定的常数,常数是事件本身所固有的,是 不随人们的意志而改变的一种客观属性,它是对事件出 现的可能性大小进行度量的客观基础.为了理论研究的 需要,从频率的稳定性和频率的性质得到启发,给出如 下度量事件发生可能性大小的概率的定义.
呼叫次数. E6: 在一批灯泡中任意抽取一只, 测试其寿命.

(完整版)《概率论与数理统计》讲义

(完整版)《概率论与数理统计》讲义

第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。

)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。

例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。

例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。

例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

浙江大学《概率论与数理统计》第1章

浙江大学《概率论与数理统计》第1章
定义2:将概率视为测度,且满足:
1。 P( A) 0
2。 P(S) 1
3。 A1, A2,...,Ak ,...,Ai Aj (i j),


P( Ai ) P( Ai )
i 1
i 1
称P(A)为事件A的概率。
性质:1 P() 0
证:令 An (n 1, 2,...),
例: 由n个部件组成的系统,记
n
• 串联系统: A Ai
i 1
n
• 并联系统: A Ai
i 1
Ai {第i个部件没有损坏},i=1,2, ,n,
A={系统没有损坏}
1-3 频率与概率
(一)频率
定义:记
fn
(
A)

nA n

其中 n A —A发生的次数(频数);
n—总试验次数。称 fn ( A) 为A
10 3 0.6 31 0.62
n =500 nH fn(H) 251 0.502 249 0.498 256 0.512 253 0.506 251 0.502 246 0.492 244 0.488 258 0.516 262 0.524 247 0.494
实验者 德·摩根
蒲丰 K·皮尔逊 K·皮尔逊
n
n
P( Ai ) P( Ai )
P( Ai Aj )
i 1
i 1
1i jn

P( Ai Aj Ak ) (1)n1 P( A1A2 An )
1i jk n
例:甲乙丙3人去参加某个集会的概率 均为0.4,其中至少有两人参加的概率为 0.3,都参加的概率为0.05,求3人中至 少有一人参加的概率。

第一节 矩估计(概率论与数理统计)

第一节  矩估计(概率论与数理统计)

设待估计的参数为 θ1,θ2 ,L,θk 设总体的 r 阶矩存在,记为
E( X r ) = r (θ1,θ2 ,L,θk )
1 n r 样本 X1, X2,…, Xn 的 r 阶矩为 Ar = ∑Xi n i=1 令 1n r r (θ1,θ2 ,L,θk ) = ∑Xi r =1,2,L, k n i=1 —— 含未知参数 θ1,θ2, …,θk 的方程组
= X + 3( A X 2 ) b矩 2
3 2 = X + ∑(Xi X ) . n i=1
n
设某产品的寿命服从指数分布, 例6 设某产品的寿命服从指数分布,其概率密度为
λe f (x, λ) = 0,
λx
,
x > 0; x ≤ 0.
λ 为未知参数,现抽得 n 个这种产品,测得其寿命数据 为未知参数, 个这种产品,
什么是参数估计? 什么是参数估计?
参数是刻画总体某方面概率特性的数量. 参数是刻画总体某方面概率特性的数量. 当此数量未知时,从总体抽出一个样本, 当此数量未知时,从总体抽出一个样本,用某种 方法对这个未知参数进行估计就是参数估计. 方法对这个未知参数进行估计就是参数估计. 例如,X ~N ( ,σ 2), 例如, 未知, 通过构造样本的函数, 若, σ 2未知 通过构造样本的函数 给出它们 的估计值或取值范围就是参数估计的内容. 的估计值或取值范围就是参数估计的内容
(b a) a + b E( X ) = D( X ) + E ( X ) = + 12 2 a +b 令 =X 2 2 n a)2 a + b (b 1 = A2 = ∑Xi2 + 12 2 n i=1
2 2

概率论与数理统计(完整版)

概率论与数理统计(完整版)
ABC 反之 不成 立
例. 甲、乙、丙三人各射击一次,事件A1,A2,A3分别表示 甲、乙、丙射中,试说明下列事件所表示的结果:
A 2,A 2 A 3, A 1A 2, A 1 A 2, A 1A 2A 3, A 1A 2 A 2A 3 A 1A 3.
14
§3. 概率的概念 一. 古典定义:
等可能概型的两个特点:
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式:
由条件概 ,立率 即P 定 可 (A 义 0 得 )则 , 有 P(AP B()A)|A P)(.B
若事件A发生必然导致事件B发生,则称件B包含事件A,记 作AB. 若A B且A B, 即A=B, 则称A与B相等.
B
A S
(1) AB
8
2.和事件:
AB{x|xA或xB}称为 A与B的和事 . 件
即AB ,中至少有一 ,称个 为 A与 发 B的 生和 ,记AB.
可列个A事 1, A2件 ,的和事件记 Ak.为
推广 P(AB)>0, 则有 P(ABC)=P(A)P(B|A)P(C|AB). 一般, 设A1, A2, …,An是n个事件,(n≥2), P(A1A2 ...An-1)>0, 则有乘法公式: P(A1A2…An)=P(A1)P(A2|A1)…P(An-1|A1A2…An-2) P(An|A1A2…An-1).
P(A1 A2 …)=P(A1)+P(A2)+… (可列可加性)
25
2.概率的性质: 性1质 . P()0.

概率论与数理统计复习提纲

概率论与数理统计复习提纲

概率论与数理统计复习提纲概率论与数理统计总复习第⼀讲随机事件及其概率⼀随机事件,事件间的关系及运算 1.样本空间和随机事件 2.事件关系,运算和运算律⑴事件的关系和运算⑶运算律:交换律,结合律,分配律;对偶律: B A B A ?=?,B A B A ?=?;⼆概率的定义和性质 1.公理化定义(P7)2.概率的性质(P8.五个) ⑴)(1)(A P A P -=;⑵)()()()(AB P B P A P B A P -+=?;3.古典概型和⼏何概型4.条件概率 )()()|(A P AB P A B P =三常⽤的计算概率的公式1.乘法公式 )()()()()(B A P B P A B P A P AB P ==2.全概率公式和贝叶斯公式(P17-20.) 四事件的独⽴性1.定义:A 和B 相互独⽴ )()(B P A B P =或)()()(B P A P AB P ?=,2.贝努利试验在n 重贝努利试验中,事件=k A {A 恰好发⽣k 次})0(n k ≤≤的概率为:k n nk n k p p C A P --=)1()(第⼆讲随机变量及其概率分布⼀随机变量及其分布函数1.随机变量及其分布函数 )()(x X P x F ≤=)(+∞<<-∞x2.分布函数的性质(P35.四个)⑴0)(lim =-∞→x F x ;1)(lim =+∞→x F x ;(常⽤来确定分布函数中的未知参数)⑵)()()(a F b F b X a P -=≤<(常⽤来求概率) ⼆离散型随机变量及其分布律1.分布律2.常⽤的离散型分布三连续型随机变量 1.密度函数 ?∞-=xdt t f x F )()(2.密度函数的性质(P39.七个) ⑴1)(=?+∞∞-dx x f ;(常⽤来确定密度函数中的参数)⑵?=≤adx x f b X a P )()(;(计算概率的重要公式)⑶对R x ∈?,有0)(==c X P (换⾔之,概率为0的事件不⼀定是不可能事件). 3.常⽤连续型分布重点:正态分布:)0,(21)(22)(>=--σσµσπσµ都是常数,x ex f标准正态分布)1,0(N :2221)(x ex -=π四随机变量函数的分布1.离散情形设X 的分布律为则)(X g Y =的分布律为2.连续情形设X 的密度函数为)(x f X ,若求)(X g Y =的密度函数,先求Y 的分布函数,再通过对其求导,得到Y 的密度函数。

概率论与数理统计 第一章 随机事件与概率

概率论与数理统计 第一章 随机事件与概率
S AB
推广:
(1)n个事件A1,A2, An至少有一个发生
所构成的事件,称为 A1, A2, An的和或并,
记为
n
A1 A2 An Ai
i1
当A1, A2, An互斥时
n
n
Ai Ai
i1
i1
(2)可列无限多个事件 A1, A2, 至少有一个
(1kn)的不同排列总数为:
n n n nk
例如:从装有4张卡片的盒中 有放回地摸取3张
第1张 第2张 第3张
1 2 34
n=4,k =3
1
1
1
2
2
2 共有4.4.4=43种可能取法
3
3
3
4
4
4
2、组合: 从n个不同元素取 k个
(1kn)的不同组合总数为:
C
k n

Ank k!

n! (n k)!k!

Ai
i1
三.互不相容事件(互斥事件)
若A与B不能同时发生,即 AB 则称A与B
互不相容(或互斥)。S与 互斥。
S
A
B
推广:n个事件 A1,A2, An互斥
A1, A2, An 中任两个互斥,即,
i≠j, i, j=1,2,3 ,……n.
四.事件的和(并) 事件A与B至少有一个发生所构成的事件, 称为A与B的和(并)记为A∪B。当A与B 互斥时,A∪B =A+B。
六. 对立事件(逆事件) 由A不发生所构成的事件,称为A的对立事件
(逆事件)。记为 A
A
A
AA ,A A S,A A.
例1.掷一质地均匀的骰子,A=“出现奇数点”= {1,3,5},B=“出现偶数点”= {2,4,6},C=“出现4或6”={4,6}, D=“出现3或5”={3,5},E=“出现的点 数大于2”={3,4,5,6}, 求 A B,C D,AE,E.

概率论与数理统计1-1(已讲)

概率论与数理统计1-1(已讲)

• 平时成绩占30%,期末成绩占70%.(43) 平时上课迟到早退三次算缺勤一次(扣平时分 5分) 平时作业情况:书上每两小节结束后留一次作 业;杜绝抄袭现象(抄袭与被抄袭者皆罚).反 映真实情况.而且根据作业情况,适当的调整 课程的进度. 期末考试形式:闭卷
• 本书的大体结构如下: • 第一章:基本知识,但是很重要,为后续章节作 铺垫(涉及到一些排列组合的知识). • 第二、三章是重点,涉及到以前高数、微 积分中的一重积分二重积分公式。倒时候 会给大家复习一下。 • 第四章概念比较多和第一章的地位差不多。 为了讲解第五章埋下伏笔。
n( A) lim P {| − p |< ε } = 1 n →∞ n
伯努利大数定律表明,当独立重复试验次数 伯努利大数定律表明,当独立重复试验次数n 充分大时,事件A发生的频率 发生的频率n(A) / n与事件 的概 与事件A的概 充分大时,事件 发生的频率 与事件 非常接近. 率p非常接近 非常接近 伯努利大数定律提供了通过试验来确定事件 概率的方法. 概率的方法
Page 8
年至1940年间,概率论的研究一方 年间, 在1900年至 年至 年间 面是极限理论的发展、随机过程理论的建立, 面是极限理论的发展、随机过程理论的建立, 另一方面是系统的研究概率的基本概念, 另一方面是系统的研究概率的基本概念,特 别是俄国数学家柯尔默哥洛夫于1933年发表 别是俄国数学家柯尔默哥洛夫于 年发表 概率的公理化结构” 的“概率的公理化结构”为概率理论奠定了 严格的逻辑基础。 严格的逻辑基础。
• 于是他请教法国数学家帕斯卡,帕斯卡邀请 于是他请教法国数学家帕斯卡, 另一位法国数学家费马共同研究, 另一位法国数学家费马共同研究,后来荷兰 科学家惠更斯得知后,也开始了研究, 科学家惠更斯得知后,也开始了研究,并于 1657年写出了《论掷骰子游戏中的计算》, 年写出了《 年写出了 论掷骰子游戏中的计算》, 这是研究概率问题的最早的论著。 这是研究概率问题的最早的论著。

概率论和数理统计-概率论第1章§3频率和概率-精品文档

概率论和数理统计-概率论第1章§3频率和概率-精品文档
§3 事件的概率
研究随机现象的统计规律性的数学学科
什么是统计规律性 统计规律性是指在大量试验中呈现出的数量规律
什么是概率
概率是指刻划随机事件在一次试验中发生的可能性大 小的数量指标.
第一章
概率论的基本概念
§3 事件的概率 设 A 为一随机事件 ,在相同条件下进行 n次重复试验 在一次试验中可能 n A n 次试验中 A 发生的次数 nA 发生也可能不发生 f ( A)
A

nA 1 n n nA
第一章 概率论的基本概念
§3 事件的概率
考察英语文章中26个字母出现的频率,当观察 次数 较大时,每个字母出现的频率呈现稳定性,下面 n 是 Dewey 统计了438023个字母得到的统计表
字母
E
T A O I
频率
0.1268
0.0978 0.0788条性质刻画了频率的本质特 征, 启发我们定义事件的概率
第一章 概率论的基本概念
§3 事件的概率
第一章
概率论的基本概念
§3 事件的概率
P( ) 0 P () P () P ()
因为概率为实数,故 P( ) 0 ,A ,A 若A 1 2 n 是两两不相容的事件,则
() P (A ) 再由概率非负性得 P
P ( ) P () B P () A
事件解释 为区域

B
A
概率解释为 区域面积
第一章 概率论的基本概念
§3 事件的概率
0 P(A ) 1
P ( A B ) P ( A ) P ( B ) P ( A B ) P (A ) P ( )P (A ) 对于三事件 A1, A2, A3 有

概率论与数理统计(第3版)(谢永钦)第1章 概率论的基本概念

概率论与数理统计(第3版)(谢永钦)第1章  概率论的基本概念
(3)分配律:A ∩ (B∪C)= (A∩B)∪( A ∩ C )
(4)
A∪(B ∩ C)=(A∪B)∩(A∪C)
(5)
概率论与数理统计
02
第2节 概率、古典概率
概率论与数理统计
1. 概率 定义1.1
在相同条件下,进行了n次试验.若随机事件A在这n次试验中发 生了k次,则比值 称为事件A在n次实验中发生的频率,记为
并按其出现的先后排成一行.试求下列事件的概率
概率论与数理统计
P(A2 )
C19 103 104

0.9
P(A3 )
C24 92 104
0.0486
概率论与数理统计
例题
(一个古老的问题)一对骰子连掷25次.问出现双 6与不出现双6的概率哪个大?
概率论与数理统计
4. 几何概型
若试验具有如下特征:
频率具有下列性质:
(1)对于任一事件A,有 (2)
概率论与数理统计
概率论与数理统计
定义1.2 设事件A在n次重复试验中发生了k次, n很大时,频率 k/n稳定在某一数值p的附近波动,而随着试验次数n的增 加,波动的幅度越来越小,则称p为事件A发生的概率, 记为:P(A)=p.
概率论与数理统计
历史上著名的统计学家德·摩根(De Morgan)蒲丰(Buffon)和皮尔逊
对于任意的事件A,B只有如下分解:
概率论与数理统计
AB

A B
AB

AB
A B

AB
A B

AB
A B

概率论与数理统计
A
AB
B

A
A

概率论与数理统计

概率论与数理统计01 第一节 随机变量及其分布函数

概率论与数理统计01 第一节 随机变量及其分布函数

第二章随机变量及其概率分布在随机试验中,人们除对某些特定事件发生的概率感兴趣外,往往还关心某个与随机试验的结果相联系的变量. 由于这一变量的取值依赖于随机试验结果,因而被称为随机变量. 与普通的变量不同,对于随机变量,人们无法事先预知其确切取值,但可以研究其取值的统计规律性. 本章将介绍两类随机变量及描述随机变量统计规律性的分布.第一节一维随机变量及其分布函数内容分布图示★随机变量概念的引入★随机变量的定义★例1★例2★例3★引入随机变量的意义★课堂练习★习题2-1内容要点:一、随机变量概念的引入为全面研究随机试验的结果, 揭示随机现象的统计规律性, 需将随机试验的结果数量化,即把随机试验的结果与实数对应起来.1. 在有些随机试验中, 试验的结果本身就由数量来表示.2. 在另一些随机试验中, 试验结果看起来与数量无关,但可以指定一个数量来表示之.二、随机变量的定义定义设随机试验的样本空间为S, 称定义在样本空间S上的实值单值函数)XX(e 为随机变量.随机变量与高等数学中函数的比较:(1) 它们都是实值函数,但前者在试验前只知道它可能取值的范围,而不能预先肯定它将取哪个值;(2) 因试验结果的出现具有一定的概率,故前者取每个值和每个确定范围内的值也有一定的概率.三、引入随机变量的意义随机变量的引入,使得随机试验中的各种事件可通过随机变量的关系式表达出来.由此可见,随机事件这个概念实际上是包容在随机变量这个更广的概念内.也可以说,随机事件是从静态的观点来研究随机现象,而随机变量则以动态的观点来研究之.其关系类似高等数学中常量与变量的关系.随机变量概念的产生是概率论发展史上的重大事件. 引入随机变量后,对随机现象统计规律的研究,就由对事件及事件概率的研究转化为随机变量及其取值规律的研究,使人们可利用数学分析的方法对随机试验的结果进行广泛而深入的研究.随机变量因其取值方式不同, 通常分为离散型和非离散型两类. 而非非离散型随机变量中最重要的是连续型随机变量. 今后,我们主要讨论离散型随机变量和连续型随机变量.例题选讲:例1 (讲义例1) 在抛掷一枚硬币进行打赌时, 若规定出现正面时抛掷者赢1元钱, 出现反面时输1元钱, 则其样本空间为=S {正面, 反面},记赢钱数为随机变量X , 则X 作为样本空间S 的实值函数定义为⎩⎨⎧=-==.,1,,1)(反面正面ϖϖϖX 例2 (讲义例2) 在将一枚硬币抛掷三次, 观察正面H 、反面T 出现情况的试验中, 其样本空间};,,,,,,,{TTT TTH THT HTT THH HTH HHT HHH S =记每次试验出现正面H 的总次数为随机变量X , 则X 作为样本空间S 上的函数定义为1112223X TTTTTH THT HTT THH HTH HHT HHH ϖ易见, 使X 取值为})2({2=X 的样本点构成的子集为},,,{THH HTH HHT A = 故 ,8/3)(}2{===A P X P 类似地,有.8/4},,,{}1{==≤TTT TTH THT HTT P X P例3 (讲义例3) 在测试灯泡寿命的试验中, 每一个灯泡的实际使用寿命可能是),0[+∞中任何一个实数, 若用X 表示灯泡的寿命(小时),则X 是定义在样本空间}0|{≥=t t S 上的函数,即t t X X ==)(,是随机变量.课堂练习1. 一报童卖报, 每份0.15元,其成本为0.10元. 报馆每天给报童1000份报, 并规定他不得把卖不出的报纸退回. 设X 为报童每天卖出的报纸份数, 试将报童赔钱这一事件用随机变量的表达式表示.四. 随机变量的分布函数定义 设X 是一个随机变量, 称)()()(+∞<<-∞≤=x x X P x F 为X 的分布函数.有时记作)(~x F X 或)(x F X .分布函数的性质1. 单调非减. 若21x x <, 则)()(21x F x F ≤;2. ;1)(lim )(,0)(lim )(==+∞==-∞+∞→-∞→x F F x F F x x3. 右连续性. 即).()(lim 00x F x F x x =+→例4 判别下列函数是否为某随机变量的分布函数?⎪⎩⎪⎨⎧≥<≤+<=⎪⎩⎪⎨⎧≥<≤<=⎪⎩⎪⎨⎧≥<≤--<=.2/1,1,2/10,2/1,0,0)()3(;,1,0,sin ,0,0)()2(;0,1,02,2/1,2,0)()1(x x x x x F x x x x x F x x x x F ππ解 (1)由题设, )(x F 在),(+∞-∞上单调不减, 右连续, 并有,0)(lim )(==-∞-∞→x F F x ,1)(lim )(==+∞+∞→x F F x所以)(x F 是某一随机变量X 的分布函数.(2)因)(x F 在),2/(ππ上单调下降, 所以)(x F 不可能是分布函数. (3)因为)(x F 在),(+∞-∞上单调不减, 右连续, 且有 ,0)(lim )(==-∞-∞→x F F x ,1)(lim )(==+∞+∞→x F F x所以)(x F 是某一随机变量X 的分布函数.离散型随机变量的分布函数例5(讲义例2)设随机变量X 的分布律为 ,2/16/13/121i p X求)(x F .解 }{)(x X P x F ≤=当0<x 时,,}{∅=≤x X 故0)(=x F 当10<≤x 时,31}0{}{)(===≤=X P x X P x F 当21<≤x 时, 216131}1{}0{)(=+==+==X P X P x F 当2≥x 时,1}2{}1{}0{)(==+=+==X P X P X P x F 故 ,2,121,2/110,3/10,0)(⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=x x x x x F )(x F 的图形是阶梯状的图形, 在2,1,0=x 处有跳跃, 其跃度分别等于},0{=X P },1{=X P }.2{=X P例6 X 具有离散均匀分布, 即,,,2,1,/1)(n i n x X P i ===求X 的分布函数.解将X 所取的n 个值按从小到大的顺序排列为)()2()1(n x x x ≤≤≤则)1(x x <时,,0}{)(=≤=x X P x F )2()1(x x x <≤时,,/1}{)(n x X P x F =≤= )3()2(x x x <≤时,,/2}{)(n x X P x F =≤=……)1()(+<≤k k x x x 时,,/}{)(n k x X P x F =≤=)(n x x ≥时,1}{)(=≤=x X P x F故 )(x F ⎪⎪⎩⎪⎪⎨⎧<=≥<),,max(,1),,2,1(),,min(,/),,min(,0111n j n n x x x x k n j x x x x n k x x x 当个不大于中恰好有且当当例7(讲义例3)设随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=.3,1,32,19/15,21,19/9,1,0)(x x x x x F求X 的概率分布.解 由于)(x F 是一个阶梯型函数, 故知X 是一个离散型随机变量, )(x F 的跳跃点分别为1, 2, 3, 对应的跳跃高度分别为 9/19, 6/19, 4/19, 如图.故X 的概率分布为 .19/419/619/9321i p X课堂练习设随机变量X 的概率分布为4/12/14/1321i p X -,求X 的的分布函数,并求{},2/1≤X P {},2/52/3≤<X P {}.32≤≤X P。

概率论与数理统计 第一章教案

概率论与数理统计 第一章教案

第一讲概率的定义及性质Ⅰ授课题目§1.0 概率论研究的对象§1.1 随机试验§1.2 样本空间、随机事件§1.3 频率与概率,概率的性质Ⅱ教学目的与要求1、理解随机试验、随机事件、必然事件、不可能事件等概念2、理解样本空间、样本点的概念,会用集合表示样本空间和事件3、掌握事件的基本关系与运算4、掌握概率的性质Ⅲ教学重点与难点重点:事件的基本关系与运算,概率的性质难点:用集合表示样本空间和事件Ⅳ讲授内容:§1.0 概率论研究的对象一两类现象---确定现象与不确定现象先从实例来看自然界和社会上存在着两类不同的现象.例1水在一个大气压力下,加热到100℃就沸腾.例2向上抛掷一个五分硬币,往下掉.例3太阳从东方升起.例4一个大气压力下,20℃的水结冰.例1,例2,例3是必然发生的,而例4是必然不发生的.个确切结果)称之为确定性现象或必然现象.微积分,线性代数等就研究必然现象的数学工具.与此同时,在自然界和人类社会中,人们还发现具有不同性质的另一类现象先看下面实例.例5用大炮轰击某一目标,可能击中,也可能击不中.例6在相同的条件下,抛一枚质地均匀的硬币,其结果可能是正面(我们常把有币值的一面称作正面)朝上,也可能是反面朝上.例7次品率为50%的产品,任取一个可能是正品,也可能是次品.例8次品率为1%的产品,任取一个可能是正品,也可能是正品.例5~例8这类现象归纳起来可以看作在相同条件下一系列的试验或观察,而每次试验或观察的可能结果不止一个,在每次试验或观察之前无法预知确切结果,即呈现出不确定性(即这些现象的结果事先不能完全确定),这一类型现象我们称之为不确定性现象或偶然现象,也称之为随机现象.二统计规律性、概率论研究的对象对于不确定性现象,人们经过长时期的观察或实践的结果表明,这些现象并非是杂乱无章的,而是有规律可寻的.例如,大量重复抛一枚硬币,得正面朝上的次数与正面朝下的次数大致都是抛掷总次数的一半.在大量地重复试验或观察中所呈现出的固有规律性,就是我们以后所说的统计规律性.而概率论正是研究这种随机(偶然)现象,寻找他们的内在的统计规律性的一门数学学科.概率论是数理统计的基础,由于随机现象的普遍性,使得概率与数理统计具有及其广泛的应用.另一方面,广泛的应用也促进概率论有了极大的发展.§1.1 随机试验对随机现象进行的试验或观察称为随机试验,简称试验,它具有下列特性(征):(1)试验可以在相同条件下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前不能肯定这次试验会出现哪一个结果.随机实验记为E.例1E1:投掷一枚硬币,观察正反面朝上的情况.它有两种可能的结果就是“正面朝上”或“反面朝上”,投掷之前不能预言哪一个结果出现,且这个试验可以在相同的条件下重复进行,所以E1是一个随机试验。

东华大学《概率论与数理统计》课件 第一章 随机事件与概率

东华大学《概率论与数理统计》课件 第一章 随机事件与概率
(2) P(S)=1;
(3) 设A1,A何2,…时,P是(A一|列B两)两<互P不(A相)容? 的事件,即AiAj=
,(ij), i , j=1, 2, …, 有 P( A1 A2 … )= P(A1) +P(A2)+….
则称P(A)为事件A的概率。
例 一盒中混有100只新 ,旧乒乓球,各有红、白两 色,分 类如下表。从盒中随机取出一球,若取得的 是一只红球,试求该红球是新球的概率。
1.定义 若对随机试验E所对应的样本空间中的 每一事件A,均赋予一实数P(A),集合函数P(A)满足 条件:
(1) 非负性: P(A) ≥0;
(2) 规范性: P(S)=1;
(3) 可列可加性:设A1,A2,…, 是一列两两互不 相容的事件,即AiAj=,(ij), i , j=1, 2, …, 有
概率论与数理统计
第一章 随机事件与概率
教材:
《概率论与数理统计》
魏宗舒编
高等教育出版社
本章主要内容:
1. 概率的概念与性质 2. 事件的关系与运算性质 3. 古典概型概率的计算 4. 加法公式、条件概率、乘法公式 5. 事件的独立性、伯努利概型
重点:古典概型、概率的计算 难点:事件的关系和运算
条件概率、伯努利概型
(2) 单调不减性:若事件AB,则 P(A)≥P(B)
(3) 事件差: A、B是两个事件,

P(A-B)=P(A)-P(AB)
(4) 加法公式:对任意两事件A、B,有 P(AB)=P(A)+P(B)-P(AB)
该公式可推广到任意n个事件A1,A2,…,An的情形 ;
(5) 互补性:P(A)=1- P(A); (6) 可分性:对任意两事件A、B,有

概率论与数理统计教程(茆诗松)第1章

概率论与数理统计教程(茆诗松)第1章
注:对任意n个事件的情形

AB=φ,P(A)=0.6,P(AB)=0.8,
求 B 的对立事件的概率。
解:由 P(AB) = P(A) + P(B)P(AB) = P(A)+P(B) 得 P(B) = P(AB)P(A) = 0.80.6 = 0.2, 所以 P( B ) = 10.2 = 0.8.
可列可加性公理:若A1, A2, ……, An ……
互不相容,则
P
Ai
P( Ai )
i1 i1
注记:
概率是从事件域F 到[0,1]的函数。 (Ω,F ,P)三元组称作概率空间。
柯氏公理体系并未告诉人们如何去确定概 率。历史上确定概率的方法有频率法,古 典法,几何法以及主观概率。
A与B互不相容 A与B至少有一发生
A与B同时发生 A发生且B不发生
A不发生、对立事件
集合论
空间 空集
元素 A是B的子集 A与B无相同元素 A与B的并集 A与B的交集 A与B的差集
A的余集
运算性质(交换律、结 合律和分配率) 及德莫根律
A B A B; A B A B
n
n
Ai Ai ;
i 1
1.1.6 事件的运算
并: A B 交: A B = AB 差: A B
对立: A
A 与 B 至少有一发生 A 与 B 同时发生 A发生但 B不发生 A 不发生
事件运算的图示
AB
AB
AB
记号
Ω φ
AB
AB=φ
AB AB
AB
A
概率论
样本空间, 必然事件 不可能事件
样本点 A发生必然导致B发生
例1.3.5
P(A)=P(B)=P(C)=1/4, P(AB)=0, P(AC)=P(BC)=1/6, 求 A、B、C 都不出现的概率.

《概率论与数理统计》第一章知识点

《概率论与数理统计》第一章知识点

第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。

2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。

二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。

(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。

2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。

1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。

2.基本事件:试验的每一可能的结果称为基本事件。

一个样本点w 组成的单点集{w}就是随机试验的基本事件。

3.必然事件:每次实验中必然发生的事件称为必然事件。

用Ω表示。

样本空间是必然事件。

4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。

1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。

2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。

3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。

4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。

5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。

概率论与数理统计1

概率论与数理统计1

第一章事件与概率§1.1 随机事件与样本空间教学目的要求:掌握几个基本概念,为后面的学习打下基础,并对本书内容体系有一个大致的了解.教材分析:1.概括分析:概率论是数理统计的理论基础,本节是概率论中的最基本的与最基础的内容之一.学习本节,要求学生掌握随机事件、样本空间、事件域、布尔代数等基本概念,了解事件之间的关系和事件之间的一些运算.2.教学重点:随机事件、样本空间、事件域、布尔代数等基本概念,事件之间的关系和事件之间的一些运算.3.教学难点:事件之间的关系和事件之间的一些运算的证明.教学过程:我们在引言中已经介绍了随机试验,现在进一步明确它的含意.一、几个基本概念:1.随机试验:一个试验如果满足下述条件:⑪试验可以在相同的情形下重复进行;⑫试验的所有可能结果是明确可知道的,并且不止一个;⑬每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验会出现那一个结果.就称这样的试验是一个随机试验,为方便起见,也简称为试验.2.基本事件:随机试验的每一个可能的结果,称为基本事件.3.样本空间:所有基本事件的全体称为样本空间,通常用字母Ω表示.4.样本点:Ω中的点,即基本事件,有时也称作样本点,通常用字母ω表示.[例]1.1在前述试验中,令ω1={取得白球}, ω2={取得黑球}则Ω={ω1,ω2}[例]1.2 一个盒子中有十个完全相同球,分别标以号码1,2,…,10,从中任取一球,令i ={取得球的号码为i}则Ω={1,2, (10)·3·[例]1.3 讨论某电话交换台在单位时间内收到的呼唤次数,令i={收到的呼唤次数为i}则Ω={1,2,…}[例]1.4 测量某地水温,令 t={测得的水温为t℃}则Ω=[0,100]5.随机事件:无论是基本事件还是复杂事件,它们在试验中发生与否,都带有随机性,所以都叫随机事件或简称为事件.习惯上用大写字母A,B,C等表示事件.在试验中,如果出现A中所包含的某一个基本事件ω,则称作A发生,并记作ω∈A.我们已经知道样本空间Ω包含了全体基本事件,而随机事件不过是有某些特征的基本事件所组成,所以从集合论的观点来看,一个随机事件不过是样本空间Ω的一个子集而已.又因为Ω是所有基本事件所组成,因而在任一次试验中,必然要出现Ω中的某一基本事件ω,即ω∈Ω.也就是在试验中,Ω必然会发生,所以今后又用Ω来代表一个必然事件.相应地,空集Φ可以看作是Ω的子集,在任一次实验中不可能有ω∈Φ,也就是说Φ永远不可能发生,所以Φ是不可能事件.为了方便起见,我们把必然事件和不可能事件看作随机事件的两个极端情形.一个样本空间Ω中,可以有很多的随机事件.概率论的任务之一,是研究随机事件的规律,通过对较简单事件规律的研究去掌握更复杂事件的规律.为此,需要研究事件之间的关系和事件之间的一些运算.二、事件之间的关系和运算:1.如果事件A发生必然导致事件B发生,则称B包含了A,或称A是B的特款,并记作A⊂B或B⊃A.如图1.1.因为不可能事件Φ不含有任何ω,所以对任一事件A,我们约定Φ⊂A.2.如果有A⊂B,B⊂A同时成立,则称事件A与B相等,记作A=B.如图1.2.3.“事件A与B中至少有一个发生”,这样的一个事件称作事件A与B的并(或和)并记作A∪B.如图1.3.4.“事件A与B同时发生”,这样的一个事件称作事件A与B的交(或积),记作A∩B(或AB).如图1.4.5.“事件A发生而B不发生”,这样的一个事件称作事件A与B的差,记作A-B.如图1.5.6.若事件A与B不能同时发生,也就是说AB是一个不可能事件,即AB=Φ,则称事件A与B互不相容.如图1.6.7.若A是一个事件,令A=Ω-A,称A是A的对立事件或逆事件.如图1.7.·4··5·显然有: A A =Φ, A ∪A =Ω, A =A8.若有n 个事件:A 1,A 2,…,A n ,则“A 1,A 2,…,A n 中至少发生其中的一个”这样的事件称作A 1,A 2,…,A n 的并,并记作A 1∪A 2∪…∪A n 或n i i A 1=;若“A 1,A 2,…,A n 同时发生”,这样的事件称作A 1,A 2,…,A n 的交,记作A 1A 2…A n 或 n i iA 1=.大家已经有了一定的集合论知识,一定会发现事件间的关系及运算与布尔(Boole)代数在很多场合,用集合论的表达方式显得简练些,也更容易理解些.但对初学概率论的大家来说,重要的是要学会用概率论的语言来解释集合间的关系及运算,并能运用它们.[例] 1.5 设A 、B 、C 是Ω中的随机事件,则·6·1) 事件“A 与B 发生,C 不发生”可以表示成:C AB 或AB -C 或AB -ABC.2) 事件“A 、B 、C 中至少有二个发生”可以表示成:AB ∪AC ∪BC 或ABC BC A C B A C AB .3) 事件“A 、B 、C 中恰好发生二个”可以表示成: BC A C B A C AB .4) 事件“A 、B 、C 中有不多于一个事件发生”可以表示成:C B A C B A C B A C B A .5) 事件“A 发生而B 与C 都不发生”可以表示成:C B A 或A -B -C 或A -(B ∪C).6) 事件“A 、B 、C 恰好发生一个”可以表示成:C B A C B A C B A .7) 事件“A 、B 、C 中至少发生一个”可以表示成:C B A 或ABC BC A C B A C AB C B A C B A C B A .三、事件的运算规则:1. 交换律:A ∪B=B ∪A AB=BA2. 结合律:(A ∪B)∪C=A ∪(B ∪C) (AB)C=A(BC)3. 分配律:(A ∪B)C=AC ∪BC (AB)∪C=(A ∪C)(B ∪C)4. 德摩根(De Morgan)定理(对偶原则):n i i n i i A A 11=== ni i n i i A A 11=== 四、事件域: 我们已经知道事件是Ω的某些子集,如果把“是事件”的这些子集归在一起,则得到一个类,记作ℱ,称作事件域,即ℱ={A :A ⊂Ω,Ω是事件}在前面已经提到,Ω、Φ是事件,所以Ω∈ℱ,Φ∈ℱ.又讨论了事件间的运算“∪” 、·7·“∩”和“-”,如果A 与B 都是事件,即A ∈ℱ,B ∈ℱ,非常自然地要求A ∪B 、AB 、A -B 也是事件.因此,如果有A ∈ℱ、B ∈ℱ,就要求A ∪B ∈ℱ、AB ∈ℱ、A -B ∈ℱ用集合论的语言来说,就是事件域ℱ关于运算“∪” 、“∩”和“-”是封闭的.经过归纳与整理,事件域ℱ应该满足下述要求:⑪ Ω∈ℱ;⑫ 若A ∈ℱ,则A ∈ℱ;⑬ 若i A ∈ℱ,i=1,2, …,n,则 ni iA 1 ∈ℱ. 在集合论中,满足上述三个条件的集合类,称作布尔代数.所以事件域应该是一个布尔代数.对于样本空间Ω,如果ℱ是Ω的一切子集的全体,那么显然ℱ是一个布尔代数.§1.2 概率和频率教学目的要求:通过本节的学习,使学生掌握频率与概率的概念及其性质,为后面的学习打下基础. 教 材 分 析 :1.概括分析:本节是概率论这一部分的最基本和最基础的重要内容之一.通过对引言中随机试验的分析给出了概率的定义,并通过频率与概率的内在关系的分析得到频率与概率的性质,在此基础上给出了概率的公理化定义.2.教学重点:概率的性质及公理化定义.3.教学难点:概率的公理化定义.教 学 过 程 :回忆引言中的试验二,我们已经知道它是一个随机试验,并且样本空间Ω={ω1,ω2},其中ω1={取得白球},ω2={取得黑球}是其本事件.在一次试验中,虽然不能肯定是ω1还是ω2发生,但是我们可以问在一次试验中发生ω1(或ω2)的可能性有多大?由对称性,很自然地可·8·以断定在一次试验中,出现ω1 (或ω2)的可能性是½,因为我们知道盒子中白球数和黑球数都是5个.现在引入一个定义如下:一、频率和概率的定义:定义1.1 随机事件A 发生可能性大小的度量(数值),称为A 发生的概率,记作P(A). 正如恩格斯所指出的:“在表面上是偶然性在起作用的地方,这种偶然性始终是受内部的隐蔽着的规律支配的,而问题只是在于发现这些规律.”(恩格斯:《路德维希·费尔巴哈和德国古典哲学的终结》,人民出版社,1972年,第38页).人们经过长期的实践发现,虽然个别随机事件在某次试验或观察中可以出现也可以不出现;但在大量试验中它却呈现出明显的规律性——频率稳定性.在掷一次硬币时,既可能出现正面,也可能出现反面,预先作出确定的判断是不可能的,但是假如硬币均匀,直观上出现正面与出现反面的机会应该相等,即在大量试验中出现正面的频率,,其结果如下:又如,在英语中某些字母出现的频率远远高于另外一些字母. 在进行了更深入的研究之后,人们还发现各个字母被使用的频率相当稳定.例如,下面就是英文字母使用频率的一字母使用频率的研究,对于打字机键盘的设计(在方便的地方安排使用频率较高的字母键)、印刷铅字的铸造(使用频率高的应铸得多些)、信息的编码(常用字母用较短的码)、密码的破译等等方面都是十分有用的.对于一个随机事件来说,它发生可能性大小的度量是由它自身决定的,并且是客观存在的.就好比一根木棒有长度,一块土地有面积一样,概率是随机事件发生可能性大小的度量,是随机事件自身的一个属性.一个根本的问题是,对一个给定的随机事件,它发生可能性大小的度量—一概率,究竟是多大呢?在前面的例子中,因为已经知道了盒子中的白球和黑球都是5个,才得以断定)(1 p =1/2.如果不知道盒子中的白球数和黑球数呢?在引言中已经提到,实践告诉我们,如果反复多次地从盒子中取球(取后放回搅匀),随着试验次数n 的增大,比值n n 白会逐渐稳定到1/2(n 白表示出现白球的次数),记·9· nn 白=试验总次数的次数出现1ω=)(1ωn f 称)(1ωn f 为事件ω1在n 次试验中出现的频率.频率当然也在一定程度上反映了发生可能性的大小.尽管每作—串(n 次)试验,所得到的频率)(1ωn f 可以各不相同,但是只要n 相当大,)(1ωn f 与)(1ωp 是会非常“靠近”的.因此概率是可以通过频率来“测量”的,或者说频率是概率的一个近似.在前述摸球的例子中,即使事先并不知道盒子中黑球和白球的比例数(这时概率虽然不知道,但它是客观存在的),经过反复多次的试验后,如果频率)(1ωn f 逐渐稳定到1/2,那么我们就可以判断盒子中的白球数和黑球数是相等的,进一步即可得到)(1ωp =1/2这个结论.这件事情其实质与测量长度和面积—样的平常,给定一根木棒,谁都不怀疑它有自身的“客观”的长度,长度是多少?我们可以用尺或仪器去测量,不论尺或仪器多么精确,测得的数值总是稳定在木棒真实的“长度”值的附近.事实上,人们也是把测量所得的值当作真实的“长度”.这个类比不仅帮助我们去理解概率和频率之间的内在关系,而且还启示了更深刻的事实:概率与长度、面积等变量一样,应该具有“测度”的性质.这个问题请读者先思考一下,然后让我们慢慢地来解释.二、频率和概率的性质:1.频率的性质:现在让我们比较仔细地考察一下频率.如果随机事件A 在n 次反复试验中发生了n 白次,称 )(A f n =n n 白为A 的频率.易知频率具有下述性质.(1).非负性:即)(A f n ≥0; (2).规范性,即若Ω是必然事件,则)(Ωn f =1;(3).有限可加性:即若A 、B 互不相容(即AB=Φ),则)(B A f n =)(A f n 十)(B f n这三条性质的论证是很直观的,因为(1). A n ≥0,所以nn A ≥0;·10·(2). Ω是必然事件,所以n n =Ω,从而nn Ω=1; (3). 若A ∪B 发生,意味着A 、B 中至少发生其中之一,又因为A 与B 互不相容(即不能同时发生),所以A ∪B 发生的次数一定是A 发生次数与B 发生次数之和,即B A B A n n n += ,从而有)(B A f n =)(A f n 十)(B f n成立.频率还具有一些别的性质,但是这三条性质是最基本的,其它的性质可以由它们推出.作为练习,读者不妨自己验证下述几个性质:(1) 不可能事件的频率为零,即)(Φn f =0;(2) 若A ⊂B,则)(A f n ≤)(B f n ,由此还可推得对任一事件A,有)(A f n ≤1;(3) 对有限个两两不相容事件(即任意两个事件互不相容),频率具有可加性.即若A i A j =Φ(1≤i,j≤m,i≠j),则()∑===⎪⎪⎭⎫ ⎝⎛ni i n n i i n A f A f 112. 概率的性质:因为频率的本质就是概率,因而我们有理由要求频率的这些性质也是概率所应该具有的.因为对每一个随机事件A,都有一个概率P(A)与之对应,而在§1中我们已经知道事件域ℱ是一个布尔代数,所以概P 实质上是在布尔代数上有定义的一个(集合)函数(因为ℱ中的元素是集合),它应该具有下述性质:(1).非负性:P(A)≥0,对A ∈ℱ;(2).规范性:P(Ω)=1;(3).有限可加性:若A i ∈ℱ,i =1,2,…,n,且A i A j =Φ(i ≠j),则()∑===⎪⎪⎭⎫ ⎝⎛ni i n n i i A f A P 11由此可知,给定一个随机试验,也就确定了一个样本空间Ω,事件域ℱ和概率P,其中ℱ是一个布尔代数,P 是定义在ℱ上的一个非负的、规范的有限可加集函数,这样一来,对随机试验这样的一个直观对象,我们就可以用“数学化”的语言来描述它们了.§1.3 古典概型教学目的要求:通过本节的学习,使学生在复习巩固排列组合的基础上掌握古典概型的定义和计算公式,并能灵活运用它们解决实际问题.教材分析:1.概括分析:古典概型在概率论中占有相当重要的地位,早在古代就引起了人们的注意.它的内容比较简单,应用却很广泛,深入考察古典概率问题,有助于我们直观地理解概率论的一些基本概念,合理地解决产品质量控制等实际问题.因此,掌握古典概率问题的解法,对于学好概率论具有十分重要的意义.本节首先给出古典概型的定义,然后在复习排列组合的基础上通过实例讲述古典概型问题的解法,达到灵活运用定义与公式的目的.2.教学重点:古典概型的定义与公式及古典概型问题的解法.3.教学难点:古典概型问题的解法及古典概型定义与公式的灵活运用.教学过程:在§2中已经提到,一个随机试验,数学上是用样本空间Ω,事件域ℱ和概率P来描述的.对一个随机事件A,如何寻求它的概率P(A)是概率论的一个基本的课题. 我们先讨论一类最简单的随机试验.一、古典概型的定义与计算公式:1.古典概型的定义:有一类最简单的随机试验,它具有下述特征:(1) 样本空间的元素(即基本事件)只有有限个.不妨设为n个,并记它们为ω1、ω2、…、ωn.(2)每个基本事件出现的可能性是相等的,即有 P(ω1)=P(ω2)=…P(ωn)这种等可能的数学模型曾经是概率论发展初期的主要研究对象,通常就称这种数学模型为古典概型.它在概率论中有很重要的地位,一方面,因为它比较简单,许多概念既直观而又容易理解,另一方面,它又概括了许多实际问题,有很广泛的应用.2.古典概型的计算公式:对上述的古典概型,它的样本空间Ω={ω1、ω2、…、ωn},事件域ℱ为Ω的所有子集的全体.这时,连同Φ、Ω在内,ℱ中含有2n个事件,并且从概率的有限可加性知:1=P(Ω)=P(ω1)+P(ω2)+…+P(ωn)于是 P(ω1)=P(ω2)=…=P(ωn)=1/n·11··12· 对任意一个随机事件A ∈ℱ,如果A 是k 个基本事件的和,即A =k i i i ωωω 21,则基本事件总数的有利事件数基本事件总数中所含的基本事件数A A n k A P ===)( (A 中所含的基本事件数,习惯上常常称为是A 的有利事件数),不难验证,上述的概率P(·)的确具有非负性、规范性和有限可加性.事实上,古典概型的大部分问题都能形象化地用摸球模型来描述.以后我们经常研究摸球模型,意义即在于此.前节例1.1及其有关概率的计算是古典概型的一个例子,但并不是所有古典概型的事件的概率计算都这么容易.事实上,古典概型中许多概率的计算相当困难而富有技巧,计算的要点是给定样本点,并计算它的总数,而后再计算有利场合的数目.在这些计算中,经常要用到一些排列与组合公式.二、基本的组合分析公式1.全部组合分析公式的推导基于下列两条原理:乘法原理与加法原理.为说明这两条原理,请读者和我们一起参加一个智力游戏.王经理从上海去北京参加一个商品展销会,但途中还要到天津去处理一件业务.从上海到天津可以坐飞机,也可以坐火车,还可以坐船;从天津到北京则只有火车与汽车两种交通工具可用.请问王经理从上海到北京一共有几种走法?图 2.1的图(a)是上述问题的忠实描绘.把它重新表示为(b),使我们一目了然地知道,王经理共有6种走法.这样一种表示方法是具有启发性的,它告诉我们,对于同类问题可有一个通用的计算方法.把上海—天津,再从天津—北京看作相继进行的两个过程,分别记为A 1与A 2.一般地,假设完成过程A 1共有n 1种方法(在我们的游戏中n 1=3),完成A 2共有n 2种方法(本例中n 2=2),那末,完成整个过程一共有n 1×n 2种方法(这里3×2=6).这就是所谓的乘法原理.现在把游戏的条件稍微改变一下.假定因时间关系,王经理只能去北京和天津中的一地,而从上海直接去北京可以有铁路与民航两种走法,此时王经理的走法一共有多少种呢?直接采用类似图2.1(b)的表示方法,便知此时共有5种走法,如图2.2所示.现在不同的是,两个过程不是相继的而是并行的.因此在计算中不能用乘法,只能用加法.这样,进行过程A 1或A 2的方法一共有n 1+n 2种.这就是加法原理.容易知道,这两条原理可以推广到多个过程的情况.利用上述原理,可以导出排列与组合的公式.2.排列:所谓排列,是从共有n 个元素的总体中取出r 个来进行有顺序的放置(或者说有顺序地取出r 个元素).这时既要虑到取出的元素也要顾及其取出顺序.这种排列可分为两类:第一种是有放回的选取,这时每次选取都是在全体元素中进行,同一元素可被重复选中;另一种是不放回选取,这时一个元素一旦被取出便立刻从总体中除去,因此每个元素至多被选中一次,在后一种情况,必有r ≤n .(1)在有放回选取中,从n 个元素中取出r 个元素进行排列,这种排列称为有重复的排列,其总数共有n r 种.(2)在不放回选取中,从n 个元素中取出r 个元素进行排列,其总数为rn A =n(n -1)(n -2)…(n -r +1)这种排列称为选排列.特别当r =n 时,称为全排列.(3)n 个元素的全排列数为P n =n(n -1)…3·2·1=n !3.组合:(1)从n 个元素中取出r 个元素而不考虑其顺序,称为组合,其总数为:)!(!!!)1()1(!r n r n r r n n n r A r n C r n r n-=+--==⎪⎪⎭⎫ ⎝⎛= 这里⎪⎪⎭⎫ ⎝⎛r n 是二项展开式的系数,(a+b)n =∑=-⎪⎪⎭⎫ ⎝⎛n r r n r b a r n 0 (2)若r 1+r 2+…+r k =n,把n 个不同的元素分成k 个部分,第一部分r 1个,第二部分r 2个,……,第k 部分r k 个,则不同的分法有:!!!!21k r r r n 种,上式中的数称为多项系数,因为它是(x 1+x 2+…+x k )n 展开式中k rk r r x x x 2121的系数,当k =2时,即为组合数.(3)若n 个元素中有n 1个带足标“1”,n 2个带足标“2”,……,n k 个带足标“k ”,且n 1+n 2+…+n k =n,从这n 个元素中取出r 个,使得带有足标“i ”的元素有r i 个(1≤i ≤k),而r 1+r 2+…+r k =r,这时不同取法的总数为:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛k k r n r n r n 2211这里当然要求r i ≤n i .4.一些常用等式:把排列公式推广到r 是正整数而n 是任意实数x 的场合,有时是需要的,这时记r x A =x(x-1)(x-2)…(x-r +1)同样定义!)1()2)(1(!r r x x x x r A r x r x +---==⎪⎪⎭⎫ ⎝⎛ 及 0!=1, ⎪⎪⎭⎫ ⎝⎛0x =1. 对于正整数n,若r>n,则⎪⎪⎭⎫ ⎝⎛r n =0.这样一来二项系数有性质: ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛k n n k n , ⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛-k k a k a k 1)1( 由于 ∑=⎪⎪⎭⎫ ⎝⎛=+nr r n x r n x 0)1(故 n n n n n n 2210=⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛ 利用幂级数乘法又可以证明⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛n b a b n a n b a n b a 0110 特别地 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛n n n n n n n n n n n 20110 即 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛n n n n n n 210222 现在举一些求A ∈ℱ的概率P(A)的例子.在下面的讨论中,如无特别需要,常常把事件域ℱ略去.三、概率直接计算的例子:[例1]一部四本头的文集按任意次序放到书架上去,问各册自右向左或自左向右恰成1,2,3,4的顺序的概率是多少?[解] 若以a,b,c,d,分别表示自左向右排列的书的卷号,则上述文集放置的方式可与向量(a,b,c,d)建立一一对应,因为a,b,c,d 取值于1,2,3,4,因此这种向量的总数相当于4个元素的全排列数4!=24,由于文集按“任意的”次序放到书架上去,因此这24种排列中出现任意一种的可能性都相同,这是古典概型概率,其有利场合有2种,即自左向右或自右向左成1,2,3,4顺序,因此所求概率为:2/24=1/12[例2] 有10个电阻,其电阻值分别为1Ω,2Ω,…,10Ω,从中取出三个,要求取出的三个电阻,一个小于5Ω,一个等于5Ω,另一个大于5Ω,问取一次就能达到要求的概率.[解] 把从10个电阻中取出3个的各种可能取法作为样本点全体,这是古典概型,其总数为⎪⎪⎭⎫ ⎝⎛=310310C ,有利场合数为⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛151114. 故所求概率为P=61310151114=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛[例3]某城有N 部卡车,车牌号从1到N,有一个外地人到该城去,把遇到的n 部车子的牌号抄下(可能重复抄到某些车牌号),问抄到的最大号码正好为k 的概率.(1≤k ≤N)[解]这种抄法可以看作是对N 个车牌号进行n 次有放回的抽样.所有可能的抽法共有N n 种,以它为样本点全体.由于每部卡车被遇到的机会可以认为相同,因此这是一个古典概型概率的计算问题,有利场合数可以这样考虑:先考虑最大车牌号不大于k 的取法,这样取法共有k n 种,再考虑最大车牌号不大于k-1的取法,其数目有(k-1)n 种,因此有k n -(k-1)n 种取法其最大车牌号正好为k,这就是有利场合的数目,因而所求概率为 P=n nn Nk k )1(-- [例4]设有n 个球,每个都能以同样的概率1/N 落到N 个格子(N ≥n)的每一个格子中,试求:(1)某指定的n 个格子中各有一个球的概率;(2)任何n 个格子中各有一个球的概率.[解]这是一个古典概型问题,由于每个球可落入N 个格子中的任一个,所以n 个球在N个格子中的分布相当于从N 个元素中选取n 个进行有重复的排列,故共有N n 种可能分布.在第一个问题中,有利场合相当于n 个球在那指定的n 个格子中全排列,总数为n!,因而所求概率为 P 1=n!/N n .在第二个问题中,n 个房间可以任意,即可以从N 个房间中任意选出n 个来,这种选法共有⎪⎪⎭⎫ ⎝⎛n N 种,对于每种选定的n 个房间,有利场合正如第一个问题一样为n!,故所求概率为nN n n N P !2⎪⎪⎭⎫ ⎝⎛= 这个例子是古典概型中一个很典型的问题,不少实际问题可以归结为它.例如,若把球解释为粒子,把格子解释为相空间中的小区域,则这个问题便相应于统计物理学中的马克斯威尔—波尔茨曼(MaxWell-Boltzmann)统计.概率论历史上有一个颇为有名的问题:要求参加某次集会的n 个人中没有两个人生日相同的概率.若把n 个人看作上面问题中的n 个球,而把一年的365天作为格子,则N=365,这时P 2就给出所求的概率.例如当n=40时,P 2=0.109,这个概率是意外的小.[例5] (抽签问题)袋中有a 只黑球,b 只白球,它们除颜色不同外,其他方面没有差别,现在把球随机地一只只摸出来,求第k 次摸出的一只球是黑球的概率(1≤k ≤a+b).[第一种解法] 把a 只黑球及b 只白球都看作是不同的(例如设想把它们进行编号),若把摸出的球依次放在排列成一直线的a+b 位置上,则可能的排列法相当于把a+b 个元素进行全排列,总数为(a+b)!,把它们作为样本点全体.有利场合数为a ×(a+b-1)!,这是因为第k 次摸得黑球有a 种取法,而另外(a+b-1)次摸球相当于a+b-1只球进行全排列,有(a+b-1)!种构成法,故所求概率为ba ab a b a a P k +=+-+⨯=)!()!1( 这个结果与k 无关.回想—下,就会发觉这与我们平常的生活经验是一致的.例如在体育比赛中进行抽签,对各队机会均等,与抽签的先后次序无关.[第二种解法] 把a 只黑球看作是没有区别的,把b 只白球也看作是没有区别的.仍把摸出的球依次放在排列成一直线的a+b 位置上,因若把a 只黑球的位置固定下来则其他位置必然是放白球,而黑球的位置可以有⎪⎪⎭⎫ ⎝⎛+b b a 种放法,以这种放法作为样本点.这时有利场合数为⎪⎪⎭⎫ ⎝⎛--+11a b a ,这是由于第k 次取得黑球,这个位置必须放黑球,剩下的黑球可以在a+b-1个位置上任取a-1个位置,因此共有⎪⎪⎭⎫ ⎝⎛--+11a b a 种放法.所以所求概率为 b a a a b a a b a P k +=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛--+=11 两种不同的解法答案相同,注意考察一下两种解法的不同,就会发现主要在于选取的样本空间不同.在前—种解法中把球看作是“有个性的”,而在后一种解法中则对同色球不加区别,因此在第一种解法中要顾及各黑球及各白球间的顺序而用排列,第二种解法则不注意顺序而用组合,但最后还是得出了相同的答案.这种情况的产生并不奇怪,这说明对于同一随机现象,可以用不同的模型来描述,只要方法正确,结论总是一致的.在这个例子中,第二种解法中的每一个样本点是由第一种解法中的a!·b!个样本点合并而成的.这个例子告诉我们,在计算样本点总数及有利场合数时,必须对同一个确定的样本空间考虑,因此其中一个考虑顺序,另一个也必须考虑顺序,否则结果一定不正确.既然同一个随机现象可用不同的样本空间来描述,因此对同一个概率也常常有多种不同的求法,我们应逐步训练自己能采用最简便的方法解题,为此熟悉同一问题的多种不同解法是重要的.例如,对例5就存在着多种不同的解法,上面提供的只是比较自然的两种.注意到在这两种解法中,我们对不同的k 用的是同一个样本空间,也就是说:我们构造了一个可以描述a 十b 次摸球的样本空间,并利用它一举解决了“第k(1≤k ≤a+b)次摸得黑球”这一概率的计算.假如允许对不同的k 用不同的样本空间,则我们完全可以构造一个只包含前k 次试验,甚至只包含第k 次试验的样本空间,这时也能求得有关概率.特别是选用最后一种样本空间简直马上可以看出正确答案,不过这种做法对初学者或许不那么容易理解. 四、古典概率的计算方法:求解古典概率问题,一般要做好三方面的工作:一是判明问题性质,分辨所解的问题,是不是古典概率问题.如果问题所及的试验,具有以下两个基本特征:(1)试验的样本空间的元素只有有限个;(2)试验中每个样本点出现豹可能性相同.那么,我们就可断定它是一个古典概率问题.二是掌握古典概率的计算公式.如果样本空间包含的样本点的总数为n,事件A 包含的样本点数(即A 的有利场合的数目)为k,那么事件A 的概率是 P(A)=nk =样本点总数包含的样本点数事件A =样本点总数的有利场合数A 三是根据公式要求,确定n 和k 的数值.这是解题的关键性一步,计算方法灵活多变,没有一个固定的模式.古典概率一种解法,大体都是围绕n 和k 的计算而展开的.五、几类基本问题:抛硬币、掷骰(t óu)子、摸球、取数等随机试验,在概率问题的研究中,有着十分重要的意义.一方面,这些随机试验,是人们从大量的随机现象中筛选出来的理想化的概率模型.它们的内容生动形象,结构清楚明确,富有直观性和典型性,便于深入浅出地反映事物的本质,揭示事物的规律.另一方面,这种模型化的处理方法,思想活泼,应用广泛,具有极大的普遍性,不少复杂问题的解决,常常可以归结为某种简单的模型.因此,有目的地考察并掌握若干常见的概率模型,有助于我们举一反三,触类旁通,丰富解题的技能和技巧,从根本上提高解答概率题的能力.本部分主要讨论古典概率中的四类基本问题(摸球问题、分球入盒问题、随机取数问题和选票问题),给出它们的一般解法,指出它们的典型意义,介绍它们的常见应用.。

概率论与数理统计第一章——随机事件及概率

概率论与数理统计第一章——随机事件及概率
P65 = 6 5 4 3 2 = 720 (个)
ex2: 从0,1,2,3,4,5, 这六个数字中任取四 个,问能组成多少个四位偶数?
解:组成的四位数是偶数,要求末位为0,2或
4,可先选末位数,共P31 种,前三位数的选取方法有
P53 种,而0不能作首位,所以所组成的偶数个数为
P1 P3 − P1 P1 P2 = 156 (个)
◼ 为方便起见,记Φ为不可能事件,Φ不 包含任何样本点。
(三) 事件的关系及运算 ❖事件的关系(包含、相等)
1A B:事件A发生一定导致B发生
2A=B
A B
B A
B A
例:
✓ 记A={明天天晴},B={明天无雨} B A ✓ 记A={至少有10人候车},B={至少有5人候车}
B A
✓ 抛两颗均匀的骰子,两颗骰子出现的点数分别 记为x,y.记A={x+y为奇数},B={两次的骰子点
A
B
n Ai:A1, A2,An至少有一发生
i=1
n Ai:A1, A 2 ,An同时发生
i =1
✓当AB= Φ时,称事件A与B是互不相
容的,或互斥的。
A
B
A A= A B =
A的逆事件记为A, A A =
, 若 A B =
,
称A, B互逆(互为对立事件)
AA
A
B
事件A对事件B的差事件:
◼可以在相同条件下重复进行(重复性); ◼事先知道所有可能出现的结果(明确性); ◼每次试验前并不知道哪个试验结果会发生 (随机性)。
例: ❖抛一枚硬币,观察试验结果; ❖对某路公交车某停靠站登记下车人数; ❖对某批同型号灯泡,抽取其中一只测 验其使用寿命(按小时计)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲样本空间随机事件
样本空间随机事件
自然界与社会生活中的两类现象
确定性现象
随机现象
2
3
例如:在一个标准大气压下,水加热到100℃一定会沸腾.
确定性现象:
在一定条件下必然发生的现象.
4
例如掷骰子可能出现“1点”,也可能是其他情况;
检验产品可能是合格品,也可能是不合格品.
随机现象:
在一定条件下具有多种可能结果,且
试验时无法预知出现哪个结果的现象.
5
例:
向上抛出的物体会落下(

打靶,击中靶心(
)买了彩票会中奖(

确定不确定不确定
对随机现象的观察、记录、实验统称为
随机试验.它具有以下特性:•可以在相同条件下重复进行;•事先知道所有可能出现的结果;•
进行试验前并不知道哪个试验结果会发生.
6
7
例:
抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数;
对听课人数进行一次登记.
(一)样本空间
定义:随机试验的所有可能结果构成的集合称为样本空间,记为S={e},
S中的元素e称为样本点.
8
9
例1:
一枚硬币抛一次;
记录一城市一日中发生交通事故次数;∙∙{0,1,2,...};
S ={,};
S =正面反面
10记录一批产品的寿命x;
记录某地一昼夜最高温度x,最低温度y ∙∙{(,):}.
S x y a y x b =≤≤≤{:0};
S x x =≥
(二) 随机事件
样本空间S的子集A称为随机事件A,简称事件A.当且仅当A中的某个样本点发生称事件A发生.
事件A的表示可用集合,也可用语言来表示.
11
12
例2:观察某公交站的候车人数,样本空间S=?事件A表示“至少有5人候车”,A=?
事件B表示“候车人数不多于2人”,B=?{0,1,2,...};S ={5,6,7,...};A ={0,1,2}.
B =
•如果把S看作事件,则每次试验S总是发生,所以S称为必然事件.
•如果事件只含有一个样本点,称其为基本事件.
•如果事件是空集,里面不包含任何样本点,记为Φ,则每次试验Φ都不发生, 称Φ为不可能事件.
13
接例2:观察某公交站的候车人数,
样本空间S={0,1,2,…}.
事件C表示“恰好有3人侯车”,
C={3}是基本事件;
事件D表示“候车人数既少于3个又多于3”,
D=Φ,是不可能事件.
14
事件之间有哪些关系与运算呢?
下一讲告诉你。

15。

相关文档
最新文档