沪科版七年级数学试卷含答案
沪科版七年级上册数学期中考试试题含答案
沪科版七年级上册数学期中考试试卷一、单选题1.下列各数:0,12-,-(-1),|-12|,(-1)2,(-3)3,其中不是负数的有()A .1个B .2个C .3个D .4个2.下列各式中,计算正确的是()A .2x+3x =5x 2B .4a 2b ﹣5ba 2=﹣a 2bC .2a+2b =4abD .x 3﹣x 2=x3.全国每年浪费食物总量约50000000000千克,这个数据用科学记数法表示为()A .0.5×1011千克B .50×109千克C .5×109千克D .5×1010千克4.若(m+2)x 2|m|-3=5是一元一次方程,则m 的值为()A .2B .﹣2C .±2D .45.下列各式中,不相等的是()A .(﹣2)3和﹣23B .|﹣2|3和|﹣23|C .(﹣3)2和﹣32D .(﹣3)2和326.下列变形错误的是()A .如果x+7=26,那么x+5=24B .如果3x+2y =2x ﹣y ,那么3x+3y =2xC .如果2a =5b ,那么2ac =5bcD .如果3x =4y ,那么23x a =24y a7.已知当x =1时,代数式2ax 3+3bx+5=4,则当x =-1时,代数式4ax 3+6bx ﹣7的值是()A .﹣9B .﹣7C .﹣6D .﹣58.如图,数轴上、两点分别对应实数、,则下列结论正确的是()A .B.C .D.9.一列数a 1,a 2,a 3,……a n ,其中a 1=﹣1,a 2=111a -,a 3=211a -,……a n =111n a --,则a 1×a 2×a 3×……×a 2017的结果为()A .1B .﹣1C .﹣672D .﹣201710.如图是一个简单的数值运算程序,当输入n 的值为时4,则输出的结果为()A .16B .12C .132D .140二、填空题11.33x x -=-,则x 的取值范围是______.12.若-3x 2my 3与2x 4yn 是同类项,那么mn =___.13.数轴上表示的数是整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上任意画出一条长2019cm 的线段AB ,则线段AB 盖住的整点的个数是________.14.若a <0,ab <0,则|b ﹣a+1|﹣|a ﹣b ﹣5|的值为_____.15.对于任意非零实数a 、b ,定义运算“⊕”,使下列式子成立:1⊕2=﹣32,2⊕1=32,(﹣2)⊕5=2110,5⊕(﹣2)=﹣2110,…,则a ⊕b =_______.三、解答题16.计算(1)(﹣1)2017+|﹣22+4|+(1124-)×(﹣24);(2)()()()32239223⎡⎤⎛⎫-÷---÷-+- ⎪⎢⎥⎝⎭⎣⎦17.解方程(1)3535123x x --=-;(2)32(1)22234x x ⎡⎤---=⎢⎥⎣⎦18.定义:若a+b =2,则称a 与b 是关于1的平衡数.(1)3与________是关于1的平衡数,5﹣x 与________是关于1的平衡数.(用含x 的代数式表示)(2)若a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],判断a与b是否是关于1的平衡数,并说明理由.19.如图所示的10×5(行×列)的数阵,是由一些连续奇数组成的.(1)形如图框中的四个数,设第一行的第一个数为x,用含x的式子表示另外三个数;(2)若这样框中的四个数的和是200,求出这四个数;(3)是否存在这样的四个数,它们的和为296?为什么?20.粮库3天内进出库的吨数记录如下(“+”表示进库,“-”表示出库):+--+--26,32,15,34,38,20(1)经过3天,粮库里的粮食是增多了还是减少了?(2)经过3天,粮食管理员结算时发现粮库里还存480吨粮食,那么3天前粮库里的存量有多少吨?(3)如果进库出库的装卸费都是每吨5元,那么这3天要付出多少装卸费?21.若干个有规律的数,排列如下:试探究:(1)第2012个数在第几行?这个数是多少?(每行的数都是从左往右数)(2)写出第n 行第k 个数的代数式;(用含n ,k 的式子表示)(3)求第2012个数所在行的所有数之和S .22.观察下列等式111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯.(1)猜想并写出:(2)直接写出下列各式的计算结果:①②(3)探究并计算:.23.如图所示,数轴上有A 、B 、C 、D 四个点,分别对应的数为a 、b 、c 、d ,且满足a =﹣2,b 是最小的自然数,(c ﹣12)2与|d ﹣18|互为相反数.(1)b =;c =;d =.(2)若A 、B 两点以2个单位长度/秒的速度向右匀速运动,同时C 、D 两点以1个单位长度/秒的速度向左匀速运动,并设运动时间为t 秒,问t 为多少时,A 、C 两点相遇?(3)在(2)的条件下,A 、B 、C 、D 四点继续运动,当点B 运动到点D 的右侧时,问是否存在时间t ,使得B 与D 的距离是C 与D 的距离的3倍?若存在,求时间t ;若不存在,请说明理由.24.图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示);使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图,已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.参考答案1.D【解析】【分析】将各数化为最简形式,即可得出结论.【详解】解:∵1122=--,()11--=,1122-=,()211-=,()3327-=-,∴其中不是负数的有0,-(-1),|-12|,(-1)2,共4个.故选:D【点睛】本题考查了有理数的分类,乘方运算,绝对值的化简,熟练掌握有理数的分类,乘方运算法则,绝对值的性质是解题的关键.2.B【解析】【分析】所含字母相同,相同字母的指数也相同的单项式是同类项,单个的数与单个的字母也是同类项,合并同类项的法则:把同类项的系数相加减,字母与字母的指数不变,根据同类项的概念和合并同类项法则逐个判断即可.【详解】解:A.结果是5x,故本选项不符合题意;B.结果是﹣a2b,故本选项符合题意;C.2a和2b不能合并,故本选项不符合题意;D.x3和﹣x2不能合并,故本选项不符合题意;故选:B.【点睛】本题考查了同类项的含义和合并同类项法则,能熟记同类项的概念和合并同类项法则是解此题的关键.3.D【解析】【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.【详解】解:50000000000一共11位,从而50000000000=5×1010.故选:D.4.A【解析】【分析】根据一元一次方程的定义列出方程,解方程即可.【详解】解:由题意得,2|m|﹣3=1,m+2≠0,解得,m =2,故选:A .【点睛】本题考查了一元一次方程的概念,只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程,ax+b =0(其中x 是未知数,a 、b 是已知数,并且a≠0)叫一元一次方程的标准形式.5.C【解析】【分析】分别计算(﹣2)3=﹣23=﹣8;|﹣2|3=|﹣23|=8;(﹣3)2=9,﹣32=﹣9;(﹣3)2=32=9,即可求解.【详解】解:(﹣2)3=﹣23=﹣8;|﹣2|3=|﹣23|=8;(﹣3)2=9,﹣32=﹣9;(﹣3)2=32=9;故选:C .【点睛】此题主要考查有理数的运算,解题的关键是熟知乘方的定义及运算法则.6.D【解析】【分析】分别利用等式的性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式,判断得出答案.【详解】解:A 、如果726x +=,那么524x +=,正确,不符合题意;B 、如果322x y x y +=-,那么332x y x +=,正确,不符合题意;C 、如果25a b =,那么25ac bc =,正确,不符合题意;D 、如果34x y =,那么2234x y a a =,(0)a ≠,故此选项错误,符合题意.故选:D .【点睛】此题主要考查了等式的性质,解题的关键是正确把握等式的基本性质.7.D【解析】【分析】首先根据当x =1时,代数式2ax 3+3bx+5=4,可得2a+3b+5=4,据此求出2a+3b 的值是多少;然后把x =-1代入代数式4ax 3+6bx ﹣7,化简,再把2a+3b 的值代入,求出算式的值是多少即可.【详解】解:∵当x =1时,代数式2ax 3+3bx+5=4,∴2a+3b+5=4,∴2a+3b =4﹣5=﹣1;当x =-1时,4ax 3+6bx ﹣7=﹣4a ﹣6b ﹣7=﹣2(2a+3b )﹣7=﹣2×(﹣1)﹣7=2﹣7=-5∴当x =-1时,代数式4ax 3+6bx ﹣7的值是-5.故选:D .【点睛】本题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以整体代入、计算.8.C【解析】【详解】试题分析:根据数轴可得:a >0,b <0,且a b ,则a+b <0,ab <0,b =-b .考点:数轴9.B【解析】【分析】根据表达式求出前几个数后发现:每三个数为一个循环组.用2017除以3,根据商和余数的情况确定值.【详解】解:因为a 1=﹣1,a 2=111a -=12,a 3=211a -=2,a 4=311a -=-1,a 5=411a -=12,a 6=511a -=2,⋯2017÷3=672⋯⋯1所以,a 1×a 2×a 3×……×a 2017=()()672111-⨯-=-故选B【点睛】含有乘方运算的数列规律题,根据题意找出规律是解题的关键.10.C【解析】【分析】根据题意当n =4时,代入代数式n 2﹣n 中,计算出结果与28比较,当结果大于28时输出结果,当结果小于28时,则返回n 的值为第一次计算结果,再次计算即可得出答案.【详解】解:n =4时,n 2﹣n =42﹣4=12,因为12<28,所以再次进行运算程序,n =12,n 2﹣n =122﹣12=132,因为132>28,所以当输入n =4时,输出值为132.故选:C .【点睛】本题主要考查了代数式求值及有理数混合运算,根据题意进行合理运算是解决本题的关键.11.3x ≤【解析】【分析】根据绝对值的意义,绝对值表示距离,所以30x -≥,即可求解;【详解】根据绝对值的意义得,30x -≥,3x ∴≤;故答案为3x ≤;【点睛】本题考查绝对值的意义;理解绝对值的意义是解题的关键.12.8【解析】【分析】根据同类项的定义:所含字母相同,相同字母的指数也相同,求得m ,n 的值,再计算即可.【详解】解:由题意得:2m =4,n =3,解得m =2,n =3,∴mn =23=8,故答案为:8.【点睛】本题主要考查同类项,解决此类问题的关键在于明确同类项的“两相同”.13.2019个或2020个【解析】【分析】分线段AB 的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度1+,不重合时盖住的整点是线段的长度,由此可以得到答案.【详解】①当长度为2019cm 的线段AB 的两个端点A 与B 均为整点时,线段AB 盖住的整点有20191=2020+个;②若A 点不是整点,则B 点也不是整点,即当长度为2019cm 的线段AB 的两个端点A 与B 均不为整点时,线段AB 盖住的整点有2019个.综上所述,线段AB 盖住的整点的个数是2019个或2020个.【点睛】本题的关键是分线段AB 的端点是否为整点来分析考虑.14.-4【解析】【分析】根据a <0,ab <0,可得b >0,b ﹣a+1>0,a ﹣b ﹣5<0,再根据正数的绝对值是正数,负数的绝对值等于他的相反数,可去掉绝对值符号,根据合并同类项,可得答案.【详解】解:∵a <0,ab <0,∴b >0,b ﹣a+1>0,a ﹣b ﹣5<0,∴|b ﹣a+1|﹣|a ﹣b ﹣5|=b ﹣a+1﹣[﹣(a ﹣b ﹣5)]=b ﹣a+1﹣(﹣a+b+5)=b ﹣a+1+a ﹣b ﹣5=-4故答案为:-4.【点睛】本题考查了整式的加减,根据绝对值的特点化简去掉绝对值符号是解题关键,再合并同类项.15.22-a b ab【解析】【分析】根据已知数字等式得出变化规律,即可得出答案.【详解】解:∵2231212212-⊕=-=⨯,2232121221-⊕==⨯,()()()222521251025---⊕==-⨯,()()()225221521052--⊕-=-=⨯-,∴22a b a b ab-⊕=故答案为:22-a b ab.【点睛】此题主要考查了与实数运算相关的规律,根据已知得出数字中的变与不变是解题关键.16.(1)-7(2)4【解析】【分析】(1)直接利用有理数混合运算法则计算得出答案;(2)要正确掌握运算顺序求出答案.(1)解:(﹣1)2017+|﹣22+4|+(1124-)×(﹣24)=﹣1+0﹣12+6=﹣7;(2)()()()32239223⎡⎤⎛⎫-÷---÷-+- ⎪⎢⎥⎝⎭⎣⎦=﹣1﹣(3﹣8)=4.【点睛】本题考查的是有理数的运算.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.17.(1)x =﹣15(2)x =﹣8【解析】【分析】(1)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解;(2)根据:去括号、移项、合并同类项、化系数为1,求出方程的解即可.(1)3535123x x --=-去分母得,3(3x ﹣5)=6﹣2(3﹣5x )去括号得,9x ﹣15=6﹣6+10x移项得,9x ﹣10x =15合并得,﹣x =15系数化为1,得:x =﹣15.(2)32(1)22234x x ⎡⎤---=⎢⎥⎣⎦去括号得:14x ﹣1﹣3﹣x =2,移项,合并同类项得:﹣34x =6,系数化为1得:x =﹣8.【点睛】本题考查了解一元一次方程,去分母时,方程两端同乘各分母的最小公倍数,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号是解题的关键.18.(1)﹣1,x ﹣3;(2)a 与b 不是关于1的平衡数,理由见解析【解析】【分析】(1)根据新定义中若a+b =2,则称a 与b 是关于1的平衡数求解即可;(2)根据a b +的结果是否等于2判断即可;【详解】(1)设3的关于1的平衡数为a ,则3+a =2,解得a =﹣1,∴3与﹣1是关于1的平衡数,设5﹣x 的关于1的平衡数为b ,则5﹣x+b =2,解得b =2﹣(5﹣x )=x ﹣3,∴5﹣x 与x ﹣3是关于1的平衡数,故答案为:﹣1;x ﹣3;(2)a 与b 不是关于1的平衡数,理由如下:∵a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],∴a+b=2x2﹣3(x2+x)+4+2x﹣[3x﹣(4x+x2)﹣2]=2x2﹣3x2﹣3x+4+2x﹣3x+4x+x2+2=6≠2,∴a与b不是关于1的平衡数.【点睛】本题主要考查了新定义运算,列代数式,整式加减,准确分析计算是解题的关键.19.(1)x+2,x+8,x+10(2)45,47,53,55(3)不存在,理由见解析【解析】【分析】(1)设第一行的第一个数为x,根据图形表示出另三个数即可;(2)设第一行的第一个数为x,根据框中的四个数的和是200列出方程,求出x的值,再分别代入计算即可;(3)设第一行的第一个数为x,根据它们的和为246列出方程,求出x的值,再计算即可.(1)解:设第一行第一个数为x,则其余3个数依次为x+2,x+8,x+10;(2)解:根据题意得:x+x+2+x+8+x+10=200,解得:x=45.则这四个数依次为45,47,53,55.答:这四个数依次为45,47,53,55;(3)解:不存在.理由如下:由题意得x+x+2+x+8+x+10=296∴4x+20=296,解得:x=69.∵当x=69时,这个数在第六行最后一个数的位置,不符合题意故不存在这样的四个数,它们的和为296.【点睛】此题考查了一元一次方程的应用;解答本题的关键是设出四个数的表示形式,利用方程思想进行解题,注意养成善于观察和思考的习惯.20.(1)经过3天,粮库里的粮食是减少了;(2)525吨;(3)825元【解析】【分析】(1)求出3天的所记录数据的和即可判断;(2)用剩余的粮食加上减少的粮食即可解决问题;(3)求出数据的绝对值的和,再乘5即可;【详解】解:(1)∵26-32-15+34-38-20=-45<0,∴经过3天,粮库里的粮食减少了;(2)∵480+45=525吨,∴3天前粮库里的存量有525吨;(3)∵(26+32+15+34+38+20)×5=825元,∴这3天要付出825元装卸费.【点睛】本题考查正负数的意义,有理数混合运算的实际应用,解题的关键是理解题意,属于中考基础题.21.(1)第63行,这个数为358;(2)(﹣1)n +13k ﹣1;(3)63312-.【解析】【分析】每一行的数的个数和行数都是相同的,奇数行的数字都是3n ﹣1,偶数行的数字都是(﹣3)n ﹣1,统一为(﹣1)n +13n ﹣1;(1)设第2012个数在第n 行,则1+2+3+…+n =(1)2n n +,估算得出答案即可;(2)有以上分析直接写出即可;(3)写出第2012个数所在行的所有数,进一步求和即可.(1)解:∵每一行的数的个数和行数都是相同的,奇数行的数字都是3n ﹣1,偶数行的数字都是(﹣3)n ﹣1,设行数为n ,数字个数为k ,k =1+2+3+…+n =(1)2n n +,当n=62时,62+2⨯(621)=1953;当n=63时,63+2⨯(631)=2016;∴62+2⨯(621)=1953<2012<63+2⨯(631)=2016,所以第2012个数在第63行,从左往右数第2012﹣1953=59个,这个数为358;(2)解:由以上分析可直接写出为(﹣1)n +13k ﹣1;(3)解:∵S =1+3+32+ (362)∴3S =3+32+…+362+363②由②﹣①得2S =363﹣1∴S =1+3+32+…+362=63312-.【点睛】此题考查数字的变化规律,找出数字之间的联系,得出规律,解决问题.22.(1)111n n -+(2)①20122013②1n n +(3)5032014【解析】【详解】试题分析:根据已知条件得出一般性的规律,然后根据一般性的规律进行填空.试题解析:(1)原式=111n n -+(2)原式=11111122334-+-+-+……+1120122013-=1-12013=20122013原式=11111122334-+-+-+……+111n n -+=1-11n +=1nn +(3)原式=111111111(224466*********-+-+-+⋯⋯+-=12×(1122014-)=5032014考点:规律题23.(1)0;12;18(2)143(3)存在,t 的值为12【解析】【分析】(1)由绝对值、最小的自然数、偶次方的非负性,即可得出b 、c 、d 的值;(2)当运动时间为t 秒时,点A 对应的数为22t -,点C 对应的数为12t -,由A 、C 两点重合可得出关于t 的一元一次方程,解之即可得出结论;(3)假设存在,当运动时间为t 秒时,点B 对应的数为2t ,点C 对应的数为12t -,点D 对应的数为18t -,由B 与D 的距离是C 与D 的距离的3倍可得出关于t 的一元一次方程,解之即可得出结论.(1)解:(1)b 为最小的自然数,2(12)|18|0c d -+-=,0b ∴=,12c =,18d =.故答案为:0;12;18.(2)解:当运动时间为t 秒时,点A 对应的数为22t -,点C 对应的数为12t -,根据题意得:2212t t -=-,解得:143t =.答:t 为143时,A 、C 两点相遇.(3)解:假设存在,当运动时间为t 秒时,点B 对应的数为2t ,点C 对应的数为12t -,点D 对应的数为18t -,点B 在点D 的右侧,且B 与D 的距离是C 与D 的距离的3倍,2(18)3[(18)(12)]t t t t ∴--=---,解得:12t =.答:存在时间t ,使得B 与D 的距离是C 与D 的距离的3倍,此时t 的值为12.【点睛】本题考查了一元一次方程的应用、数轴、绝对值以及偶次方的非负性、相反数,解题的关键是:(1)根据绝对值、偶次方的非负性求出b 、c 、d 的值;(2)由A 、C 点重合列出关于t 的一元一次方程;(3)由B 与D 的距离是C 与D 的距离的3倍列出关于t 的一元一次方程.24.(1)34cm;(2)每相邻两节套管间重叠的长度为1cm.【解析】【分析】(1)根据“第n节套管的长度=第1节套管的长度﹣4×(n﹣1)”,代入数据即可得出结论;(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×相邻两节套管间的长度”,得出关于x的一元一次方程,解方程即可得出结论.【详解】解:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm).(2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm),设每相邻两节套管间重叠的长度为xcm,根据题意得:(50+46+42+…+14)﹣9x=311,即:320﹣9x=311,解得:x=1.答:每相邻两节套管间重叠的长度为1cm.。
沪科版七年级上册数学期末考试试卷附答案
沪科版七年级上册数学期末考试试题一、单选题1.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222327327a x b y c a x b y c +=⎧⎨+=⎩的解是()A .2128x y =⎧⎨=⎩B .98x y =⎧⎨=⎩C .714x y =⎧⎨=⎩D .9787x y ⎧=⎪⎪⎨⎪=⎪⎩2.若盈余2万元记作2+万元,则2-万元表示()A .盈余2万元B .亏损2万元C .亏损2-万元D .不盈余也不亏损3.数据274.8万用科学记数法表示为()A .22.74810⨯B .4274.810⨯C .52.74810⨯D .62.74810⨯4.数轴上表示数m 和2m +的点到原点的距离相等,则m 为()A .2-B .2C .1D .1-5.已知23120x x --=,则代数式2395x x -++的值是()A .31B .31-C .41D .41-6.下列计算结果正确的是()A .22321x x -=B .235325x x x +=C .22330x y yx -=D .44x y xy+=7.星期天,小明一家从家里出发去爷爷家,妈妈骑自行车先走,速度为10千米/时,40分钟后爸爸开车和小明一起出发,速度为60千米/时,结果3人同时到达爷爷家,则小明家距爷爷家的路程为()A .8千米B .10千米C .12千米D .15千米8.在数轴上,点A 对应的数为a ,点B 对应的数为b ,且a ,b 满足()2530a b ++-=.点P 为直线AB 上点B 右边的一点,且3AP PB =,点Q 为PB 中点,则线段AQ 的长为()A .6B .8C .10D .159.对x ,y 定义一种新运算“※”,规定:x y mx ny =+※(其中m ,n 均为非零常数),若114=※,123=※,则21※的值为()A .4B .9C .10D .1210.一组有规律的图案如图所示,它们由边长相等的等边三角形组合而成,第一个图案有4个等边三角形,第二个图案有7个等边三角形,第三个图案有10个等边三角形……按此规律摆下去,则第n 个图案中等边三角形的个数为()A .31n +B .3n +C .33n +D .34n +二、填空题11.﹣2的相反数的值等于_____.12.一个锐角的补角比这个角的余角的3倍还大10︒,则这个锐角的度数是______.13.有理数a 、b 、c 在数轴上的位置如图所示,则化简11a b b a c c +------得到的结果是____.14.化简:()()423a b a b ---=_________.15.如图,°2918BOC '∠=,则AOC ∠的度数为__________.16.请写出一个解为2x =的一元一次方程:______.17.如图是一个简单的数值运算程序,若开始输入x 的值为5,则最后输出的结果为_____.三、解答题18.计算:(1)()()13271545-+---+;(2)()411582733-+-+÷-⨯19.解方程(组):(1)121134x x ++=-(2)27320x y x y -=⎧⎨+=⎩20.先化简,再求值:()()22221132542a a a a a a ⎡⎤-----⎣⎦,其中4a =-.21.如图,OA ⊥OB 于点O ,∠AOD :∠BOD =7:2,点D 、O 、E 在同一条直线上,OC 平分∠BOE ,求∠COD 的度数.22.已知关于x ,y 的方程组27134x y m x y m +=+⎧⎨+=⎩的解也是二元一次方程3x y -=的解,请求出方程组的解及m 的值.23.甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg ,一次性购买4kg 以上的苹果,超过4kg 的部分按标价的6折出售.(1)文文购买3kg 的苹果需付款______元;购买5kg 的苹果需付款______元;(2)若文文一次性购买()4x x >kg 的苹果,需付款多少元?(用含x 的代数式表示)(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg ,且全部按标价的8折销售,文文如果要购买10kg苹果,请问她在哪个超市购买更划算?24.某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:抽样调查各类喜欢程度人数分布扇形统计图A.非常喜欢B.比较喜欢C.无所谓D.不喜欢抽样调查各类喜欢程度人数统计表喜欢程度人数A.非常喜欢50人B.比较喜欢m人C.无所谓n人D.不喜欢16人根据以上信息,回答下列问题:(1)本次调查的样本容量是______;(2)扇形统计图中表示A程度的扇形圆心角为_____︒,统计表中m=______;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).25.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x人,女生y人,男生人数比女生人数少2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?26.将一副三角板如图1摆放,60AOB ∠=︒,45COD ∠=︒,OM 平分AOD ∠,ON 平分COB ∠.(1)MON ∠=______;(2)将图1中的三角板OCD 绕点O 旋转到图2的位置,求MON ∠;(3)将图1中的三角板OCD 绕点O 旋转到图3的位置,求MON ∠.参考答案1.C2.B3.D4.D5.B6.C7.A8.C9.B10.A11.212.50︒13.-214.2a-b .15.15042'16.x-2=0(答案不唯一)17.65618.(1)20(2)-1【分析】(1)先把减法变成加法,再按照加法法则进行计算即可;(2)先算乘方,再算乘除,最后算加法;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.(1)解:()()13271545-+---+()13271545=-+-++=4060-+20=(2)解:()411582733-+-+÷-⨯11132733⎛⎫=-++⨯-⨯ ⎪⎝⎭()133=-++-1=-19.(1)12x =(2)23x y =⎧⎨=-⎩【分析】(1)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可;(2)用加减消元法解方程组即可.(1)解:121134x x ++=-去分母得:()()4112321x x +=-+去括号得:441263x x +=--移项得:461234x x +=--合并同类项得:105x =两边同除以10得:12x =(2)解:27320x y x y -=⎧⎨+=⎩①②2⨯+①②得714x =解得2x =把2x =代入①得47y -=解得3y =-∴原方程组的解为23x y =⎧⎨=-⎩【点睛】本题考查了一元一次方程和二元一次方程组的解法,熟练掌握解题步骤是关键.20.22a a --;-8【分析】原式先去小括号,再去中括号,最后合并同类项即可得到答案.【详解】解:原式()22221161548a a a a a a =--+-+()2211122a a a =-+,2211122a a a =--,22a a =--,当4a =-时,原式()()24241688---⨯-=-+=-.21.100°【分析】由垂直的定义结合两角的比值可求解∠BOD 的度数,即可求得∠BOE 的度数,再利用角平分线的定义可求得∠BOC 的度数,进而可求解∠COD 的度数.【详解】解:∵OA ⊥OB ,∴∠AOB =90°,∵∠AOD :∠BOD =7:2,∴∠BOD =29∠AOB =20°,∴∠BOE =180°﹣∠BOD =160°.∵OC 平分∠BOE ,∴∠BOC =12∠BOE =80°,∴∠COD =∠BOC+∠BOD =80°+20°=100°.【点睛】本题考查了角度的计算,垂直的定义,角平分线的定义,结合垂直的定义和两角的比值求出∠BOD 的度数是解题的关键.22.52x y =⎧⎨=⎩;23.【分析】此题可先将方程组的m 消去,然后与x−y =3联立,根据二元一次方程组的解法来求出x ,y ,将其代入②,可得出m .【详解】解27134x y m x y m +=+⎧⎨+=⎩①②②-①得x−3y =−1③联立x−y =3得消去m 得方程组为331x y x y -=⎧⎨-=-⎩解这个方程组,得52x y =⎧⎨=⎩,代入②,得:m =15+8=23.【点睛】此题考查的是对二元一次方程组的解的计算,通过代入x 、y 的值即可得出答案.23.(1)30,46(2)她一次性购买()4x x >kg 苹果需付款()616x +元.(3)她在甲超市购买更划算.【分析】(1)根据题意直接写出购买3kg 和5kg 苹果所需付款;(2)4kg 苹果按照原价付款,超过4kg 的部分按标价的6折付款列出代数式即可;(3)计算出两种付款方式的结果,通过两种付款比较那个超市便宜即可(1)解:由题意可知:文文购买3kg 苹果,不优惠,∴文文购买3kg 苹果需付款:3×10=30(元),购买5kg 苹果,4kg 不优惠,1kg 优惠,∴购买5kg 苹果需付款:4×10+1×10×0.6=46(元),故答案为:30,46;(2)解:文文一次性购买()4x x >kg 的苹果,需付款4×10+(x -4)×10×0.6=(6x +16)元;答:她一次性购买()4x x >kg 苹果需付款()616x +元.(3)解:∵当x =10时,6x +16=6×10+16=76(元),∴文文在甲超市购买10kg 苹果需付费76元;∵10×10×0.8=80(元),∴文文在乙超市购买10kg 苹果需付费80元;∴文文应该在甲超市购买更划算.【点睛】本题主要考查列代数式、求代数式的值、有理数的混合运算、整式的加减等知识,关键是读懂题意,列出正确的代数式.24.(1)200;(2)90,94;(3)1440名【分析】(1)用D 程度人数除以对应百分比即可;(2)用A 程度的人数与样本人数的比值乘以360°即可得到对应圆心角,算出B 等级对应百分比,乘以样本容量可得m 值;(3)用样本中A 、B 程度的人数之和所占样本的比例,乘以全校总人数即可.【详解】解:(1)16÷8%=200,则样本容量是200;(2)50200×360°=90°,则表示A程度的扇形圆心角为90°;200×(1-8%-20%-50200×100%)=94,则m=94;(3)50942000200+⨯=1440名,∴该校2000名学生中大约有1440名学生喜欢“每日健身操”活动.【点睛】本题考查了扇形统计图,统计表,样本估计总体等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.25.(1)这个班有男生有24人,女生有26人;(2)原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【分析】(1)由题意列出方程组,解方程组解可;(2)分别计算出24名男生和26名女生剪出的筒底和筒身的数量,可得不配套;设男生应向女生支援y人,根据制作筒底的数量=筒身的数量×2,根据等量关系列出方程,再解即可.【详解】解:(1)由题意得:502 x yx y+=⎧⎨=-⎩,解得:2426 xy=⎧⎨=⎩,答:这个班有男生有24人,女生有26人;(2)男生剪筒底的数量:24×120=2880(个),女生剪筒身的数量:26×40=1040(个),因为一个筒身配两个筒底,2880:1040≠2:1,所以原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套,设男生应向女生支援a人,由题意得:120(24-a)=(26+a)×40×2,解得:a=4,答:原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【点睛】本题考查了二元一次方程组的应用、一元一次方程的应用,解题的关键是正确理解题意,找出题目中的等量关系,列出方程或方程组.26.(1)52.5MON ∠=︒;(2)052.5MON ∠=;(3)052.5MON ∠=.【分析】(1)利用角平分线的性质,分别求出∠NOB 和∠MOB,相加即可求得∠MON,(2)由角平分线分别表示出∠MOD 和∠NOB ,则1122MON AOD COB ∠=∠+∠+BOD ∠,将式子变形为∠MON=12()AOD BOD COB BOD ∠+∠+∠+∠=()12AOB COD ∠+∠,代值计算即可,(3)同(2)由角平分线分别表示出∠MOD 和∠NOB ,则1122MON AOD COB ∠=∠+∠-BOD ∠,将式子变形为∠MON=12()AOD BOD COB BOD ∠+∠-∠-∠()12AOD BOD =∠-∠()12COB BOD +∠-∠()12AOB COD =∠+∠,代值计算即可,【详解】(1)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠NOB=12∠COB=22.5°,∠MOB=12∠AOD=30°,∴MON ∠=∠NOB+∠MOB=22.5°+30°=52.5°,(2)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠MOD=12∠AOD,∠NOB 12∠COB ,∴1122MON AOD COB BOD ∠=∠+∠+∠,()122AOD COB BOD =∠+∠+∠,()()()1211604552.522AOD BOD COB BOD AOB COD =∠+∠+∠+∠=∠+∠=︒+︒=︒,,(3)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠MOD=12∠AOD,∠NOB=12∠COB ,∴1122MON AOD COB BOD ∠=∠+∠-∠,()122AOD COB BOD =∠+∠-∠,()()1122AOD BOD COB BOD =∠-∠+∠-∠,()12AOB COD =∠+∠()160452=⨯︒+︒52.5=︒.。
沪科版七年级上册数学期中考试试卷附答案
沪科版七年级上册数学期中考试试题一、单选题1.下列四个数中,最小的是()A.|﹣1.5|B.0C.﹣(﹣3)D.﹣32.下面运算正确的是()A.3m+2n=5mn B.3a2+4a2=7a4C.3m2n﹣3nm2=0D.5y2﹣4y2=13.将67400000科学记数法表示应为()A.0.674×105B.6.74×106C.6.74×107D.67.4×1064.近似数1.7万精确到()A.百位B.十分位C.千位D.百分位5.某同学解方程5y﹣1=口y+4时,把“口”处的系数看错了,解得y=﹣5,他把“口”处的系数看成了()A.5B.﹣5C.6D.﹣66.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a-5=2b B.3a+1=2b+6C.3ma=2mb+5D.a=23b+ 5 37.山顶平均气温为﹣2℃,山脚平均气温为5℃,则山顶平均气温与山脚平均气温的温差是()A.﹣6℃B.﹣7℃C.6℃D.7℃8.若代数2x6+3x3的值为5,则代数式9﹣4x6﹣6x3的值是()A.﹣4B.﹣1C.5D.149.某公司2021年8月份产值为m亿元,9月份比8月份增加了12%,10月份比9月份减少了7%,则10月份的产值为()A.(m+12%)(m﹣7%)亿元B.(m﹣12%)(m+7%)亿元C.m(1+12%)(1﹣7%)亿元D.m(1﹣12%)(1+7%)亿元10.如图:下列图形是由同样大小的棋子按照一定规律排列而成的,其中图1中有5个棋子,图2中有10个棋子,图3中有16个棋子,……,则图99中的棋子个数是()A.4528B.5248C.8524D.5842二、填空题11.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:现在如果有两个数所表示的意义相反,那么就把它们分别叫做正数与负数,若气温为上升5℃,记作+5℃,则气温下降8℃可记作____.12.213的倒数的绝对值是__________.13.铜陵安风初级中学购书8000本,给初二年级学生送书,每人都可得到5本不同的书,某一时刻有x人领到书,则此时剩下的书y=____本.(x为正整数)14.如图,点A在数轴上对应的数为a,点B对应的数为b,点A与点B之间的距离记作AB.已知a=﹣2,b比a大12,则:(1)AB的值是____;(2)若点M以每秒1个单位的速度从点A出发沿数轴向右运动,同时点N以每秒2个单位的速度从点B出发沿数轴向左运动.设运动时间是t秒.当点M与点N之间的距离是9时,则t的最大值为____秒.15.如图,是一个简单的数值运算程序,当输入n的值为3时,则输出的结果为______.三、解答题16.计算:﹣12+2×(﹣2)2﹣4÷(﹣13)×217.解方程121143x x-++=.18.若规定这样一种新运算法则:a*b=a2﹣4ab,如3*(﹣2)=32﹣4×3×(﹣2)=33;(1)求4*(﹣5)的值;(2)若(﹣6)*y=﹣11﹣y,求y的值.19.先化简,再求值:3(a2﹣2ab)﹣[2a2﹣5b+5(﹣ab+b)],其中a=-3,b=1 3.20.整式ax+b的值随x的取值不同而不同,下表是当x取不同值时对应的整式的值,x﹣4﹣3﹣2﹣101ax+b﹣20﹣16﹣12﹣8﹣40则:(1)求ab的值;(2)求关于x的方程﹣ax+b=﹣12的解.21.将正方形BEFG和正方形DHMN按如图所示放入长方形ABCD中,AB=20,BC=26,若两个正方形的重叠部分长方形甲的周长为20,求乙的周长.22.如图,一个长方形养鸭场的长边靠墙,墙长25米,其他三边用竹篱笆围成,现有长为64m的竹篱笆,刘海同学打算用它围成一个鸭场,其中长比宽多4m;唐大奎同学也打算用它围成一个鸭场,其中长比宽多10m.(1)你认为谁的设计符合实际?通过计算说明理由;(2)在(1)的条件下,按照设计,求出鸭场面积.23.某校实践课时,老师与学生做游戏,如下表,从左到右在每个格子中都填入了一个整数使得其中任意三个相邻格子中所填的整数之和都相等.8x y z﹣3﹣5……(1)求x+y+z的值;(2)求出第2021个整数是多少?(3)在下列表格中,你是否也可以设计类似的游戏(①使得其中任意三个相邻格子中所填的整数之和都相等,②用之母a、b、c表示),若能填在表格中,若不能,请说明理由.24.出租车司机夏师傅2021年10月8日上午从M地出发,在南北方向的公路上行驶营运,下表是每次行驶的里程(单位:千米)(规定向南走为正,向北走为负;×表示空载,O表示载有乘客,且乘客都不相同):次数123456789里程﹣2﹣17+22﹣3+3﹣15﹣1+12+5载客X O O X O O X O X(1)夏师傅走完第9次里程后,他在M地的什么方向?离M地有多少千米?(2)已知出租车每千米耗油约0.08升,夏师傅开始营运前油箱里有10升油,若少于3升,则需要加油,请通过计算说明夏师傅这天上午中途是否可以不加油.(3)已知载客时3千米以内收费15元,超过3千米后每千米收费2.8元,问夏师傅这天上午走完9次里程后的营业额为多少元?参考答案1.D 【解析】【分析】根据有理数大小比较规则,求解即可.【详解】解:| 1.5| 1.5-=,(3)3--=,由有理数大小比较规则可得,30 1.53-<<<,所以最小的数为3-,故选:D 【点睛】此题考查了有理数大小比较规则,解题的关键是掌握有理数大小比较规则,正数大于负数,两个负数比较大小,绝对值大的反而小.2.C 【解析】【分析】根据合并同类项的法则,逐项判断即可求解.【详解】解:A 、3m 和2n 不是同类项,不能合并,故本选项错误,不符合题意;B 、222347a a a +=,故本选项错误,不符合题意;C 、22330m n nm -=,故本选项正确,符合题意;D 、22254-=y y y ,故本选项错误,不符合题意;故选:C 【点睛】本题主要考查了合并同类项,熟练掌握合并同类项法则是解题的关键.3.C 【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:67400000=6.74×107.故选:C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.4.C【解析】【分析】根据近似数的精确度即可求解.【详解】解:近似数1.7万精确到了千位,故选:C.【点睛】本题考查了近似数的精确度,掌握精确度的概念是解题的关键.5.C【解析】【分析】设把“口”处的系数看错为a,然后把y=-5代入求解即可.【详解】解:设把“口”处的系数看错为a,则把y=-5代入得:5×(-5)-1=-5a+4,解得:a=6;故选C.【点睛】本题主要考查一元一次方程的解法及方程的解,熟练掌握一元一次方程的解法及方程的解是解题的关键.6.D【解析】【分析】根据等式的性质解答即可.【详解】解:由等式3a=2b+5,可得:3a-5=2b,3a+1=2b+6,a=23b+53,选项A、B、D成立,当m≠0时,由等式3a=2b+5,可得:3ma=2mb+5m,故选项C不成立.故选:D.【点睛】本题考查了等式的性质.解题的关键是掌握等式的性质.等式的性质:1、等式两边加同一个数(或式子)结果仍得等式;2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.7.B【解析】【分析】根据题意列出算式,计算即可求出值.【详解】解:根据题意得:-2-5=-7(℃),则山顶平均气温与山脚平均气温的温差是-7℃.故选:B.【点睛】本题考查了有理数的减法,熟练掌握减法法则是解本题的关键.8.B【解析】【分析】根据题意得出2x6+3x3=5,再对所求式子变形,最后整体代入求出答案即可.【详解】解:根据题意得:2x6+3x3=5,所以9﹣4x6﹣6x3=9﹣2(2x6+3x3)=9-2×5=-1,故选:B.【点睛】本题考查了求代数式的值,能够整体代入是解此题的关键.9.C【解析】【分析】根据8月份的产值是m亿元,用m把9月份的产值表示出来为(1+12%)m,进而得出10月份产值列出式子(1+12%)×(1-7%)m亿元,即可得出选项.【详解】解:8月份的产值是m亿元,则9月份的产值是(1+12%)m亿元,10月份的产值是(1+12%)×(1-7%)m亿元,故选:C.【点睛】本题主要考查了列代数式,解此题的关键是能用m把9、10月份的产值表示出来.10.B【解析】【分析】根据题意得出第n个图形中棋子数为1+2+3+…+n+(n+1)+2n,据此可得.【详解】解:∵图1中棋子有5=1+2+1×2个,图2中棋子有10=1+2+3+2×2个,图3中棋子有16=1+2+3+4+3×2个,…∴图n中棋子有1+2+3+…+n+(n+1)+2n=2722n n++(个),∴图99中棋子有29979922+⨯+=5248(个),故选:B.【点睛】本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.11.-8℃【解析】【分析】根据正负数的意义,求解即可.【详解】解:气温为上升5℃,记作+5℃,则气温下降8℃可记作-8℃.故答案为:-8℃【点睛】此题考查了正负数的实际应用,理解正负数的意义是解题的关键.12.3 5【解析】【分析】先求出这个数的倒数,再求绝对值.【详解】25133-=-,53-的倒数是35-,35-的绝对值是35.∴213-的倒数的绝对值是35.故答案为:3 5【点睛】本题考查了倒数和绝对值的定义,掌握倒数和绝对值的定义是解题的关键.13.(8000−5x)##(-5x+8000)【解析】【分析】根据剩下的书=总数8000本−学生领走书的数量.【详解】解:根据题意得到:y=8000−5x.故答案是:(8000−5x).【点睛】本题主要考查了列代数式,解题的关键是读懂题意,找准等量关系.14.127【解析】【分析】(1)根据已知条件列出算式-2+12计算求得b的值,再计算即可求解;(2)根据左减右加列式计算即可求解,分两种情况:①相遇前;②相遇后;列出方程求解即可.【详解】解:(1)∵a=﹣2,b比a大12,∴b -2+12=10.∴AB=10-(-2)=12故答案为:12;(2)M点到达的位置表示的数为-2+t,N点到达的位置表示的数为10-2t;相遇前:(10-2t)-(-2+t)=9,解得t=1;相遇后:(-2+t)-(10-2t)=9,解得t=7.综上,当M与N之间的距离是9时,t的最大值为7秒.故答案为:7.【点睛】本题考查了一元一次方程的应用,数轴上两点间的距离公式,解题时同时注意数形结合思想的应用,解题关键是要读懂题目的意思,根据题目给出的条件,用代数式表示出数轴上的动点代表的数,找出合适的等量关系列出方程,再求解.15.30【解析】【分析】由题意可知,n2-n>28时,则输出结果,否则返回重新计算.【详解】解:当n=3时,∴n2-n=32-3=6<28,返回重新计算,此时n=6,∴n2-n=62-6=30>28,输出的结果为30.故答案为:30【点睛】本题考查了代数式求值问题,涉及程序运算的知识,需要正确理解该程序的运算结构.16.20【解析】【分析】根据有理数的乘方以及四则运算,求解即可.【详解】解:21122(2)4()23-+⨯--÷-⨯原式1284(3)2=-+-⨯-⨯424=-+20=【点睛】此题考查了有理数的乘方以及四则运算,掌握有理数的乘方以及四则运算是解题的关键.17.x=1.【解析】【分析】根据去分母、去括号、移项、合并同类项、系数化为1,可解答.【详解】解:去分母得:3(1-x)+12=4(2x+1),去括号得:3-3x+12=8x+4,移项,合并同类项得:11x=11,解得:x=1.【点睛】本题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.18.(1)96;(2)4725y =-【解析】【分析】(1)根据题中所给新定义运算直接进行求解即可;(2)根据新定义运算列出含y 的方程,然后进行求解方程即可.【详解】解:(1)∵a*b =a 2﹣4ab ,∴4*(﹣5)=()2444596-⨯⨯-=;(2)∵(﹣6)*y =﹣11﹣y ,∴()()264611y y --⨯-=--,解得:4725y =-.【点睛】本题主要考查一元一次方程的解法及有理数的运算,熟练掌握一元一次方程的解法及有理数的运算是解题的关键.19.a 2-ab ,10.【解析】【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:3(a 2﹣2ab )﹣[2a 2﹣5b +5(﹣ab +b )]=3a 2-6ab-(2a 2-5b-5ab+5b )=3a 2-6ab-2a 2+5b+5ab-5b=a 2-ab ,当a=-3,b=13时,原式=(-3)2-(-3)×13=9+1=10.【点睛】本题考查了整式的加减-化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.20.(1)ab 的值为-16;(2)x=2.【解析】【分析】(1)观察表格数据,利用x=0时,整式值为-4可以求出b 的值,然后再利用x=1时,整式值为0,代入b 的值求得a 的值,代入求解即可;(2)代入数据,解一元一次方程即可.【详解】解:(1)由题意可得:当x=0时,ax+b=-4,∴a×0+b=-4,解得:b=-4,当x=1时,ax+b=0,∴a×1-4=0,解得:a=4,∴ab=4×(-4)=-16;(2)由(1)得a=4,b=-4,∴关于x 的方程-ax+b=-12为-4x-4=-12,解得:x=2.【点睛】本题考查了解一元一次方程,通过观察,找到合适的对应值代入求解并掌握解一元一次方程的步骤是关键.21.乙的周长为36【解析】【分析】设正方形BEFG 和正方形DHMN 的边长分别为x 和y ,表示出甲,乙,丙的长和宽,根据甲的周长求出28x y +=,然后问题可求解【详解】解:设正方形BEFG 和正方形DHMN 的边长分别为x 和y ,∵AB =20,BC =26,∴甲的长和宽分别为:26x y +-,()2020y x x y --=+-;乙的长和宽为:26x -,20y - 甲的周长为20,2(2620)20x y x y ∴+-++-=,28x y ∴+=,∴乙的周长为:()()()226202462462836x y x y ⎡⎤-+-=-+=⨯-=⎣⎦【点睛】本题以矩形的周长为背景考查了列代数式和代数式的求值,在每个字母未知时,采用整体代入是解决本题的关键.22.(1)刘海同学的设计符合题意,理由见解析;(2)480平方米【解析】【分析】(1)根据刘海同学的设计,设宽为x 米,则长为(x +4)米,唐大奎同学的设计可以设宽为y 米,长为(y +10)米,由:2×宽+长=64,需注意长不能超过墙长25米,列出方程,即可求解;(2)由长方形的面积公式可求解.【详解】解:(1)刘海同学的设计符合题意,理由如下:根据刘海同学的设计,设宽为x 米,则长为(x +4)米,根据题意得:2x +(x +4)=64,解得:x =20.因此刘海同学的设计的长为x +4=20+4=24(米)<25(米),∴刘海同学的设计符合实际的.根据唐大奎同学的设计设宽为y 米,长为(y +10)米,根据题意得2y +(y +10)=64,解得:y =18.因此长为y +10=18+10=28(米)>25米,∴唐大奎同学的设计不符合题意;(2)由(1)求得宽为20米,长为24米,∴养鸭场的面积为20×24=480(平方米),答:出鸭场面积为480平方米.【点睛】本题考查了一元一次方程的应用,找到正确的数量关系,列出方程是解题的关键.23.(1)0x y z ++=;(2)第2021个数是-3;(3)见解析【解析】【分析】(1)根据三个相邻格子的整数的和相等列式求出x 、z 的值,再根据第9个数是-5,可得y=-5,求和即可;(2)找出格子中的数每3个为一个循环组依次循环,再用2021除以3,根据余数的情况确定与第几个数相同即可得解;(3)依照题目设计类似的游戏即可.【详解】解:(1)根据题意得:8+x+y=x+y+z ,∴z=8,又∵x+y+z=y+z+(-3),∴x=-3,∴数据从左往右依次为:8,-3,y ,8,-3,y ,...,∵第九个数与第三个数相同,∴y=-5,∴3580x y z ++=--+=;(2)∵任意三个相邻格子中所填的整数之和都相等,∴格子中的整数以“8,-3,-5”为周期循环.2021÷3=673⋅⋅⋅⋅⋅⋅2,∴第2021个数是-3.(3)能,类似的游戏如下表:8x y z -3-5…-1a b c 5-2…【点睛】本题考查了数字的变化规律,有理数的加法,仔细观察排列规律求出x 、y 、z 的值,是解题的关键.24.(1)夏师傅走完第9次里程后,他在M 地的南面,离M 地有4千米;(2)不需要加油;(3)夏师傅这天上午走完9次里程后的营业额为226.2元.【解析】【分析】(1)求出9次里程的和,根据和的符号判断方向,由和的绝对值判断距离;(2)求出9次行驶距离之和,再根据耗油量和油箱内油量情况进行判断;(3)求出每次载客的收费情况,再求和即可.【详解】解:(1)因为-2-17+22-3+3-15-1+12+5=4,所以夏师傅走完第9次里程后,他在M地的南面,离M地有4千米;(2)行驶的总路程:|-2|+|-17|+|+22|+|-3|+|+3|+|-15|+|-1|+|+12|+|+5|=80(千米),耗油量为:0.08×80=6.4(升),因为10-6.4=3.6>3,所以不需要加油;(3)第2次载客收费:15+(17-3)×2.8=54.2(元),第3次载客收费:15+(22-3)×2.8=68.2(元),第5次载客收费:15+(3-3)×2.8=15(元),第6次载客收费:15+(15-3)×2.8=48.6(元),第8次载客收费:15+(12-3)×2.8=40.2(元),所以总营业额为:54.2+68.2+15+48.6+40.2=226.2(元),答:夏师傅这天上午走完9次里程后的营业额为226.2元.。
沪科版七年级下册数学期中考试试题含答案
沪科版七年级下册数学期中考试试卷一、单选题1.下列实数中,属于无理数的是()A .3.1415926B .227C D .()1π-2.下列各式的计算中,正确的是()A .551a a ÷=B .235a a a = C .()239a a =D .235a a a +=3.某生物兴趣小组在恒温箱中培养两种菌种,甲种菌种生长的温度在34~37C C ︒︒之间,乙种菌种生长的温度是3538C C ︒︒ 之间,那么恒温箱的温度t C ︒应该设定的范围是()A .34~38C C︒︒B .35~37C C︒︒C .3435C C︒︒ D .3738C C︒︒ 4.如果a b >,下列各式中不正确的是()A .11a b ->-B .22a b>C .33a b -<-D .1212a b->-5)A .点PB .点QC .点MD .点N6.不等式组102x x ->⎧⎨-≥-⎩的解集正确的是()A .1<x ≤2B .x ≥2C .x <1D .无7.下列关系式中,正确的是()A .()()22333a b a b a b +-=-B .()()22339a b a b a b-+-=--C .()()2233 9a b a b a b---=-+D .()()23339a b a b a b --+=-8.若多项式281x nx ++是一个整式的平方,则n 的值是()A .9B .18C .9±D .18±9.已知3,5a b x x ==,则2a b x -的值为()A .35B .65C .95D .110.如图,从边长为(a+1)cm 的正方形纸片中剪去一个边长为(a ﹣1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A .2cm 2B .2acm 2C .4acm 2D .(a 2﹣1)cm 2二、填空题119_____.12. 2.5PM 颗粒物(指大气中直径小于或等于2.5微米的颗粒物)是形成雾霾的罪魁祸首.将2.5微米换算成你熟悉的单位米(1米=1000000微米),用科学记数法表示2.5微米=__________.13.如果不等式组0x a x b ->⎧⎨+<⎩的解集是12x -<<,那么b a =__________.14.计算()2018201980.125⨯-=_____.15.计算:()()321244ab a b ab ⎛⎫÷= ⎪⎝⎭__________.16.若()22a b +加上一个单项式后等于()22a b -,则这个单项式为_____________。
七年级数学第一次月考卷(沪科版2024)(解析版)【测试范围:第一章】
2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)考前须知:1.本卷试题共24题,单选10题,填空6题,解答8题。
2.测试范围:第一章(沪科版2024)。
第Ⅰ卷一、单选题1.―12024的相反数是( )A .―2024B .12024C .―12024D .以上都不是【答案】B【分析】本题主要考查了相反数的定义,解题的关键是熟练掌握“只有符号不同的两个数互为相反数”.根据相反数的定义解答即可.【详解】解:―12024的相反数是12024,故选:B .2.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》《第二十条》在网络上持续 引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为( )A .80.16×108B .8.016×109C .0.8016×1010D .80.16×1010【答案】B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:80.16亿=8.016×109,故选:B .3.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤―a一定是负数,其中正确的个数是()A.1B.2C.3D.4【答案】B【分析】根据有理数的分类逐项分析判断即可求解.【详解】解:①一个有理数不是正数就是负数或0,故①不正确;②整数和分数统称为有理数,故②正确;③没有最小的有理数,故③不正确;④正分数一定是有理数,故④正确;⑤―a不一定是负数,故④不正确,故选:B.【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.4.两江新区正加快打造智能网联新能源汽车产业集群,集聚了长安、长安福特、赛力斯、吉利、理想等10家整车企业,200余家核心零部件企业.小虎所在的生产车间需要加工标准尺寸为4.5 mm的零部件,其中(4.5±0.2)mm范围内的尺寸为合格,则下列尺寸的零部件不合格的是( )A.4.4mm B.4.5mm C.4.6mm D.4.8mm【答案】D【分析】本题考查正数和负数,根据正数和负数的实际意义求得合格尺寸的范围,然后进行判断即可,结合已知条件求得合格尺寸的范围是解题的关键.【详解】解:由题意可得合格尺寸的范围为4.3mm∼4.7mm,4.8mm不在尺寸范围内,故选:D.5.下列各组数相等的有()A.(―2)2与―22B.(―1)3与―(―1)2C.―|―0.3|与0.3D.|a|与a【答案】B【分析】根据负数的奇次幂是负数,负数的偶次幂是正数,可得答案.【详解】解∶ A.(―2)2=4,―22=―4,故(―2)2≠―22;B.(―1)3=―1,―(―1)2=―1,故(―1)3=―(―1)2;C.―|―0.3|=―0.3,0.3,故―|―0.3|≠0.3;D.当a小于0时,|a|与a不相等,;故选∶B.【点睛】本题考查了有理数的乘方,熟练求解一个数的乘方是解题的关键.6.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.6cm”对应数轴上的数为()A.―1.4B.―1.6C.―2.6D.1.6【答案】C【分析】本题考查了数轴,熟练掌握在数轴上右边点表示的数减去左边点表示的数等于这两点间的距离是解题关键.利用点在数轴上的位置,以及两点之间的距离分析即可求解.【详解】解:设刻度尺上“5.6cm”对应数轴上的数的点在原点的左边,距离原点有5.6―3=2.6的单位长度,所以这个数是―2.6故选:C.7.观察下图,它的计算过程可以解释( )这一运算规律A.加法交换律B.乘法结合律C.乘法交换律D.乘法分配律【答案】D【分析】根据图形,可以写出相应的算式,然后即可发现用的运算律.【详解】解:由图可知,6×3+4×3=(6+4)×3,由上可得,上面的式子用的是乘法分配律,故选:D.【点睛】本题考查有理数的混合运算,熟练掌握运算律是解答本题的关键.8.如图,A、B两点在数轴上表示的数分别为a,b,有下列结论:①a―b<0;②a+b>0;>0.其中正确的有( )个.③(b―1)(a+1)>0;④b―1|a―1|A.4个B.3个C.2个D.1个【答案】A【分析】本题主要考查了数轴,有理数的加减,乘除运算.先根据a、b在数轴上的位置判断出a、b的取值范围,再比较出各数的大小即可.【详解】解:观察数轴得:―1<a<0<1<b,∴a―b<0,故①正确;a+b>0,故②正确;b―1>0,a+1>0,∴(b―1)(a+1)>0,故③正确;b―1>0故④正确.|a―1|故选:A9.定义运算:a⊗b=a(1―b).下面给出了关于这种运算的几种结论:①2⊗(―2)=6,②a⊗b=b⊗a,③若a+b=0,则(a⊗a)+(b⊗b)=2ab,④若a⊗b=0,则a=0或b=1,其中结论正确的序号是()A.①④B.①③C.②③④D.①②④【答案】A【分析】各项利用题中的新定义计算得到结果,即可做出判断.此题考查了新定义运算,以及整式的混合运算、以及有理数的混合运算,熟练掌握运算法则是解本题的关键.【详解】解:根据题目中的新定义计算方法可得,①2⊗(―2)=2×(1+2)=6,①正确;②a⊗b=a(1―b)=a―ab,b⊗a=b(1―a)=b―ab,故a⊗b与b⊗a不一定相等,②错误;③(a⊗a)+(b⊗b)=a(1―a)+b(1―b)=a+b―a2―b2≠2ab,③错误;④若a⊗b=a(1―b)=0,则a=0或b=1,④正确,故选:A.10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【答案】A【分析】先计算出6×6方格纸片中共含有多少个3×2方格纸片,再乘以4即可得.【详解】由图可知,在6×6方格纸片中,3×2方格纸片的个数为5×4×2=40(个)则n=40×4=160故选:A.【点睛】本题考查了图形类规律探索,正确得出在6×6方格纸片中,3×2方格纸片的个数是解题关键.第II卷(非选择题)二、填空题11.甲地海拔高度为―50米,乙地海拔高度为―65米,那么甲地比乙地.(填“高”或者“低”).【答案】高【分析】先计算甲地与乙地的高度差,再根据结果进行判断即可.【详解】解:由题意可得:(―50)―(―65)=―50+65=15>0,∴甲地比乙地高.故答案为:高【点睛】本题考查的是有理数的大小比较,有理数的减法运算的实际应用,理解题意是解本题的关键.12.绝对值大于1且不大于5的负整数有.【答案】―2,―3,―4,―5【分析】本题考查了绝对值的意义,根据绝对值的意义即可求解,掌握绝对值的意义是解题的关键.【详解】解:绝对值大于1且不大于5的负整数有―2,―3,―4,―5,故答案为:―2,―3,―4,―5.13.若(2a ―1)2与2|b ―3|互为相反数,则a b = .【答案】18【分析】本题考查相反数的概念及绝对值的知识.根据互为相反数的两个数的和为0,可得(2a ―1)2与2|b ―3|的和为0,再根据绝对值和偶次方的非负性即可分别求出a ,b .【详解】∵ (2a ―1)2与2|b ―3|互为相反数∴ (2a ―1)2+2|b ―3|=0∵ (2a ―1)2≥0,2|b ―3|≥0∴2a ―1=0,2|b ―3|=0∴ a =12,b =3∴ a b =(12)3=18.故答案为:18.14.电影《哈利•波特》中,小哈利波特穿越墙进入“934站台”的镜头(如示意图的Q 站台),构思奇妙,能给观众留下深刻的印象.若A 、B 站台分别位于―23,83处,AP =2PB ,则P 站台用类似电影的方法可称为“ 站台”.【答案】159或6【分析】先根据两点间的距离公式得到AB 的长度,再根据AP =2PB 求得AP 的长度,再用―23加上该长度即为所求.【详解】解:AB =|83――=103,AP =|103×22+1|=209,或AP =|103×2|=203,P :―23+209=149=159,或―23+203=183=6.故P 站台用类似电影的方法可称为“159站台”或者“6站台”.故答案为:159或6.【点睛】本题考查了数轴,关键是用几何方法借助数轴来求解,非常直观,且不容易遗漏,其中题干表达模糊,并没有明确指出P在AB中间,所以有两个答案(P在AB中间,或者P在AB的右侧).但题目需要用类似电影的方法表达,故而答案可以仅为“159站台”,这个题体现了数形结合的优点.15.若a|a|+b|b|+c|c|+d|d|=2,则|abcd|abcd的值为.【答案】-1【分析】先根据a|a|+b|b|+c|c|+d|d|=2,a|a|,b|b|,c|c|,d|d|的值为1或-1,得出a、b、c、d中有3个正数,1个负数,进而得出abcd为负数,即可得出答案.【详解】解:∵当a、b、c、d为正数时,a|a|,b|b|,c|c|,d|d|的值为1,当a、b、c、d为负数时,a|a|,b |b|,c|c|,d|d|的值为-1,又∵a|a|+b|b|+c|c|+d|d|=2,∴a、b、c、d中有3个正数,1个负数,∴abcd为负数,∴|abcd|abcd=-1.故答案为:-1.【点睛】本题主要考查了绝对值的意义和有理数的乘法,根据题意得出a、b、c、d中有3个正数,1个负数,是解题的关键.16.如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示―1的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字的点与数轴上表示2023的点重合.【答案】0【分析】圆周上的0点与―1重合,滚动到2023,圆滚动了2024个单位长度,用2024除以4,余数即为重合点.【详解】解:圆周上的0点与―1重合,2023+1=2024,2024÷4=506,圆滚动了506 周到2023,圆周上的0与数轴上的2023重合,故答案为:0.【点睛】本题考查了数轴,找出圆运动的规律与数轴上的数字的对应关系是解决此类题目的关键.三、解答题17.计算.(1)(―59)―(―46)+(―34)―(+73)(2)(―334)―(―212)+(―416)―(―523)―1【答案】(1)―120(2)―34【分析】本题考查了有理数的混合运算.(1)去括号,再计算加减即可.(2)去括号,通分,再计算加法即可.【详解】(1)(―59)―(―46)+(―34)―(+73)=―59+46―34―73=―120(2)(―334)―(―212)+(―416)―(―523)―1=―334―2―416―5―1=―54+32―1=―3418.计算:(1)4×―12―34+2.5―|―6|;(2)―14―(1―0.5)×13―2―(―3)2.【答案】(1)―1;(2)356.【分析】(1)利用乘法分配律、绝对值的性质分别运算,再合并即可;(2)按照有理数的混合运算的顺序进行计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【详解】(1)解:原式=4×――4×34+4×2.5―6=―2―3+10―6,=―1;(2)解:原式=―1―12×13―(2―9)=―1―16+7,=6―16,=356.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是―3.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,―4,512,―212,|―1.5|,―(+1.6).【答案】(1)见解析,4(2)2或6(3)数轴表示见解析,―4<―212<―(+1.6)<|―1.5|<2.5<512【分析】本题主要考查了在数轴上表示有理数以及有理数的比较大小:(1)根据点A 表示―3即可得原点位置,进一步得到点B 所表示的数;(2)分两种情况讨论即可求解;(3)首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可.【详解】(1)如图,O 为原点,点B 所表示的数是4,故答案为:4;(2)点C 表示的数为4―2=2或4+2=6.故答案为:2或6;(3)|―1.5|=1.5,―(+1.6)=―1.6,在数轴上表示,如图所示:由数轴可知:―4<―212<―(+1.6)<|―1.5|<2.5<51220.(1)已知|a |=5,|b |=3,且|a ―b |=b ―a ,求a ―b 的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: x ―(a +b +cd )+a+b cd 的值.【答案】(1)―8或―2;(2)1或―3【分析】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.(1)根据|a |=5,|b |=3,且|a ―b |=b ―a ,可以得到a 、b 的值,然后代入所求式子计算即可;(2)根据a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,可以得到a +b =0,cd =1,x =±2,然后代入所求式子计算即可.【详解】解:(1)∵|a |=5,|b |=3,∴a =±5,b =±3,∵|a ―b |=b ―a ,∴b ≥a ,∴a =―5,b =±3,当a =―5,b =3时,a ―b =―5―3=―8,当a =―5,b =―3时,a ―b =―5―(―3)=―5+3=―2,由上可得,a +b 的值是―8或―2;(2)∵a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,∴a +b =0,cd =1,x =±2,∴当x =2时,x ―(a +b +cd )+a +b cd=2―(0+1)+0=2―1=1;当x =―2时,x―(a+b+cd)+a+b cd=―2―(0+1)+0=―2―1=―3.综上所述,代数式的值为1或―3.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减+5―2―4+13―6+6―3(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?【答案】(1)四(2)19(3)14225【分析】(1)根据表格中的数据求解即可;(2)最高一天的产量减去最少一天的产量求解即可;(3)根据题意列出算式求解即可.【详解】(1)由表格可得,星期四生产的风筝数量是最多的,故答案为:四.(2)13―(―6)=19,∴产量最多的一天比产量最少的一天多生产19只风筝;(3)700+5―2―4+13―6+6―3=709(只)709×20+9×5=14225(元).∴该厂工人这一周的工资总额是14225元【点睛】本题考查了正数和负数,有理数的加减和乘法运算的实际应用.解决本题的关键是理解题意正确列式.22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.【答案】(1)4;3;(2)|x+1|,1或﹣3;(3)﹣1,0,1,2;(4)x=2时,y最小,最小值为4【分析】(1)根据两点间的距离的求解列式计算即可得解;(2)根据两点之间的距离表示列式并计算即可;(3)根据数轴上两点间的距离的意义解答;(4)根据数轴上两点间的距离的意义解答.【详解】解:(1)数轴上表示1和﹣3的两点之间的距离是:|1―(―3)|=1+3=4;数轴上表示﹣2和﹣5的两点之间的距离是:|―2―(―5)|=5―2=3;(2)∵A,B分别表示的数为x,﹣1,∴数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,则|x+1|=2,解得:x=1或﹣3;(3)当|x+1|+|x﹣2|取最小值时,﹣1≤x≤2,∴符合条件的整数x有﹣1,0,1,2;(4)当|x+1|+|x﹣2|+|x﹣3|取最小值时,x=2,∴当x=2时,y最小,即最小值为:|2+1|+|2﹣2|+|2﹣3|=4.故x=2时,y最小,最小值为4.【点睛】本题考查数轴与绝对值,熟练掌握数轴上两点之间距离的计算方法是解题的关键.23.观察下列三列数:―1、+3、―5、+7、―9、+11、……①―3、+1、―7、+5、―11、+9、……②+3、―9、+15、―21、+27、―33、……③(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;(3)若在每行取第k个数,这三个数的和正好为―101,求k的值.【答案】(1)+19;―21(2)存在,这三个数分别为85,―91,89(3)k=―49【分析】本题主要考查了数字规律,一元一次方程的应用,做题的关键是找出数字规律.(1)第①和②行规律进行解答即可;(2)设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,根据题意列出方程,即可出答案;(3)设k为奇数和偶数两种情况,分别列出方程进行解答.【详解】(1)解:根据规律可得,第①行第10个数是2×10―1=19;第②行第10个数是―(2×10+1)=―21;故答案为:+19;―21;(2)解:存在.理由如下:由(1)可知,第②行数的第n个数是(―1)n(2n―1)―2,设三个连续整数为(―1)n﹣1(2n――2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,当n为奇数时,则2n―3―2―2n+1―2+2n+1―2=83,化简得2n―7=83,解得n=45,这三个数分别为85,―91,89;当n为偶数时,则―(2n―3)―2+(2n―1)―2―(2n+1)―2=83,化简得―2n―5=83,解得n=―44(不符合题意舍去),这三个数分别为85,―91,89;综上,存在三个连续数,其和为83,这三个数分别为85,―91,89;(3)解:当k为奇数时,根据题意得,―(2k ―1)―(2k +1)+3×(2k ―1)=―101,解得:k =―49,当k 为偶数时,根据题意得,(2k +1)+(2k ―3)―3(2k ―1)=―101,解得,k =51(舍去),综上,k =―49.24.如图,数轴上有A ,B ,C 三个点,分别表示数―20,―8,16,有两条动线段PQ 和MN (点Q 与点A 重合,点N 与点B 重合,且点P 在点Q 的左边,点M 在点N 的左边),PQ =2,MN =4,线段MN 以每秒1个单位的速度从点B 开始向右匀速运动,同时线段PQ 以每秒3个单位的速度从点A 开始向右匀速运动.当点Q 运动到点C 时,线段PQ 立即以相同的速度返回;当点Q 回到点A 时,线段PQ 、MN 同时停止运动.设运动时间为t 秒(整个运动过程中,线段PQ 和MN 保持长度不变).(1)当t =20时,点M 表示的数为 ,点Q 表示的数为 .(2)在整个运动过程中,当CQ =PM 时,求出点M 表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ 和MN 重合部分长度为1.5时所对应的t 的值.【答案】(1)8,―8(2)―2.8或2(3)5.5或8.5或18.25或19.75【分析】本题考查一元一次方程的应用,解题的关键是读懂题意,能用含t 的代数式表示点运动后所表示的数.(1)当t =20时,根据起点位置以及运动方向和运动速度,即可得点M 表示的数为8、点Q 表示的数为―8;(2)当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,36―3t =|―10+2t|,此时―12+t =―12+465=―145,当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,3t ―36=|62―4t |,(3)当PQ 从A 向C 运动时,―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,当PQ 从C 向A 运动时,132+―――=1.5或172――――=1.5,解方程即可得到答案.【详解】(1)解:依题意,∵―8―4+20×1=8,∴当t =20时,点M 表示的数为8;∵16―{20×3―[16―(―20)]}=―8,∴当t =20时,点Q 表示的数为―8;故答案为:8,―8;(2)解:当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,∴CQ =16―(―20+3t )=36―3t ,PM =|―22+3t ―(―12+t )|=|―10+2t |,∴36―3t =|―10+2t |,解得t =465或t =26(舍去),此时―12+t =―12+465=―145当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,∴CQ =16―(52―3t )=3t ―36,PM =|50―3t ―(―12+t )|=|62―4t |,∴3t ―36=|62―4t |,解得t =14或t =26(舍去),此时―12+t =―12+14=2,∴当CQ =PM 时,点M 表示的数是―145或2;(3)解:当PQ 从A 向C 运动时,t =4时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为―8+32(t ―4),P 表数为―10+32(t ―4),M 表示的数为―8+12(t ―4),N 表示的数是―4+12(t ―4),若线段PQ 和MN 重合部分长度为1.5则―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,解得t =5.5或t =8.5,由―10+32(t ―4)=―4+12(t ―4)得t =10,∴当t =10时,PQ 与MN 的重合部分消失,恢复原来的速度,此时Q 表示的数是1,再过(16―1)÷3=5(秒),Q 到达C ,此时t =15,则M 所在点表示的数是―12+4+10―42+5=0,N 所在点表示的数4,当PQ 从C 向A 运动时,t =352时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为172――P 表示的数为132―M 表示的数为52N 表示的数是132―若线段PQ 和MN 重合部分长度为1.5,132+―――=1.5或172―――=1.5,解得t =18.25或t =19.75,∴重合部分长度为1.5时所对应的t 的值是5.5或8.5或18.25或19.75.。
2024年沪科版初一上学期数学试题及答案指导
2024年沪科版数学初一上学期复习试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是8厘米,宽是5厘米,那么这个长方形的周长是多少厘米?选项:A、26厘米B、30厘米C、40厘米D、50厘米2、一个数的3倍比它的2倍多4,这个数是多少?选项:A、2B、3C、4D、63、已知一个等腰三角形的底边长为8厘米,腰长为10厘米,则该三角形的面积是()A、40平方厘米B、32平方厘米C、48平方厘米D、64平方厘米4、若一个数的平方等于25,则这个数是()A、5或-5B、5C、-5D、05、已知一个长方形的长是10厘米,宽是5厘米,那么这个长方形的周长是多少厘米?A. 20厘米B. 25厘米C. 30厘米D. 50厘米6、一个班级有40名学生,其中男生人数是女生人数的3/4,那么这个班级男生有多少人?A. 15人B. 20人C. 25人D. 30人7、题目:下列数中,是质数的是()A、18B、23C、21D、178、题目:若a、b是方程2x - 5 = 3的解,则a + b的值为()A、7B、-4C、2D、89、一个长方形的长是6厘米,宽是宽的1/2,求长方形的周长。
选项:A. 12厘米B. 18厘米C. 20厘米D. 24厘米二、填空题(本大题有5小题,每小题3分,共15分)1、若一个等腰三角形的底边长为8厘米,腰长为10厘米,则这个三角形的周长为______ 厘米。
2、已知直线y = 3x + 1与y轴的交点为A,与x轴的交点为B,则线段AB的长度为 ______ 。
3、若a=2,b=3,则a²+b²的值为 ______ 。
4、一个长方形的长是a厘米,宽是b厘米,则它的面积S可以用公式 ______ 表示。
5、已知一个等差数列的前三项分别是2,5,8,则该数列的公差为 ______ 。
三、解答题(本大题有7小题,第1小题7分,后面每小题8分,共55分)第一题已知函数f(x)=√x2−4x+3,求函数f(x)的定义域。
沪科版七年级上册数学期中考试试题及答案
沪科版七年级上册数学期中考试试卷一、单选题1.25的倒数是()A .0.4B .4C .52D .-252.下列计算正确的是()A .5x +2y =7xyB .3x 2y -4yx =-x 2yC .x 2+x 5=x 7D .3x -2x =13.将390000用科学记数法表示为()A .3.9×104B .3.95C .3.9×105D .39×1064.下列各组数中,数值相等的是()A .-(-2)和-∣-2∣B .-22和(-2)2C .(-13)3和-313D .∣-8∣2和-(-4)5.若|a +2|+(b -1)2=0,则a +b 的值为()A .-3B .-1C .1D .36.小丽同学在做作业时,不小心将方程2(x -3)-■=x +1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x =9,请问这个被污染的常数■是()A .4B .3C .2D .17.已知(m -3)x ∣m-2∣+6=0是关于x 的一元一次方程,则m 的值为()A .1B .2C .3D .1或38.如果代数式2x -y 的值是2,那么代数式1-6x +3y 的值为()A .5B .-5C .7D .-79.按下列规律排成一列数:11、12、21、13、22、31、14、23、32、41、15、……,则第()个数是2101A .5051B .5052C .5152D .515310.若代数式2x 2+3x +7的值为8,则代数式4x 2+6x -9的值是()A .13B .2C .17D .-7二、填空题11.代数式ab 2c 3-3ac +1是__________次__________项式;12.用括号把多项式22442a a b b --+分成两组,使其中所有二次项相结合,所有一次项相结合,两个括号之间用“-”连接,其结果为__________________.13.若∣a|=7、b 2=4,且∣a -b ∣=∣a ∣+∣b|,则a +b 的值为__________14.定义一种新的运算:当a≤b 时,a*b =a 2+b ;当a >b 时,a*b =2a -b ;例如:1*4=12+4=5,那么:①计算:(-3*2)*(-1)=__________;②若(3*x )*3=23,则x =__________15.实数a 、b 在数轴上的对应点的位置如图所示,且满足0a b +>,0ab <,则原点所在的位置有可能是点______.三、解答题16.在数轴上表示下列各数,并把它们用“<”连接起来:3.5、-(+4)、1、+(-12)17.计算:(1)314(1)1[12(3)]49--⨯÷+⨯-(2)375()(36)4126-+-⨯-18.解方程:(1)2(x +1)=-5(x -2)(2)5178124x x +--=19.我们把整数和分数统称为“有理数”,那为什么叫有理数呢?有理数在英语中是“rational number”,而“rational”通常的意思是“理性的”,中国近代译著者在翻译时参考了这种方法,而“rational”这个词的词根“ratio”源于古希腊,是“比率”的意思,这个词的意思就是整数的“比”,所谓有理数,就是可以写成两个整数之比的形式的数.(1)对于0.3∙是不是有理数呢?我们不妨设0.3∙=x,则10×0.3∙=10x,即3.3∙=10x,故3+0.3∙=10x,即3+x=10x,解得x=13,由此得:无限循环小数_________有理数(填“是”或“不是”),请仿照(1)的做法,将0.4·写成分数的形式(写出过程);(2)在{-3,16.2,,0,4,-9.8,0.51∙∙}中,属于非负有理数的是_________20.先化简,再求值:-2a2b+2(3ab2-a2b)-3(2ab2-a2b),其中a=2,b=-321.我们常用以下的方法判断一个数字能否被三整除:例如一个三位数M,百位数字、十位数字、个位数字依次是a、b、c,如果a、b、c的和可以被三整除,那么就可以判断M可以被三整除.小明同学在学习过代数式的相关知识后,解释了这样判断的依据,请完成下面的说理过程:(1)这个三位数M可以表示为_________;(2)设k表示任意一个整数,则a+b+c=_________(用含k的代数式表示);(3)完成说理过程:因为M=a+b+c+(_________)=(_________)+3(_________)=3(_________),而a、b、k都是整数,所以M可以被三整除.22.一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?23.今年“十一”黄金周期间,某风景区在8天假期中每天旅游的人次数变化如下表(正数表示比前一天多的人次数,负数表示比前一天少的人次数);(单位:万人),若9月30日的游客人次数记为0.5万日期1日2日3日4日5日6日7日8日人次数变化+1.6+0.8+0.4-0.4-0.8+0.2-1.2-0.1(1)10月1日的游客人次数是多少?(2)请判断8天内游客人次数最多的是哪天?最少的是哪天?他们相差多少万人?(3)求今年黄金周期间游客在该地的总人次数.24.将一个面积为1的等腰直角三角形进行1次划分后得到三个等腰直角三角形,再进行第2次划分可得到五个等腰直角三角形,依次进行下去.(1)完成下面表格:划分的次数123…──n 等腰直角三角形总个数35──…63──(2)观察图形,完成下面表格:第n 次划分后1234…阴影部分面积1211+24111++248───…阴影部分面积还可以表示为11-211-411-8───…根据表格所呈现的规律,可得234202111111+++++22222L =_________(结果用幂的形式表示)(3)请利用右图面积的分割,直接写出101112132011111+++++44444L =_________参考答案1.C【解析】【分析】根据倒数的定义求一个数的倒数即可.【详解】解:∵251 52⋅=,∴25的倒数是52.故选C.【点睛】本题考查倒数的定义,解题的关键是掌握倒数的定义:如果两个数的乘积为1,那么这两个数互为倒数.2.B【解析】【分析】根据合并同类项的计算法则进行求解判断即可.【详解】解:A 、5x 与2y 不是同类项,不能合并,故不符合题意;B 、3x 2y -4yx 2=-x 2y 计算正确,故符合题意;C 、x 2与x 5不是同类项,不能合并,故不符合题意;D 、3x -2x =x ,计算错误,故不符合题意;故选B .【点睛】本题主要考查了合并同类项,解题的关键在于能够熟练掌握合并同类项的法则.3.C 【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:5390000 3.910=⨯.故选C .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.4.D 【解析】【分析】根据有理数的乘方和化简多重符号的计算法则进行求解判断即可.【详解】解:A 、∵()22--=,22--=-,∴()22--≠--,故A 不符合题意;B 、∵224-=-,()224-=,∴()2222-≠-,故B 不符合题意;C 、∵311327⎛⎫-=- ⎪⎝⎭,31133-=-,∴331133⎛⎫-≠- ⎪⎝⎭,故C 不符合题意;D 、∵2864-=,()()344466=--=--,∴()2384-=--,故D 符合题意;故选D .【点睛】本题主要考查了有理数的乘方计算,化简多重符合,解题的关键在于能够熟练掌握相关计算法则.5.B 【解析】【分析】先根据偶次方的非负性、绝对值的非负性可得a 、b 的值,再代入代数式计算即可得.【详解】解:|a +2|+(b -1)2=0,|a +2|≥0(b -1)2≥0,由偶次方的非负性、绝对值的非负性得:20a +=,10b -=,解得2a =-,1b =,∴211a b +=-+=-,故选:B .【点睛】本题考查了代数式求值、偶次方的非负性、绝对值的非负性,熟练掌握偶次方和绝对值的非负性是解题关键.6.C 【解析】【分析】把x =9代入原方程即可求解.【详解】把x =9代入方程2(x -3)-■=x +1得2×6-■=10∴■=12-10=2故选C .【点睛】此题主要考查方程的解,解题的关键是把方程的根代入原方程.7.A 【解析】【分析】根据一元一次方程的定义:只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,解答即可.【详解】解:∵(m -3)x ∣m -2∣+6=0是关于x 的一元一次方程,∴21m -=,解得:1m =或3m =,∵30m -≠,∴3m ≠,∴m 的值为1,故选:A .【点睛】本题考查了一元一次方程的定义,熟记定义是解题的关键.8.B 【解析】【分析】首先将163x y -+变形为()132x y --,然后将22x y -=代入求解即可.【详解】解:∵()163132x y x y -+=--,∴将22x y -=代入,原式1325=-⨯=-,故选:B .【点睛】此题考查了代数式求值问题,解题的关键是正确将163x y -+变形为()132x y --.9.D 【解析】【分析】由题意得:11、12、21、13、22、31、14、23、32、41、15、……可写成11、(12、21)、(13、22、31)、(14、23、32、41)……再根据2101是第102组中的第二个数可得答案;【详解】解:由题意得:11、12、21、13、22、31、14、23、32、41、15、……可写成11、(12、21)、(13、22、31)、(14、23、32、41)……所以2101是第102组中的第二个数前101组共有(1+2+3+4+……+99+100+101)=5151个数所以2101是第5153个数;故答案选D 【点睛】本题考查了规律型-数字的变化,解决本题的关键是观察数字的变化,寻找规律.10.D 【解析】【分析】由代数式2x 2+3x+7的值是8可得到2x 2+3x=1,把2x 2+3x 看作一个整体,代入求出代数式4x 2+6x ﹣9-的值即可.【详解】解:∵2x 2+3x+7=8,∴2x 2+3x=1,∴4x 2+6x ﹣9=2(2x 2+3x )﹣9=2×1﹣9=﹣7.故选D .11.六三【解析】【分析】根据该多项式次数最高项的次数是3,共包含3项可得此题结果.【详解】解:∵该多项式共包含ab 2c 3、−3ac 、1三项,且各项次数各为6、2、0,∴该多项式是六次三项式,故答案为:六,三.【点睛】此题考查了多项式的次数与项数的确定能力,关键是能准确理解多项式的概念与性质.12.()()22442a b a b ---【解析】【分析】按照加法交换律,添括号法则,合并同类项,分成两组即可.【详解】解:4a 2−4a−b 2+2b ,=4a 2−b 2−4a+2b ,=(4a 2−b 2)−(4a−2b),故答案为:(4a 2−b 2)−(4a−2b).【点睛】本题考查了添括号法则,加法交换律,按要求合并同类项分组,解题的关键是熟悉添括号法则.13.5±【解析】【分析】根据绝对值的性质求出a 与b 的值,然后代入原式即可求出答案.【详解】解:∵|a|=7,b 2=4,∴a =±7,b =±2,当a =7,b =2时,∴|a−b|=5,|a|+|b|=9,不符合题意,舍去.当a =7,b =−2时,∴|a−b|=9,|a|+|b|=9,符合题意,∴a +b =5.当a =−7,b =2时,∴|a−b|=9,|a|+|b|=9,符合题意.∴a +b =−5,当a =−7,b =−2时,∴|a−b|=5,|a|+|b|=9,不符合题意,舍去.故答案为:±5.【点睛】本题考查有理数的运算,解题的关键是求出a 与b 的值后,分类讨论各种情况,本题属于基础题型.14.234或7-【解析】【分析】根据题意定义的新运算,根据有理数混合运算法则计算即可.【详解】解:根据题意运算:①(-3*2)*(-1)=2(3)2⎡⎤-+⎣⎦*(-1)=11*(-1)=211(1)⨯--=22+1=23;②当3x ≥时,(3*x )*3=23,即22(3)323x ⨯+-=,解得:4x =,当3x <时,(3*x )*3=23,即2(23)323x ⨯⨯--=,解得:7x =-,综上:4x =或7-,故答案为:23;4或7-.【点睛】本题考查了定义新运算,有理数的混合运算,读懂题意,熟练掌握有理数混合运算法则是解本题的关键.15.B【解析】【分析】根据数轴,以及题意可以确定0b >,0a <,b a >,再把数和形结合起来,即可求解.【详解】根据点在数轴上的位置,∵满足0a b +>,0a b ⋅<,∴a ,b 异号,∴原点在B ,C 中间,且0b >,0a <,b a >,∴B 离原点更远,故原点的位置可能在B 处,故答案为:B .【点睛】本题主要考查数轴上点表示的数,有理数的加减运算,解题的关键是要把数和点对应起来,利用数形结合思想解决问题.16.见解析,1(4)1 3.52⎛⎫-+<+-<< ⎪⎝⎭【解析】【分析】先化简多重符合,然后在数轴上表示出各数,根据数轴的特点从左到右用“<”把他们连接起来即可.【详解】解:()44-+=-,1122⎛⎫+-=- ⎪⎝⎭,数轴表示如下所示:∴()141 3.52⎛⎫-+<+-<< ⎪⎝⎭【点睛】本题考查的是利用数轴表示有理数和有理数的大小比较,把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.17.(1)89-;(2)36【解析】【分析】(1)根据有理数的四则运算法则求解即可;(2)利用有理数乘法的运算律求解即可.【详解】(1)原式51(5)9=--÷-119=-+89=-(2)原式27213036=-+=【点睛】此题考查了有理数的乘方以及四则运算,解题的关键是掌握有理数的有关运算法则.18.(1)87x =;(2)2x =-【解析】【分析】(1)先去括号,然后移项,合并同类项,化系数为1进行求解即可;(2)先去分母,然后去括号,然后移项,合并同类项,化系数为1进行求解即可.【详解】解:(1)()()2152x x +=--去括号得:22510x x +=-+,移项得:25102x x +=-,合并得:78x =,化系数为1得:87x =(2)5178124x x +--=去分母得:2(51)(78)4x x +--=,去括号得:102784x x +-+=,移项得:107428x x -=--合并得:36x =-,化系数为1得:2x =-.【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法.19.(1)是,49x =;(2)16.2,67,0,4,0.51 【解析】【分析】(1)根据题目中给出的运算方法和有理数的概念求解即可;(2)根据有理数的概念求解即可.【详解】(1)∵无限循环小数可以写成分数的形式,∴无限循环小数是有理数;故答案为:是.设0.4x = ,则100.410x ⨯= ,即4.410x = ,故40.410x += ,即410x x +=,解得49x =;(2)根据非负有理数的概念可得,属于非负有理数的是:16.2,67,0,4,0.51 .故答案是:16.2,67,0,4,0.51 .【点睛】此题考查了有理数的概念,无限循环小数转化为分数等知识,解题的关键是熟练掌握有理数的概念.20.2a b -,12【解析】【分析】根据整式的加减运算法则先化简,去括号合并同类项,然后将字母的值代入计算即可.【详解】解:()()2222222332a b ab a b ab a b -+---,2222226263a b ab a b ab a b =-+--+,2a b =-;当2,3a b ==-,原式22(3)12=-⨯-=.【点睛】本题主要考查了整式的化简求值,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)10010a b c ++;(2)3k ;(3)999,3,333,333a b k a b k a b ++++【解析】【分析】(1)用百位数字×100+十位数字×10+个位数字即可;(2)根据a 、b 、c 的和可以被三整除,可得a +b +c =3k ,写成3的倍数形式即可;(3)先将三位数拆分为a +b +c +(99a +9b)两部分,第一部分用3k 表示,第二部分不动,然后乘法分配律写成3(k+33a+3b)即可.【详解】解:(1)M=100a+10b+c ,故答案为100a+10b+c ;(2)设k 表示任意一个整数,a 、b 、c 的和可以被三整除,∴a +b +c =3k ,故答案为:3k;(3)M=100a+10b+c,=a+b+c+(99a+9b),=3k+3(33a+3b),=3(k+33a+3b),∵而a、b、k都是整数,∴M可以被三整除,故答案为99a+9b;3k,33a+3b;k+33a+3b.【点睛】本题考查三位数能被3整除的特征,三个数位上的数字之和能能被3整除,可判断三位数能被3整除,掌握被3整除的代数式表示方法是解题关键.22.(1)4张长方形餐桌的四周可坐18人,8张长方形餐桌的四周可坐34人;(2)这样的餐桌需要22张.【详解】试题分析:解:(1)根据图中的规律可得:当n=4时,4n+2=4×4+2=18(人);当n=8时,4n+2=4×8+2=34(人),答:当4张餐桌拼在一起时,可以坐18人;当8张餐桌拼在一起时,可以坐标34人;(2)因为用餐的人数是90人,根据题意可得:4n+2=90,解得:n=22,答:需要22张餐桌.考点:探索数字与图形的规律、一元一次方程的应用点评:解决本题的关键是根据图形中的规律找到桌子的数量与人数之间的关系,然后列出一元一次方程,解一元一次方程求出餐桌的数量.23.(1)2.1万人;(2)游客人数最多是10月3号,最少的是10月8号,相差2.3万人;(3)17.7万人【解析】【分析】(1)根据表格数据知道,10月1日比9月30日多1.6万人次,然后得到10月1日的游客人次数;(2)分别计算出7天的游客人次数,比较即可;(3)将7天的总人次数进行相加即可.【详解】(1)∵9月30日的游客人数记为0.5万,∴10月1日的游客人数为0.5 1.6 2.1+=(万人);(2)根据图表,七天的游客人数分别为:0.5 1.6 2.1,2.10.8 2.9,2.90.4 3.3,3.30.4 2.9+=+=+=-=,2.90.8 2.1,2.10.2 2.3,2.3 1.2 1.1,1.10.11-=+=-=-=,所以,游客人数最多是10月3号,最少的是10月8号,相差:3.31 2.3-=(万人);(3)这一次黄金周期间游客在该地总人数为:2.1 2.9 3.3 2.9 2.1 2.3 1.1117.7+++++++=(万人);24.(1)7;31;21n +;(2)111124816+++;1116-;2021112-;(3)920111344⎛⎫⨯- ⎪⎝⎭【解析】【分析】(1)观察图形可知,每次划分,都在前一次的基础上增加两个等腰直角三角形,即可得到第3次的等腰直角三角形的个数,然后找出规律进行求解即可;(2)根据表格给的数据,找出所呈现的规律即可求解;(3)第1次划分的阴影部分面积31144==-,第2次划分的阴影部分面积2213111314444443⎛⎫=+⋅=+=- ⎪⎝⎭,第3次划分的阴影部分面积2331111111314444444434334⎛⎫=+⋅+⋅=++=- ⎪⎝⎭,则第n 次划分的阴影部分面积23111113144444n n ⎛⎫=++++=- ⎪⎝⎭K ,再由10111213201111144444+++++K 1234201234911111111114444444444⎛⎫=+++++-+++++ ⎪⎝⎭K K 进行求解即可【详解】解:(1)观察图形可知,每次划分,都在前一次的基础上增加两个等腰直角三角形,∴第3次划分等腰直角三角形的个数为5+2=7个,∵第1次划分有2×1+1=3个,第2次划分有2×2+1个,第三次划分有3×2+1=7个,∴第n 次划分有2121n n ⋅+=+个,设第x 次划分有63个等腰直角三角形,∴2163x +=,解得31x =,故答案为:7;31;21n +(2)根据题意可得:第4次划分的阴影部分面积1111112481616=+++=-,∵第1次划分,阴影部分面积11122==-,第2次划分,阴影部分面积1111244=+=-,第3次划分,阴影部分面积111112481=++=-,第4次划分的阴影部分面积1111112481616=+++=-,∴第n 次划分,阴影部分面积11111124822n n =++++=-K ,∴234202120211111111222222++++⋅⋅⋅+=-,故答案为:111124816+++,1116-,2021112-;(3)由图可知,第1次划分的阴影部分面积31144==-,第2次划分的阴影部分面积2213111314444443⎛⎫=+⋅=+=- ⎪⎝⎭,第3次划分的阴影部分面积2331111111314444444434334⎛⎫=+⋅+⋅=++=- ⎪⎝⎭,∴第n 次划分的阴影部分面积23111113144444n n ⎛⎫=++++=- ⎪⎝⎭K ∴10111213201111144444+++++K 1234201234911111111114444444444⎛⎫=+++++-+++++ ⎪⎝⎭K K 2091111113434⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭920111344⎛⎫=- ⎪⎝⎭.。
沪科版七年级上册数学期末考试试题及答案
沪科版七年级上册数学期末考试试卷一、单选题1.12的倒数是( ) A .2 B .﹣2 C .12 D .﹣12 2.下面计算正确的是( )A .224336x x x +=B .33a a -=C .32x x x -= D .2xy xy xy -=- 3.将141178万用科学记数法表示应为( )A .100.14117810⨯B .91.4117810⨯C .814.117810⨯D .7141.17810⨯4.若点P 是线段AB 上的点,则其中不能说明点P 是线段AB 中点的是( ). A .AP BP AB += B .2AB AP = C .AP BP = D .12BP AB = 5.下列两个生活、生产中现象:①用两个钉子就可以把木条固定在墙;①植树时,只要定出两棵树的位置就能确定同一行树所在直线;①从A 地到B 地架设电线,总是尽可能沿着直线架设;①把弯曲的公路修直就能缩短路程.其中可以用“两点之间线段最短”来解释现象为( )A .①①B .①①C .①①D .①① 6.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是 A .先打九五折,再打九五折 B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25%7.如图,O 是直线AD 上一点,射线,OC OE 分别平分,AOB BOD ∠∠,则COE ∠的大小为A .120°B .60°C .90°D .150°8.七年级某班共有学生x 人,其中男生占48%,那么女生人数是( )A .48%xB .(1﹣48%)xC .248x x D .145x x - 9.已知点O ,A ,B ,C 在数轴上的位置如图所示,O 为原点,BC =2,OA =OB ,若点C 所表示的数为m ,则点A 所表示的数为( )A .m ﹣2B .﹣m ﹣2C .﹣m+2D .m+210.如图,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( )A .400 cm 2B .500 cm 2C .600 cm 2D .4000 cm 2二、填空题11.合并同类项:2235a b a b -=______.12.如图是一个数值运算程序,当输入的数是﹣3时,输出的数是 _____.13.如果60AOB ∠=︒,=20AOC ∠︒,那么BOC ∠的度数是_______.14.若x =2是关于x 的一元一次方程mx ﹣n =3的解,则2﹣4m+2n 的值是_____. 15.某运动品牌店把一件T 恤衫按标价的八折出售,仍可获利20%,若该恤衫的进价为46元,则标价为_____元.16.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么原来的正方形的面积是_____cm 2.三、解答题17.计算:43116(2)31-+÷-⨯--.18.先化简,再求值221523243x xy xy x ⎡⎤⎛⎫--++ ⎪⎢⎥⎝⎭⎣⎦,其中2x =-,12y =19.解下列方程(组): (1)5147169x x ---=(2)33814x y x y -=⎧⎨-=⎩20.如图,线段AB =20,BC =15,点M 是AC 的中点.(1)求线段AM 的长度;(2)在CB 上取一点N ,使得CN :NB =2:3.求MN 的长.21.已知:A =3x 2y ﹣xy 2,B =﹣xy 2+3x 2y .(1)求2A ﹣B (结果要求化为最简);(2)若 |2﹣x|+(y+1)2=0,2A ﹣B 的值是多少?22.如图,直线AB ,CD 相交于点O ,且①AOC :①AOD=1:2,OE 平分①BOD(1)求图中①BOD 的补角度数;(2)若90EOF ∠=︒,求①COF 的度数.23.为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人,其中甲班超过46人,但不到90人,下面是供货商给出的演出服装的价格表:如果两班单独给每位同学购买一套服装,那么一共应付5020元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?24.为了解某市市民对“垃圾分类知识”的知晓程度.某数学学习兴趣小组对市民进行随机抽样的问卷调查.调查结果分为“A.非常了解”“B.了解”“C.基本了解”,“D.不太了解”四个等级进行统计,并将统计结果绘制成如下两幅不完整的统计图(图1,图2).请根据图中的信息解答下列问题.(1)这次调查的市民人数为______人,图2中,n ______;(2)补全图1中的条形统计图,并求在图2中“A.非常了解”所在扇形的圆心角度数;(3)据统计,2020年该市约有市民900万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有多少万人?据此,请你提出一个提升市民对“垃圾分类知识”知晓程度的办法.25.某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万m3?每人年平均用水量多少m3?(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?26.如图,以直线AB上一点O为端点作射线OC,使①BOC=70°,将一个直角三角板的直角顶点放在点O处.(注:①DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则①COE=°;(2)如图①,将直角三角板DOE绕点O转动,如果OD在①BOC的内部,且①BOD=50°,求①COE的度数;(3)将直角三角板DOE绕点O转动,如果OD在①BOC的外部,且①BOD=80°,请在备用图中画出三角板DOE的位置,并求出①COE的度数.参考答案1.A2.D3.B4.A5.D6.B8.B9.B10.A11.22a b -12.﹣8113.80︒或40︒14.-415.6916.40017.-918. x 2-xy+6, 11【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:原式=5x 2-(2xy -xy -6+4x 2)=5x 2-xy+6-4x 2=x 2-xy+6 当12,2x y =-=时,原式=()212(2)62---⨯+=4+1+6=11【点睛】此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.19.(1)x=1(2)21x y =⎧⎨=-⎩【分析】(1)去分母,去括号,移项、合并同类项即可;(2)用加减法解方程组即可.(1)解:去分母,得()()35118247x x --=-,去括号,得15x -3-18=8x -14,移项,得15x -8x=-14+3+18,合并同类项,得7x=7,两边同时除以7,得x=1;解:33814x yx y-=⎧⎨-=⎩①②,解:①×3-①得:5y=-5解得y=-1,把y=-1代入①得x=2,所以21xy=⎧⎨=-⎩.【点睛】本题考查了二元二次方程组和一元一次方程的解法;熟练掌握代入法和加减法解方程组是解决问题的关键.20.(1)52;(2)172【分析】(1)根据图示知AM=12AC,AC=AB﹣BC;(2)根据已知条件求得CN=6,然后根据图示知MN=MC+NC.【详解】解:(1)线段AB=20,BC=15,①AC=AB﹣BC=20﹣15=5.又①点M是AC的中点.①AM=12AC=12×5=52,即线段AM的长度是52.(2)①BC=15,CN:NB=2:3,①CN=25BC=25×15=6.又①点M是AC的中点,AC=5,①MC=12AC=52,①MN=MC+NC=172,即MN的长度是172.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的定义,熟练掌握线段中点的定义是解答本题的关键.21.(1)2A﹣B=3x2y﹣xy2;(2)2A﹣B=﹣14.【分析】(1)把A与B代入2A﹣B中,去括号合并即可得到结果;(2)利用非负数的性质求出x与y的值,代入计算即可求出结论.【详解】(1)①A=3x2y﹣xy2,B=﹣xy2+3x2y,①2A﹣B=2(3x2y﹣xy2)﹣(﹣xy2+3x2y)=6x2y﹣2xy2+xy2﹣3x2y=3x2y﹣xy2;(2)①|2﹣x|+(y+1)2=0,①x=2,y=﹣1,则2A ﹣B=2232(1)2(1)⨯⨯--⨯-=﹣12﹣2=﹣14.【点睛】本题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解答本题的关键.22.(1)①BOD 的补角是120°(2)120COF ∠=︒【分析】(1)根据:1:2AOC AOD =∠∠,180AOC AOD ∠+∠=︒可计算①AOC 、①AOD 的值,又因为180BOD AOD ∠+∠=︒,所以①AOD 即为①BOD 的补角,即①BOD 的补角是120°; (2)先根据180BOD AOD ∠=︒-∠计算①BOD 的度数,再借助OE 平分①BOD 求①DOE 的度数,然后按照DOF EOF DOE =-∠∠∠、180COF DOF =︒-∠∠逐一求解即可. (1)解:因为:1:2AOC AOD =∠∠,且180AOC AOD ∠+∠=︒, 所以1180603AOC ∠=⨯︒=︒,21801203AOD ∠=⨯︒=︒, 因为180BOD AOD ∠+∠=︒,所以①BOD 的补角是120°;(2)因为180********BOD AOD ∠=︒-∠=︒-︒=︒ ,又因为OE 平分①BOD ,所以11603022DOE BOD ∠=∠=⨯︒=︒, 因为90EOF ∠=︒,所以903060DOF EOF DOE =-=︒-︒=︒∠∠∠,所以180********COF DOF =︒-=︒-︒=︒∠∠.【点睛】本题主要考查了邻补角、角平分线的概念和性质,解题关键是熟练掌握与角有关的概念及计算.23.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元(2)甲班有50名同学,乙班有42名同学【分析】(1)若甲、乙两班联合起来购买服装,则每套是40元,计算出总价,即可求得比各自购买服装共可以节省多少钱;(2)设甲班有x 名学生准备参加演出,根据题意,显然各自购买时,甲班每套服装是50元,乙班每套服装是60元,根据等量关系:①两班共92人;①两班分别单独购买服装,一共应付5020元,列方程即可求解.(1)解:5020-92×40=5020-3680=1340(元).所以甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元;(2)解:设甲班有x 名学生,根据题意可知,甲班人数超过46,低于90,所以甲班每套50元,乙班低于45人,所以乙班每套60元,根据题意得()5060925020x x +-=,解得x=50,90-x=92-50=42.答:甲班有50名同学,乙班有42名同学.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.24.(1)1000,35;(2)图见解析,100.8°;(3)约有153万人;建议:市民通过网络等渠道增加对垃圾分类的了解,理解垃圾分类的重要意义.【分析】(1)从两个统计图中可以得到“C 组”有200人,占调查总人数的20%,可求出调查人数;计算出“A 组”所占的百分比,进而可求“B 组”所占的百分比,确定n 的值; (2)计算出“B 组”的人数,即可补全条形统计图;“A .非常了解”所占整体的28%,其所对应的圆心角就占360°的20%,求出360°×28%即可;(3)样本中“D 不太了解”的占17%,估计全市900万人中,也有17%的人“D 不太了解”,建议合理就可以.【详解】(1)这次调查的市民人数=20020%1000÷=(人),“A 组”所占的百分比=280100028%÷=,“B 组”所占的百分比=128%20%17%35%---=,故答案为:1000,35;(2)100035%350⨯=(人),补全条形统计图如图所示,36028%100.8︒⨯=︒,则“A .非常了解”所在扇形的圆心角度数为100.8°;(3)90017%153⨯=万人,则知晓程度为“D.不太了解”的市民约有153万人;建议:市民通过网络等渠道增加对垃圾分类的了解,理解垃圾分类的重要意义.【点睛】本题考查了条形统计图、扇形统计图,理清两个统计图中的数量关系是正确解答的关键,样本估计总体是统计中常用的方法.25.(1)年降水量为200万m3,每人年平均用水量为50m3;(2)该镇居民人均每年需节约16 m3水才能实现目标.【分析】(1)设年降水量为x万m3,每人年平均用水量为ym3,根据题意等量关系可得出方程组,解出即可.(2)设该镇居民人均每年用水量为z m3水才能实现目标,由等量关系得出方程,解出即可.【详解】解:(1)设年降水量为x万m3,每人年平均用水量为ym3,由题意得,1200020x1620y{1200015x2015y+=⋅+=⋅,解得:x200{y50==.答:年降水量为200万m3,每人年平均用水量为50m3.(2)设该镇居民人均每年用水量为z m3水才能实现目标,由题意得,12000+25×200=20×25z,解得:z=34.50﹣34=16m3.答:该镇居民人均每年需节约16 m3水才能实现目标.26.(1)20°;(2)①COE的度数为70°;(3)画图见解析,①COE的度数为100°或60°.【分析】(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则①COE=20°;(2)如图①,将直角三角板DOE绕点O转动,如果OD在①BOC的内部,且①BOD=50°,可知①COD=20进而可求①COE的度数;(3)将直角三角板DOE绕点O转动,如果OD在①BOC的外部,且①BOD=80°,在备用图中画出三角板DOE的两个位置,即可求出①COE的度数.【详解】(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则①COE=①DOE﹣①BOC=90°﹣70°=20°.故答案为:20°;(2)如图①,将直角三角板DOE绕点O转动,如果OD在①BOC的内部.①①BOD=50°,①①COD=①BOC﹣①BOD=70°﹣50°=20°,①①COE=①DOE﹣①COD=90°﹣20°=70°,答:①COE的度数为70°;(3)将直角三角板DOE绕点O转动,如果OD在①BOC的外部,且①BOD=80°,分两种情况讨论:①图3中,①①BOD=80°,①BOC=70°,①①DOC=①BOD﹣①BOC=10°,①①COE=①COD+①DOE=10°+90°=100°.①图4中,①①BOE=①DOE﹣①BOD=90°﹣80°=10°,①①COE=①BOC﹣①BOE=70°﹣10°=60°.综上所述:①COE的度数为100°或60°.答:①COE的度数为100°或60°.11。
沪科版七年级上册数学期末考试试卷含答案
沪科版七年级上册数学期末考试试卷含答案(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--沪科版七年级上册数学期末考试试卷一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.﹣D.2.(3分)下列计算正确的是()A.3a﹣2a=1 B.3a+2a=5a2C.3a+2b=5ab D.3ab﹣2ba=ab3.(3分)已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣24.(3分)如图,小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短5.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.6.(3分)某测绘装置上一枚指针原来指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°7.(3分)今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C.D.8.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b9.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.10.(3分)正整数n小于100,并且满足等式,其中[x]表示不超过x的最大整数,这样的正整数n有()个A.2 B.3 C.12 D.16二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为.12.(3分)如图,A、B、C三点在一条直线上,若CD⊥CE,∠1=23°,则∠2的度数是.13.(3分)已知x,y满足,则3x+4y= .14.(3分)若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是.15.(3分)己知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为.16.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有种换法.17.(3分)如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM= 度.18.(3分)如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E点,…,依此类推,经过次移动后该点到原点的距离为2018个单位长度.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算:(1);(2)(﹣1)2018÷(﹣5)2×+|﹣1|20.(8分)解方程:(1)7x﹣9=9x﹣7(2)21.(6分)解不等式,并把它的解集在数轴上表示出来.22.(5分)先化简,后求值:,其中|x﹣2|+(y+2)2=0.23.(6分)己知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|.24.(6分)在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使CD∥AB,并画出直线CD;②标出格点E,使CE⊥AB,并画出直线CE.(2)计算△ABC的面积.25.(7分)把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加小正方体.26.(9分)如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是,∠BOE的补角是.27.(10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:蔬菜品种西红柿青椒西兰花豆角批发价(元/kg)8零售价(元/kg)14请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?28.(11分)如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t 秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是(单位长度/秒);点B运动的速度是(单位长度/秒).②若点P为数轴上一点,且PA﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.﹣D.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.2.(3分)下列计算正确的是()A.3a﹣2a=1 B.3a+2a=5a2C.3a+2b=5ab D.3ab﹣2ba=ab【解答】解: A、3a﹣2a=a,此选项错误;B、3a+2a=5a,此选项错误;C、3a与2b不是同类项,不能合并,此选项错误;D、3ab﹣2ba=ab,此选项正确;故选:D.3.(3分)已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣2【解答】解:∵是关于x、y的方程4kx﹣3y=﹣1的一个解,∴代入得:8k﹣9=﹣1,解得:k=1,故选A.4.(3分)如图,小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短【解答】解:小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:D.5.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.6.(3分)某测绘装置上一枚指针原来指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°【解答】解:∵这枚指针按逆时针方向旋转周,∴按逆时针方向旋转了×360°=120°,∴120°﹣50°=70°,如图旋转后从OA到OB,即把这枚指针按逆时针方向旋转周,则结果指针的指向是南偏东70°,故选:C.7.(3分)今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C.D.【解答】解:由题意得,去年的价格×(1﹣20%)=a,则去年的价格=.故选C.8.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b【解答】解:由图可知,a<b<0,c>0,A、ac<bc,故本选项错误;B、ab>cb,故本选项正确;C、a+c<b+c,故本选项错误;D、a+b<c+b,故本选项错误.故选B.9.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.【解答】解:设A港和B港相距x千米,可得方程:.故选A.10.(3分)正整数n小于100,并且满足等式,其中[x]表示不超过x的最大整数,这样的正整数n有()个A.2 B.3 C.12 D.16【解答】解:∵,若x不是整数,则[x]<x,∴2|n,3|n,6|n,即n是6的倍数,∴小于100的这样的正整数有个.故选D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为×107.【解答】解:数据10 620 000用科学记数法可表示为×107,故答案为:×107.12.(3分)如图,A、B、C三点在一条直线上,若CD⊥CE,∠1=23°,则∠2的度数是67°.【解答】解:∵CD⊥CE,∴∠ECD=90°,∵∠ACB=180°,∴∠2+∠1=90°,∵∠1=23°,∴∠2=90°﹣23°=67°,故答案为:67°.13.(3分)已知x,y满足,则3x+4y= 10 .【解答】解:,①×2﹣②得:y=1,把y=1代入①得:x=2,把x=2,y=1代入3x+4y=10,故答案为:1014.(3分)若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是a<3 .【解答】解:由题意得a﹣3<0,解得:a<3,故答案为:a<3.15.(3分)己知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为 1 .【解答】解:2A+B=2(ay﹣1)+(3ay﹣5y﹣1)=2ay﹣2+3ay﹣5y﹣1=5ay﹣5y﹣3=5y(a﹣1)﹣3∴a﹣1=0,∴a=1故答案为:116.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有 3 种换法.【解答】解:设1元和5元的纸币各x张、y张,根据题意得:x+5y=20,整理得:x=20﹣5y,当x=1,y=15;x=2,y=10;x=3,y=5,则共有3种换法,故答案为:317.(3分)如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM= 36 度.【解答】解:由折叠的性质可得:∠MFE=∠EFC,∵∠BFM=∠EFM,可设∠BFM=x°,则∠MFE=∠EFC=2x°,∵∠MFB+∠MFE+∠EFC=180°,∴x+2x+2x=180,解得:x=36°,∴∠BFM=36°.故答案为:36.18.(3分)如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E点,…,依此类推,经过4035或4036 次移动后该点到原点的距离为2018个单位长度.【解答】解:由图可得:第1次点A向右移动1个单位长度至点B,则B表示的数为0+1=1;第2次从点B向左移动2个单位长度至点C,则C表示的数为1﹣2=﹣1;第3次从点C向右移动3个单位长度至点D,则D表示的数为﹣1+3=2;第4次从点D向左移动4个单位长度至点E,则点E表示的数为2﹣4=﹣2;第5次从点E向右移动5个单位长度至点F,则F表示的数为﹣2+5=3;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:(n+1),当移动次数为偶数时,点在数轴上所表示的数满足:﹣n,当移动次数为奇数时,若(n+1)=2018,则n=4035,当移动次数为偶数时,若﹣n=﹣2018,则n=4036.故答案为:4035或4036.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算:(1);(2)(﹣1)2018÷(﹣5)2×+|﹣1|【解答】解:(1)原式=18﹣30﹣8=﹣20;(2)原式=1××+=+=.20.(8分)解方程:(1)7x﹣9=9x﹣7(2)【解答】解:(1)7x﹣9=9x﹣77x﹣9x=﹣7+9﹣2x=2x=﹣1;(2)5(x﹣1)=20﹣2(x+2)5x﹣5=20﹣2x﹣45x+2x=20﹣4+57x=21x=3.21.(6分)解不等式,并把它的解集在数轴上表示出来.【解答】解:去分母,得:2(2x﹣1)+15≥3(3x+1),去括号,得:4x+13≥9x+3,移项,得:4x﹣9x≥3﹣13,合并同类项,得:﹣5x≥﹣10,系数化为1,得:x≤2,将解集表示在数轴上如下:.22.(5分)先化简,后求值:,其中|x﹣2|+(y+2)2=0.【解答】解:∵|x﹣2|+(y+2)2=0,∴x=2,y=﹣2,=x﹣x+y2﹣x+y2=﹣x+y2,当x=2,y=﹣2时,原式=﹣2+4=2.23.(6分)己知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|【解答】解:(1)∵∴①﹣②得:2(x+2y)=m+1∵x+2y=2,∴m+1=4,∴m=3,(2)∵a≥m,即a≥3,∴a+1>0,2﹣a<0,∴原式=a+1﹣(a﹣2)=324.(6分)在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使CD∥AB,并画出直线CD;②标出格点E,使CE⊥AB,并画出直线CE.(2)计算△ABC的面积.【解答】解:(1)如图所示:(2).25.(7分)把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为24 cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加 2 小正方体.【解答】解:(1)如图所示:(2)几何体表面积:2×(5+4+3)=24(平方厘米),故答案为:24;(3)最多可以再添加2个小正方体.故答案为:2.26.(9分)如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是∠BOF和∠DOF ,∠BOE的补角是∠AOE和∠DOE .【解答】解:(1)设∠BOF=α,∵OF是∠BOD的平分线,∴∠DOF=∠BOF=α,∵∠BOE比∠DOF大38°,∴∠BOE=38°+∠DOF=38°+α,∵OE⊥OF,∴∠EOF=90°,∴38°+α+α+α=90°,解得:α=26°,∴∠DOF=26°,∠AOC=∠BOD=∠DOF+∠BOF=26°+26°=52°;(2)∠COE=∠BOE,理由是:∵∠COE=180°﹣∠DOE=180°﹣(90°+∠DOF)=90°﹣∠DOF,∵OF是∠BOD的平分线,∴∠DOF=∠BOF,∴∠COE=90°﹣∠BOF,∵OE⊥OF,∴∠EOF=90°,∴∠BOE=90°﹣∠BOF,∴∠COE=∠BOE;(3)∠BOE的余角是∠BOF和∠DOF,∠BOE的补角是∠AOE和∠DOE,故答案为:∠BOF和∠DOF,∠AOE和∠DOE.27.(10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:蔬菜品种西红柿青椒西兰花豆角批发价(元/kg)8零售价(元/kg)14请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?【解答】解:(1)设批发西红柿xkg,西兰花ykg,由题意得,解得:,故批发西红柿200kg,西兰花100kg,则这两种蔬菜当天全部售完一共能赚:200×+100×6=960(元),答:这两种蔬菜当天全部售完一共能赚960元;(2)设批发西红柿akg,由题意得,(﹣)a+(14﹣8)×≥1050,解得:a≤100.答:该经营户最多能批发西红柿100kg.28.(11分)如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t 秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是 2 (单位长度/秒);点B运动的速度是 4 (单位长度/秒).②若点P为数轴上一点,且PA﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)【解答】解:(1)①画出数轴,如图所示:可得点M运动的速度是2(单位长度/秒);点N运动的速度是4(单位长度/秒);故答案为:2,4;②设点P在数轴上对应的数为x,∵PA﹣PB=OP≥0,∴x≥2,当2≤x≤8时,PA﹣PB=(x+4)﹣(8﹣x)=x+4﹣8+x,即2x﹣4=x,此时x=4;当x>8时,PA﹣PB=(x+4)﹣(x﹣8)=12,此时x=12,则=2或=4;(2)设再经过m秒,可得MN=4(单位长度),若M、N运动的方向相同,要使得MN=4,必为N追击M,∴|(8﹣4m)﹣(﹣4﹣2m)|=4,即|12﹣2m|=4,解得:m=4或m=8;若M、N运动方向相反,要使得MN=4,必为M、N相向而行,∴|(8﹣4m)﹣(﹣4+2m)|=4,即|12﹣6m|=4,解得:m=或m=,综上,m=4或m=8或m=或m=.。
沪科版七年级上册数学期末考试试卷及答案
沪科版七年级上册数学期末考试试题一、单选题1.某地一天早晨的气温是﹣2℃,中午温度上升了6℃,半夜比中午又下降了8℃,则半夜的气温是( )A .﹣2℃B .﹣4℃C .﹣6℃D .﹣8℃2.下列合并同类项的结果正确的是( )A .9a 2﹣2a 2=7B .22033--=xy xy C .3m 2+2n 2=5m 2n 2 D .4x 2y ﹣4yx 2=03.用科学记数法表示34 000 000的结果是( )A .0.34×108B .3.4×106C .34×106D .3.4×107 4.关于x 的方程2x m 3-=1的解为2,则m 的值是( ) A .2.5 B .1 C .-1 D .35.如图,点O 在直线AB 上,射线OC 平分℃DOB .若℃COB=35°,则℃AOD 等于( )A .35°B .70°C .110°D .145°6.小红将考试时自勉的话“细心、规范、勤思”写在一个正方体的六个面上,其平面展开图如图所示,那么在该正方体中,和“细”相对的字是( )A .规B .范C .勤D .思7.若x =2时,多项式ax 4+bx 2+5的值是3,则当x =﹣2时,多项式ax 4+bx 2+7的值是() A .﹣5 B .﹣3 C .3 D .58.已知℃A=55°34′,则℃A 的余角等于( )A.44°26′ B.44°56′ C.34°56′ D.34°26′9.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x 的不同值最多有()A.2个B.3个C.4个D.5个10.把如图1的两张大小相同的长方形卡片放置在图2与图3中的两个相同大长方形中,已知这两个大长方形的长比宽长20cm,若记图2中阴影部分的周长为C1,图3中阴影部分的周长为C2,那么C1-C2=()A.10cm B.20cm C.30cm D.40cm二、填空题11.32-的绝对值是__.12.若℃α=36°24′,则℃α的补角的度数为____.13.在等式3215⨯-⨯=的两个方格中分别填入一个数,使这两个数互为相反数且使等式成立,则第一个方格内的数是________.14.对于有理数a,b,规定一种新运算:a℃b=a×b+b.如2℃3=2×3+3=9,下列结论:℃(﹣3)℃4=﹣8;℃a℃b=b℃a;℃方程(x﹣4)℃3=6的解为x=5;℃(4℃3)℃2比4℃(3℃2)小8.其中正确的是_____.(把所有正确的序号都填上).15.已知关于,x y的方程组292x y mx y m+=⎧⎨-=⎩的解满足212x y+=,m=_________.16.一张长方形的桌子可坐6人,按下图将桌子拼起来.按这样的规律做下去第n张桌子可以坐_____人.三、解答题17.计算:(﹣1)2022﹣8÷(﹣2)﹣4×|﹣5|18.已知(x+2)2+|y ﹣12|=0,求5x 2y ﹣[2x 2y ﹣(xy 2﹣2x 2y )﹣4]﹣2xy 2的值. 19.解方程(组)(1)解方程:2132134x x x ++-=-; (2)解方程组:()()12323211x y x y x y -⎧=⎪⎨⎪+--=⎩.20.随着人们的生活水平的提高,家用轿车越来越多地进人普通家庭小明家买了一辆小轿车,他连续记录了7天中每天行驶的路程,以50km 为标准,多于50km 的记为“+”,不足50km 的记为“-”,刚好50km 的记为“0”,记录数据如下表:(1)请你估计小明家的小轿车一月(按30天计)行驶多少千米?(2)若每行驶100km 需要汽油8L ,汽油每升6.75元,试求小明家一年(按12个月计)的汽油费用是多少元?(L 为汽油单位:升)21.某市城市居民用电收费方式有以下两种:甲、普通电价:全天0.53元/度;乙、峰谷电价:峰时(早8:00﹣晚21:00)0.56元/度;谷时(晚21:00﹣早8:00)0.36元/度.(1)小明家估计七月份总用电量为200度,其中峰时电量为50度,则小明家应选择哪种方式付电费比较合算?(2)小明家八月份总用电量仍为200度,用峰谷电价付费方式比用普通电价付费方式省了14元,求八月份的峰时电量为多少度?22.线段AB=10,AB上有一动点C,以每秒2个单位的速度,按A一B一A的路径从点A出发,到达点B后又返回到点A停止,设运动时间为t(0≤t≤10)秒.(1)当t=6时,AC=.(2)用含t的式子表示线段AC的长;当0≤t≤5时,AC=;当5<t≤10时,AC=.(3)M是AC的中点,N是BC的中点,在点C运动的过程中,MN的长度是否发生变化?若不变化,求出MN的长,23.某中学组织七年级学生春游,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格.公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了2辆60座和5辆45座的客车,一天的租金为1600元.”请你根据以上信息,求出45座和60座的客车每辆每天的租金各是多少元.(2)公司经理问:“你们准备怎样租车?”,甲同学说:“我的方案是只租用45座的客车,但会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在一旁听了他们的谈话说:“从经济角度考虑,你还有别的方案吗?”请你设计租车方案,并说明理由.24.如图,点C、D是线段AB上两点,AC℃BC=3℃2,点D为AB的中点.(1)如图1所示,若AB=40,求线段CD的长.(2)如图2所示,若E为AC的中点,ED=7,求线段AB的长.25.现在有一种既隔热又耐老化的新型窗框材料——“断桥铝”,下图是这种材料做成的两种长方形窗框,已知窗框的长都是y米,宽都是x米.(1)若一用户需℃型的窗框2个,℃型的窗框3个,求共需这种材料多少米(接缝忽略不计)?(2)已知y>x,求一个℃型的窗框比一个℃型的窗框节约这种材料多少米?参考答案1.B2.D3.D4.B5.C6.B7.D8.D9.C10.D11.3 212.143°36′13.3 14.℃℃℃15.m=116.(4+2n )17.-1518.16219.(1)25x =;(2)376x y =⎧⎨=⎩ 【分析】(1)先去分母、去括号、移项,然后合并后把x 的系数化为1即可;(2)先变形,利用加减消元法求解可得;【详解】解:(1)2132134x x x ++-=-, 去分母得()()1242133212x x x -+=+-,去括号得12849612x x x --=+-,移项得12894612x x x --=+-,合并得52x -=-,系数化为1得25x =; (2)方程组变形得:61811x y x y -=⎧⎨-+=⎩①②, ℃+℃得212y =,解得6y =,代入℃中,解得:37x =,所以原方程组的解为376x y =⎧⎨=⎩. 20.(1)1500km ;(2)9720元.【分析】(1)用7天的标准量加上7天的记录数据除以7,求出平均每天的行驶路程,然后乘以30计算即可得解;(2)用一个月的行驶路程除以100乘8乘6.75,再乘以12个月,计算即可得解.【详解】(1)50×7-6-12+0+6-18+38-8=350(km )或:44+38+50+56+32+88+42=350(km )350÷7×30=1500(km )(2)1500100⨯8×6.75×12=9720(元) 21.(1)按峰谷电价付电费合算(2)八月份的峰时电量为100度【分析】(1)根据两种收费标准,分别计算出每种需要的钱数,然后判断即可.(2)设八月份的峰时电量为x 度,根据用峰谷电价付费方式比普通电价付费方式省了14元,建立方程后求解即可.(1)按普通电价付费:2000.53106⨯=(元),按峰谷电价付费:()500.56200500.3682⨯+-⨯=(元),82106<,所以按峰谷电价付电费合算;(2)设八月份的峰时电量为x 度,根据题意得:0.53200[0.560.36(200)]14x x ⨯-+-=,解得100x =.答:八月份的峰时电量为100度.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.(1)8(2)2t ,202t -;(3)MN 的长度不变,长度为5【分析】(1)根据点C 的运动速度和10AB =可得答案;(2)根据路程=速度⨯时间可求AC 的长度;(3)分情况讨论,再根据线段中点的定义可得答案.(1)当6t =时,动点C 运动了2612⨯=个单位,10AB =,2BC ∴=.1028AC ∴=-=.故答案为:8;(2)当510t <时,210BC t =-10(210)202AC AB BC t t ∴=-=--=-.故答案为:2t ,202t -;(3)当05t 时,11112(102)52222MN MC NC AC BC t t =+=+=⋅+-=; 当510t <时,1111(202)(210)52222MN MC NC AC BC t t =+=+=-+-=; 故MN 的长度不变,长度为5.23.(1)45座的客车每辆每天的租金为200元,60座的客车每辆每天的租金为300元(2)租用4辆45座的客车,1辆60座的客车总费用最低【分析】(1)设45座的客车每辆每天的租金为x 元,则60座的客车每辆每天的租金为(100)x +元,根据“租2辆60座和5辆45座的客车,一天的租金为1600元”,即可得出关于x 的一元一次方程,解之即可得出结论;(2)设只租60座的客车需要y 辆,则只租45座的客车需要(2)y +辆,根据总人数不变,即可得出关于y 的一元一次方程,解之即可得出y 值,进而可求出参加拓展训练的人数,设租45座的客车m 辆,租60座的客车n 辆,根据总人数45=⨯租用45座客车的辆数60+⨯租用60座客车的辆数,即可得出m ,n 的二元一次方程,结合m ,n 均为正整数,即可求出费用更低的租车方案.(1)设45座的客车每辆每天的租金为x 元,则60座的客车每辆每天的租金为(100)x +元, 依题意,得:52(100)1600x x ++=,解得:200x =,100300x ∴+=.答:45座的客车每辆每天的租金为200元,60座的客车每辆每天的租金为300元.(2)设只租60座的客车需要y 辆,则只租45座的客车需要(2)y +辆,依题意,得:6045(2)30y y =+-,解得:4y =,60240y ∴=,即参加拓展训练的一共有240人.设租45座的客车m 辆,租60座的客车n 辆,依题意,得:4560240m n +=,344n m ∴=-. m ,n 均为正整数,4m ∴=,1n =.∴新方案:租用4辆45座的客车,1辆60座的客车甲的费用:62001200⨯=(元)乙的费用:43001200⨯=(元)新方案的费用:42003001100⨯+=(元)∴租用4辆45座的客车,1辆60座的客车总费用最低.【点睛】本题考查了一元一次方程的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出二元一次方程. 24.(1)4(2)35【分析】(1)根据AC℃BC =3℃2,AB =40,可得24AC = ,再由点D 为AB 的中点.可得2201AD AB == ,即可求解; (2)设3,2AC x BC x == ,则5AB x =,根据点D 为AB 的中点.可得1522AD AB x == ,再由E 为AC 的中点,可得1322AE AC x == ,从而得到DE AD AE x =-=,即可求解. (1)解:℃AC℃BC =3℃2,AB =40, ℃3402432AC =⨯=+ , ℃点D 为AB 的中点. ℃2201AD AB == , ℃4CD AC AD =-= ;(2)解:设3,2AC x BC x == ,则5AB x = ,℃点D 为AB 的中点. ℃1522AD AB x == , ℃E 为AC 的中点, ℃1322AE AC x == , ℃5322DE AD AE x x x =-=-= , ℃ED =7,℃7x = ,℃535AB x == .25.(1)1213x y +;(2)y x -【分析】(1)根据题意列出算式,去掉括号后合并即可;(2)用1个℃型的窗框的用料减去1个℃型的窗框的用料,列出算式,去掉括号后合并即可.【详解】解:根据图形,1个℃型窗框用料(32x y +)米;1个℃型窗框用料(23x y +)米;(1)2个℃型窗框和3个℃型窗框共需这种材料(单位:米)2(32)3(23)x y x y +++6469x y x y =+++1213x y =+;(2)1个℃型窗框和1个℃型窗框多用这种材料(单位:米)(23)(32)x y x y +-+2332x y x y =+--y x =-.。
2022年沪科版数学七年级上册期末测试题附答案(共3套)
沪科版数学七年级上册期末测试题(一)(时间:120分钟 分值:120分)一选择题(本大题共10小题,每小题4分,满分40分)1.如图所示,a,b,c 表示有理数,则a,b,c 的大小顺序是 ( )A.a <b <c Ba <c <b C. b <a <c D.c <b <a 2.多项式3222m n --是( )A.二次二项式B.三次二项式C.四次二项式D.五次二项式 3.与方程12x x -=的解相同的方程是( )A. x-2=1+2xB. x=2x+1C.x=2x-1D. 12x x +=4.用代入法解方程组124y xx y =-⎧⎨-=⎩ 时,代人正确的是( )A.x-2-x=4B.x-2-2x=4C. x-2+2x=4D.x-1+x=4 5. 20011精确到百位的近似数可表示为( )A.200B. 200×510C. 2×410D. 2.00×410 6.如图,C 是线段AB 的中点,D 是CB 上一点,下列说法中错误的是( )A.CD=AC-BDB.CD=12BC C.CD=12AB -BD D.CD=AD-BC7.在8︰30时,时钟上的时针和分针之间的夹角为( ) A.85° B.75° C. 80° D.70° 8.化简[]235(27)a b a a b ----的结果是( ) A. -7a-10b B.5a+4b C.-a-4b D.9a-10b9.小明在做解方程题目时,不小心将方程题目中的一个常数污染了看不清楚,被污染的方A C DBb程是:11222y y -=-℘ ,小明想了一想,便翻看书后答案,此方程的解是53y =- ,很快补了这个常数,迅速地完成了作业,同学们,你能补出这个常数吗?它应是( ) A. 1 B.2 C.3 D.4二.填空题(本大题共4小题,每小题5分,满分20分)10.已知4a + 和2(3)b -互为相反数,那么3a b +等于 。
2024~2025学年沪科版数学七年级上册第1章有理数单元自测卷(含答案)
沪科版七上《有理数》单元自测卷一、单选题1. 若一个数的相反数是−9,则该数为( )A :−19B :19C :−9D :92. 下列各数中:0.4 、−(−5)、−(+7)、38、0、π、−1911非负有理数有()个A :1个B :2个C :3个D :4个3. 下列选项中可以表示−2⁵的是( )A :B :C :D :4. 计算( )A :-1B :-17C :1D :175. 下列说法中正确的是( )A :绝对值等于本身的数是非正数B :相反数等于本身的数有且只有0C :倒数等于本身的数有、0D :最小的自然数是16. 绝对值小于2024的整数有( )个A :4046B :4047C :4048D :40497. 已知m 、n 互为相反数,x 、y 互为倒数,a 的绝对值为3,则m +n−3xy +a的值为( )A :-6B :0C :0或-6D :0或622222⨯⨯⨯⨯-)()()()()(22222-⨯-⨯-⨯-⨯-22222-----)()()()()(22222-+-+-+-+-=---2332)()(1±8. 若,则关于a 、b 下列说法错误的是()A :必然一正一负B :负数的绝对值大于正数的绝对值C :a b <0D :9. 数轴上点M 、N 到原点的距离分别为6、8,则点M 、N 之间的距离为()A :2B :14C :2或14D :2或-1410. 已知的结果为( )A :-3或1 B :3或1 C :3或-1 D :-3或-1二、填空题11. 数1520000000用科学计数法表示为_________12. 化简:13. 数轴上互为相反数的两点间距离为10,则这两点的数为_________14. 已知,_________15. 已知x 、y 互为相反数,则的值为_________三、解答题16. 计算:① ② ③ 00<,且<b a ab +0<b a -c c b b a a abc ++则<,0=---)(34,5==n m =+mn n m ,则>0y y y y y x x x x x +++++++++23420242024432 =÷-⨯-59312)()(=⨯-+÷+---8144135122024)()()(=-⨯+-)((6015412113117. 已知m 、n 满足:①求出m 、n 的值;②分别计算出的值18. 规定一种新的运算方式:,例如,求:①②19. 体育课上老师随机挑选6位同学进行跳绳检查,以一分钟跳100个为标准,六位同学的成绩依次如下:-9、+14、+27、-13、0、+5(1)六位同学中哪位同学跳的最多?哪位同学跳的最少?跳的最多与跳的最少的相差多少?(2)六位同学的总成绩是否达标?超过或不足标准多少个?20. 如图,请回答下列问题:(1)比较大小:_____ ; _____(2)请用“>”连接(3)化简:沪科版七上《有理数》单元自测卷04)32=-++n m ())((m n m n m n +-、xy y x y x -+-=⊕3210910392109⨯-⨯+⨯-=⊕32⊕)(5121⊕⊕-b 2-a -bcb ac b a ---、、、、、ba a c cb ++---1.若一个数的相反数是−9,则该数为()A :−19B :19C :−9D :9答案:D 2.下列各数中:0.4 、−(−5)、−(+7)、38、0、π、−1911非负有理数有( )个A :1个 B :2个 C :3个 D :4个答案:D3.下列选项中可以表示−2⁵的是( )A :B :C :D :答案:A4.计算( )A :-1B :-17C :1D :17答案:B5.下列说法中正确的是( )A :绝对值等于本身的数是非正数B :相反数等于本身的数有且只有0C :倒数等于本身的数有、0D :最小的自然数是1答案:B6.绝对值小于2024的整数有( )个A :4046B :4047C :4048D :4049答案:B7.已知m 、n 互为相反数,x 、y 互为倒数,a 的绝对值为3,则m +n−3xy +a的值为( )A :-6B :0C :0或-6D :0或6答案:C8.若,则关于a 、b 下列说法错误的是( )A :必然一正一负B :负数的绝对值大于正数的绝对值C :a b <0D :答案:D9.数轴上点M 、N 到原点的距离分别为6、8,则点M 、N 之间的距离为()A :2 B :14 C :2或14 D :2或-14 22222⨯⨯⨯⨯-)()()()()(22222-⨯-⨯-⨯-⨯-22222-----)()()()()(22222-+-+-+-+-=---2332)()(1±00<,且<b a ab +0<b a -10.已知的结果为( )A :-3或1B :3或1C :3或-1D :-3或-1答案:A 二、填空题11.数1520000000用科学计数法表示为_________答案:1.52×10⁹12.化简:答案:313.数轴上互为相反数的两点间距离为10,则这两点的数为_________答案:5、-514.已知,_________答案:20或-2015.已知x 、y 互为相反数,则的值为_________答案:0三、解答题16.计算:−15④ 11⑤ 1917.已知m 、n 满足:①求出m 、n 的值;②分别计算出的值答案:(1)m=-3 ;n=4 ;(2)81、718.规定一种新的运算方式:,例如,求:c c b b a aabc ++则<,0=---)(34,5==n m =+mn n m ,则>0y y y y y x x x x x +++++++++23420242024432 =÷-⨯-59312)((=⨯-+÷+---8144135122024)()()(=-⨯+-)((6015412113104)32=-++n m ())((m n m n m n +-、xy y x y x -+-=⊕3210910392109⨯-⨯+⨯-=⊕②答案:(1)-1 ; (2)3419.体育课上老师随机挑选6位同学进行跳绳检查,以一分钟跳100个为标准,六位同学的成绩依次如下:-9、+14、+27、-13、0、+5(3)六位同学中哪位同学跳的最多?哪位同学跳的最少?跳的最多与跳的最少的相差多少?(4)六位同学的总成绩是否达标?超过或不足标准多少个?答案:(1)第三位同学跳的最多,127个;第四位同学跳的最少,87个;相差127-87=30个;(5)-9+14+27-13+0+5=24(个),故达标,超过标准24个。
沪科版七年级上册数学期中考试试题带答案
沪科版七年级上册数学期中考试试卷一、单选题1.在数-5,1,-3,0中,最小的数是()A .5-B .1C .3-D .02.将4400000000这个数用科学记数法表示为()A .84410⨯B .84.410⨯C .94.410⨯D .104.410⨯3.下面计算正确的是()A .3a ﹣2a =1B .3a 2+2a =5a 3C .3a+3b =6abD .2x+3x =5x4.实数a ,b 在数轴上的位置如图所示,以下说法正确的是()A .a+b=0B .b <aC .ab >0D .|b|<|a|5.下列式子:①abc ;②x 2﹣2xy+1y ;③1a ;④2212x x x ++-;⑤﹣23x+y ;⑥5π;⑦12x +.中单项式的个数()A .2B .3C .4D .56.某商品先按批发价a 元提高10%零售,后又按零售价降低10%出售,则最后的单价是()A .a 元B .0.99a 元C .1.21a 元D .0.81a 元7.若x=2是关于x 的方程2x+3m-1=0的解,则m 的值为()A .-1B .0C .1D .138.计算:(﹣1)2022+(﹣1)2021的结果是()A .﹣2B .2C .0D .﹣19.若m n n m -=-,且4m =,3n =,则2()(m n +=)A .1B .36C .1或36D .1或4910.观察下列图形:它们是按一定规律排列的,依照此规律,第20个图形共有★个()A .63B .57C .68D .60二、填空题11.若2x3ym 与-3xny2是同类项,则m-n=______.12.5.24万精确到___位.13.已知23x y -=,那么代数式324x y -+的值是________14.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c 就是完全对称式,下列四个代数式:①a ﹣b ﹣c ;②﹣a ﹣b ﹣c+2;③ab+bc+ca ;④a 2b+b 2c+c 2a ,其中是完全对称式的是_____.15.下面是一个简单的数值运算程序,当输入x 的值为﹣3时,则输出的数值是________.三、解答题16.计算:(1)222311162(1)|4|(2)()422-÷⨯-----⨯-(2)(153526812-+-+)÷(﹣124)17.化简:(1)﹣4x 2+3x+6x 2﹣2x+2(2)3(a 2﹣2ab )﹣(﹣5ab+3a 2﹣1)18.解方程:(1)已知5(x ﹣5)与2x+4互为相反数,求x .(2)2﹣213x +=12x +.19.若12|2x ﹣1|+13|y ﹣4|=0,试求多项式1﹣xy ﹣x 2y .20.已知:4x 2y 1+a 是关于x 、y 的5次单项式(1)分别求下列代数式的值:①a3+1;②(a+1)(a2﹣a+1)(2)由①、②你有什么发现或想法.21.在数轴上点A、B、C表示的数分别为a、b、c,如图所示,且点A、B到原点的距离相等.(1)用“>”“=”“<”填空:a+b____0,a-c_____c-b(2)化简|b-c|+|c-a|-|b-a|.(3)点M为数轴上另一点,M到A、B、C的距离分别记为MA、MB、MC.则MA+MB+MC的最小值是______.22.某家具厂生产一种餐桌和椅子,餐桌每张定价为500元,椅子每把定价为160元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张餐桌就赠送一把椅子:方案二:餐桌和椅子都按定价的80%付款.某餐厅计划添置100张餐桌和x把椅子x>,请用含x的代数式分别把两种方案的费用表示出来.(1)若100x=,方案一和方案二谁更省钱?(2)已知300(3)在(2)的条件下,如果两种方案可以同时使用,你能否帮助餐厅设计一种更为省钱的方案?试写出你的购买方案,并求出此时需付款多少元?23.如图,A、B两点在数轴上,这两点在数轴对应的数分别为﹣12、16,点P、Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位/秒、4个单位/秒,它们运动的时间为t秒,O点对应的数是0.(规定:数轴上两点A,B之间的距离记为AB)(1)如果点P、Q在A、B之间相向运动,当它们相遇时,t=,此时点P所走的路程为,点Q所走的路程为,则点P对应的数是.(2)如果点P、Q都向左运动,当点Q追上点P时,求点P对应的数;(3)如果点P、Q在点A、B之间相向运动,当PQ=8时,求P点对应的数.24.某市民广场地面铺设地砖,决定采用黑白2种地砖,按如下方案铺设,首先在广场中央铺2块黑色砖(如图①),然后在黑色砖的四周铺上白色砖(如图②),再在白色砖的四周铺上黑色砖(如图③),再在黑色砖的四周铺上白色砖(如图④),这样反复更换地砖的颜色,按照这种规律,直至铺满整个广场,观察下图,解决下列问题.(1)填表图形序号数①②③④…地砖总数(包括黑白地砖)2(2)按照这种规律第6个图形一共用去地砖多少块?(3)按照这种规律第n个图形一共用去地砖多少块?(用含n的代数式表示)参考答案1.A【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断出在数-5,1,-3,0中,最小的数是哪个即可.【详解】∵1>0>-3>-5,∴在数-5,1,-3,0中,最小的数是-5.故选A .【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.C 【解析】【分析】根据科学记数法的表示方法即可求得结果.【详解】解:用科学记数法表示:4400000000=94.410⨯.故选:C .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中a 1≤<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.D 【解析】【分析】根据合并同类项的法则即可求出答案.【详解】解:A 、原式=a ,故此选项不符合题意;B 、3a 2与2a 不是同类项,不能合并,故此选项不符合题意;C 、3a 与3b 不是同类项,故此选项符合题意;D 、2x+3x=5x ,故此选项符合题意.故选D .【点睛】本题考查了合并同类项,解题的关键在于能够熟练掌握合并同类项的方法.4.D【解析】【分析】根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.【详解】A.由图中信息可知,实数a为负数,实数b为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A错误;B.由图中信息可知,实数a为负数,实数b为正数,而正数都大于负数,故B错误;C.由图中信息可知,实数a为负数,实数b为正数,而异号两数相乘积为负,负数都小于0,故C错误;D.由图中信息可知,表示实数a的点到原点的距离大于表示实数b的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D正确.故选:D.5.A【解析】【分析】根据单项式的定义逐个判断即可得.【详解】①abc是单项式;②21 2x xyy-+是分式;③1a是分式;④2212x xx++-是分式;⑤23x y-+是多项式;⑥5π是单项式;⑦11222x x +=+是多项式;综上,单项式的个数是2个,故选:A .【点睛】本题考查了单项式,熟记定义是解题关键.6.B 【解析】【分析】原价提高10%后商品新单价为(110%)a +元,再按新价降低10%后单价为(110%)(110%)a +-,由此解决问题即可.【详解】解:由题意得(110%)(110%)0.99a a +-=(元).故选:B .【点睛】本题主要考查列代数式的应用,属于应用题型,找到相应等量关系是解答此题的关键.7.A 【解析】【分析】根据方程的解的定义,把x=2代入方程2x+3m ﹣1=0即可求出m 的值.【详解】解:∵x=2是关于x 的方程2x+3m ﹣1=0的解,∴2×2+3m ﹣1=0,解得:m=﹣1.故选A .8.C 【解析】【分析】先算乘方,然后算加法即可得到答案.【详解】解:原式=1+(-1)=0,故选C .【点睛】本题考查有理数的混合运算,掌握-1的奇次幂为-1,-1的偶次幂为1是解题关键.9.D 【解析】【分析】根据绝对值的性质即可求解.【详解】∵m n n m -=-,4m =,3n =∴m <n ,m=4或m=-4,n=3或n=-3,∴m=-4,n=3或n=-3,当m=-4,n=3时,2()m n +=1当m=-4,n=-3时,2()m n +=49故选D .【点睛】此题主要考查有理数的运算,解题的关键是熟知绝对值的性质.10.D 【解析】【分析】观察图形特点,从中找出规律,它们的★数分别是3,6,9,12,…,总结出其规律,根据规律求解.【详解】通过观察,第一个图形为:3×1=3,第二个图形为:3×2=6,第三个图形为:3×3=9,第四个图形为:3×4=12,…,所以第n 个图形为:3n ,当20n =时,32060⨯=,故选:D .【点睛】本题考查了规律型-图形的变化类,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的关键规律为第n 个图形有3n 个★.11.-1【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可求出n ,m 的值,再代入代数式计算即可.【详解】∵2x 3y m 与-3x n y 2是同类项,∴n=3,m=2,∴m-n=-1.故答案为-1.【点睛】本题考查同类项的定义,是一道基础题,比较容易解答,注意熟练掌握同类项这一概念.12.百【解析】【分析】根近似数的精确度进行求解即可.【详解】解:近似数5.24万中数字4在百位上,∴近似数5.24万精确到了百位.故答案为:百.【点睛】本题考查了近似数:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.13.-3【解析】【详解】试题解析:∵x-2y=3,∴3-2x+4y=3-2(x-2y)=3-2×3=-3;故答案为-3.14.②③【解析】【分析】若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,据此逐项判断即可.【详解】解:∵把a、b两个字母交换,b﹣a﹣c不一定等于a﹣b﹣c,a2b+b2c+c2a不一定等于b2b+a2c+c2a,∴①④不符合题意.∵若将代数式中的任意两个字母交换,代数式不变,∴②③符合题意.故答案为:②③.【点睛】此题主要考查了完全对称式的含义和应用,要熟练掌握,解答此题的关键是要明确:若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式.15.1【解析】【分析】把x=-3代入运算程序中计算即可得到结果.【详解】解:把x=-3代入运算程序得:[(-3)2-2]÷7=7÷7=1.故答案为1.【点睛】本题考查了代数式求值,熟练掌握运算法则是解题的关键.16.(1)﹣3912;(2)-9【解析】【分析】(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.(2)先把除法转化为乘法,然后根据乘法分配律可以解答本题.【详解】解:(1)222311162(1)|4|(2)()422-÷⨯-----⨯-243136()44()928=-⨯⨯---⨯-491364942=-⨯⨯-+13642=--+1392=-;(2)15351(()2681224-+-+÷-1535()(24),26812=-+-+⨯-12(20)9(10).=+-++-9=-.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.(1)2x 2+x+2;(2)﹣ab+1【解析】【分析】(1)根据合并同类项法则化简即可;(2)先去括号再合并同类项即可.【详解】解:(1)原式=(-4+6)x 2+(3﹣2)x+2=2x 2+x+2.(2)原式=3a 2﹣6ab+5ab ﹣3a 2+1=﹣ab+1.【点睛】本题考查了整式的加减,掌握去括号和合并同类项的法则是解题的关键.18.(1)x=3;(2)x=1【解析】【分析】(1)根据题意列出方程,求出方程的解即可得到x的值.(2)先去分母,再去括号、移项、合并同类项、系数化为1即可.【详解】(1)解:根据题意得:5(x﹣5)+2x+4=0,去括号得:5x﹣25+2x+4=0,移项合并得:7x=21,解得:x=3.(2)解:去分母得,12﹣2(2x+1)=3(1+x),去括号得,12﹣4x﹣2=3+3x,移项得,﹣4x﹣3x=3﹣12+2,合并同类项得,﹣7x=﹣7,系数化为1得,x=1.【点睛】本题主要考查了相反数的性质和解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.19.-2【解析】【分析】首先利用非负数的性质求得x、y的数值,进一步代入代数式求得数值即可.【详解】解:∵11|21||4|0 23x y-+-=,∴2x﹣1=0,y﹣4=0,解得:12x=,y=4,∴22111144121222xy x y⎛⎫--=-⨯-⨯=--=-⎪⎝⎭.【点睛】本题考查了代数式求值和绝对值非负性的知识,解答本题的关键在于利用非负数的性质求得x和y的值.20.(1)①9;②9;(2)a3+1=(a+1)(a2﹣a+1)【解析】【分析】(1)先根据单项式次数的定义求出a的值,再代入求出即可;(2)根据求出的结果得出即可.【详解】解:(1)∵4x2y1+a是关于x、y的5次单项式,∴2+1+a=5,解得:a=2,∴①a3+1=23+1=9;②(a+1)(a2﹣a+1)=(2+1)×(22﹣2+1)=9;(2)由①、②可知:a3+1=(a+1)(a2﹣a+1).【点睛】本题考查了单项式的次数、求代数式的值,能正确进行计算是解此题的关键.21.(1)=,>;(2)0;(3)a﹣b.【解析】【分析】(1)利用数轴的定义和加减法法则即可判断;(2)利用数轴判断绝对值里的式子的正负性去绝对值化简即可.(3)通过分析可发现当M在C处时MA+MB+MC的最小,此时MA+MB+MC=a-b 【详解】(1)因为A、B到原点的距离相等所以a+b=0,a-c表示a、c的距离,c-b表示c-b的距离,有图可知a-c>c-b.(2)解:原式=c﹣b+(a﹣c)﹣(a﹣b)=c﹣b+a﹣c﹣a+b=0(3)通过分析可发现当M在C处时MA+MB+MC的最小,此时:MA+MB+MC=a-b【点睛】此题考查的是数轴的概念,相反数的性质,利用绝对值的性质去绝对值.22.(1)方案一、方案二的费用分别为()16034000x +元、()12840000x +元;(2)方案二更省钱;(3)先按方案一购买100张餐桌,同时送100把椅子,再按方案二购买200把椅子,只需付75600元【解析】【分析】(1)若x >100,方案一需要的费用=餐桌的数量×每张餐桌的价格+每把椅子的价格×(要购买的椅子的数量-要购买的餐桌的数量),方案二需要的费用=(餐桌的数量×每张餐桌的价格+每把椅子的价格×要购买的椅子的数量)×80%,分别把两种方案的费用表示出来即可.(2)首先求出当x=300时,两种方案的费用各是多少;(3)先按方案一购买100张餐桌,同时送100把椅子,再按方案二购买200把椅子即可.【详解】解:(1)当100x >时,方案一:100500160(100)16034000x x ⨯+⨯-=+方案二:(100500160)80%12840000x x ⨯+⨯=+答:方案一、方案二的费用分别为()16034000x +元、()12840000x +元(2)当300x =时,①按方案一购买:50010016020082000⨯+⨯=(元)②按方案二购买:(100500160300)80%78400⨯+⨯⨯=(元)而8200078400>,所以方案二更省钱(3)先按方案一购买100张餐桌,同时送100把椅子,再按方案二购买200把椅子,即100×500+160×200×80%=75600(元),而82000>78400>75600,则先按方案一购买100张餐桌,同时送100把椅子,再按方案二购买200把椅子最省钱.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.23.(1)143,283,563,83-;(2)P对应的数为﹣40;(3)点P对应的数为163-或0.【解析】【分析】(1)由点P所走的路程+点Q所走的路程=AB,列出方程,可求t的值,即可求解;(2)设经过x秒点Q追上点P,由点Q所走的路程﹣点P所走的路程=AB,列出方程,可求t的值,即可求解;(3)设经过y秒后,PQ=8,可列方程|16﹣4y﹣(﹣12+2y)|=8,即可求解.【详解】解:(1)由题意可得:2t+4t=16+12,∴t14 3 =,∴点P所走的路程=2142833⨯=,点Q所走的路程=4145633⨯=,∵﹣12288 33 +=-,∴点P对应的数是8 3-,故答案为:1428568 3333-,,;(2)设经过x秒点Q追上点P,由题意可得:4x﹣2x=16+12,∴x=14,∴﹣12﹣2×14=﹣40,∴点P对应的数为﹣40;(3)设经过y秒后,PQ=8,|16﹣4y﹣(﹣12+2y)|=8,∴y1103=,y2=6,∴当y103=时,点P对应的数为﹣12+2101633⨯=-,当y=6时,点P对应的数为﹣12+2×6=0,综上所述:点P对应的数为163-或0.【点睛】本题考查了一元一次方程的应用,数轴,利用数形结合思想列出方程是本题的关键.n-24.(1)②12;③30;④56;(2)132块;(3)2(2n1)【解析】【分析】(1)根据图形数出砖的块数即可;(2)结合图形,发现:第一个图中有1×2块地砖,第二个图中有3×4块地砖,第三个图形有5×6,…,从而可求出第6个图形地砖的块数;(3)由(2)可知,第n个图形中地砖的数量=2n(2n-1).【详解】解:(1)②3×4=12;③5×6=30;④7×8=56;图形序号数①②③④…地砖总数(包括黑白地砖)2123056…(2)由(1)可知,按照这种规律第6个图形一共用去11×12=132块地砖;n-块地砖.(3)由(1)、(2)可知:第n个图形一共用去2(2n1)【点睛】本题考查了规律型—图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.。
七年级数学上册《第一章 有理数》单元测试卷-附答案(沪科版)
七年级数学上册《第一章 有理数》单元测试卷-附答案(沪科版)一、选择题1.向东行驶2km ,记作2km +,向西行驶7km 记作( )A .7km +B .7km -C .2km +D .2km -2.有理数中,负数的个数为( )A .1B .2C .3D .43.下列四个数中,绝对值最小的数是( )A .-3B .0C .1D .24.绍兴市1月份某天最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是( ) A .2 ℃B .8℃C .8℃D .2℃5.2023的倒数是( )A .-2023B .3202C .12023-D .120236.下列各组数中,互为相反数的是( )A .1||3-和13-B .1||3-和3-C .1||3-和13D .1||3-和37.有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a b >B .0ab >C .a b >D .0a -<8.若0a b +>,且0ab <,则以下正确的选项为( )A .a ,b 都是正数B .a ,b 异号,正数的绝对值大C .a ,b 都是负数D .a ,b 异号,负数的绝对值大9.宁波文创港三期已正式开工建设,总建筑面积约2272000m ,272000用科学记数法表示,正确的是( ) A .427.210⨯B .52.7210⨯C .42.7210⨯D .60.27210⨯10.下列说法不正确的是( )A .近似数1.8与1.80表示的意义不同B .0.0200精确到0.0001C .5.0万精确到万位D .1.0×104精确到千位二、填空题11.如果向西走30米记作30-米,那么20+米表示 . 12.数a ,b 在数轴上对应点的位置如图所示,化简a-|b-a|= .13.某地一天早晨的气温是2C ︒-,中午温度上升了9C ︒,则中午的气温是 ℃. 14.近似数68.4万精确到 位.三、计算题15.计算(1)-7-11+4-(-2) (2)(-2)×(-5)÷(-5)+9 (3)()155********⎛⎫-+-⨯-⎪⎝⎭ (4)()242512339--⨯---÷⎡⎤⎣⎦. 四、解答题16.把下列有理数填入它属于的集合的圈内:17.已知:〡a 〡=3,b 是最大的负整数,求a-b 的值。
沪科版七年级数学下册期末测试卷-带参考答案
沪科版七年级数学下册期末测试卷-带参考答案一、选择题(本大题共10小题,每小题4分,共40分)1.下列各数是无理数的是()A.2 024 B.0 C.227 D. 32.某细胞的直径约为0.000 006 m,将数据0.000 006用科学记数法表示为() A.6×10-6B.0.6×10-5 C.6×10-7 D. 6×10-53.下列运算正确的是()A.(a4)3=a7B.a6÷a3=a2C.(3a-b)2=9a2-b2D.-a4·a6=-a104.下列各选项中正确的是()A.若a>b,则a-1<b-1 B.若a>b,则a2>b2C.若a>b,且c≠0,则ac>bc D.若a|c|>b|c|,则a>b5.下列因式分解正确的是()A. a2-2a+1=a(a-2)+1B. a2+b2=(a+b)(a-b)C. a2+4ab-4b2=(a-2b)2D. -ax2+4ax-4a=-a(x-2)26.已知a+b=5,ab=3,则ba+ab的值为()A.6 B.193 C.223D.87.如图,不能说明AB∥CD的有()①∠DAC=∠BCA;②∠BAD=∠CDE;③∠DAB+∠ABC=180°;④∠DAB=∠DCB.A. 1个B. 2个C. 3个D. 4个(第7题)8.如图,直线l1∥l2,AB⊥CD,∠1=22°,那么∠2的度数是()(第8题)A .68°B .58°C .22°D .28°9.若关于x 的不等式组⎩⎪⎨⎪⎧x2-1<2-x 3,a -3x ≤4x -2有且仅有3个整数解,且关于y 的方程a -y 3=2a -y5+1的解为负整数,则符合条件的整数a 的个数为( ) A .1B .2C .3D .410.我国宋朝数学家杨辉提出“杨辉三角”(如图),此图揭示了(a +b )n (n 为非负整数)展开式的项数及各项系数的有关规律.(第10题)例如: (a +b )0=1; (a +b )1=a +b ; (a +b )2=a 2+2ab +b 2; (a +b )3=a 3+3a 2b +3ab 2+b 3; (a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4; ……请你猜想(a +b )9的展开式中所有系数的和是( ) A .2 048B .512C .128D .64二、填空题(本大题共4小题,每小题5分,共20分) 11.181的算术平方根为________.12.已知a 2-2a -3=0,则代数式3a (a -2)的值为________.13.将两个直角三角尺按如图的方式放置,点E 在AC 边上,且ED ∥BC ,∠C第 3 页 共 10 页=30°,∠F =∠DEF =45°,则∠AEF =______.(第13题)14.观察下列方程和它们的解:①x +2x =3的解为x 1=1,x 2=2;②x +6x =5的解为x 1=2,x 2=3;③x +12x =7的解为x 1=3,x 2=4.(1)按此规律写出关于x 的第n 个方程为________________________; (2)(1)中方程的解为__________________. 三、(本大题共2小题,每小题8分,共16分) 15.计算:-12+|-2|+3-8+(-3)2.16.解不等式组:⎩⎪⎨⎪⎧2(2x -1)≤3(1+x ),x +13<x -x -12.四、(本大题共2小题,每小题8分,共16分) 17. 先化简,再求值:⎝ ⎛⎭⎪⎫1-1a +1÷2a a 2-1,其中a =-3.18.已知5a +2的立方根是3,3a +b -1的算术平方根是4,c 是13的整数部分,求3a -b +c 的平方根.五、(本大题共2小题,每小题10分,共20分) 19.在如图所示的网格中,画图并填空:(1)画出三角形ABC 向右平移6个小格得到的三角形A 1B 1C 1; (2)画出三角形A 1B 1C 1向下平移2个小格得到的三角形A 2B 2C 2;(3)如果点M 是三角形ABC 内一点,点M 随三角形ABC 经过(1)、(2)两次平移后得到的对应点是M 2,那么线段MM 2与线段AA 2的位置关系是________.(第19题)20.已知点A,B在数轴上所对应的数分别为mx-7,x-87-x,若A,B两点在原点的两侧且到原点的距离相等.(1)当m=2时,求x的值;(2)若不存在满足条件的x的值,求m的值.六、(本题满分12分)21.如图,已知∠EDC=∠GFD,∠DEF+∠AGF=180°.(1)请判断AB与EF的位置关系,并说明理由;(2)过点G作线段GH⊥EF,垂足为H,若∠DEF=30°,求∠FGH的度数.(第21题)第5 页共10 页七、(本题满分12分)22.实践与探索:如图①,边长为a的大正方形里有一个边长为b的小正方形,把图①中的阴影部分通过剪切拼成一个长方形(如图②所示).(第22题)(1)上述操作能验证的等式是:__________.(填“A”“B”或“C”)A.a2-b2=(a+b)(a-b)B.a2-2ab+b2=(a-b)2C.a2+ab=a(a+b)(2)请应用这个等式完成下列各题:①已知4a2-b2=24,2a+b=6,则2a-b=________.②计算:9×(10+1)(102+1)(104+1)(108+1)(1016+1).八、(本题满分14分)23.已知直线PQ∥MN,把一个三角尺(∠A=30°,∠C=90°)按如图①的方式放置,点D,E,F是三角尺的边与平行线的交点.(1)①∠PDC,∠MEC,∠BCE之间有怎样的数量关系?请说明理由;②若∠AEN=∠A,则∠BDF=________;(2)将图①中的三角尺进行适当转动,得到图②,直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG,且有∠CEG=∠CEM,求∠BDF∠GEN的值.(第23题)第7 页共10 页答案一、1.D 2.A 3.D 4.D 5.D 6.B 7.C 8.A9.C 思路点睛:解不等式组得⎩⎪⎨⎪⎧x <2,x ≥a +27.根据不等式组有且仅有3个整数解得到a 的取值范围.再解方程a -y 3=2a -y 5+1得y =-a +152.根据解为负整数,得到另一个a 的取值范围.再取两个a 的取值范围的公共部分即可. 10.B二、11.13 12.9 13.165° 14.(1)x +n (n +1)x=2n +1 (2)x 1=n ,x 2=n +1三、15.解:原式=-1+2+(-2)+3=-1+2-2+3=2. 16.解:⎩⎪⎨⎪⎧2(2x -1)≤3(1+x ),①x +13<x -x -12,② 解不等式①,得x ≤5.解不等式②,得x >-1. 所以不等式组的解集为-1<x ≤5.四、17.解:原式=⎝ ⎛⎭⎪⎫a +1a +1-1a +1÷2a(a +1)(a -1)=a a +1·(a +1)(a -1)2a =a -12.当a =-3时,原式=-3-12=-2.18.解:因为5a +2的立方根是3, 3a +b -1的算术平方根是4,所以5a +2=27,3a +b -1=16.所以a =5,所以3×5+b -1=16,所以b =2.因为c 是13的整数部分,3<13<4,所以c =3.所以3a -b +c =3×5-2+3=16.所以3a -b +c 的平方根是±4. 五、19.解:(1)如图,三角形A 1B 1C 1即为所作.(2)如图,三角形A 2B 2C 2即为所作.(第19题) (3)平行20.解:(1)根据题意,得mx-7+x-87-x=0.把m=2代入,得2x-7+x-87-x=0,解得x=10.经检验,x=10是分式方程的解.所以x=10.(2)将mx-7+x-87-x=0化为整式方程为m-(x-8)=0.根据题意,得x-7=0,所以x=7.把x=7代入m-(x-8)=0,得m-(7-8)=0,解得m=-1.六、21.解:(1)AB∥EF,理由:因为∠EDC=∠GFD,所以DE∥GF,所以∠DEF=∠GFE.因为∠DEF+∠AGF=180°,所以∠GFE+∠AGF=180°,所以AB∥EF.(2)如图,因为GH⊥EF,所以∠GHF=90°.因为∠GFE=∠DEF=30°所以∠FGH=180°-∠GHF-∠GFE=180°-90°-30°=60°.(第21题)七、22.解:(1)A(2) ①4②9×(10+1)(102+1)(104+1)(108+1)(1016+1)=(10-1)(10+1)(102+1)(104+1)(108+1)(1016+1)第9 页共10 页=(102-1)(102+1)(104+1)(108+1)(1016+1)=(104-1)(104+1)(108+1)(1016+1)=(108-1)(108+1)(1016+1)=(1016-1)(1016+1)=1032-1.八、23.解:(1)①∠BCE=∠PDC+∠MEC.理由:过点C向右作CH∥PQ,所以∠PDC=∠DCH.因为PQ∥MN,所以CH∥MN所以∠MEC=∠ECH所以∠BCE=∠DCH+∠ECH=∠PDC+∠MEC.②60°(2)设∠CEG=∠CEM=x,则∠GEN=180°-2x.由(1)可得∠PDC+∠MEC=∠BCE=90°所以∠CDP=90°-∠CEM=90°-x所以∠BDF=90°-x.所以∠BDF∠GEN=90°-x180°-2x=12.。
沪科版七年级下册数学期末考试试卷带答案
沪科版七年级下册数学期末考试试题一、单选题1.下列实数中,无理数是()A B C .17D .3.141592.若x y >,则下列式子中正确的是()A .33x y->-B .33x y ->-C .33x y ->-D .33x y->-3.下列各式计算的结果为5的是()A .3+2B .10÷2C .⋅4D .−324.下列多项式在实数范围内不能因式分解的是()A .x 3+2xB .a 2+b 2C .y 2+y +14D .m 2-4n 25.若分式23x x -+有意义,则x 的取值范围是()A .x≠﹣3B .x≥﹣3C .x≠﹣3且x≠2D .x≠26.如图,将周长为8的△ABC 沿BC 方向平移1个单位长度得到DEF ∆,则四边形ABFD 的周长为()A .8B .10C .12D .167.如图,已知//a b ,直角三角板的直角顶点在直线b 上,若158∠= ,则下列结论正确的是()A .342∠=B .4138∠=C .542∠=D .258∠=8.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+q=0,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是()A .pB .qC .mD .n9.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本3元,每支钢笔5元,求小明最多能买几支钢笔.设小明买了x 支钢笔,依题意可列不等式为()A .3x +5(30﹣x )≤100B .3(30﹣x )+5≤100C .5(30﹣x )≤100+3xD .5x ≤100﹣3(30+x )10.若()2231x m x +-+是完全平方式,x n +与2x +的乘积中不含x 的一次项,则m n 的值为A .-4B .16C .4或16D .-4或-16二、填空题11.49的平方根是_____.12.因式分解:23m n n -=__________.13.如图,用相同的小正方形按照某种规律进行摆放.根据图中小正方形的排列规律,猜想第n 个图中小正方形的个数为___________(用含n 的式子表示)14.式子“1 23 4... 100+++++”表示从1开始的100个连续自然数的和,由于式子比较长,100书写不方便,为了简便起见,我们将其表示为1001n n =∑,这里“∑”是求和符号,如422221123430n =+++=∑,通过对以上材料的阅读,计算()2019111n n n ==+∑__________.三、解答题15.若1+1=3,则r2KB+2的值为_____.16.(1)()10312753π-⎛⎫+-+- ⎪⎝⎭;(2)计算:()()()252x x x x -+--;17.(1)先化简:244411x x x x x x --+⎛⎫-÷⎪--⎝⎭,并将x 从0,1,2中选一个合理的数代入求值;(2)解不等式组:()432326x x x x -⎧+≥⎪⎨⎪+>--⎩①②,并把它的解集在如图的数轴上表示出来;18.如图,已知,A AGE D DGC ∠=∠∠=∠.(1)试说明://AB CD ;(2)若21180∠+∠= ,且230BEC B ∠=∠+ ,求B Ð的度数.19.某商场计划购进A 、B 两种新型节能台灯,已知B 型节能台灯每盏进价比A 型的多40元,且用3000元购进的A 型节能台灯与用5000元购进的B 型节能台灯的数量相同.(1)求每盏A 型节能台灯的进价是多少元?(2)商场将购进A 、B 两型节能台灯100盏进行销售,A 型节能台灯每盏的售价为90元,B 型节能台灯每盏的售价为140元,且B 型节能台灯的进货数量不超过A 型节能台灯数量的2倍.应怎样进货才能使商场在销售完这批台灯时利最多?此时利润是多少元?20.数学活动课上,老师准备了若千个如图1的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a 的长方形.并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积:方法1:,方法2:_;(2)观察图2,请你写出代数式:()222,,a b a b ab ++之间的等量关系;(3)根据(2)题中的等量关系,解决如下问题:①已知:225,13a b a b +=+=,求ab 的值;②已知()()22201920185a a -+-=,求()()20192018a a --的值.21.淮河汛期即将来临,防汛指挥部在一危险地带两岸各安置了-探照灯,便于夜间查看河面及两岸河堤的情况.如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是a o /秒,灯B 转动的速度是b o /秒,且,a b 满足:a 1的整数部分,b 是不等式()213x +>的最小整数解.假定这--带淮河两岸河堤是平行的,即//PQ MN ,且45BAN ∠= .(1)如图1,a=_____,b=;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光東互相平行?(3)如图2,两灯同时转动,在灯A射线到达AN之前。
沪科版七年级上册数学期中考试试卷附答案
沪科版七年级上册数学期中考试试题一、单选题1.如果+15%表示增长15%那么﹣80%表示()A .增长20%B .下降20%C .增长80%D .下降80%2.在数轴上表示下列各数的点,其中离原点最近的是()A .﹣0.4B .0.6C .1D .﹣23.近似数0.7070的精确度是()A .精确到百分位B .精确到十万分位C .精确到万分位D .精确到千分位4.下列各式中与多项式a b c --不相等的是()A .()a b c -+B .()a b c --C .()()a b c -+-D .()b c a ---5.关于多项式3x 3y ﹣4xy 4+2x 2y ﹣1,下面说法正确的是()A .各项分别是3x 3y ,4xy 4,2x 2yB .多项式的次数是4次C .按x 的升幂排列是1﹣4xy 4+2x 2y+3x 3yD .这是个五次四项式6.有若干本书摆放在书架上.如果每层摆8本,可摆x 层,余下6本无处可摆;如果每层摆12本,可摆(x ﹣1)层,且最后一层少于12本,则最后一层摆放的本数是()A .(18﹣4x )本B .(6﹣4x )本C .(30﹣4x )本D .(18﹣8x )本7.方程1223x x x -+-=去分母,正确的是()A .6x ﹣3(x ﹣1)=x+2B .6x ﹣3(x ﹣1)=2(x+2)C .x ﹣3(x ﹣1)=2(x+2)D .x ﹣(x ﹣1)=2(x+2)8.对于有理数a ,b ,c ,有(a+100)b =(a+100)c ,下列说法正确的是()A .若a≠﹣100,则b ﹣c =0B .若a≠﹣100,则bc =1C .若b≠c ,则a+b≠cD .若a =﹣100,则ab =c9.已知|a -2|+(b +3)2=0,则a b 的值是()A .-6B .6C .-9D .910.如图1是竖式和横式两种无盖的长方体纸盒,各个面都是用如图2中的长方形或正方形纸板做成的;现有2021张正方形纸板和a 张长方形纸板,若做两种纸盒若干个,纸板恰好全部用完,则a 的值可以是()A .4044B .4045C .4046D .4047二、填空题11.根据第七次全国人口普查结果,全国人口约1412000000人.用科学记数法表示数据1412000000得1.412×10n ,则n =___.12.一个多项式减去x 2﹣2y 2等于x 2+y 2,则这个多项式是___.13.若216n -=,则424n ⨯-=_________.14.观察下列方程:第1个:1142x x -+=的解是x =2;第2个:2162x x -+=的解是x =3第3个:3182x x -+=的解是x =4第4个:41102x x -+=的解是x =5.(1)第5个方程的解是x =___;(2)解是x =2022的方程是___.15.若()2320x y -++=,则2x y +的值为____.三、解答题16.计算:﹣136÷(﹣16)2+(﹣0.4)×212.17.若代数式4x ﹣5与3x ﹣6的值互为相反数,求x 的值.18.一个三角形一边长为a b +,另一边长比这条边大2a b +,第三边长比这条边小3a b -,求这个三角形周长.19.某仓库在一周的货品运输中,进出情况如表所示(进库为正,出库为负,单位:吨).星期一星期二星期三星期四星期五星期六星期天合计+26﹣26+42﹣30﹣25﹣9+6表中星期五的进出数被墨水涂污了.(1)请算出星期五货品的进出数;(2)如果进出货品的装卸费都是每吨10元,那么这一周要付多少元装卸费?20.(1)下面是解方程20.30.410.50.3x x---=的主要过程:解:原方程化为203104153x x---=去分母,得3(20x﹣3)﹣5(10x﹣4)=15;去括号,得60x﹣9﹣50x+20=15;移项,得60x﹣50x=15+9﹣20;合并同类项,得10x=4(合并同类项法则),把未知数x的系数化为1,得x=0.4.请从长方形框中选择与方程变形对应的依据,并将依据的序号填在相应的横线上;(2)仿照上例解方程:当x取何值时,代数式0.10.2130.020.5x x-+-=.(不需要指出每步的依据)21.已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简4A﹣6B;(2)当x+y=67,xy=﹣1,求4A﹣6B的值.22.观察下列图形与等式:根据图形与等式之间的规律,解答下列问题:(1)写出第⑦个等式:;写出第n个等式:;(用含有n的式子表示)(2)求出10+11+…+80的值.23.【阅读理解】根据合并同类项法则,得4x﹣2x+x=(4﹣2+1)x=3x;类似地,如果把(a+b)看成一个整体,那么4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b);这种解决问题的思想方法被称为“整体思想”,在多项式的化简与求值中,整体思想的应用极为广泛.【尝试应用】(1)把(a﹣b)2看成一个整体,合并4(a﹣b)2﹣6(a﹣b)2+8(a﹣b)2的结果是;(2)已知x2﹣2y=1,求2021x2﹣4042y+1的值;【拓展探索】(3)已知a﹣2b=2,2b﹣c=﹣5,c﹣d=9,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.24.已知A=mx﹣x,B=﹣mx﹣3x+5m.(1)用含m,x的式子表示3A﹣2B;(2)若3A﹣2B的值与字母m的取值无关,求x的值;(3)利用(2)中的数学方法解决问题:经销公司计划购进甲、乙两种型号的口罩共30箱,甲型口罩每箱进价为700元,销售利润率为40%;乙型口罩每箱进价为500元,售价为每箱800元购进口罩后,该公司决定:每售出一箱乙型口罩,返还顾客现金a元,甲型口罩售价不变如果购进甲型口罩x箱,那么购进乙型口罩箱,当购进的30箱口罩全部售出后,所获利润为元(用含a,x的式子表示);若无论购进甲型口罩是多少箱,最终获利都相同,则a的值是.参考答案1.D【解析】【分析】根据正负数的意义,求解即可.【详解】解:由题意可得正数代表增长,则负数代表下降那么﹣80%表示下降80%故选:D【点睛】此题考查了正负数的意义,解题的关键是理解正负数的意义.2.A【解析】【分析】分别求出各数的绝对值,找出绝对值最小的即可得.【详解】解:因为0.40.4-=,0.60.6=,11=,22-=,所以在数轴上,离原点最近的是表示0.4-的点,故选:A .【点睛】本题考查了绝对值的意义、数轴,熟练掌握绝对值的意义是解题关键.3.C 【解析】【详解】解:因为近似数0.7070的最后一个数字0是在万分位上,所以近似数0.7070的精确度是精确到万分位,故选:C .【点睛】本题考查了近似数的精确度,熟记近似数的精确度的定义(精确度表示一个近似数与准确数的接近程度.一般的来说,一个近似数四舍五入到哪一位,就说这个数的精确度在哪一位)是解题关键.4.B 【解析】【分析】根据去括号的法则逐一对每个选项进行去括号,从而可得答案.【详解】解:(),a b c a b c -+=--故A 不符合题意,(),a b c a b c --=-+故B 符合题意,()(),a b c a b c -+-=--故C 不符合题意,(),b c a b c a a b c ---=--+=--故D 不符合题意,故选:.B 【点睛】本题考查的是去括号,掌握去括号的法则是解题的关键.5.D【解析】【分析】根据多项式的性质,对各个选项逐个分析,即可得到答案.【详解】解:根据题意,各项分别是3x3y,-4xy4,2x2y,-1,故选项A错误;多项式的次数是5次,故选项B错误;按x的升幂排列是-1-4xy4+2x2y+3x3y,故选项C错误;多项式3x3y﹣4xy4+2x2y﹣1,是个五次四项式,故选项D正确;故选:D.【点睛】本题考查了多项式的知识;解题的关键是熟练掌握多项式的性质,从而完成求解.6.A【解析】【分析】结合题意,根据代数式的性质,得书的总数;再根据题意,通过去括号、合并同类项运算,即可得到答案.【详解】∵每层摆8本,可摆x层,余下6本无处可摆x+本∴书的总数为:86∴如果每层摆12本,可摆(x﹣1)层,且最后一层少于12本,则最后一层摆放的本数是:()x x x x x+--=+-+=-+86121861212418⎡⎤⎣⎦本,即(18﹣4x)本故选:A.【点睛】本题考查了代数式、整式加减运算的知识;解题的关键是熟练掌握代数式、整式加减运算的性质,从而完成求解.7.B【解析】【分析】把方程1223x x x -+-=的左右两边同时乘6,进而即可得到答案.【详解】解:方程1223x x x -+-=去分母,正确的是:6x ﹣3(x ﹣1)=2(x+2).故选:B .【点睛】本题考查了解分式方程,掌握去分母是解题的关键.8.A 【解析】【分析】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得.【详解】解:()()100100a b a c +=+,()()1001000a b a c +-+=,()()1000a b c +-=,∴1000a +=或0b c -=,即:100a =-或b c =,A 选项中,若100a ≠-,则0b c -=正确;其他三个选项均不能得出,故选:A .【点睛】题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键.9.D 【解析】【分析】根据非负性求出a,b ,故可求解.【详解】∵|a -2|+(b +3)2=0,∴a-2=0,b+3=0解得a=2,b=-3∴a b =(-3)2=9故选D .【点睛】此题主要考查非负性的应用,解题的关键是熟知绝对值与乘方的性质及运算法则.10.A 【解析】【分析】设作横式无盖纸盒x 个,则竖式无盖纸盒为(20212)x -个,根据题意列出式子,根据x 为整数,求解即可.【详解】解:设作横式无盖纸盒x 个,则竖式无盖纸盒为(20212)x -个,依题意可得:34(20212)80845a x x x =+-=-,因为x 为正整数,所以5x 的个位数为0或5,a 的个位数为4或9,故选A ,【点睛】此题考查了列代数式,整式的加减运算,解题的关键是理解题意,正确列出代数式.11.9【解析】【分析】根据科学记数法一般表达形式的性质计算,即可得到答案.【详解】∵用科学记数法表示数据1412000000得1.412×10n ,∴9n =故答案为:9.【点睛】本题考查了科学记数法的知识,解题的关键是熟练掌握科学记数法的性质,从而完成求解.12.222x y -##222y x -+【解析】【分析】根据整式的加减运算法则即可得.【详解】解:22222222x y x y x y +-=-+,即这个多项式是222x y -,故答案为:222x y -.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题关键.13.24【解析】【分析】先移项后可得27n =,再整体代入后计算即可.【详解】解:因为216n-=,所以27n =,所以42447424n ⨯-=⨯-=.故答案为:24.【点睛】本题考查等式的性质,代数式求值.能正确运用等式的性质变形后整体代入是解题关键.14.62021140442x x -+=【解析】【分析】(1)根据第1、2、3、4个方程的解找出规律,由此即可得;(2)根据第1、2、3、4个方程,归纳类推出一般规律,由此即可得.【详解】解:(1)第1个方程的解是2x =,第2个方程的解是3x =,第3个方程的解是4x =,第4个方程的解是5x =,则第5个方程的解是6x =;(2)第1个:解是2x =的方程是1142x x -+=,即(21)1222x x --+=⨯,第2个:解是3x =的方程是2162x x -+=,即(31)1232x x --+=⨯,第3个:解是4x =的方程是3182x x -+=,即(41)1242x x --+=⨯,第4个:解是5x =的方程是41102x x -+=,即(51)1252x x --+=⨯,归纳类推得:解是2022x =的方程是(20221)1220222x x --+=⨯,即2021140442x x -+=;故答案为:6,2021140442x x -+=.【点睛】本题考查了一元一次方程的拓展,正确归纳类推出规律是解题关键.15.-1【解析】【分析】根据绝对值和偶次方根的非负性,得出x 、y 的值,代入2x y +中即可【详解】解:根据题意得:x-3=0,y+2=0所以x=3,y=-2则x+2y=3-4=-1故答案为:-1【点睛】本题考查了非负数的性质,掌握几个非负数的和等于0,每个非负数都为0这个性质是解题的关键16.2-【解析】【分析】根据有理数的乘方以及四则运算,求解即可.【详解】解:2111((0.4)23662-÷-+-⨯12536()3652=-⨯+-⨯1(1)=-+-2=-【点睛】此题考查了有理数的乘方以及四则运算,掌握有理数的有关运算法则是解题的关键.17.117x =【解析】【分析】利用相反数的性质列出方程,求出方程的解,即可得到x 的值.【详解】解:根据题意得:4x ﹣5+3x ﹣6=0,移项合并得:7x =11,解得:117x =.【点睛】本题主要考查了相反数的性质,解一元一次方程,根据若两个数互为相反数,则这两个数的何为零列出方程,熟练掌握运算法则是解题的关键.18.2a+5b【解析】【分析】根据周长公式,可得答案.【详解】解:由题意,得另一边的长a+b+2a+b=3a+2b ,第三边的长是a+b-(3a-b )=2b-2a .∴三角形的周长是a+b+3a+2b+2b-2a=2a+5b .【点睛】本题考查了整式的加减,掌握合并同类项是解题关键.19.(1)28+;(2)1860元.【解析】【分析】(1)利用6+减去其他六天的进出情况即可得;(2)利用这一周七天的进出情况的绝对值的和乘以10即可得.【详解】解:(1)[]6(26)(26)(42)(30)(25)(9)+-++-+++-+-+-,6(26264230259)=--+---,6(22)=--,28=(吨),答:星期五货品的进出数是28+;(2)(2626423028259)10++-+++-+++-+-⨯,(2626423028259)10=++++++⨯,18610=⨯,1860=(元),答:这一周要付1860元装卸费.【点睛】本题考查了有理数乘法与加减法的应用、绝对值,正确列出各运算式子是解题关键.20.(1)③、④、①、②;(2)5【解析】【分析】(1)根据求解过程以及长方形框中的内容,求解即可;(2)按照题中的求解过程,求解一元一次方程即可.【详解】解:(1)原方程化为203104153x x ---=去分母,得3(20x ﹣3)﹣5(10x ﹣4)=15,利用分数的基本性质,去括号,得60x ﹣9﹣50x+20=15,利用乘法对加法的分配律,移项,得60x ﹣50x =15+9﹣20,利用等式的基本性质,合并同类项,得10x =4(合并同类项法则),把未知数x 的系数化为1,得x =0.4,利用等式的基本性质,故答案为:③、④、①、②;(2)0.10.2130.020.5x x -+-=方程可化为:10201010325x x -+-=,去分母,得:510(22)3x x --+=,去括号,得:510223x x ---=,移项合并同类项得:315x =,系数化为1得,5x =,当x 取5时,代数式0.10.2130.020.5x x -+-=,【点睛】此题考查了一元一次方程的求解,解题的关键是掌握一元一次方程的求解过程.21.(1)241142x y xy +-;(2)34【解析】【分析】(1)结合题意,根据整式加减运算的性质,先去括号,再合并同类项,即可得到答案;(2)结合(1)的结论,根据代数式的性质计算,即可得到答案.【详解】解:(1)∵A =3x 2﹣x+2y ﹣4xy ,B =2x 2﹣3x ﹣y+xy∴46A B-()()224324623x x y xy x x y xy ---=+--+()22128161241866x x y xy x x y xy =+---+--22128161241866x x y xy x x y xy=+--+--+114224x y xy =+-;(2)46A B-114224x y xy=+-()1242x y xy=+-∵x+y =67,xy =﹣1∴46A B-()1242x y xy=+-()6142217=⨯-⨯-1222=+34=.【点睛】本题考查了整式加减运算、代数式的知识;解题的关键是熟练掌握整式减减运算、代数式的性质,从而完成求解.22.(1)2(123456)277+++++⨯+=,2(1231)2n n n ++++-⨯+= ;(2)3195.【解析】【分析】(1)根据前5个等式,归纳类推出一般规律,由此即可得;(2)求出第10个等式和第81个等式,分别可得123945++++= 和123803240++++= ,由此即可得.【详解】解:(1)第①个等式为21011⨯+=,第②个等式为21222⨯+=,第③个等式为2(12)233+⨯+=,第④个等式为2(123)244++⨯+=,第⑤个等式为2(1234)255+++⨯+=,归纳类推得:第n 个等式为2(1231)2n n n ++++-⨯+= ,则第⑦个等式为2(123456)277+++++⨯+=,故答案为:2(123456)277+++++⨯+=,2(1231)2n n n ++++-⨯+= ;(2)由(1)可知,第10个等式为2(1239)21010++++⨯+= ,则123945++++= ,第81个等式为2(12380)28181++++⨯+= ,则123803240++++= ,所以101180(12380)(1239)+++=++++-++++ ,324045=-,3195=.【点睛】本题考查了数字类规律探索,正确归纳类推出一般规律是解题关键.23.(1)26()a b -;(2)2022;(3)6.【解析】【分析】(1)根据合并同类项法则即可得;(2)将已知等式作为一个整体,代入求值即可得;(3)先去括号,再利用交换律和结合律,变成已知等式的形式,然后作为整体代入求值即可得.【详解】解:(1)原式22(468)()6()a b a b =-+-=-,故答案为:26()a b -;(2)221x y -= ,222021404212021(2)1x y x y =--++∴,202111=⨯+,2022=;(3)22a b -= ,25b c -=-,9c d -=,()(2)(2)22a c b d b c a c b d b c ∴-+---=-+--+,(2)(2)()a b b c c d =-+-+-,2(5)9=+-+,6=.【点睛】本题考查了合并同类项、整式加减中的化简求值,熟练掌握整体思想和整式的加减运算法则是解题关键.24.(1)5310mx x m +-;(2)2;(3)()30x -,20309000ax x a --+,20【解析】【分析】(1)将A =mx ﹣x ,B =﹣mx ﹣3x+5m 代入,再合并,即可求解;(2)根据3A ﹣2B 的值与字母m 的取值无关,可得到5100x -=,即可求解;(3)根据题意可得购进乙型口罩()30x -箱,然后由所获利润等于两种型号口罩利润之和,可求出所获利润,最后根据无论购进甲型口罩是多少箱,最终获利都相同,可得利润与x 的取值无关,即可求解.【详解】解:(1)()()323235A B mx x mx x m -=----+332610mx x mx x m=-++-5310mx x m =+-;(2)由(1)得:()-=+-=-+3253105103A B mx x m x m x ,∵3A ﹣2B 的值与字母m 的取值无关,∴5100x -=,解得:2x =;(3)∵购进甲型口罩x 箱,购进甲、乙两种型号的口罩共30箱,∴购进乙型口罩()30x -箱,∴购进的30箱口罩全部售出后,所获利润为()()()⨯+---=--+70040%8005003020309000x a x ax x a 元,∵无论购进甲型口罩是多少箱,最终获利都相同,∴利润与x 的取值无关,∵()2030900020309000ax x a a x a --+=--+∴200a -=,解得:20a =.。
沪科版数学七年级下册期末考试试卷及答案
沪科版数学七年级下册期末考试试卷评卷人得分一、单选题1.已知a b >,则下列不等式一定成立的是()A .23a b +>+B .22a b ->-C .22a b ->-D .22ab<2.如图所示:若m ∥n ,∠1=105°,则∠2=()A .55°B .60°C .65°D .75°3.下列从左到右的运算,哪一个是正确的分解因式()A .2(2)(3)56x x x x ++=++B .268(6)8x x x x ++=++C .2222()x xy y x y ++=+D .2224(2)x y x y +=+4.如果一个数的平方为64,则这个数的立方根是()A .2B .-2C .4D .±25.下列各式中,哪项可以使用平方差公式分解因式()A .22a b --B .2(2)9a -++C .22()p q --D .23a b -6.当2x =时,下列各项中哪个无意义()A .214x -B .1x x +C .2224x x ++D .24x x -+7.下列现象中不属于平移的是()A .飞机起飞时在跑道上滑行B .拧开水龙头的过程C .运输带运输货物的过程D .电梯上下运动8.下列各项是分式方程213933xx x x =--+-的解的是()A .6x =-B .3x =C .无解D .4x =-9.如图,已知两条直线被第三条直线所截,则下列说法正确的是()A .∠1与∠2是对顶角B .∠2与∠5是内错角C .∠3与∠6是同位角D .∠3与∠6是同旁内角10.在0.1、π、117数中,有理数的个数是()A .4B .5C .3D .2评卷人得分二、填空题11.因式分解481x -=_________________.12.如果a 的平方根是±16____________.13.不等式135x x +>-的解集是____________.14.当x _________时,分式236xx -无意义15.比较722-__________1216.0.0000000202-用科学记数法表示为___________.17.已知∠1与∠2是对顶角,且∠1=40 ,则∠2的补角为___________.18.满足不等式组2153142x x x +≤⎧⎨+<+⎩的正整数解有____________.19.如图,已知直线a 、b 被直线c 所截,且a ∥b ,∠1=60 ,则∠2=__________.20.有一组数据如下:10、12、11、12、10、14、10、11、11、10.则10的频数为____________频率为___________.评卷人得分三、解答题21.先化简,再求值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018
学年度第一学期 七年级数学试题(命题人:颍上六十铺中学教师) (沪科版1-3章) 一、选择题(本题共10小题,每小题4分,满分40分) 1、-2的绝对值的相反数是( ) 2、2015年全国教育经费执行情况统计公告发布,全国教育经费总投入为32806亿元,“32806亿”用科学记数法表示为( ) 3、)等于(,则若a a a 530+< A 、a 8 B 、a 8- C 、a 2- D 、a 2 4、)的值是(可以合并成一项,则与若n m b a b a n m n m +++22452- A 、2 B 、0 C 、-1 D 、1 5、)的值分别为(是二元一次方程,则)若方程(n m y x n m ,433-m 12+=+- A 、2,-1 B 、-3,0 C 、3,0 D 、0,3± 6、已知关于x 的方程092=-+a x 的解是)的值为(则a x ,2= 7、)(0285342==--⎩⎨⎧=-=+a y x a y x a y x 的一个解,则的解是如果方程组 8、关于多项式)下列说法正确的是(,142332---y y x x A 、它是三次四项式 B 、它的最高次项是y x 32- C 、它的常数项是1 D 、它的一次项系数是4 9、某品牌自行车1月销售量为100辆,每辆车售价相同。
2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元,2月份与1月份的销售总额相同,则1月份的售价为( ) 10、某书店把一本新书按标价的9折出售,仍可获得20%的利润,若该书的进价为21元,则标价为( ) 二、填空题(本大题共4小题,每小题5分,满分20分) 11、已知点P 表示数轴上的一点-4,把P 点向左移动3个单位长度后再向右移动1个单位长度,那么P 点表示的数是_________。
学校_______________________班级______________________姓名____________________考号______________________
12、如图,按此规律,第n 行的最后一个数字为_________。
13、。
,次数是的系数是单项式__________________5
23y x - 14、已知a 是整数,且a 比0大,比10小,请你设法找出a 的一些数值,使关于x 的方程52
11-=-ax 的解是偶数,你找出的整数a 的值是________。
三、(本题共2小题,每小题8分,满分16分)
15、计算:()[]
()()201524154612-+-÷-+-⨯+-
”若22、已知的值。
项,求的值不含若a x B A ax x B x ax x A +-+-=-+-=,743,26322
八、(本题满分14分)
23、某商场计划拨款9万元从厂家购进50台电视机。
已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。
(1)若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案。
(2)若商场每销售一台甲、乙、丙电视机可分别获利150元、200元、250元,在以上的方案中,为使获利最多,你选择哪种进货方案?
2017-2018学年度第一学期五校联考
七年级数学试题答案及评分标准
一、选择题(每小题4分,满分40分)
1-5 DBCAB 6-10 DBBAC
乙旅行社的费用为:……………………4分
所以应参加甲旅行社。
……………………5分
(2)设有名学生,根据题意得:
……………………8分
解得: ……………………11分
答:当学生人数是4时,两家旅行社收费一样多。
……………………12分
七、(本题满分12分)
22、………………6分
因为A+B的值不含项,所以……………………12分
八、(本题满分14分)
23、解:(1)购进甲种电视机台,乙种电视机台,丙种电视机台。
①购进甲、乙两种电视机解得
②购进甲、丙两种电视机解得
③购进乙、丙两种电视机解得。