人教版七年级上册数学《有理数的加减混合运算》培优训练
人教版七年级数学上 专题6有理数的加减(培优训练)
专题6 有理数的加减知识解读1.运用运算律简便运算①加法交换律:两个数相加,交换加法的位置,和不变,即。
②加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再加上第一个数,和不变,即。
运用加法交换律和结合律将相对容易计算的数结合在一起进行计算,能简便运算。
2.巧妙裂项简便运算有的计算题,直接计算难度较大,而将其中的一些数拆分成几个数后,反而能简便运算。
3.巧设参数简便运算在一些计算中,如果将一组式子看成一个整体,设其为x(或其他字母),则可简便运算。
培优学案典例示范1.运用运算律简便运算例1:计算:(1)-8+26-17-26+15;(2)【提示】(1)将26与-26结合,-8和-17结合;(2)将结合。
【答案】(1) -10 (2) 5【技巧点评】(1)互为相反数的数结合在一起;(2)相加得整数的数结合在一起;(3)同分母的分数或容易通分的分数结合在一起;(4)相同符号的数结合在一起。
【跟踪训练1】计算:(1;(2;(3.【答案】(1)(2)-50 (3)2.巧妙裂项简便运算例2 计算:【提示】依进行裂项,然后邻相相消进行化简求和。
【答案】【技巧点评】表示正整数,那么有以下规律:①;②;③;④【跟踪训练2】计算:(且n为整数)【答案】3.巧设参数简便计算例3 计算:(1)(2)。
【提示】(1)设,则,将两式相加可得;(2)设,则,后式减前式得.【答案】(1) 1016064 (2)【技巧点评】等差数列的各式之和为,每一次项与前一项的比为的等比数列的各数之和为【跟踪训练3】计算:= 。
【答案】培优训练1. -3-(-2)的值是()【答案】A2.计算的值为()【答案】B3.计算:= 。
【答案】44.一列数,其中则。
【答案】5.计算:(1)(2);(3);(4)【答案】(1) 3 (2) 3.1 (3) 0 (4) 06.计算:;【答案】7.已知,计算:(1)(2)【答案】(1)10100 (2)21050挑战竞赛1.已知,则A与1的大小关系是()【答案】C2.设,,则S-T=()【答案】B3.计算:.【答案】4.计算:。
人教版数学七年级上册 有理数的加减法 同步提优练习卷【含答案】
人教版数学七年级上册 有理数的加减法 同步提优练习卷一、选择题1.武汉市元月份某一天早晨的气温是-3℃,中午上升了8℃,则中午的气温是( )A .-5℃B .5℃C .3℃D .-3℃2.两个数相加,如果和小于每个加数,那么这两个加数( )A .同为正数B .同为负数C .一正一负且负数的绝对值较大D .不能确定3.下列各式错误的是()A .B .C .D .1(6)5-+=-0(3)3-+=-(6)(6)0+--=(15)(5)10---=-4.在有理数2,0,﹣1,﹣3中,任意取两个数相加,和最小是( )A .2B .﹣1C .﹣3D .﹣45.不改变原式的值,将写成省略加号和括号的形式是()1(2)(3)(4)-+--+-A .B .C .D .1234--+-1234--+1234-+-1234---6.7+(–3)+(–4)+18+(–11)=(7+18)+[(–3)+(–4)+(–11)]是应用了A .加法交换律B .加法结合律C .分配律D .加法交换律与结合律7.计算43+(﹣77)+27+(﹣43)的结果是( )A .50B .﹣104C .﹣50D .1048.若x 的相反数是﹣3,|y |=5,则x +y 的值为( )A .﹣8B .2C .﹣8或2D .8或﹣2二、填空题9.计算:_________.|6|(5)--+=10.气温由﹣20℃下降50℃后是__℃.11.式子-6-8+10-5读作__________________或读作____________________。
12.若a 是最大的负整数,b 是绝对值最小的数,则a +b =_________.13.计算:_____.(1)(2)(3)(4)(2019)(2020)++-+++-++++-=14.若“方框”表示运算x ﹣y +z +w ,则“方框”的运算结果是=_____.三、解答题15.在横线上填写每步运算的依据.解:(-6)+(-15)+(+6)=(-6)+(+6)+(-15)(____________________________________)=[(-6)+(+6)]+(-15)(____________________________________)=0+(-15)(____________________________________)=-15(____________________________________)16.计算:.7511---莉莉的解法如下:7511---(75)11=---211=--(211)=--(9)=--.9=请问莉莉的解法正确吗?如果不正确,请写出正确解法.17.计算:(1); (2);(35)(17)(5)(8)++-+++-( 2.8)( 3.6) 3.6-+-+(3); (4).151237⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭1(3)7(54)2-++-18.计算:(1) (2)(7)(5)(4)(10)--++---2111()(5(4)93663-++--19.计算:(1);(12.56)(7.25) 3.01(10.01)7.25-+-++-+(2);23(72)(22)57(16)+-+-++-(3).11172.254( 2.5)2 3.4425⎛⎫⎛⎫+-+-+++- ⎪ ⎪⎝⎭⎝⎭20.已知,,且b <a ,求a+b 的值.34a =23b =21.下表是某水位站记录的潮汛期某河流一周内的水位变化情况(“+”号表示水位比前一天上升,“-”号表示水位比前一天下降,上周末的水位恰好达到警戒水位).星期一二三四五六日水位变化/m 0.20+0.81+0.35-0.13+0.28+0.36-0.01-问题:(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?22.有一只青蛙,坐在深井底,井深4m ,青蛙第一次向上爬了1.2m ,又下滑了0.4m ;第二次向上爬了1.4m,又下滑了0.5m;第三次向上爬了1.1m,又下滑了0.3m;第四次向上爬了1.2m,又下滑了0.2m.(1)青蛙爬了四次后,距离爬出井口还有多远?(2)青蛙第四次之后,一共经过多少路程?(3)若青蛙第五次向上爬的路程与第一次相同,问能否爬出井?答案1.B【分析】根据有理数的加法即可得.【详解】-+=由题意得:中午的气温为385C︒故选:B.本题考查了有理数的加法运算,理解题意,正确列出运算式子是解题关键.2.B【分析】根据有理数的加法法则,两个负数相加,和为负数,再把绝对值相加,和一定小于每一个加数.【详解】两个负数相加,和为负数,再把绝对值相加,和一定小于每一个加数.例如:(−1)+(−3)=−4,−4<−1,−4<−3,故选B.本题考查了有理数的加法,掌握有理数的加法法则、绝对值及比较两个数的大小是解题的关键.3.C【分析】利用有理数减法法则即可求出.【详解】A、1-(+6)=-5正确,B、0-(+3)=-3正确,C、(+6)-(-6)=12故错,D、(-15)-(-5)=-10正确,故选C.本题考查有理数减法,减去一个数等于加上这个数的相反数,学生们要熟练掌握此法则即可.4.D【分析】找出值最小的两个数相加即可.【详解】解:(−1)+(−3)=−4,故选:D.本题主要考查了有理数的加法,熟练掌握运算法则是解答本题的关键.5.C【分析】根据加减法之间的关系,将加减混合运算写出省略加号代数和的形式.【详解】原式=1-2+3-4,故选:C.考查有理数的加减混合运算,利用加减法的关系省略加号代数和是常用的形式,代数式因此比较简洁明了.6.D【分析】式子由7+(–3)+(–4)+18+(–11)变为(7+18)+[(–3)+(–4)+(–11)]在这个过程中运用了加法的运算定律加法交换律和加法结合律.【详解】7+(–3)+(–4)+18+(–11)=(7+18)+[(–3)+(–4)+(–11)]是应用了加法交换律与结合律.故选D.本题考查了有理数的加减混合运算,在解答中运用了加法交换律和加法结合律.7.C【分析】运用加法交换律将正数和负数分别放在一起,再按照有理数加法的运算法则计算即可.【详解】解:原式=43+27+(﹣77)+(﹣43)=70+(-120)=-50,故选择C.本题考查了有理数的加法.8.D【分析】根据相反数的定义,绝对值的性质求出可知x 、y 的值,代入求得x +y 的值.【详解】解:若x 的相反数是﹣3,则x =3;|y |=5,则y =±5.①当x =3,y =5时,x +y =8;②当x =3,y =﹣5时,x +y =﹣2.故选:D .本题考查了相反数和绝对值的性质.只有符号不同的两个数互为相反数;一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.9.1【分析】根据绝对值的性质和减法法则进行计算即可得解.【详解】解:,|6|(5)6(5)1--+=+-=故1.本题考查了绝对值的性质和减法法则,熟悉相关性质是解题的关键.10.-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴-70.本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.11.负6、负8、正10、负5的和-6减8加10减5.【分析】根据已知算式-6-8+10-5读出来即可.【详解】解:式子-6-8+10-5读作:负6、负8、正10、负5的和,或读作:-6减8加10减5;故负6、负8、正10、负5的和,-6减8加10减5.本题考查了有理数的加减混合运算的应用,能理解算式的意义是解此题的关键.12.-1【分析】根据-1是最大的负整数,0是绝对值最小的数计算计可.【详解】∵a 是最大的负整数,∴a=-1,b 是绝对值最小的数,∴b=0,∴a+b=-1.故-1.此题的关键是知道a 是最大的负整数是-1,b 是绝对值最小的数是0.13.1010-【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】原式.(12)(34)(20192020)11111010=-+-++-=-----=- 故答案为.1010-本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.14.-8【详解】根据方框定义的运算得,-2-3+(-6)+3=-8.故答案为-8.15.(1)加法交换律(2)加法结合律(3)互为相反数的两个数和为0(4)一个数同0相加仍得这个数【分析】根据有理数加法运算法则以及运算律进行解答.【详解】解:(-6)+(-15)+(+6),=(-6)+(+6)+(-15)(加法交换律),=[(-6)+(+6)]+(-15)(加法结合律),=0+(-15)(互为相反数的两个数和为0),=-15(一个数同0相加仍得这个数).本题考查了有理数的加法运算,熟练掌握运算法则和运算律是解题关键.16.莉莉的解法不正确,详见解析,-23【分析】错误,运算法则运用错误,写出正确的解题过程即可.【详解】莉莉的解法不正确.正确解法:.7511(7)(5)(11)(12)(11)23---=-+-+-=-+-=-此题考查了有理数的减法法则,熟练掌握运算法则是解本题的关键.17.(1)15;(2)-2.8;(3);(4)8521-49.5-【分析】(1)根据有理数加法的运算法则进行计算即可;(2)根据有理数加法的运算法则进行计算即可;(3)根据有理数加法的运算法则进行计算即可;(4)根据有理数加法的运算法则进行计算即可.【详解】(1)原式(3517)(85)=+---183=-;15=(2)原式(2.8 3.6) 3.6=-++( 6.4) 3.6=-+;2.8=-(3)原式41937⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭41937⎛⎫=-+ ⎪⎝⎭;8521=-(4)原式(3)7.5(54)=-++-(7.53)(54)=+-+-4.5(54)=+-(54 4.5)=--.49.5=-本题考查了有理数的加法运算,掌握运算法则是解题关键.18.(1);(2)6-9-【分析】(1)根据有理数的加减混合运算法则进行计算即可;(2)先用简便方法分别计算第1、4项和第2、3项,再根据有理数的加法运算法则进行计算即可;【详解】(1)原式12(4)(10)16(10)6=-+---=---=-(2)原式2111(9(5(410193366=--++-=-+=-本题主要考查有理数的加减混合运算,熟练掌握运算法则是关键.19.(1)-19.56;(2)-30;(3)-2【分析】(1)根据有理数的加法运算法则,利用加法结合律进行计算即可;(2)根据有理数的加法运算法则,结合式子特点利用加法结合律进行计算即可;(3)先将分数化成小数,再根据有理数的加法运算法则,利用加法结合律进行计算即可.【详解】(1)原式;[[(12.56)(7.25)7.25] 3.01(10.01)]19.56=-+-+++-=-(2)原式;(2357)[(72)(22)(16)]30=++-+-+-=-(3)原式.2.25( 4.25)[( 2.5) 2.5][3.4( 3.4)]2=+-+-+++-=-此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.20.(1)或1712112【分析】根据题意可以求得a 、b 的值,然后求得a +b 的值即可.【详解】解:∵,,34a =23b =∴a =±,b =±,3423∵b <a ,∴a =,b =±,3423∴a +b =+=或−=.342317123423112本题考查绝对值和有理数加法,解题的关键是明确绝对值的意义.21.(1)水位最低的一天是星期一,位于警戒水位之上,与警戒水位的距离是;水位最高的0.20m 一天是星期五,位于警戒水位之上,与警戒水位的距离是;(2)与上周末相比,本周末河流1.07m 的水位上升了0.70米【分析】(1)依据表格分别求出每天的水位,即可得到答案;(2)将本周水位变化的值相加,根据结果的正负解答.【详解】(1)设警戒水位为.则星期一的水位是;0m 0.20m +星期二的水位是;0.200.81 1.01(m)++=星期三的水位是;1.01(0.35)0.66(m)+-=星期四的水位是;0.660.130.79(m)+=星期五的水位是;0.790.28 1.07(m)+=星期六的水位是;1.07(0.36)0.71(m)+-=星期日的水位是;0.71(0.01)0.70(m)+-=则水位最低的一天是星期一,位于警戒水位之上,与警戒水位的距离是;水位最高的一天是0.20m 星期五,位于警戒水位之上,与警戒水位的距离是;1.07m (2).0.200.81(0.35)0.130.28(0.36)(0.01)0.70(m)+++-+++-+-=+故与上周末相比,本周末河流的水位上升了0.70米.此题考查有理数加法是实际应用,掌握有理数加法的计算法则,正确运算是解题的关键.22.(1)离井口还有0.5m.(2)一共经过6.3m.(3)能爬出井.【分析】(1)根据题意利用有理数的加减混合运算即可解答.(2)利用有理数的加法法则进行解答即可.(3)利用青蛙爬的总距离和井深4m 做比较即可解答.【详解】(1)1.2-0.4+1.4-0.5+1.1-0.3+1.2-0.2=3.5(m )4-3.5=0.5(m )即离井口还有0.5m.(2)1.2+0.4+1.4+0.5+1.1+0.3+1.2+0.2=6.3(m )即一共经过6.3m.(3)3.5+1.2=4.7>4,所以能爬出井.。
人教版数学七年级上册1.3.2《有理数的加减混合运算》训练(有答案)
课时4有理数的加减混合运算基础训练知识点1(有理数的加减混合运算)1.下列把有理数的加减混合运算统一成有理数的加法运算中,正确的是()A.(﹣7)﹣(﹣10)+(﹣8)﹣(+2)=(﹣7)+(﹣10)+(﹣8)+(﹣2)B.(﹣7)﹣(﹣10)+(﹣8)﹣(+2)=(﹣7)+(﹣10)﹣(+8)+(﹣2)C.(﹣7)﹣(﹣10)+(﹣8)﹣(+2)=(﹣7)+(﹣10)+(﹣8)﹣(+2)D.(﹣7)﹣(﹣10)+(﹣8)﹣(+2)=(﹣7)+(+10)+(﹣8)+(﹣2)2.在括号内填上适当的数.(1)(﹣2)+(+7)﹣(﹣5)=(﹣2)+(+7)+();(2)0﹣(+4)+(﹣6)=0+()+(﹣6);(3)(﹣6)﹣3﹣(﹣2)=(﹣6)+()+();(4)1﹣(+37)﹣28=1+()+().3.计算下列各式:(1)(﹣18)+29﹣(﹣24)﹣(﹣9);(2)(﹣13.6)﹣(+0.26)﹣(﹣2.7)﹣(﹣1.06);(3)﹣456+(﹣335)﹣(﹣316)﹣125;(4)1.5﹣(﹣414)+3.75﹣(+812).知识点2(有理数加减混合运算的简化形式)4.对式子“﹣8+16﹣3﹣6”的读法正确的是()A.负8加16减3减6B.负8正16负3减6C.负8、加16、负3、负6的和D.减8加16减3减65.把式子15+(﹣6)-(﹣7)-(+2)写成省略加号的和的形式是____________,结果是______.6.[2017湖北黄石阳新实验中学期中]某公交车上原有22人,经过4个站点时乘客上下车情况如下(上车为正,下车为负):(+4,﹣8),(﹣5,6),(﹣3,2),(1,﹣7),此时车上还有______人.7.计算:(1)0-12-(﹣3.25)+234﹣712;(2)(﹣323)+(﹣2.4)-(﹣13)-(﹣425);(3)﹣|﹣34|-|15-14|-(﹣2)+45.8.甲、乙两队举行拔河比赛,标志物先向甲队移动0.5米,然后又向乙队移动0.8米,相持后又向乙队移动0.4米,然后又向甲队移动1.2米,最后标志物再向甲队移动1.4米,规定只要标志物向某队移动2米,该队即可获胜,问甲队有没有获胜?请说明理由.参考答案1.D2.(1)+5;(2)﹣4;(3)﹣3+2;(4)﹣37﹣283.【解析】(1)(﹣18)+29﹣(﹣24)﹣(﹣9)=(﹣18)+29+(+24)+(+9)=44.(2)(﹣13.6)﹣(+0.26)﹣(﹣2.7)﹣(﹣1.06)=(—13.6)—(—0.26)+(+2.7)+(+1.06)=﹣10.1(3)﹣456+(﹣335)﹣(﹣316)-125=﹣456-335+316-125=(﹣456+316)+(﹣335-125)=﹣123+(﹣5)=﹣62 3(4)1.5-(﹣414)+3.75﹣(+812)=1.5+4.25+3.75﹣8.5=(1.5﹣3.5)+(4.25+3.75)=﹣7+8=14.A【解析】式子“﹣8+16﹣3﹣6”可以读作“负8加16减3减6”.或读作“负8、正16、负3、负6的和”,所以选项A正确.故选A.5.15﹣6+7﹣2 14【解析】15+(﹣6)﹣(﹣7)﹣(+2)=15+(﹣6)+(+7)+(﹣2)=15﹣6+7﹣2=14.6.12【解析】根据题意,可得车上还有22+4﹣8﹣5+6-3+2+1﹣7=12(人).7.【解析】(1)0-12-(﹣3.25)+234﹣712=0-12+314+234-712=﹣12-712+314+234=﹣8+6 =﹣2.(2)(﹣323)+(﹣2.4)﹣(﹣13)-(﹣425)=﹣323-225+13+425=﹣323+13+425-225=﹣313+2=﹣11 3(3)﹣|﹣34|-|15-14|﹣(﹣2)+45=﹣34-120+2+45=﹣45+2+45=2.8.【解析】甲队没有获胜.理由如下:将标志物向甲队移动的长度记为正数,向乙队移动的长度记为负数,则标志物移动的长度可记为(单位:米)0.5,﹣0.8,﹣0.4,1.2,1.4.0.5﹣0.8﹣0.4+1.2+1.4=(0.5+1.2+1.4)+(﹣0.8﹣0.4)=3.1﹣1.2=1.9(米).因为1.9<2,所以甲队没有获胜.课时4有理数的加减混合运算提升训练1.[2018重庆巴蜀中学课时作业]在正整数中,前50个偶数的和减去前50个奇数的和所得的结果是()A.50B.﹣50C.100D.﹣1002.[2018山西大学附中课时作业]规定图形表示运算a﹣b+c,图形表示运算x+z-y-w,则+=______.(直接写出答案)3.[2018江西吉安一中课时作业]已知a是3的相反数,b是﹣13的绝对值,c与原点的距离是2,则a-c+b=_____.4.[2018河北石家庄二十七中课时作业]计算下列各式:(1)﹣327-(﹣6)+1167-(+537);(2)(﹣37)-(﹣15)-(﹣27)+(﹣15);(3)﹣0.5+(﹣15)-(﹣17)-|12|;(4)(﹣812)-[﹣(+6.5)﹣(﹣3.3)﹣615].5.[2018湖北襄阳四中课时作业]做数学游戏,其乐无穷,游戏规则:(1)每人每次抽取4张卡片,如果抽到方块卡片,那|么加上卡片上的数字,如果抽到阴影卡片,那么;减去卡片上的数字;(2)比较两人所抽4张卡片上的计算结果,结果大的为胜者.小明抽到图1中的4张卡片,小丽抽到图2中的4张卡片,你知道本次游戏的获胜者吗?请说明理由.6.[2018江苏盐城市初级中学课时作业]依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作.第二次经过同样的操作,也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8,继续依次操作下去. (1)第一次操作后,增加的所有新数之和是多少?(2)第二次操作后所得的数串比第一次操作后所得的数串增加的所有新数之和是多少?(3)第一百次操作后所得的数串比第九十九次操作后所得的数串增加的所有新数之和是多少?参考答案1.A【解析】由题意,可得2+4+6+…+100)﹣(1+3+5+…+99)=(2﹣1)+(4﹣3)+(6﹣5)+…+(100﹣99)=1+1+1+…+1=50.故选A.2.0【解析】由题意,可知=1﹣2+3=2,=4+6﹣5﹣7=﹣2,所以+=2+(﹣2)=0.3.﹣423或﹣23【解析】因为a是3的相反数,b是的绝对值,c与原点的距离是2,所以a=﹣3,b=13,c=±2.当a=﹣3,b=13,c=2时,a﹣c+b=﹣3﹣2+13=﹣423;当a=﹣3,b=13,c=﹣2时,a﹣c+b=﹣3﹣(﹣2)+13=﹣3+2+13=﹣23.综上,a-c+b=﹣423或﹣23.4.(1)﹣327-(﹣6)+1167-(﹢537)=﹣327+6+1167-537=6+(﹣327+1167-537)=6+31 7=917.(2)(﹣37)-(﹣15)-(﹣27)+(﹣115)=(﹣37)+(﹢15)+[(﹢15)+(﹣115)]=(﹣17)+(﹣1)=﹣11 7(3)﹣0.5+(﹣15)﹣(﹣17)﹣|﹣12|=﹣0.5+(﹣15)+(+17)+(﹣12) =(+17)+[﹣0.5+(﹣15)+(﹣12)]=(+17)+(﹣27.5)=﹣10.5.(4)(﹣812)﹣[﹣(+6.5)﹣(﹣3.3)﹣615]=﹣8.5﹣[(﹣6.5)+(﹣6.2)+3.3]=﹣8.5—(﹣12.7+3.3)=﹣8.5-(﹣9.4)=﹣8.5+9.4=0.9.名师点睛利用加法交换律和结合律,把正数分别相加、负数分别相加、分母相同的数分别相加、和为整数的数分别相加,这样可简化计算过程.5.【解析】获胜者是小明.理由如下:小明抽取的4张卡片计算的结果是(﹣12)+(﹣23)﹣(﹣5)+4=7小丽抽取的4张卡片计算的结果是(﹣13)+(﹣67)﹣0+5=312因为7>312,所以获胜者是小明.6.【解析】(1)第一次操作后,增加的所有新数之和为6+(﹣1)=5.(2)第二次操作后所得的数串比第一次操作后所得的数串增加的所有新数之和为3+3+(﹣10)+9=5.(3)第一百次操作后所得的数串比第九十九次操作后所得的数串增加的所有新数之和为5.《有理数的加减法》错解分析学生在解有理数加减法问题时,经常因为未掌握法则或方法不当等而错解题目,下面就学生在解题中出现的错误分析如下,供大家参考.一、未掌握加法法则例1 下列判断:(1)两个有理数相加,它们的和一定大于每一个数.(2)一个正数与一个负数相加得正数.(3)两个负数和的绝对值一定等于它们绝对值的和.其中正确判断的个数有()A.0个B.1个C.2个D.3个错解:D.分析:由于没有掌握有理数的加法法则导致错误.(1)不对,因为(-1)+(-2)=-3;(2)不对,因为(+1)+(-2)=-1;(3)对,比如2(4)624-+-==-+-.正解:B.二、未掌握减法法则例2 下列说法中:(1)减去一个数等于加上这个数;(2)零减去一个数,仍得这个数;(3)两个相反数相减得零;(4)有理数减法中,被减数不一定比减数或差大.其中错误的说法有( )A .1个B .2个C .3个D .4个错解:D .分析:由于对减法法则不理解或看错了题目的要求,导致错误。
七年级数学上册有理数混合运算培优练习题
有理数混合运算一、基础知识1.有理数的混合运算,要掌握运算顺序,即先算乘方,再算乘除,最后算加减,如有括号,就先算括号里面的。
2.进行有理数运算时,要认真看题,除考虑运算顺序外,还要善于观察题目中各数之间的特殊关系,灵活运用运算律,适当改变运算顺序,寻求比较合理的计算方法,以求简化运算。
3.运算过程中,运用符号法则正确熟练地确定符号,仍然是关键所在。
4.乘除及乘方运算,带分数化假分数,小数往往化分数。
二、实战演练――基础卷一.填空题:34-6.8+5=______。
77232.42⨯(-)+(-)÷(-0.25)=______。
341.-3.2+33.当a=-5.4,b=6,c=4.8,d=-1.2时,代数式a c+的值为______。
-d b4.x,y为有理数,且x+1+2(y+3)2=0,则代数式x2-3xy+2y2的值为______。
5.已知3a-2b=5,代数式2(3a-2b)2-3(2b-3a)的值为______。
6.若a为最大的负整数,则a2001+a2002=______。
二.选择题:1.下列说法正确的是()A.当n为自然数时,4n(n+1)必是8的倍数;B.a为有理数时,-a+a可能为负数;C.a+2一定比2大;D.a,b为有理数时,a+b一定大于a-b。
2.若a与b的差为正数,则一定有()A.a>0;B.a>b;C.a>b;D.a>0或b<0。
3.下列各组数中,数值相等的是()A.32和23;B.(-2)3和-23;C.-32和(-3)2;D.(-3⨯2)2和(-3⨯22)。
4.若ab<0,则下列各式中一定成立的个数是()a<0。
bA.1个;B.2个;C.3个;D.4个。
5.设a=-(1-2)-3,b=-1-(2-3),c=(-1)-(-2)-3,则-a-[b-(-c)]的值为()(1)a<0<b,(2)a≠0,(3)a>0,且b<0,(4)A.1;B.4;C.-1;D.-2。
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案【解题技巧】主要是要注意混合运算的运算顺序。
一级运算:加减法;二级运算:乘除法;三级运算:乘方运算。
规定:先算高级运算再算低级运算同级运算从左到右依次进行。
(1)有括号先算括号里面的运算按小括号、中括号、大括号依次进行;(2)先乘方、再乘除、最后加减;(3)同级运算按从左往右依次进行。
当然在准守上述计算原则的前提下也需要灵活使用运算律以简化运算。
1.(2022·广西崇左·七年级期末)计算:(1)3312424⎛⎫⎛⎫-⨯÷-⎪ ⎪⎝⎭⎝⎭;(2)2014281|5|(4)(8)5⎛⎫-+-⨯---÷-⎪⎝⎭.【答案】(1)12(2)-7【分析】(1)原式从左到右依次计算即可求出值;(2)原式先算乘方及绝对值再算乘除最后算加减即可求出值.(1)原式9489⎛⎫⎛⎫=-⨯-⎪ ⎪⎝⎭⎝⎭12 =;(2)原式=﹣1+5×(85-)﹣16÷(﹣8)=﹣1﹣8+2=﹣7.【点睛】本题考查了有理数的混合运算熟练掌握运算法则是解本题的关键.2.(2022·内蒙古·七年级期末)计算:(1)31125(25)25424⎛⎫⨯--⨯+⨯-⎪⎝⎭(2)4211(1)3[2(3)]2---÷⨯--【答案】(1)25(2)1 6【分析】(1)根据乘法分配律、有理数乘法法则、减法法则和加法法则计算即可;(2)根据有理数的运算顺序和各个运算法则计算即可.(1)解:原式311252525424⎛⎫=⨯+⨯++- ⎪⎝⎭31125424⎛⎫=⨯+- ⎪⎝⎭251=⨯25=;(2)解:原式111(29)23=--⨯⨯- 11(7)6=--⨯- 761=-+ 16=. 【点睛】此题考查了有理数的混合运算.解题的关键是掌握有理数的混合运算的运算顺序和每一步的运算法则.3.(2022·山东东营·期末)计算: (1)11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭; (2)42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 【答案】(1)34- (2)5 【分析】(1)原式先算括号内的 再算乘除;(2)原式先乘方 再中计算括号内及绝对值内的减法 再计算乘法 最后计算加减即可求出值.(1)解:11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭ 433328⎛⎫=⨯-⨯ ⎪⎝⎭ 34=- (2)解:42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 111436623=-++-⨯+⨯ 14332=-++-+5=【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.4.(2022·安徽阜阳·七年级期末)计算:(1)()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭. (2)2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 【答案】(1)16(2)-2312 【分析】先计算乘方及小括号内的运算 再计算乘法 最后计算加减法.【详解】(1)解:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭=()111723--⨯⨯- =716-+ =16. (2)解:2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 19(924)34=-⨯-+⨯- 19(1)34=-⨯-- 1934=- =-2312. 【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数的运算法则及运算顺序是解题的关键. 5.(2022·湖南娄底·七年级期末)计算:(1)()()220211110.5233⎡⎤---⨯⨯--⎣⎦; (2)()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦【答案】(1)16(2)6 【分析】(1)原式先计算乘方运算 再计算乘除运算 最后算加减运算即可得到结果.(2)先算乘方 再算乘除 最后算减法;同级运算 应按从左到右的顺序进行计算.【详解】(1)解:原式()117112912366⎛⎫=--⨯⨯-=---= ⎪⎝⎭ (2)解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦ ()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭ 21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭410=-+6=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键 运算顺序为:先乘方 再乘除 最后算加减 有括号先计算括号内的运算.6.(2022·天津北辰·七年级期末)(1)24(3)5(2)6⨯--⨯-+;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭. 【答案】(1)52;(2)-52. 【分析】(1)先算乘方 然后计算乘除 最后算加减即可;(2)先算乘方 然后计算乘除 最后算加减即可.【详解】解:(1)24(3)5(2)6⨯--⨯-+=4×9+10+6=52;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭=-16÷8-12=-2-12=-52. 【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.7.(2022·广西百色·七年级期末)计算:(1)()()22241322⎡⎤---⨯÷⎣⎦.(2)33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭. 【答案】(1)8(2)-2【分析】根据有理数的混合运算法则计算即可;含乘方的有理数混合运算法则:1、先乘方 再乘除 最后加减;2、同级运算 从左往右进行;3、如果有括号 先做括号内的运算 按小括号、中括号、大括号依次进行.【详解】(2)解:原式()161924=--⨯÷⎡⎤⎣⎦()16824=--⨯÷⎡⎤⎣⎦8=.解:原式()()51411=÷--+⨯-()551=÷--11=--2=-.【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2022·河南周口·七年级期末)计算: (1)2022211(1)(1)(32)23-+-⨯+-+ (2)23220213(4)(2)(2)(1)-⨯-+-÷--- 【答案】(1)556- (2)35 【分析】(1)原式先计算乘方运算及括号内的运算 再计算乘除运算 最后计算加减运算即可求出值;(2)先计算乘方运算 再计算乘除运算 最后计算加减运算即可求出值.(1)解:原式=111(92)23+⨯+-+ =1176+- =556-; (2)解:原式=9(4)(8)4(1)-⨯-+-÷--=3621-+=35【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.9.(2022·江苏扬州·七年级期末)计算: (1)3(6)( 1.55) 3.25(15.45)4---+++-; (2)()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)-7 (2)98- 【分析】(1)先算同分母分数 再算加减法即可求解;(2)先算乘方 再算乘除 最后算加法;同级运算 应按从左到右的顺序进行计算.(1)解:3(6)( 1.55) 3.25(15.45)4---+++-(6.75 3.25)( 1.5515.45)=++--1017=-7=-;(2)解:()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 254(8)1425=÷-⨯- 2514()14825=⨯-⨯- 118=-- 98=-. 【点睛】本题考查了有理数的混合运算 解题的关键是掌握有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算.进行有理数的混合运算时 注意各个运算律的运用 使运算过程得到简化.19.(2022·河南南阳·七年级期末)计算(1)243(6)()94-⨯-+; (2)33116(2)()(4) 3.52÷---⨯-+.【答案】(1)11 (2)1【分析】(1)先计算乘方 再利用乘法分配律计算即可;(2)先计算乘方 再计算乘除 最后计算加减即可.(1)解:原式4336()94=⨯-+4336()3694=⨯-+⨯ 1627=-+11=;(2)解:原式116(8)()(4) 3.58=÷---⨯-+20.5 3.5=--+ 1=.【点睛】本题主要考查有理数的混合运算 解题的关键是掌握有理数的混合运算顺序和运算法则.11.(2022·河北邯郸·七年级期末)计算:()()20212132311234⎛⎫-+⨯---⨯- ⎪⎝⎭. 【答案】12-【详解】解:原式()44311213123=-⨯-++⨯⨯- 434912=--+-=-.【点睛】本题考查了有理数的混合运算 熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方 再算乘除 最后算加减;同级运算 按从左到右的顺序计算.如果有括号 先算括号里面的 并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.12.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= ==; (3) = 71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭= = =; (4) = = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.13.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= 14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭12489459-⨯⨯+⨯445-+16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭==; (3) = = = =; (4) = =12489459-⨯⨯+⨯ =445-+ =165 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.14.(2022·浙江七年级期末)计算:(1). (2). (3). (4). 【答案】(1)3;(2)1;(3)927;(4)1【分析】(1)先化简符号和括号 再计算加减法;(2)将除法转化为乘法 再约分计算;(3)先算括号内的 再算乘除 最后算加减;(4)先算乘方和括号 再算乘除 最后算加减. ()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦94(81)(16)49-÷⨯÷-11304(3)1556⎛⎫÷--⨯-+ ⎪⎝⎭422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭【详解】解:(1) = = ==3;(2) = =1;(3) = ==927;(4) = ==1 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序. 28.(2021·湖北恩施·七年级期末)计算下列各题:(1)2(35)(3)(13)--+-⨯-; (2)32422()93-÷⨯-. 【答案】(1)-16 (2)-8【分析】(1)先算括号中的减法 再算乘方 乘法 以及加减即可得到结果; (2)先算乘方 再算乘除即可得到结果.(1)解:原式=359(2)-++⨯-11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦11552 4.84566⎛⎫--+ ⎪⎝⎭145154425566+--107-94(81)(16)49-÷⨯÷-441819916⨯⨯⨯11304(3)1556⎛⎫÷--⨯-+⎪⎝⎭301215301÷++9001215++422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭()23168(15)(15)35-÷-+⨯--⨯-2109-+218=- =16-;(2)解:原式=94849-⨯⨯=8-.【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键. 15.(2022·河南驻马店·七年级期末)计算:(1)()22112 2.25554⎛⎫---+-- ⎪⎝⎭; (2)2220212111132322⎛⎫--⨯--+÷⨯ ⎪⎝⎭.【答案】(1)1-;(2)54-【分析】(1)先化简绝对值、去括号 再计算加减法即可得;(2)先计算乘方、除法 再化简绝对值、乘法 然后计算加减法即可得. 【详解】 解:(1)原式2 2.2275.2555--+=- 7255=- 1=-;(2)原式4143111322=--⨯-+⨯3134344=--⨯+-4331344=--⨯+3114=--+ 54=-.【点睛】本题考查了含乘方的有理数混合运算 熟练掌握运算法则是解题关键. 16.(2022·山东青岛·七年级期末)计算: (1)123()3035--+; (2)431116(2)()48-+÷---⨯. 【答案】(1)110; (2)52-【分析】(1)原式利用减法法则变形 计算即可得到结果; (2)原式先算乘方 再算乘除 最后算加减即可得到结果. (1) 原式=1233035+- =12018303030+- =1201830+- =330=110; (2)原式=()1116848⎛⎫-+÷---⨯ ⎪⎝⎭=1122--+=52-.【点睛】本题考查了有理数的加、减、乘、除、乘方的混合运算 正确理解运算顺序并细心计算是解决本题的关键;运算顺序:先乘方、再乘除、后加减 有括号的先算括号里面的. 17.(2022·福建福州·七年级期末)计算: (1)()()()()2356---++-+; (2)()2202241235⎛⎫-+-÷--- ⎪⎝⎭.【答案】(1)0 (2)9-【分析】(1)根据有理数加减混合运算法则进行计算即可; (2)根据有理数的混合运算法则进行计算即可. (1)解:()()()()2356---++-+2356=-++-88=-+0=(2)解:()2202241235⎛⎫-+-÷--- ⎪⎝⎭51434⎛⎫=-+⨯-- ⎪⎝⎭153=--- 9=-【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则 有乘方的先算乘方 再算乘除 最后算加减 有括号的先算小括号里面的 是解题的关键. 18.(2022·湖北孝感·七年级期末)计算:(1)(-5)×(-6)-40+2. (2)(-3)2-|-8|-(1-2×35)÷25.【答案】(1)8- (2)32【分析】(1)先计算有理数的乘法 然后计算加减即可;(2)先计算乘方及绝对值及小括号内的运算 然后计算除法 最后计算加减即可. (1)原式=30-40+2 =-8; (2)原式=9-8-65152⎛⎫-⨯ ⎪⎝⎭=9-8-1552⎛⎫-⨯ ⎪⎝⎭=9-8+12=32. 【点睛】题目主要考查含乘方的有理数的混合运算 绝对值化简 熟练掌握运算法则是解题关键. 19.(2022·山东枣庄·七年级期末)计算(1)22(2)31(0.2)4-+-⨯-÷-+- (2)222172(3)(6)()3-+⨯---÷-【答案】(1)-1 (2)23【分析】(1)先计算乘方 再计算乘除 最后算加减 可得答案;(2)先计算乘方 再计算乘除 最后计算加减 即可得到答案. (1)解:22(2)31(0.2)4-+-⨯-÷-+-4(6)54=-+-++1=-(2)222172(3)(6)()3-+⨯---÷-4929(6)9=-+⨯--⨯491854=-++ 23=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键.20.(2022·湖北荆州·七年级期末)计算:(1)﹣14﹣5+30﹣2 (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| 【答案】(1)9 (2)-3【分析】(1)根据有理数的加减法运算法则计算即可求解; (2)先算乘方 再算乘除 最后算加法求解即可. (1)解:-14-5+30-2 =(-14-5-2)+30 =-21+30 =9; (2)-32÷(-3)2+3×(-2)+|-4| =-9÷9-6+4 =-1-6+4 =-3.【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算. 21.(2022·河南驻马店·七年级期末)计算:(1)1|2|4--(34-)+11|1|2--; (2)16+(﹣2)319-⨯(﹣3)2﹣(﹣4)4.【答案】(1)312 (2)-249【分析】(1)先求绝对值 再按有理数加减法法则计算即可; (2)先计算乘方 再计算乘法 最后计算加减即可. (1)解:原式=13121442++-=312; (2)解:原式=16-8-19×9-256=16-8-1-256 =-249.【点睛】本题考查有理数混合运算 求绝对值 熟练掌握有理数运算法则是解题的关键. 22.(2022·四川广元·七年级期末)计算:220221256(4)(1)2⎛⎫---+÷-+-⨯- ⎪⎝⎭.【答案】-6 【详解】解:原式()()41241=--⨯-+-⨯ =()()424---+- =()424-++-6=-.【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数混合运算法则是解题的关键. 23.(2022·广西崇左·七年级期末)计算(1)2312130.25343-+-- (2)()22122332⎡⎤-+⨯--÷⎢⎥⎣⎦【答案】(1)-1812 (2)2 (1)解∶原式=-2123-13+334-14= -22+312 =-1812 (2)解:原式=()42932-+⨯-⨯ = -4+2×(9-6) =-4+6 =2【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则是解题的关键. 24.(2022·陕西·西安七年级期中)计算: (1)()()2132----+- (2)22212(32)243⎡⎤⨯+-÷⎣⎦ (3)152(18)369⎛⎫-+⨯- ⎪⎝⎭ (4)3202141(1)(13)82⎛⎫-+-÷⨯ ⎪⎝⎭【答案】(1)6-(2)0(3)5(4)34-【分析】(1)利用有理数加法和减法法则按照从左到右的顺序依次计算;(2)先算乘方 并把带分数化成假分数 再计算乘除 最后计算加减 同时按照先算小括号再算中括号的运算顺序计算即可;(3)利用乘法分配律进行计算即可;(4)先计算乘方 再计算乘除 最后计算加法即可.(1)原式=21326-+--=-; (2)原式=()2934294⎡⎤⨯+-÷⎣⎦ =1122⎛⎫+- ⎪⎝⎭=0;(3)原式=()121829⎛⎫-+⨯- ⎪⎝⎭=()()12181829⎛⎫-⨯-+⨯- ⎪⎝⎭=94- =5;(4)原式=()411288-+-÷⨯=111688-+÷⨯=1128-+⨯=114-+=34-. 【点睛】本题考查有理数的加减乘除及乘方的混合运算 解题关键是牢记运算法则 掌握运算顺序. 25.(2022· 绵阳市·九年级专项)计算:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭;(5)111532⎛⎫÷-- ⎪⎝⎭; (6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【答案】(1)218-;(2)9-;(3)712-;(4)177;(5)18-;(6)22-;(7)307;(8)16. 【分析】(1)先计算除法 再计算加法 两个有理数相除 同号得正;(2)乘除法 同级运算 从左到右 依次将除法转化为乘法 先确定符号 再将数值相乘; (3)先将除法转化为乘法 再利用乘法分配律解题 注意符号;(4)先算乘除 再算减法 结合加法结合律解题;(5)先算小括号 再算除法;(6)先算小括号 再算中括号;(7)先将除法转化为乘法 再利用乘法分配律的逆运算解题; (8)先算小括号 再算中括号 结合乘法交换律解题. 【详解】解:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1477833⎛⎫⎛⎫⎛⎫=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2414493=-+24218=-; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭()1=(3)3(3)3⨯-⨯-⨯- =9;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭5165101566⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭111123=-++ 712=-; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭617324()762874⎛⎫⎛⎫=--⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭1437=++177=; (5)111532⎛⎫÷-- ⎪⎝⎭6155⎛⎫=÷- ⎪⎝⎭5156⎛⎫=⨯- ⎪⎝⎭18=-;(6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦2378261323998⎡⎤⎛⎫=-⨯⨯-÷ ⎪⎢⎥⎝⎭⎣⎦2782241399⎡⎤⎛⎫=--÷ ⎪⎢⎥⎝⎭⎣⎦282223992⎡⎤⎛⎫=-÷ ⎪⎢⎥⎝⎭⎣⎦ 982094⎛⎫=-+⨯ ⎪⎝⎭22442-=22=-;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2115128103337⎡⎤⎛⎫⎛⎫⎛⎫=---++⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2115128103337⎡⎤=-++⨯⎢⎥⎣⎦567=⨯307=; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦162113171713388⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯-⨯-+÷ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2113(16)33881⎡⎤⎛⎫⎛⎫=⨯-⨯-+⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()332286⎛⎫=-⨯ ⎪⎝⎭863=⨯16=.【点睛】本题考查有理数的四则混合运算 涉及加法结合律、乘法分配律等知识 是重要考点 掌握相关知识是解题关键.26.(2022·娄底市第二中学七年级期中)请你先认真阅读材料: 计算 解:原式的倒数是=12112()()3031065-÷-+-21121-+()3106530⎛⎫-÷- ⎪⎝⎭2112()(30)31065-+-⨯-=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣再根据你对所提供材料的理解 选择合适的方法计算:. 【答案】. 【分析】根据题意 先计算出的倒数的结果 再算出原式结果即可.【详解】解:原式的倒数是:故原式. 【点睛】本题主要考查了有理数的除法 读懂题意 并能根据题意解答题目是解决问题的关键. 27.(2022·黑龙江绥化·期中)计算:(1)()()()6.5 3.3 2.5 4.7-+----+; (2)()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭; (3)22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)()2449525⨯- (5)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭【答案】(1)12- (2)63 (3)9- (4)24954-(5)99900【分析】根据有理数的加减乘除运算法则求解即可. (1)解:()()()6.5 3.3 2.5 4.7-+----+23110162511011322()()4261437-÷-+-114-113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-114=-6.5 3.3 2.5 4.7=--+-()6.5 3.3 4.7 2.5=-+++14.5 2.5=-+12=-;(2)解:()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭ 3761246=⨯⨯⨯ 63=;(3)解:22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ()9244=-+⨯-9=-;(4)解:()2449525⨯- ()2449525⎛⎫=+⨯- ⎪⎝⎭ 24495525=-⨯-⨯ 242455=-- 42495=-; (5)解:41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭ 41399911818555⎛⎫=⨯+--- ⎪⎝⎭ 999100=⨯99900=.【点睛】本题考查有理数的加减乘除混合运算 熟练掌握相关运算法则及运算顺序是解决问题的关键. 28.(2022·河北邯郸·七年级期中)能简算的要简算(1)122 6.6 2.5325⨯+⨯ (2)44444999999999955555++++ (3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ (4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦【答案】(1)25;(2)11110;(3)16;(4)10 【分析】(1)先把小数化为分数 然后根据乘法的结合律进行计算求解即可;(2)先把分数部分和整数部分分别相加然后得到()()()()19199199919999+++++++由此求解即可;(3)直接根据分数的混合计算法则进行求解即可;(4)先把小数化为分数 然后根据分数的混合计算法则进行求解即可.【详解】解:(1)131226232525⨯+⨯132=263255⎛⎫⨯+ ⎪⎝⎭1=2102⨯=25;(2)44444999999999955555++++()44444=999999999955555⎛⎫++++++++ ⎪⎝⎭=49999999999++++()()()()=19199199919999+++++++=10100100010000+++=11110;(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦1633=977⎡⎤÷+⎢⎥⎣⎦1696=77÷167=796⨯1=6;(4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦1631825=58512⎛⎫⨯+⨯ ⎪⎝⎭61825=5512⎛⎫+⨯ ⎪⎝⎭2425=512⨯ =10.【点睛】本题主要考查了分数与小数的混合计算 分数的混合计算 解题的关键在于能够熟练掌握相关计算法则.29.(2022·浙江七年级期中)计算(1) (2) (3) (4) (5) (6) (7) (8) 【答案】(1);(2);(3)-8;(4);(5)8;(6);(7)161;(8) 【分析】根据有理数的混合运算法则分别计算.【详解】解:(1) = = =; (2) = = 3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭()22012201121(0.25)4522--⨯+-÷-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112123123100+++++++++++13-174-49613-2001013233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭3112123124451034⎛⎫⎛⎫⎛⎫⨯-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭110441015153-⨯⨯⨯13-()22012201121(0.25)4522--⨯+-÷-()2012220111422554⎛⎫--⨯+-÷- ⎪⎝⎭2012201151424254⎛⎫-⨯-⨯⎪⎝⎭= =; (3) = = ==-8;(4) = = ==; (5) = = = =8;(6) 2011411444⎛⎫-⨯⨯- ⎪⎝⎭174-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭111866412⎛⎫⨯--⨯ ⎪⎝⎭1114848486412⨯-⨯-⨯8124--()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()91116(32)349⎡⎤-÷--⨯--⎢⎥⎣⎦111423⎛⎫--- ⎪⎝⎭12323+49622222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44411.35 1.057.7999⨯-⨯+⨯()411.35 1.057.79-+⨯4189⨯2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭= = = =; (7) = = = =160+1=161;(8) == = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序 以及一些常用的简便运算方法.30.(2022·河北邯郸·二模)淇淇在计算:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭时 步骤如下: 解:原式()11=202266623---+÷-÷①=202261218-++-① ()5112246274-+⨯+-⨯14125625-+⨯⨯213-+13-222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦3531345254⎛⎫⨯⨯+⨯+ ⎪⎝⎭35141254⎛⎫⨯++⎪⎝⎭511284⨯+111112123123100+++++++++++()()()11111221331100100222+++++⨯+⨯+⨯2222122334100101++++⨯⨯⨯⨯11112122334100101⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝⎭11111112122334100101⎛⎫⨯-+-+-++- ⎪⎝⎭200101=2048-①(1)淇淇的计算过程中开始出现错误的步骤是________;(填序号)(2)请给出正确的解题过程.【答案】(1)①; (2)见解析.【分析】(1)根据有理数的运算法则可知从①计算错误;(2)根据有理数的运算法则计算即可.(1)解:由题意可知:()20223111(1)(2)6=186236⎛⎫---+÷---+÷ ⎪⎝⎭; 故开始出现错误的步骤是①(2)解:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭()1=1866--+÷ =1836++=45.【点睛】本题考查含乘方的有理数的运算 解题的关键是掌握运算法则并能够正确计算.。
有理数的加减混合运算培优
双语初一数学培优五【知识总结】(1) ___________________________ 数轴上的数,右边的数总左边的数.(2)正数大于0,负数小于0,正数大于负数.(3)两个负数,绝对值大的反而;(4)两数比较大小,可按符号情况分类:(4) ________________ 同正:____________________________ 的数大两数同号;同负:的反而小比较大小两数异号(一正一负):_______ 于________ ;正数与0: ________ 于0;负数与0: _________ 小于0(5)有理数加法法则①同号两数相加,取相同的 ________ ,并把绝对值 _________ .②绝对值不相等的异号两数相加,取 _________ 的加数的符号,并用较大的________ 减去较小的________ .③一个数同0相加,仍得 ______ .(5)有理数减法法则减去一个数,等于________ ,即a-b=a+()(6)有理数减法的运算步骤(7)有理数减法法则①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算(8)有理数加减混合运算的步骤①把算式中的减法转化为加法;②省略加号与括号;③利用运算律及技巧简便计算,求出结果(10)【基础部分】 1•计算 (1)(2) 3^ (-25) 5|4 54-82 ;(3)7(-6)1 1⑷(-辽)(匕);(5) (-0.8) +1.2+ (-0.7) + (-2.1) +0.8+3.5;1(6)-2(7) (-8) -8;(9)3 1 -16— -(-10 — )4 412.;(11)— 0.5 +(—3丄)+ 2.754(10)2. 若 N = ? ,2,且a>b ,则 a + b= __________________ ..3. I x — 1 | = 3,贝U x = _____ .4. 已知| x +1|与| y — 2 |互为相反数,贝U| x | + | y | = _______ .【提高部分】 1.若 aa,贝U a= _____ ;若 a 0,贝U a __________ .2•相反数是2的数是 _____________ ,绝对值等于2的数是1 1 3. 3.14 n = ,— 2- — 31.234. 在有理数中最大的负整数是 —,最小的正整数是 _,最小的非负整数是 ___________ ,最小 的非负数是 _____________ .5.若m 是有理数,则m m 的值( )A.可能是正数6..若m 0,则m |m|的值为( )A.正数B.负数C.0D.非正数7.若 a 2 b 30 ,则a b 的值是()A.5B.1C. — 1D. — 58.有理数a ,b 在数轴上的对应点的位置如图所示,则( )9.下列各式中与a b c 的值不相等的是( ) B.—定是正数C.不可能是负数D.可能是正数,也可能是负数—1A.a + b = 0B.a + b > 0 1b —1C.a — b v 0D.a — b > 0A. a (b c)B.a (b c)C.(a b) ( c)D.( b) (a c)10.下列各式中与a b c的值不相等的是()A. a (b c)B.a (b c)C. (a b) ( c)D. ( b) (a c)11若a、b表示有理数,且a>0, b v0, a+ b v0,则下列各式正确的是()A. —b v —a v b v aB. —a v b v a v —bC.b v —a v —b v aD.b v —a v a v —b12.分别输入一1,- 2,按图所示的程序运算,则输出的结果依次是____________ 、_13.已知有理数a、b满足:a v 0, b>0且a b,化简a b a b a b b a14.下表列出国外几个城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数).如果现在时间是北京时间上午8 : 30,那么现在的纽约时间是多少?东京时间是多少?小兵现在想给远在巴黎的爸爸打电话,你认为合适吗?。
人教版七年级数学上册:第1章《有理数》计算强化培优训练卷【含答案】
人教版七年级数学上册:第1章《有理数》计算强化培优训练卷一.有理数的加减法1.计算:﹣1﹣3=( )A.2B.﹣2C.4D.﹣42.计算|﹣3|﹣(﹣2)的最后结果是( )A.1B.﹣1C.5D.﹣53.某地区一天三次测量气温如下,早上是﹣6℃,中午上升了7℃,半夜下降了9℃,则半夜的气温是( )A.4℃B.﹣8℃C.10℃D.﹣22℃4.下列运算中正确的个数有( )(1)(﹣5)+5=0;(2)﹣10+(+7)=﹣3;(3)0+(﹣4)=﹣4;(4)(﹣)﹣(+)=﹣.A.1个B.2个C.3个D.4个5.式子(﹣3)﹣(﹣1)+(﹣2)﹣(+5)省略括号后可以写成 ,读作 或 .6.已知|x|=2,y2=9,且|x﹣y|=y﹣x,则x﹣y= .7.计算:(1)﹣3+(﹣7)﹣(+15)﹣(﹣5);(2)1.5+2﹣10﹣4.75.8.计算:(1)(﹣6)+8+(﹣4);(2)23﹣17+(﹣16);(3)1+(﹣2)+2+(﹣1);(4)(+)+(﹣)+(+1)+(﹣).二.有理数的乘除法9.若a•b•c=0,则这三个有理数中( )A.至少有一个为零B.三个都是零C.只有一个为零D.不可能有两个以上为零10.计算:3×(﹣2)=( )A.1B.﹣1C.6D.﹣611.已知43×47=2021,则(﹣43)的值为( )A.2021B.﹣2021C.D.﹣12.已知|a|=2,b2=25,且ab>0,则a﹣b的值为( )A.7B.﹣3C.3D.3或﹣313.﹣1的倒数是 ,﹣8的倒数是 ,的倒数是 ,的倒数是 ,﹣1的倒数是 , 的倒数是﹣2.14.(﹣)÷(﹣2)×(﹣6)= .15.用“>”,“<”或“=”号填空:若a<c<0<b,则abc 0;若a<b<c<0,则abc 0.16.计算:(1)(﹣3)×;(2)(﹣1)÷(﹣2).17.计算:(1)(﹣)×(﹣)×(﹣);(2)(﹣5)×(﹣)××0×(﹣325).18.下面是佳佳同学的一道题的解题过程:2÷(﹣)×(﹣3)=[2÷(﹣)+2]×(﹣3),①=2×(﹣3)×(﹣3)+2×4×(﹣3),②=18﹣24,③=6,④(1)佳佳同学开始出现错误的步骤是 ;(2)请给出正确的解题过程.三.有理数的乘方19.(﹣1)2021等于( )A.1B.﹣2021C.2021D.﹣120.下列计算正确的是( )A.﹣(﹣3)2=9B.C.﹣32=9D.(﹣3)3=﹣921.在(﹣10)8中,﹣10是( )A.底数B.指数C.幂D.乘方22.下列各组数中,互为相反数的一组是( )A.﹣(﹣3)和|﹣3|B.(﹣3)3和﹣33C.﹣|3|和﹣3D.(﹣3)2和﹣3223.对于(﹣2)3,指数是 ,底数是 ,(﹣2)3= ;对于﹣42,指数是 ,底数是 ,幂是 .24.若a、b为整数,且|a﹣2|+(b+3)2020=1,则b a= .四.有理数的混合运算25.下列计算错误的是( )A.﹣3÷(﹣)=9B.()+(﹣)=C.﹣(﹣2)3=8D.|﹣2﹣(﹣3)|=526.计算:(﹣3)3×()的结果为( )A.B.2C.D.1027.若a、b互为相反数,c、d互为倒数,m+1的绝对值为5,则式子|m|﹣cd+的值为( )A.3B.3或5C.3或﹣5D.428.计算:23+(﹣3)×(﹣2)2的结果为 .29.计算:﹣(﹣3)2×+|2﹣4|= .30.已知m、n互为相反数,p、q互为倒数,x的绝对值为2,则代数式+2020pq+x2的值是 .31.计算:﹣32÷(﹣1)2+|﹣3+2|.32.计算:﹣32﹣28÷(﹣7)×(﹣)2.33.计算:.34.计算:.答案一.有理数的加减法1.解:﹣1﹣3=﹣1+(﹣3)=﹣4.故选:D.2.解:|﹣3|﹣(﹣2)=3+2=5.故选:C.3.解:﹣6+7﹣9=﹣8(°C).故选:B.4.解:(1)(﹣5)+5=0,正确;(2)﹣10+(+7)=﹣(10﹣7)=﹣3,正确;(3)0+(﹣4)=﹣4,正确;(4)(﹣)﹣(+)=.故原结论错误.∴运算中正确的有(1)(2)(3)共3个.故选:C.5.解:将式子(﹣3)﹣(﹣1)+(﹣2)﹣(+5)写成省略括号的和的形式是﹣3+1﹣2﹣5,可以读作负3正1负2与﹣5的和或负3加1减2减5.故﹣3+1﹣2﹣5;负3正1负2与﹣5的和;负3加1减2减5.6.解:∵|x|=2,y2=9,∴x=±2,y=±3,∵|x﹣y|=y﹣x,∴x﹣y<0,∴x﹣y=﹣2﹣3=﹣5,或x﹣y=2﹣3=﹣1,所以x﹣y=﹣5或﹣1.故﹣5或﹣1.7.解:(1)原式=﹣3﹣7﹣15+5=﹣25+5=﹣20;(2)原式===.8.解:(1)(﹣6)+8+(﹣4)=(﹣6﹣4)+8=﹣10+8=﹣2;(2)23﹣17+(﹣16)=23+(﹣17﹣16)=23﹣33=﹣10;(3)1+(﹣2)+2+(﹣1)=(1+2)+(﹣1﹣2)=4﹣4=0;(4)(+)+(﹣)+(+1)+(﹣)=(++1)+(﹣﹣)=2﹣1=1.二.有理数的乘除法9.解:若a•b•c=0,则这三个有理数中至少有一个为零,故选:A.10.解:3×(﹣2)=﹣6.故选:D.11.解:∵43×47=2021,∴(﹣43)=﹣43×47=﹣2021,故选:B.12.解:因为|a|=2,所以a=±2,因为b2=25,所以b=±5,又因为ab>0,所以a、b同号,所以a=2,b=5,或a=﹣2,b=﹣5,当a=2,b=5时,a﹣b=2﹣5=﹣3,当a=﹣2,b=﹣5时,a﹣b=﹣2﹣(﹣5)=3,因此a﹣b的值为3或﹣3,故选:D.13.解:由乘积为1的两个数互为倒数得,∵﹣1×(﹣1)=1,∴﹣1的倒数是﹣1;∵﹣8×(﹣)=1,∴﹣8的倒数是﹣;∵﹣×(﹣7)=1,∴﹣的倒数是﹣7;∵×=1,∴的倒数是;∵﹣1×(﹣)=1,∴﹣1的倒数是﹣;∵﹣×(﹣2)=1,∴﹣2的倒数是﹣,故﹣1,﹣,﹣7,,﹣,﹣.14.解:原式=×()×(﹣6)=×(﹣6)=﹣1,故﹣1.15.解:若a<c<0<b,则abc>0;若a<b<c<0,则abc<0,故>,<.16.解:(1)(﹣3)×=﹣×=﹣2;(2)(﹣1)÷(﹣2)=(﹣)÷(﹣)=.17.解:(1)(﹣)×(﹣)×(﹣)=﹣××=﹣;(2)(﹣5)×(﹣)××0×(﹣325)=0.18.解:(1)佳佳同学开始出现错误的步骤是①.故①.(2)2÷(﹣)×(﹣3)==2×(﹣12)×(﹣3)=72.三.有理数的乘方19.解:(﹣1)2021=﹣1,故选:D.20.解:A.﹣(﹣3)2=﹣9,故此选项不符合题意;B.,故此选项符合题意;C.﹣32=﹣9,故此选项不符合题意;D.(﹣3)3=﹣27,故此选项不符合题意.故选:B.21.解:(﹣10)8中表示8个(﹣10)相乘,其中(﹣10)是底数,8是指数,故选:A.22.解:A,因为﹣(﹣3)=3,|﹣3|=3,3与3不是相反数,所以A选项不符合题意;B,因为(﹣3)3=﹣27,﹣33=﹣27,﹣27与﹣27不是相反数,所以B选项不符合题意;C,因为﹣|3|=﹣3,﹣3与﹣3不是相反数,所以C选项不符合题意;D,因为(﹣3)2=9,﹣32=﹣9,9与﹣9互为相反数,所以D选项符合题意.故选:D.23.解:根据乘方的定义,得(﹣2)3的底数是﹣2,指数是3,(﹣2)3=﹣2×(﹣2)×(﹣2)=﹣8.同理,﹣42的底数是4,指数是2,幂是﹣16.故3,﹣2,﹣8,2,4,﹣16.24.解:∵|a﹣2|≥0,(b+3)2020≥0,而a、b为整数,∴|a﹣2|=1,(b+3)2020=0或|a﹣2|=0,(b+3)2020=1,∴a=1或3,b=﹣3或a=2,b=﹣4或﹣2,当a=1,b=﹣3时,b a=﹣3;当a=3,b=﹣3时,b a=(﹣3)3=﹣27;当a=2,b=﹣4,b a=(﹣4)2=16;当a=2,b=﹣2时,b a=(﹣2)2=4;综上所述,b a=(﹣3)3=﹣27;的值为﹣3或﹣27或4或16.故答案为﹣3或﹣27或4或16.四.有理数的混合运算25.解:﹣3÷(﹣)=3×3=9,故选项A正确;()+(﹣)==,故选项B正确;﹣(﹣2)3=﹣(﹣8)=8,故选项C正确;|﹣2﹣(﹣3)|=|﹣2+3|=1,故选项D错误;故选:D.26.解:(﹣3)3×()=(﹣27)×()=(﹣27)×﹣(﹣27)×+(﹣27)×=(﹣9)+15+(﹣4)=2,故选:B.27.解:∵a,b互为相反数,c,d互为倒数,m+1的绝对值为5,∴a+b=0,cd=1,|m+1|=5,∴m=﹣6或4,则原式=6﹣1+0=5或4﹣1+0=3.故选:B.28.解:23+(﹣3)×(﹣2)2=8+(﹣3)×4=8﹣12=﹣4.故﹣4.29.解:﹣(﹣3)2×+|2﹣4|=﹣9×+2=﹣3+2=﹣1.故﹣1.30.解:∵m、n互为相反数,p、q互为倒数,x的绝对值为2,∴m+n=0,pq=1,x=2或﹣2,则原式=+2020×1+4=2024.故2024.31.解:原式=﹣9÷1+|﹣1|=﹣9+1=﹣8.32.解:原式=﹣9+28×=﹣9+1=﹣8.33.解:原式===.34.解:原式=﹣9÷(4﹣1)+(﹣)×24=﹣9÷3+(×24﹣×24)=﹣3+(16﹣6)=﹣3+10=7.。
有理数的加减混合运算-2020-2021学年七年级数学上册尖子生同步培优题【人教版】
2020-2021学年七年级数学上册尖子生同步培优题【人教版】专题1.6有理数的加减混合运算姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•瑞安市校级月考)下列运算中正确的个数有( ) (1)(﹣5)+5=0; (2)﹣10+(+7)=﹣3; (3)0+(﹣4)=﹣4; (4)(−27)﹣(+57)=−37. A .1个B .2个C .3个D .4个2.(2018秋•黄陂区期末)将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是( ) A .20﹣3+5﹣7B .﹣20﹣3+5+7C .﹣20+3+5﹣7D .﹣20﹣3+5﹣73.(2019秋•麻城市校级期中)下列各式中,正确的是( ) A .﹣4﹣2=﹣2 B .﹣5﹣4﹣(﹣4)=﹣5C .10+(﹣8)=﹣2D .3﹣(﹣3)=04.(2018秋•岳麓区校级月考)小明存折中原有450元,取出260元,又存入150元,现在存折中还有( ) A .340元B .240元C .540元D .600元5.(2018秋•拱墅区期末)下列计算正确的是( ) A .5+(﹣6)=﹣11 B .﹣1.3+(﹣1.7)=﹣3C .(﹣11)﹣7=﹣4D .(﹣7)﹣(﹣8)=﹣16.(2019秋•新乐市期末)把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是( ) A .﹣5﹣4+7﹣2B .5+4﹣7﹣2C .﹣5+4﹣7﹣2D .﹣5+4+7﹣27.(2019秋•江夏区期末)计算:(﹣1434)﹣(﹣1014)+12=( )A .﹣8B .﹣7C .﹣4D .﹣38.(2019秋•通州区期末)下列运算正确的是( ) A .﹣2+(﹣5)=﹣(5﹣2)=﹣3 B .(+3)+(﹣8)=﹣(8﹣3)=﹣5 C .(﹣9)﹣(﹣2)=﹣(9+2)=﹣11D .(+6)+(﹣4)=+(6+4)=+109.(2019秋•琼中县期中)如果以海平面为基准,海平面以上记为正,海平面以下记为负.一艘潜艇从海平面开始下沉15m ,再下沉10m ,然后上升7m ,此时潜艇的海拔高度可记为( ) A .15mB .7mC .﹣18mD .﹣25m10.(2019秋•桥西区校级期中)下列式子可读作:“负1,负3,正6,负8的和”的是( ) A .﹣1+(﹣3)+(+6)﹣(﹣8) B .﹣1﹣3+6﹣8C .﹣1﹣(﹣3)﹣(﹣6)﹣(﹣8)D .﹣1﹣(﹣3)﹣6﹣(﹣8)二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上 11.(2019秋•江阴市期中)计算:﹣20+(﹣14)﹣(﹣18)+13= .12.(2018秋•北海期末)把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是 . 13.(2016秋•渝中区校级期中)规定a ﹡b =a +b ﹣1,则(﹣4)﹡6的值为 . 14.(2019秋•顺德区期中)计算:(﹣35)+(﹣22)﹣(﹣35)﹣8= .15.(2019秋•沙坪坝区校级月考)x 是最大负整数,y 是最小的正整数,z 是最小的自然数,则代数式x ﹣y +z 的值为 .16.(2019秋•南安市校级月考)已知|a |=1,|b |=2,|c |=4,且a >b >c ,则a ﹣b +c = .17.(2019秋•新都区期末)若“方框”表示运算x ﹣y +z +w ,则“方框”= .18.(2019秋•虹口区校级月考)﹣[(﹣1.5)+(﹣512)]﹣16= .三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤) 19.(2019秋•城厢区校级月考)计算 (1)11﹣18﹣12+19.(2)534−(−13)+(−34)+323. 20.(2019秋•凉州区校级月考)计算 (1)﹣17+(﹣33)﹣10﹣(﹣16). (2)|﹣7|﹣4+(﹣2)﹣|﹣4|+(﹣9)21.(2018秋•开福区校级月考)有理数a ,b ,c 在数轴上的位置如图所示,且|a |=|b |.(1)用“>”“<”或“=”填空:b0,a+b0,a﹣c0,b﹣c0;(2)化简:|a﹣b|+|b+c|﹣|a|.22.(2020春•浦东新区期末)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录为:+6,﹣5,+9,﹣10,+13,﹣9,﹣4(单位:米).(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远的距离是多少米?(3)守门员全部练习结束后一共跑了多少米?23.(2019秋•颍州区期末)某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(当天运进大米8吨,记作+8吨;当天运出大米15吨,记作﹣15吨.)若经过这一周,该粮仓存有大米88吨某粮仓大米一周进出情况表(单位:吨)星期一星期二星期三星期四星期五星期六星期日﹣32+26﹣23﹣16m+42﹣21(1)求m的值.(2)若大米进出库的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.24.(2019秋•沙坪坝区校级月考)已知买入股票与卖出股票均需支付成交金额的0.2%的交易费,周先生上周星期五在股市收盘价每股18元买进某公司的股票2000股,下表为本周交易日内,该股票每天收盘时每股的涨跌情况:星期星期一星期二星期三星期四星期五每股涨跌元+2+3﹣2.5+3﹣2注:①涨记作“+”,跌记作“﹣”;②表中记录的数据是每天收盘价格与前一天收盘价格的变化量,星期一的数据是与上星期五收盘价格的变化量.(1)直接判断:本周内该股票收盘时,价格最高的是那一天?(2)求本周星期五收盘时,该股票每股多少元?(3)若周先生在本周的星期五以收盘价将全部股票卖出,试求出周先生一共盈利多少钱?2020-2021学年七年级数学上册尖子生同步培优题典【人教版】专题1.6有理数的加减混合运算姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•瑞安市校级月考)下列运算中正确的个数有()(1)(﹣5)+5=0;(2)﹣10+(+7)=﹣3;(3)0+(﹣4)=﹣4;(4)(−27)﹣(+57)=−37.A.1个B.2个C.3个D.4个【分析】根据有理数的加减运算法则分别计算即可.【解析】(1)(﹣5)+5=0,正确;(2)﹣10+(+7)=﹣(10﹣7)=﹣3,正确;(3)0+(﹣4)=﹣4,正确;(4)(−27)﹣(+57)=37.故原结论错误.∴运算中正确的有(1)(2)(3)共3个.故选:C.2.(2018秋•黄陂区期末)将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是()A.20﹣3+5﹣7B.﹣20﹣3+5+7C.﹣20+3+5﹣7D.﹣20﹣3+5﹣7【分析】先把加减法统一成加法,再省略括号和加号.【解析】(﹣20)+(+3)﹣(﹣5)﹣(+7)=﹣20+3+5﹣7.故选:C.3.(2019秋•麻城市校级期中)下列各式中,正确的是()A.﹣4﹣2=﹣2B.﹣5﹣4﹣(﹣4)=﹣5C.10+(﹣8)=﹣2D.3﹣(﹣3)=0【分析】根据有理数加减法的运算方法,以及有理数加减混合运算的方法,逐项判断即可.【解析】A、﹣4﹣2=﹣6,故此选项不合题意;B、﹣5﹣4﹣(﹣4)=﹣5,正确,符合题意.C、10+(﹣8)=2,故此选项不合题意;D、3﹣(﹣3)=6,故此选项不合题意.故选:B.4.(2018秋•岳麓区校级月考)小明存折中原有450元,取出260元,又存入150元,现在存折中还有()A.340元B.240元C.540元D.600元【分析】根据有理数的混合运算的方法,用小明存折中原有的钱数减去取出的钱数,再加上又存入的钱数,求出现在存折中还有多少元即可.【解析】450﹣260+150=190+150=340(元)∴现在存折中还有340元.故选:A.5.(2018秋•拱墅区期末)下列计算正确的是()A.5+(﹣6)=﹣11B.﹣1.3+(﹣1.7)=﹣3C.(﹣11)﹣7=﹣4D.(﹣7)﹣(﹣8)=﹣1【分析】根据有理数的加法和减法法则计算可得.【解析】A.5+(﹣6)=﹣1,此选项错误;B.﹣1.3+(﹣1.7)=﹣3,此选项正确;C.(﹣11)﹣7=(﹣11)+(﹣7)=﹣18,此选项错误;D.(﹣7)﹣(﹣8)=(﹣7)+8=1,此选项错误;故选:B.6.(2019秋•新乐市期末)把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是()A.﹣5﹣4+7﹣2B.5+4﹣7﹣2C.﹣5+4﹣7﹣2D.﹣5+4+7﹣2【分析】根据有理数加减法的运算方法,判断出把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是哪个即可.【解析】(﹣5)﹣(﹣4)+(﹣7)﹣(+2)=﹣5+4﹣7﹣2=﹣10故选:C .7.(2019秋•江夏区期末)计算:(﹣1434)﹣(﹣1014)+12=( )A .﹣8B .﹣7C .﹣4D .﹣3【分析】从左向右依次计算,求出算式的值是多少即可. 【解析】(﹣1434)﹣(﹣1014)+12=﹣412+12=﹣4 故选:C .8.(2019秋•通州区期末)下列运算正确的是( ) A .﹣2+(﹣5)=﹣(5﹣2)=﹣3 B .(+3)+(﹣8)=﹣(8﹣3)=﹣5 C .(﹣9)﹣(﹣2)=﹣(9+2)=﹣11D .(+6)+(﹣4)=+(6+4)=+10【分析】根据有理数的加法法则一一计算即可判断.【解析】A 、﹣2+(﹣5)=﹣(2+5)=﹣7,故本选项不符合题意. B 、(+3)+(﹣8)=﹣(8﹣3)=﹣5,本选项符合题意.C 、(﹣9)﹣(﹣2)=(﹣9)+2=﹣(9﹣2)=﹣7,本选项不符合题意.D 、(+6)+(﹣4)=+(6﹣4)=2,本选项不符合题意, 故选:B .9.(2019秋•琼中县期中)如果以海平面为基准,海平面以上记为正,海平面以下记为负.一艘潜艇从海平面开始下沉15m ,再下沉10m ,然后上升7m ,此时潜艇的海拔高度可记为( ) A .15mB .7mC .﹣18mD .﹣25m【分析】根据下沉减,上升加,列出算式计算即可解答. 【解析】﹣15﹣10+7=﹣18(m ). 故此时潜艇的海拔高度可记为﹣18m . 故选:C .10.(2019秋•桥西区校级期中)下列式子可读作:“负1,负3,正6,负8的和”的是( ) A .﹣1+(﹣3)+(+6)﹣(﹣8) B .﹣1﹣3+6﹣8C .﹣1﹣(﹣3)﹣(﹣6)﹣(﹣8)D .﹣1﹣(﹣3)﹣6﹣(﹣8)【分析】将所列的四个数写成省略加号的形式即可得.【解析】读作“负1,负3,正6,负8的和”的是﹣1﹣3+6﹣8,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•江阴市期中)计算:﹣20+(﹣14)﹣(﹣18)+13=﹣3.【分析】根据有理数的加减法法则计算即可.【解析】﹣20+(﹣14)﹣(﹣18)+13=﹣(20+14)+(18+13)=﹣34+31=﹣3.故答案为:﹣312.(2018秋•北海期末)把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是﹣8﹣5+2.【分析】根据有理数的运算法则即可求出答案.【解析】原式=﹣8﹣5+2,故答案为:﹣8﹣5+2.13.(2016秋•渝中区校级期中)规定a﹡b=a+b﹣1,则(﹣4)﹡6的值为1.【分析】根据题中的新定义化简所求式子,计算即可得到结果.【解析】根据题中的新定义得:(﹣4)﹡6=﹣4+6﹣1=1.故答案为:1.14.(2019秋•顺德区期中)计算:(﹣35)+(﹣22)﹣(﹣35)﹣8=﹣30.【分析】直接利用有理数的加减运算法则计算得出答案.【解析】原式=﹣35﹣22+35﹣8=(﹣35+35)﹣(22+8)=﹣30.故答案为:﹣30.15.(2019秋•沙坪坝区校级月考)x是最大负整数,y是最小的正整数,z是最小的自然数,则代数式x﹣y+z 的值为﹣2.【分析】根据题意确定出x,y,z的值,即可代入求出所求式子的值.【解析】∵x是最大负整数,y是最小的正整数,z是最小的自然数,∴x=﹣1,y=1,z=0,∴x ﹣y +z =﹣1﹣1+0=﹣2. 故答案为:﹣2.16.(2019秋•南安市校级月考)已知|a |=1,|b |=2,|c |=4,且a >b >c ,则a ﹣b +c = ﹣1或﹣3 . 【分析】根据|a |=1,|b |=2,|c |=4,且a >b >c ,可得出c =﹣4,b =﹣2,a =±1,由此可得出答案. 【解析】由题意得:a =±1,b =﹣2,c =﹣4, 当a =﹣1,b =﹣2,c =﹣4时a ﹣b +c =﹣3; 当a =1,b =﹣2,c =﹣4时,a ﹣b +c =﹣1; ∴a ﹣b +c =﹣1或﹣3. 故答案为:﹣1或﹣3.17.(2019秋•新都区期末)若“方框”表示运算x ﹣y +z +w ,则“方框”= ﹣8 .【分析】利用题中的新定义计算即可得到结果.【解析】根据题意得:“方框”=﹣2﹣3+3﹣6=﹣8,故答案为:﹣8.18.(2019秋•虹口区校级月考)﹣[(﹣1.5)+(﹣512)]﹣16= ﹣9 .【分析】首先计算括号里面的加法,然后计算括号外面的减法,求出算式的值是多少即可. 【解析】﹣[(﹣1.5)+(﹣512)]﹣16=﹣(﹣7)﹣16 =7﹣16 =﹣9故答案为:﹣9.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤) 19.(2019秋•城厢区校级月考)计算 (1)11﹣18﹣12+19.(2)534−(−13)+(−34)+323.【分析】根据有理数的加减混合运算的法则计算即可. 【解析】(1)11﹣18﹣12+19=30﹣30 =0.(2)534−(−13)+(−34)+323 =534−34+13+323=5+4 =9.20.(2019秋•凉州区校级月考)计算 (1)﹣17+(﹣33)﹣10﹣(﹣16). (2)|﹣7|﹣4+(﹣2)﹣|﹣4|+(﹣9)【分析】(1)从左向右依次计算,求出算式的值是多少即可.(2)首先根据绝对值的含义和求法,求出|﹣7|、|﹣4|的值各是多少;然后从左向右依次计算,求出算式的值是多少即可.【解析】(1)﹣17+(﹣33)﹣10﹣(﹣16) =﹣50﹣10+16 =﹣44(2)|﹣7|﹣4+(﹣2)﹣|﹣4|+(﹣9) =7﹣4﹣2﹣4﹣9 =﹣1221.(2018秋•开福区校级月考)有理数a ,b ,c 在数轴上的位置如图所示,且|a |=|b |. (1)用“>”“<”或“=”填空:b < 0,a +b = 0,a ﹣c > 0,b ﹣c < 0; (2)化简:|a ﹣b |+|b +c |﹣|a |.【分析】(1)根据数轴得出b <c <0<a ,|a |=|b |>|c |,求出b <0,a +b =0,a ﹣c >0,b ﹣c <0即可; (2)先去掉绝对值符号,再合并即可.【解析】(1)∵从数轴可知:b <c <0<a ,|a |=|b |>|c |,∴b<0,a+b=0,a﹣c>0,b﹣c<0,故答案为:<,=,>,<;(2)|a﹣b|+|b+c|﹣|a|=a﹣b﹣b﹣c﹣a=﹣2b﹣c.22.(2020春•浦东新区期末)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录为:+6,﹣5,+9,﹣10,+13,﹣9,﹣4(单位:米).(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远的距离是多少米?(3)守门员全部练习结束后一共跑了多少米?【分析】(1)计算这些数的和,根据和的符号、绝对值得出是否回到原来的位置,(2)计算出每一次离开球门的距离,比较得出答案,(3)计算这些数的绝对值的和即可.【解析】(1)(+6)+(﹣5)+9+(﹣10)+13+(﹣9)+(﹣4)=0,答:守门员回到了球门线的位置;(2)守门员每次离开球门的距离为:6,1,10,0,13,4,0,答:守门员离开球门的位置最远是13米;(3)6+5+9+10+13+9+4=56(米)答:守门员一共走了56米.23.(2019秋•颍州区期末)某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(当天运进大米8吨,记作+8吨;当天运出大米15吨,记作﹣15吨.)若经过这一周,该粮仓存有大米88吨某粮仓大米一周进出情况表(单位:吨)星期一星期二星期三星期四星期五星期六星期日﹣32+26﹣23﹣16m+42﹣21(1)求m的值.(2)若大米进出库的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.【分析】(1)根据有理数的加法,可得答案;(2)根据单位费用乘以总量,可得答案.【解析】(1)132﹣32+26﹣23﹣16+m+42﹣21=88,解得m=﹣20;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700答:这一周该粮仓需要支付的装卸总费用为2700元.24.(2019秋•沙坪坝区校级月考)已知买入股票与卖出股票均需支付成交金额的0.2%的交易费,周先生上周星期五在股市收盘价每股18元买进某公司的股票2000股,下表为本周交易日内,该股票每天收盘时每股的涨跌情况:星期星期一星期二星期三星期四星期五每股涨跌元+2+3﹣2.5+3﹣2注:①涨记作“+”,跌记作“﹣”;②表中记录的数据是每天收盘价格与前一天收盘价格的变化量,星期一的数据是与上星期五收盘价格的变化量.(1)直接判断:本周内该股票收盘时,价格最高的是那一天?(2)求本周星期五收盘时,该股票每股多少元?(3)若周先生在本周的星期五以收盘价将全部股票卖出,试求出周先生一共盈利多少钱?【分析】(1)根据表格中数据,可得答案;(2)根据有理数的加法可得答案;(3)根据利用盈利减去卖出股票应支付的交易费计算即可.【解析】(1)价格最高的是星期四;(2)该股票每股为:18+2+3﹣2.5+3﹣2=21.5(元/股);(3)卖出股票应支付的交易费为:(21.5﹣18)×2000﹣18×2000×0.2%﹣21.5×2000×0.2%=6842(元),11/ 11。
七年级数学上册《有理数》培优测试题(含答案)
B. (3) (2)
C. (3)2 (2)2
D.
(3)2 (2)
10.几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是(
)
A.28
B.33
C.45
D.57
二、填空题(每小题 3 分,共 24 分)
11.绝对值小于 n ( n 是正整数)的整数共有___________个。
12.当 a b 0 时, 1 _______ 1 (填“>”“=”或“<”)。
D.不能确定正负
3.当 a 、 b 互为相反数时,下列各式一定成立的是( )
A. b 1 a
B. b 1 a
C. a b 0
D. ab 0
4. 3.14 的计算结果是( )
A.0
B. 3.14
C. 3.14
5. a 为有理数,则下列各式成立的是(
)
D. 3.14
A. a 2 0
七年级数学上册《有理数》培优测试题
一、选择题(每小题 3 分,共 30 分)
1.下列说法正确的是(
)
A.任何负数都小于它的相反数
B.零除以任何数都等于零
C.若 a b ,则 a 2 b2
D.两个负数比较大小,大的反而小
2.如果一个数的绝对值等于它的相反数,那么这个数(
)
A.必为正数
B.必为负数
C.一定不是正数
(2) 第 n 行与第 n 列的交叉点上的数应为____________。(用含正整数 n 的式子表
示) (3) 计算左上角 2×2 的正方形里所有数字之和,即:
1
-2
-2
3
在数表中任取几个 2×2 的正方形,计算其中所有数字之和,归纳你得出的结论。
部编数学七年级上册专题有理数的混合运算大题专练(重难点培优)同步培优【人教版】含答案
【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.15有理数的混合运算大题专练(重难点培优)一、解答题1.(2022·湖北武汉·七年级期末)计算:(1)5+(―6)+3―(―4);(2)79÷(23―15)―13×(―4)2.【答案】(1)6;(2)―113.【解析】【分析】(1)根据有理数的加减运算法则计算即可;(1)根据有理数的混合运算法则计算即可.(1)解:5+(―6)+3―(―4)=5―6+3+4=6.(2)解:79÷―13×(―4)2=79÷715―13×16=79×157―163=53―163=―113.【点睛】本题考查有理数的混合运算法则,解题的关键是掌握混合运算的法则.2.(2022·山东菏泽·七年级期末)计算:(1)15+(-6)-(-7)+(―6)×4―(―21)÷3(2)―32÷23×1―(3)―14+16÷(―2)3×|―3―1|【答案】(1)-1(2)-6(3)-9【解析】【分析】(1)原式利用减法法则变形,结合后相加即可得到结果;(2)原式先算括号中的减法及乘方,再从左到右依次计算即可得到结果;(3)原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.(1)解:15+(-6)-(-7)+(―6)×4―(―21)÷3=15-6+7-24+7=9+7-24+7=16+(-17)= -1;(2)解:―32÷23×(1―13)2=―9×32×49=―6;(3)解:―14+16÷(―2)3×|―3―1|=―1+16×(―18)×4=―1―8=―9.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2022·河南南阳·七年级期末)计算:(1)(―1)2019―|―3―7|×(―15)÷(―12);(2)―14―(1―0.5)×13×[1―(―2)2].【答案】(1)-5(2)―12【解析】【分析】(1)先算乘方,绝对值,除法转化为乘法,最后算加减即可;(2)先算乘方,括号里的运算,再算乘法,最后算加减即可.(1)解:(―1)2019―|―3―7|×(―15)÷(―12)=―1―10×(―15)×(―2)=―1―4=―5;(2)解:―14―(1―0.5)×13×[1―(―2)2].=―1―12×13×(1―4)=―1―16×(―3)=―1+12=―12.【点睛】本题主要考查有理数的混合运算,有理数的乘方、绝对值,解题的关键是对相应的运算法则的掌握.4.(2022·重庆梁平·七年级期末)计算(1)―22+3×(―1)2016―9÷(―3)(2)57÷――57×512―53÷4【答案】(1)2(2)―8584【解析】【分析】(1)先计算有理数的乘方、乘除,再计算加减;(2)将分数除法变形为分数乘法,再进行乘法和加减运算.(1)解:―22+3×(―1)2016―9÷(―3)=―4+3×1―9÷(―3)=―4+3―(―3)=―4+3+3=2(2)解:57÷――57×512―53÷4=―57×512―57×512―53×14=―2584―2584―512=―8584【点睛】本题考查带乘方的有理数的混合运算,属于基础题,掌握有理数的运算法则并正确计算是解题的关键.5.(2022·全国·七年级)计算:(―34―16+512)÷136.【答案】―18【解析】【分析】先将除法化为乘法,再利用乘法分配律计算后,最后计算加减即可.【详解】解:(―34―16+512)÷136=(―34―16+512)×36=―34×36―16×36+512×36=﹣27﹣6+15=﹣18.【点睛】本题考查有理数的混合运算.熟练掌握乘法分配律是解题关键.6.(2022·全国·七年级专题练习)计算:(1)(14+38―712)÷124;(2)(―1)2022×|―112|+0.5÷(―13).【答案】(1)1(2)-3【解析】【分析】(1)先化除为乘,再用乘法的分配率计算即可;(2)按照有理数的混合运算顺序,先算乘方,再算乘除,最后算加减即可;(1)38÷12438=14×24+38×24﹣712×24=6+9﹣14=1;(2)(﹣1)2021×|﹣112|+0.5÷(﹣13)=(﹣1)×32+12×(﹣3)=﹣32+(﹣32)=﹣3.【点睛】本题考查了有理数的混合运算,以及有理数的乘法分配率,解题的关键是熟悉有理数的混合运算顺序.7.(2022·全国·七年级专题练习)用简便方法计算:(1)(―8)×(―45)×(―1.25)×54;(2)(﹣93536)×18;(3)(―8)×(―16―512+310)×15.【答案】(1)-10(2)―17912(3)34【解析】【分析】(1)原式结合后,相乘即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式结合后,利用乘法分配律计算即可得到结果.(1)解:原式=﹣(8×1.25)×(45×54)=﹣10×1=﹣10;(2)原式=(﹣10+136)×18=﹣10×18+136×18=﹣180+12 =﹣17912;(3)原式=(﹣8×15)×(﹣16 ﹣512 + 310)=(﹣120)×(﹣16 ﹣512 +310)=﹣120×(﹣16)﹣120×(﹣512)﹣120×310 =20+50﹣36=34.【点睛】此题考查了有理数的混合运算,乘法分配律,熟练掌握运算法则及运算律是解本题的关键.8.(2022·全国·七年级专题练习)计算(1)2×(―3)3―4×(―3)+15;(2)(―2)3+(―3)×(―4)2+2―(―3)2÷(―2).【答案】(1)-27;(2)-57.5.【解析】【分析】(1)根据有理数的混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.(1)解:2×(―3)3―4×(―3)+15=2×(―27)+12+15=―54+12+15 =―27.(2)解:(―2)3+(―3)×(―4)2+2―(―3)2÷(―2)=―8+(―3)×18+9 2=―8―54+9 2=―57.5.【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数混合运算的法则,正确计算即可.9.(2021·云南·普洱市思茅区第四中学七年级期中)计算:(1)(―21)+(+3)―(―4)―(+9)(2)42×―+―÷(―0.25)(3)―12+(―3―1)2―|―13|×(―3)2【答案】(1)―23(2)―11(3)12【解析】【分析】(1)根据有理数加减混合运算法则进行计算即可;(2)根据有理数四则混合运算法则进行计算即可;(3)根据含有乘方的有理数混合运算法则进行计算即可.(1)解:(―21)+(+3)―(―4)―(+9),=(―21)+(―9)+3+4=―23.(2)42×+÷(―0.25)=―14+×(―4)=―14+3=―11(3)―12+(―3―1)2―|―13|×(―3)2=―1+(―4)2―13×9=―1+16―3=12【点睛】本题主要考查了有理数混合运算法则,熟练掌握有理数混合运算法则,是解题的关键.10.(2021·云南·富源县第七中学七年级期中)计算下列各题(1)15+(―8)―(―4)―5(2)(―512+34―16)×(―48)(3)―10+8÷(―22)―(―4)÷(―13)(4)―14―(1―0.5)×13×5―(―3)2【答案】(1)6(2)-8(3)-24(4)―13【解析】【分析】(1)根据有理数的加减法可以解答本题;(2)根据乘法分配律可以解答本题;(3)先算乘方、再有理数的除法和加减法可以解答本题;(4)先算乘方、再有理数的乘法和加减法可以解答本题.(1)解:原式=15+(―8)+4+(―5)=19+(―13)=6 (2)解:原式=512×48+34×(―48)+16×48=20―36+8=28―36=―8(3)解:原式=―10+8÷(―4)―(―4)×(―3)=―10―2―12=―24 (4)解:原式=―1―12×13×(―4)=―1+23=―13【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算顺序和方法.11.(2020·黑龙江·虎林市实验中学七年级期中)计算(1)26―(―15)(2)-3×4+(-28)÷7(3)(23―15+65)×15(4)(―1)3×2+(―2)2÷4【答案】(1)41(2)-16(3)25(4)-1【解析】【分析】(1)去括号,括号内数字变符号,然后进行计算;(2)先算乘除,后算加减;(3)先算括号内,然后与括号外数字相乘;(4)先算乘方,再算乘除,最后算加减.(1)解:26―(―15)=26+15=41;(2)-3×4+(-28)÷7=-12+(-4)=-16;(3)(23―15+65)×15=(23+1)×15=53×15=25;(4)(―1)3×2+(―2)2÷4=(―1)×2+4÷4=-2+1=-1.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算法则是解题的关键.12.(2022·江苏·七年级)计算:(1)―16―320+45×(―15×4);(2)120×―556+638―(3)(﹣18)÷214×49÷(﹣16);(4)12÷(―14)+(1―0.2÷35)×(―3);(5)312÷(―125)―821×(―134)―(―1+16)2+(―13)2×3.【答案】(1)6(2)―111(3)29(4)―4(5)―7936【解析】【分析】(1)根据乘法分配律拆开括号,进行运算即可;(2)根据乘法分配律拆开括号,进行运算即可;(3)把除法转化为乘法,再进行运算即可;(4)先计算括号内,把除法转化为乘法,再进行运算即可;(5)先把乘方进行计算,把除法转化为乘法,再进行运算即可.(1)原式=(―16―320+45―712)×(―60)=16×60+320×60―45×60+712×60=10+9―48+35=6;(2)原式=―120×356+120×518―120×2215=―700+765―176=―111;(3)原式=18×49×49×116=29;(4)原式=12×(―4)+(1―15×53)×(―3)=―2+(1―13)×(―3)=―2―23×3=―2―2=―4;(5)原式=―72×57+821×74―(―56)2+19×3=―52+23―2536+13=―52―2536+(23+13)=―11536+1=―7936.【点睛】本题考查了有理数的混合运算,掌握有理数的运算法则是解题的关键.13.(2020·山西晋城·七年级期中)计算:(1)―5+7―(―3)―20(2)―23+6÷(―32)【答案】(1)-15(2)-12【解析】【分析】(1)原式先根据有理数减法法则变形,再进行加减运算即可;(2)原式先计算乘方和除法,然后再进行加减运算即可.(1)―5+7―(―3)―20=―5+7+3―20 =(7+3)+(―5―20) =10―25 =―15;(2)―23+6÷(―32)=―8―6×23 =―8―4 =―12【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.14.(2022·黑龙江·绥化市第八中学校期中)计算:(1)-2×(-3)-(-8)÷4;(2)(14+16-12)×12(3)―52×34+25×12―25×14;(4)423+215―0.8+245―(―613).【答案】(1)8(2)-1(3)-12.5(4)15.2【解析】【分析】(1)根据有理数混合运算进行计算即可,先乘除,再加减;(2)利用乘法分配律进行计算即可;(3)先乘方,再利用乘法分配律进行计算即可;(4)先去括号,再利用有理数加减运算进行计算即可.(1)解:-2×(-3)-(-8)÷4=6-(-2)=6+2=8(2)解:(14+16-12)×12=14×12+16×12-12×12=-1 (3)解:―52×34+25×12―25×14=―25×34+25×12―25×14=―25×(34―12+14)=―25×12 =-12.5 (4)解:423+215―0.8+245―(―613)=423+215―45+245+613=(423+613)+(215―45+245)=11+4.2=15.2【点睛】本题主要考查了有理数的混合运算以及乘法分配律的运用,正确地计算能力是解决问题的关键.15.(2021·山东省郓城第一中学七年级阶段练习)计算:(1)―30+17;(2)―67―(―29);(3)1.5―8.9;(4)×(5)―5+(―3.75);(6)―5――(7)―17+23+(―16)―(―17);(8)―3+2×|―2―3|―25.【答案】(1)―13;(2)―38;(3)―7.4;(4)76;(5)―9;(6)―2.25;(8)―18.【解析】【分析】(1)根据有理数的加法计算即可;(2)根据有理数的减法计算即可;(3)根据有理数的减法计算即可;(4)根据有理数的乘法计算即可;(5)根据有理数的加法计算即可;(6)根据有理数的减法计算即可;(7)根据有理数的加减计算即可;(8)根据有理数的混合运算法则计算即可.(1)解:―30+17=―13.(2)解:―67―(―29)=―67+29=―38.(3)解:1.5―8.9=―7.4.(4)解:×―=76.(5)解:―+(―3.75)=―5.25+(―3.75)=―9.(6)解:――――5.75+3.5=―2.25.(7)解:―17+23+(―16)―(―17)=―17+23―16+17=7.(8)解:―3+2×|―2―3|―25=―3+10―25=―18.【点睛】本题考查有理数加法,减法,乘法以及混合运算,解题的关键是掌握有理数的运算法则,正确计算.16.(2022·黑龙江·哈尔滨德强学校期中)计算:(1)(―2)2×5―(―2)3÷4(2)23÷×34―34【答案】(1)22(2)54【解析】【分析】(1)原式先计算乘方,再计算乘除法,最后算加减即可;(2)原式先计算小括号内的减法,再计算乘除法,最后算加减即可.(1)(―2)2×5―(―2)3÷4=4×5+8÷4=20+2=22;(2)23÷×34―34=23÷14×34―34=23×4×34―34=2―34=54.【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.17.(2022·全国·七年级课时练习)计算:(1)(12―13)×6÷|―15|(2)(―1)2018+(―10)÷12×2―[2―(―3)3]【答案】(1)5(2)﹣68【解析】【分析】(1)根据有理数的加减乘除混合运算法则计算即可.(2)根据有理数的加减乘除乘法混合运算法则计算即可.(1)解:(12―13)×6÷|―15|=(12―13)×6×5 =(12―13)×30=12×30―13×30=15―10=5(2)(―1)2018+(―10)÷12×2―[2―(―3)3]=1+(―10)×2×2―(2+27)=1―40―29=―68【点睛】本题考查有理数的混合运算,关键在于熟练掌握基础运算法则.18.(2022·黑龙江·哈尔滨市萧红中学校期中)(1)(―20)+(+3)―(―5)―(+7)(216―×12(3)―2.5÷58×(4)2×(―3)3―4×(―3)+15【答案】(1)-19;(2)-1;(3)1;(4)-27【解析】【分析】(1)先去括号再求解;(2)先去括号再求解;(3)先把除号变成乘号再求解;(4)先计算―3立方,再依次计算即可得到答案.【详解】(1)(―20)+(+3)―(―5)―(+7)=(―20)+3+5―7=―19;(2)+16×12=14×12+16×12―12×12=3+2―6=―1;(3)―2.5÷58×―=―52×85×=4×14=1;(4)2×(―3)3―4×(―3)+15=2×(―27)+12+15=―54+27=―27.【点睛】本题考查有理数的混合运算,解题的关键是熟练掌握有理数的运算法则.19.(2022·云南·景谷傣族彝族自治县教育体育局教研室七年级期末)计算:(1)13―7―(―7);(2)18×――8÷(―2);(3)―22×(―9)―|―4×5|.【答案】(1)13(2)-2(3)16【解析】(1)解:原式=6+7=13;(2)解:原式=-6+4=-2;(3)解:原式=-4×(-9)-20=36-20=16.【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.20.(2020·江西景德镇·七年级期中)计算:2+÷3(2)―22×1―4÷―1.4【答案】(1)3(2)-9【分析】(1)根据有理数的混合计算法则求解即可;(2)根据含乘方的有理数混合计算法则求解即可.(1)―23÷=―23×(―36)=16×(―36)―23×(―36)+512×(―36)=―6+24―15 =3;(2)解:―22×14―4÷―1=―4×14―4÷49―1=―1―4×94―1=―1―9+1=―9.【点睛】本题主要考查了含乘方的有理数混合计算,有理数的四则混合运算,熟知相关计算法则是解题的关键.21.(2022·黑龙江绥化·期中)计算:(1)―6.5+(―3.3)―(―2.5)―(+4.7);(2)6××(―12)×116;(3)―32+2×4―1÷2(4)492425×(―5)(5)999×11845+999×――999×1835【答案】(1)―12(2)63(3)―9(4)―24945(5)99900【解析】根据有理数的加减乘除运算法则求解即可.(1)解:―6.5+(―3.3)―(―2.5)―(+4.7)=―6.5―3.3+2.5―4.7=―(6.5+3.3+4.7)+2.5=―14.5+2.5=―12;(2)解:6××(―12)×116=6×34×12×76=63;(3)解:―32+2×4―1÷2=―9+2×(4―4)=―9;(4)解:492425×(―5)=49×(―5)=―49×5―2425×5=―245―245=―24945;(5)解:999×11845+999×―999×1835=999×118+45―15―18=999×100=99900.【点睛】本题考查有理数的加减乘除混合运算,熟练掌握相关运算法则及运算顺序是解决问题的关键.22.(2022·全国·七年级课时练习)计算(1)4×(―12―34+2.5)×3―|―6|(2)(﹣1)3×(﹣12)÷[(﹣4)2+2×(﹣5)](3)―14―(1―0.5)×13―[2―(―3)2](4)(―2)4÷(―4)×―12【答案】(1)9(2)2(3)356(4)―2【解析】(1)解:4×(―12―34+2.5)×3―|―6|=4×54×3―6=15―6=9.(2)(﹣1)3×(﹣12)÷[(﹣4)2+2×(﹣5)]=―1×(―12)÷[16+(―10)]=―1×(―12)÷6=12÷6=2.(3)―14―(1―0.5)×13―[2―(―3)2]=―1―12×13―(2―9)=―1―16+7=6―1 6=356.(4)(―2)4÷(―4)×―12=16÷(―4)×14―1=―4×14―1=―1―1=―2.【点睛】本题考查了有理数的混合运算,正确计算是解题的关键.。
第一章 有理数 培优训练(2024年版)人教版数学 七年级上册
第一章有理数培优训练2024-2025学年七年级上册数学人教版1.1 正数和负数考点 1 认识正数和负数1. 下列各数:−14,+2,3.5,−9,0,+27,25%,−π,0.12.其中,是负数的有 ( )A.2个B.3个C.4个D.5个考点2 用正数、负数表示具有相反意义的量2.下列选项中,是具有相反意义的量的是 ( )A.气温升高6℃与气温零下8 ℃B.增加 2 L与减少2kgC.超过0.5mm 与不足0.3mD. 向东走 4k m和向南走 5km3.某粮店出售的三种品牌的面粉袋上,分别标有“(50±0.1) kg、(50±0.2) kg、(50±0.3) k g”的字样,从中任意拿出两袋,它们的质量最多相差 ( )A.0.8kgB.0.6kgC.0.5kgD.0.4kg4.以下的五个时钟显示了同一时刻国外四个城市时间和北京时间,若表中给出的是国外四个城市与北京的时差,则这五个时钟对应的城市从左到右依次是 ( )A.C. 伦敦、纽约、北京、罗马、悉尼D.北京、罗马、伦敦、悉尼、纽约易错点对正数、负数、0的概念理解不透5. 下列说法:①带正号的数就是正数,带负号的数就是负数;②海拔高度是0米表示没有高度;③0是正数与负数的分界;④任意一个正数的前面加上“-”号就是负数;⑤字母a既是正数,又是负数;⑥不大于0的数一定是负数.正确的有 .(填序号)1.2 有理数考点1有理数的概念与分类1.下列说法中,正确的是 ( )A. 非负数一定是正数B.有最小的正整数,也有最小的有理数C. 前面有“-”号的数一定是负数D.最大的负整数是-12.将各数填在相应的集合的圈里:-8,+6,75,-0.4,25%,0,-2023,-2.8, 37考点2 数轴(重点)3.在数轴上距表示-2.5的点有3.5个单位长度的点所表示的数是 ( )A. -6B.1C.-1或6D.-6或1 >> 对点专练P4,P334.有理数a,b 在数轴上的位置如图所示,则数a,b,-a,-b 的大小关系为 ( )A. -a<-b<b<aB.-a<b<a<-bC.-a<b<-b<aD.-a<-b<a<b考点3 相反数5.下列各组数中,互为相反数的是 ( )A.-(+7)与+(-7)B.−12与+(-0.5)C.−54与 45 D. +(-0.01)与-(-0.01) 考点4 绝对值(重点)6.下列四个数中,最大的数是 ( )A.-(-1021)B.|- 022|C.-|-1023|D.-(+1024)7.若 |−m|=|−12|,则m 的值为 .易错点 多重符号化简时,正负号易出错8.(1)相反数等于本身的数是 ;化简−[−(+3)]=.(2)当+1的前面有99 个负号时,化简结果是 ,当-2的前面有 99 个负号时,化简结果是 .能力诊断1.若|a-1|与|b-2|互为相反数,则a+b 的值为 ( )A.3B. -3C. 1D. -12.如图,某同学用直尺画数轴,数轴上点A ,B 分别在直尺的1cm ,9 cm 处,若点A 对应-2,直尺的0刻度位置对应-4,则点 B 对应的数为 ( )A.6B.7C.12D.143.把下列各数对应的序号填在相应的大括号里:①-8,②π,③-121,④ 227,⑤4,⑥-0.9,⑦5.4,⑧-3.6,⑨0.负有理数集合:{ …}; 正分数集合:{ …};自然数集合:{ …}; 非正整数集合:{ …}.4.|m-n|表示数轴上表示数m和数n的两点之间的距离.结合数轴回答下列问题.(1)数轴上表示 3 和2 的两点之间的距离是;表示-2和1的两点之间的距离是.(2)如果|x-1|=3,那么x= .(3)若数轴上表示数a的点位于-4与2之间,则|a+4l+|a-2l= .(4)|a-(-3)|+|a-5|的最小值是 .5.如图,A,B分别为数轴上的两点,点A 对应的数是-20,点B 对应的数为80.现在有一只电子蚂蚁P从点 B出发,以2个单位长度/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A 出发,以3个单位长度/秒的速度向右运动,设两只电子蚂蚁在数轴上的点 C相遇.(1)求出点 C 在数轴上所对应的数.(2)何时两只电子蚂蚁在数轴上相距15个单位长度?专题数轴与绝对值类型一数轴1. 数轴上表示整数的点称为整点.某数轴的单位长度为1cm,若在这条数轴上任意画一条长1 000 cm的线段,则线段盖住的整数点的个数是 ( )A. 1 000B. 1 001C. 1 000 或 1 001D.999 或1 00 02.在数轴上,点A,B在原点O 的两侧,分别表示数a,2,将点A 向右移动1个单位长度得到点C,若点 B 与点 C到原点的距离相等,则a的值为 ( )A. -3B. -2C. -1D. 13. 如图所示,将圆的周长分为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数1所对应的点重合,再让圆沿着数轴按逆时针方向滚动,那么数轴上的数-556将与圆周上的数字 重合.4. 一把刻度尺在数轴上的位置摆放如图①所示,刻度尺右端点 B 的刻度为“0”,刻度“10c m ”和“25cm ”分别与数轴上表示数0和-2 的点重合,现将该刻度尺沿数轴向右平移4个单位长度,如图②,使刻度尺的左端点 A 与数轴上表示的数1重合,则该刻度尺的长度为 cm.类型二 绝对值5. 若a 的绝对值等于它的相反数,则a 的值不可以是 ( )A. -1B.-0.5C.0D. 16. 若|a-1|+|b-2|=0,则a+b 的相反数是 ( )A. 1B.3C. -3D. -27. 已知 |73−a|=a −73,请写一个符合条件的整数a : . 8. 根据数轴,求绝对值不大于11.1的整数有多少个.第一章 章 末 检 测一、 选择题1.下列各数中: +3,-π,- 23,9,- 227,-(-8),0,-|3|,正有理数有 ( )A.1个B.2 个C.3 个D. 4个2.下列说法:①-a 一定是负数;②0不是有理数;③有理数都可以用数轴上的点来表示;④任何有理数必定等于或小于它的绝对值.其中正确的个数为 ( )A.1B.2C.3D.43.若m表示正整数,且−3m >−37,则m的值可以是 ( )A.3B.5C.7D.94.规定45分钟为1个单位时间,并将每天上午9时记为0,9时以前的时间记为负数,9时以后的时间记为正数,例如:8:15记为-1;9:45记为+1;以此类推,则上午7:30应记为( )A.+2B. -2C.-1.50D.-7.305.在数轴上有间隔相等的四个点M,N,P,Q,所表示的数分别为m,n,p,q,其中有两个数互为相反数,若m的绝对值最大,则数轴的原点是 ( )A. 点 NB.点 PC.点P或点N,P的中点D.点 P或点P,Q的中点二、填空题6.-100的相反数是;绝对值是 .7. 点A,B,C在同一条数轴上,其中点A,B表示的数分别为-4,1,若BC=2,则AC等于 .8. 按一定规律排列的一列数依次为2, −53,105,−177,269,−3711,…·按此规律排列下去,第10个数是 .三、解答题9. 根据以下信息,完成相应的任务:a是最大的负整数,b是最小的正整数,c是负数且数轴上表示c的点到原点的距离为2,d的相反数是其本身.任务:求出有理数a,b,c,d的值,并用“>”将值连接起来.10. 邮递员骑摩托车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行9 km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A,B,C三个村庄的位置;(2)由数轴可得 C村离A 村 km;(3)若摩托车的油耗为每千米0.03 L,求邮递员这次出行的耗油量.11. 如图,一只甲虫在:5×5的方格(每小格边长为1m)上沿着网格线运动.它从A 处出发去看望B,C,D处的其他甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),,从B到A记为:B→A(−1,−4),,其中第一个数表示左右方向,第二个数表示上下方向.(1)A→C( , ),B→C( , ),C→ (+1, );(2)若这只甲虫沿着网格线的行走路线为A→D→C→B,请计算该甲虫走过的最短路程;(3)若这只甲虫从A 处去P 处的行走路线依次为(+2,+1),(+3,+2),(−2,−1),(−2,−2),请在图中标出点 P 的位置.。
专题2.24 有理数加减混合运算解题技巧和方法(分层练习)(培优篇)-2023-2024学年七年级数
专题2.24有理数加减混合运算解题技巧和方法(分层练习)(培优篇)1.符号“H ”表示一种运算,它对正整数的运算结果如下:(1)2,(2)3,(3)4,(4)5H H H H =-==-=,…,求(7)(8)(9)(99)H H H H ++++ 的结果.2.用较为简便的方法计算下列各题:(1)3﹣(+63)﹣(﹣259)﹣(﹣41);(2)1112(2(10)(8)(3)3355-++--+;(3)4359812318455---;(4)1928721531279432121-+-+.3.(1)计算:()()20141813+-----.(2)在计算“11155222--”时.甲同学的做法如下:11155222--11155222⎛⎫=-- ⎪⎝⎭①153=-②12=.③在甲同学的计算过程中,开始出错的步骤是___________(写出错误所在行的序号),请你写出正确的计算过程.4.看谁的方法最巧呢?(1)123181920+++⋅⋅⋅+++;(2)46810323436++++⋅⋅⋅+++(3)12233344445555666778+++++++5.阅读下面的解题过程并填空.计算:()()1458314193155⎛⎫--+----+ ⎪⎝⎭.解:原式1458314193155=+-+-+(第一步)()()1454313181955⎛⎫=++-++- ⎪⎝⎭(第二步)10011=+-(第三步)1=-.(1)在计算过程中,第一步把原式化成________的形式;第二步是根据________得到的,目的是简便计算;(2)请根据以上的解题技巧计算:()110.523 1.7551842⎛⎫⎛⎫--+-+---- ⎪ ⎪⎝⎭⎝⎭.6.计算下列各题:(1)(3)15(8)-+---;(2)(3)(10)4(8)-+-+--;(3)7419(33)12512-+;(4)1711.12514 4.7548-+-(5)3125()4632-++--;(6)13119(5(9 1.25848+-+--7.数学课上,计算25134118133624⎛⎫⎛⎫⎛⎫----+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,宁宁的做法如下:原式25134118133624=--+-(第一步)25134118133624=---+++--(第二步)()25134118133624⎛⎫=--+-+-++- ⎪⎝⎭(第三步)1164=-(第四步)112=-(第五步)(1)宁宁解法中第一步将原式写成了的形式,体现的数学思想是;(2)解法中第三步运用了运算律;(3)宁宁的解法从第步开始出现错误,写出正确的运算过程.8.计算:111111112324320232022-+-+-++- .9.先阅读第(1)题的计算过程,再根据第(1)题的解题方法完成第(2)题:(1)计算5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.解:5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭⎝⎭5231(5)(9)(17)(3)6342⎡⎤⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦()()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-+++-+-+-+++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎤=⎣⎦⎦⎡1014⎛⎫=+- ⎪⎝⎭114=-上面这种解题方法叫做拆项法.(2)计算:①522120092013402216332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;②35917(4)24816++++-.10.计算:(1)(41)18(39)12-++-+(2)1131()(3)(2)(5)2442---++-+(3)[]1.4( 3.6 5.2) 4.3( 1.5)--+---(4)1312()11442---+--11.计算:(1)(﹣37)﹣(﹣47)(2)10﹣(﹣5)+(﹣9)+6.(3))-7+13-6+20(4)0.125+314-(+318)+(﹣0.25)(5)﹣|﹣1|+|12﹣23|+(﹣2).(6)1+(﹣2)+3+(﹣4)+…+2017+(﹣2018)+2019+(﹣2020)(7)(﹣556)+(﹣923)+1734+(﹣312)12.妈妈想考考小明的数学,她让儿子先把面积为1的长方形等分为两个面积为一的长方形,再把其中一个面积为12的长方形等分为两个面积为12的长方形,依此类推做下去,结合如图,试求出11111111248163264128256+++++++的值.13.计算下列各题:(1)()()16252615+-+-+(2)()1110116 2.254332⎛⎫⎛⎫-+-+-+-⎪ ⎪⎝⎭⎝⎭14.(1)﹣22+﹙﹣15﹚-﹙﹣16﹚-18(2)125()()()236-+-+-(3)(-2.48)+4.33+(-7.52)+(-4.33)(4)2111(()()3642-+----15.阅读下题中的计算方法.解决问题.(1)52315(9)17(3)6342-+-++-解:原式5231[(5)()][(9)()][(17)()][(3)()]6342=-+-+-+-+++++-+-5231[(5)(9)(17)(3)][()()()()]6342=-+-+++-+-+-+++-10(1)4=+-114=-上面这种方法叫拆项法.仿照上面的拆项法可将6.25拆为,-2.236拆为.(2)类比上述计算方法计算:122120192020403514552--+-16.明明同学计算(-423)-156-(-1812)+(-1334)时,他是这样做的:(1)明明的解法从第几步开始出现错误,改正后并计算出正确的结果:(2)仿照明明的解法,请你计算:(-10216)-(-9612)+5423+(-4834).17.计算,能用简便方法的用简便方法计算.(1)26-18+5-16;(2)(+7)+(-21)+(-7)+(+21)(3)211111172832432⎛⎫⎛⎫⎛⎫⎛⎫-++++-+-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(4)113.587(5)5(7)3(1.587)24⎛⎫⎛⎫--+-++-+-+⎪ ⎪⎝⎭⎝⎭(5)132.2532 1.87584+-+(6)1355354624618-++-18.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7+21|=;②10.82-+=;③22.83--=;(2)用合理的方法进行简便计算:1111 9242 33202033⎛⎫-++---+⎪⎝⎭;(3)用简单的方法计算:1111111111 (3243542020201920212020)-+-+-++-+-.(1)31116101442⎛⎫⎛⎫⎛⎫----+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(2)711145438248⎛⎫⎛⎫⎛⎫⎛⎫---+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;(3)215105493663⎛⎫⎛⎫-+-+-+- ⎪ ⎪⎝⎭⎝⎭.20.用适当的方法计算:(1)162430-+---;(2)()()()1251439--+---(3)()521315.565772⎛⎫⎛⎫⎛⎫-+++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(4)32115542⎛⎫⎛⎫⎛⎫----+-+- ⎪ ⎪⎝⎭⎝⎭⎝⎭(5)33145214747⎛⎫⎛⎫⎛⎫-+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1)(6)(12)8.3(7.3)++-++-;(2)1111(6.25)3 1.752263⎛⎫⎛⎫-+----+ ⎪ ⎪⎝⎭⎝⎭.22.计算:(1)(12.56)(7.25) 3.01(10.01)7.25-+-++-+;(2)23(72)(22)57(16)+-+-++-;(3)11172.254(2.5)2 3.4425⎛⎫⎛⎫+-+-+++- ⎪ ⎪⎝⎭⎝⎭.(4)11143(2.16)83(3.84)(0.25)3435⎛⎫-+-+++-+-+⎪⎝⎭23.计算:(1)131|2|(1|1|442---+--(2)11411(1)(1)(7)((15)23523+----+--+24.阅读下列第(1)题中的计算方法,再计算第(2)题中式子的值.(1)﹣556+(﹣923)+1734+(﹣312)解:原式=[(﹣5)+(﹣56)]+[(﹣9)+(﹣23)]+[(+17)+(+34)]+[(﹣3)+(﹣12)]=[(﹣5)+(﹣9)+(+17)+(﹣3)]+[(﹣56)+(﹣23)+(+34)+(﹣12)]=0+(﹣11 4)=﹣11 4上面这种方法叫拆项法.仿照上述方法计算:(2)(﹣200856)+(﹣200723)+401723+(﹣112)参考答案1.(7)(8)(9)(99)54H H H H ++++=- .【分析】根据符号“H ”表示一种运算,对正奇数结果都是负的,数的绝对值比奇数大1;对偶数符号不变结果比偶数大1,得到新定义后的有理数,利用结合律进行连续两数相加,再计算结果即可.【详解】解:根据题中的新定义得:H(7)H(8)H(9)H(99)++++ 89(10)11(12)(98)99(100)=-++-++-++-++- =(89)(1011)(1213)(9899)(100)-++-++-+++-++- 1111(100)=+++++- 46(100)=+-.54=-.【点拨】本题考查有理数的新定义,掌握有理数的新定义实质,利用定义转化为有理数加减混合运算,适当利用运算律巧算是解题关键.2.(1)240(2)﹣1935(3)46935(4)﹣9903【分析】(1)原式利用减法法则变形后计算即可得到结果;(2)原式利用减法法则变形后计算即可得到结果;(3)原式利用减法法则变形后计算即可得到结果;(4)原式利用减法法则变形后计算即可得到结果.(1)解:原式=3﹣63+259+41=﹣60+300=240;(2)解:原式=213﹣1013﹣815﹣325=﹣8﹣1135=﹣1935;(3)解:原式=598﹣84﹣(1245+3135)=514﹣4425=46935;解:原式=(﹣8721﹣1279)+(531921+43221)=﹣10000+97=﹣9903.【点拨】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.3.(1)11(2)①,计算过程见解析【分析】(1)去括号,去绝对值,再进行加减运算即可;(2)利用结合律进行简便运算.【详解】解:(1)原式20141813=-+-11=;(2)加括号时,后面一项没有变号,所以开始出错的步骤是①,正确的计算过程如下:1111155215522222⎛⎫--=-+ ⎪⎝⎭158=-7=.【点拨】本题考查有理数的加减运算.熟练掌握有理数的加减运算法则,是解题的关键.4.(1)210(2)340(3)11106【分析】(1)根据加法交换律和结合律,即1202193181011+=+=+==+…,得出共有202个()120+,计算即可;(2)根据加法交换律和结合律,即4366348321822+=+=+==+…,得出共有162个()436+,然后再加上20,计算即可;(3)根据加法结合律和交换律,计算即可.【详解】(1)解:123181920+++⋅⋅⋅+++()201202=+⨯210=;(2)解:46810323436++++⋅⋅⋅+++()16436202=+⨯+(3)解:12233344445555666778+++++++()()()()18227733366644445555=+++++++9999999999=+++101001000100004=+++-11106=.【点拨】本题考查了简便运算,解本题的关键在熟练掌握加法交换律和加法结合律.5.(1)省略加号和括号;加法的交换律和结合律(2)20-【分析】(1)根据去括号法则、加法的交换律和结合律即可得;(2)先去括号、把小数化成分数,再利用加法的交换律和结合律进行计算即可得.(1)解:在计算过程中,第一步把原式化成省略加号和括号的形式;第二步是根据加法的交换律和结合律得到的,目的是简便计算,故答案为:省略加号和括号;加法的交换律和结合律.(2)解:原式11312315182442=----+-()11135312182244⎛⎫⎛⎫=-++--+-- ⎪ ⎪⎝⎭⎝⎭5520=--20=-.【点拨】本题考查了去括号法则、加法的交换律和结合律、有理数的加减法,熟练掌握有理数的运算法则和运算律是解题关键.6.(1)1(2)-1(3)2710(4)10(5)94-(6)3【分析】(1)根据有理数的加减混合运算从左到右进行计算即可;(2)根据有理数的加减混合运算从左到右进行计算即可;(3)根据加法交换律和加法结合律将整数部分加整数部分,分数部分加分数部分,再把所得结果相加即可;(4)根据根据加法交换律和加法结合律先把能凑整的数相加,再进行计算即可;(5)先求绝对值,再通分,进而计算即可;(6)根据根据加法交换律和加法结合律先把能凑整的数相加,再进行计算即可.(1)解:(3)15(8)-+---,258=--+,78=-+,=1;(2)解:(3)(10)4(8)-+-+--,134(8)=-+--,9(8)=---,98=-+,=−1;(3)解:7419(33)12512-+,=74193312512⎛⎫⎛⎫⎛⎫+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,=()74193312512⎛⎫--+-- ⎪⎝⎭,=3310⎛⎫+- ⎪⎝⎭,=2710;(4)解:1711.12514 4.7548-+-,7111.12541 4.7584⎛⎫⎛⎫=++-- ⎪ ⎪⎝⎭⎝⎭,()166=+-,=10;(5)解:3125()4632-++--,3125()4632=++--,92830()12121212=++--,9283012+--=,94=-;(6)解:13119(5(9 1.25848+-+--,11319(9(5 1.25884⎡⎤⎡⎤=+-+--⎢⎥⎢⎥⎣⎦⎣⎦,[]107=+-,=3.【点拨】本题主要考查了有理数的加减混合运算,有理数的加法交换律和结合律,熟练掌握能凑整的数先相加以及加减法法则是解题的关键.7.(1)去括号,化归(2)交换律和结合律(3)二,过程见解析【分析】(1)根据题目中的解答过程可以发现第一步将原式中的括号去掉,体现了化归的数学思想;(2)根据解答过程可知解法中第三步运用了交换律和结合律的运算律;(3)根据题目中的解答过程可以发现第二步出错了,然后根据式子的特点,计算出结果即可.【详解】(1)解:由题目中的解答过程可知:宁宁解法中第一步将原式写成了省略加号和的形式,体现的数学思想是化归,故答案为:去括号,化归;(2)解:由题目中的解答过程可知:解法中第三步运用的运算律为交换律和结合律,故答案为:交换律和结合律;(3)解:由题目中的解答过程可知:宁宁的解法从第二步开始出现错误,故答案为:二,正确的运算过程如下:原式25134118133624=--+-25134118133624=----++--()25134118133624⎛⎫=--+-+--+- ⎪⎝⎭81069012121212⎛⎫=+--+- ⎪⎝⎭704⎛⎫=+- ⎪⎝⎭74=-.【点拨】本题主要考查了有理数的加减混合计算,熟知相关计算法则是解题的关键.8.20222023【分析】先去绝对值,然后根据有理数的加减计算法则求解即可.【详解】解:111111112324320232022-+-+-++- 1111111111223342021202220222023=-+-+-++-+-L 112023=-20222023=.【点拨】本题主要考查了去绝对值,有理数的加减计算,正确去掉绝对值是解题的关键.9.①123-;②1516【分析】①首先分析(1)的运算方法:将带分数分解为一个整数和一个分数;然后重新组合分组:整数一组,分数一组;再分别计算求值;②把假分数化为带分数,再按(1)的方法求解即可.【详解】解:①()522152009201340221200963326⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-++-=-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦+()()()221201*********⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-+-+++++-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()()52212 009 2 013 4 02216332⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-+++-+-+-+++- ⎪⎡⎤=⎣⎦ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()1113⎛⎫-+- ⎪⎝⎭=123=-②()35917424816++++-()11111111424816=++++++++-()11114424816⎛⎫=+-++++ ⎪⎝⎭15016=+1516=【点拨】此题要求首先阅读(1),结合有理数运算的法则,理解拆项法的原理及应用,然后仿照(1)的方法,进行计算.10.(1)50-;(2)0;(3)3-;(4)3.5【分析】依据有理数的加减混合运算和绝对值的含义即可得出正确答案.【详解】解:(1)原式=()()41183912-++-+=[()()4139-+-]+(18+12)=-50;(2)原式=11313252442⎛⎫⎛⎫⎛⎫⎛⎫---++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=1131 3252442⎛⎫⎛⎫-+++- ⎪ ⎪⎝⎭⎝⎭=[11522⎛⎫⎛⎫-+- ⎪ ⎝⎭⎝⎭]+(13 3244+)=0;(3)原式=()()1.4 3.6 5.2 4.3 1.5⎡⎤--+---⎣⎦=1.4 3.6 5.2 4.3 1.5+--+=-3;(4)原式=131211442⎛⎫---+-- ⎪⎝⎭=124+34+1-12=3.5.故本题的正确答案为:(1)50-;(2)0;(3)3-;(4)3.5【点拨】掌握有理数的加减混合运算,以及会灵活运用加法的交换律、结合律、分配律进行简便计算是解题的关键.11.(1)10;(2)12;(3)20;(4)0;(5)﹣176;(6)﹣1010;(7)-54【分析】(1)先把加法转化为加法,根据有理数加法法则计算即可;(2)先把加法转化为加法,运用加法交换律与结合律,根据有理数加法法则计算即可;(3)运用加法交换律与结合律,根据有理数加法法则计算即可;(4)将分母相同的数先结合,再根据有理数加法法则计算即可;(5)先算绝对值,然后按照加减法法则计算即可;(6)先将每两个数结合作为一组,得到每一组的和均为-1,一共1010组,即可得出结果;(7)用拆项法计算,然后把整数部分和分数部分分别结合计算.【详解】(1)(﹣37)﹣(﹣47)=(﹣37)+(+47)=10;(2)10﹣(﹣5)+(﹣9)+6=10+(+5)+(﹣9)+6=10+(+5)+6+(﹣9)=(+21)+(﹣9)=12;(3))-7+13-6+20=-7-6+13+20=-13+33=20;(4)0.125+314-(+318)+(﹣0.25)=18+(-318)+(﹣14)+314=(-3)+(+3)=0;(5)﹣|﹣1|+|12﹣23|+(﹣2)=-1+16+(﹣2)=-3+1 6=﹣17 6;(6)1+(﹣2)+3+(﹣4)+…+2017+(﹣2018)+2019+(﹣2020)=(-1)+(-1)+…+(-1)=-1010;(7)(﹣556)+(﹣923)+1734+(﹣312)=(﹣556-)+(-9﹣23)+1734++(﹣312-)=(-5-9-3+17)+(56-﹣213324-+)=(-5-9-3+17)+(56-﹣213324-+)=0+(-54)=-54.【点拨】本题考查了有理数加减混合运算,解题的关键熟练掌握有理数的加减法运算法则和加法的交换律和结合律.12.255256【分析】分析数据和图象可知,利用长方形的面积减去最后的一个小长方形的面积来求解面积和即可.【详解】解:11111111248163264128256+++++++12551256256=-=【点拨】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.13.(1)-20;(2)-7【分析】(1)把前两项与后两项分别结合计算即可;(2)把带分数化为假分数,同分母的结合计算即可.【详解】(1)()()16252615+-+-+()911=-+-20=-;(2)()1110116 2.254332⎛⎫⎛⎫-+-+-+- ⎪ ⎪⎝⎭⎝⎭519910143432=---+-142344=---7=-.【点拨】本题考查了有理数的加减混合运算,熟练掌握运算法则是解答本题的关键.14.(1)-29;(2)-2;(3)-10;(4)-1312【分析】(1)先把减法转化为加法,再按加法法则计算即可;(2)通分后计算即可;(3)把一、三结合,二、四结合计算即可;(4)先把减法转化为加法,然后通分后计算即可.【详解】(1)原式=﹣22+﹙﹣15﹚+﹙+16﹚-18=﹣22+﹙﹣15﹚-18+﹙+16﹚=(-45)+(+16)=-29;(2)原式=345(()(666-+-+-=-126=-2;(3)原式=(-2.48)+(-7.52)+(-4.33)+4.33=(-10)+0=-10;(4)原式=2111()()()3642-+-++-8236()(()12121212-+-++-=-1312.【点拨】本题考查了有理数的加减混合运算,熟练掌握加减法法则以及运算定律是是解答本题的关键.15.(1)60.25+,2(0.236)-+-;(2)354-.【分析】(1)根据阅读材料中的运算方法,将所求式子拆成整数项和分数项的和即可;(2)先根据前面的方法拆项,然后计算得出答案.【详解】解:(1)6.25=60.25+,-2.236=2(0.236)-+-,故答案为60.25+,2(0.236)-+-;(2)1221 (2019)(2020)4035(1)4552-+-++-1221[2019()][2020()][4035][1()]4552=-+-+-+-+++-+-1221[2019(2020)4035(1)][()()()]4552=-+-++-+-+-+-35()4=-+-354=-【点拨】本题主要考查的是有理数的加法,熟练掌握有理数的加法法则是解题的关键.16.(1)明明的解法从第三步开始出现错误,正确结果为﹣74;(2)14.【分析】(1)根据明明的计算过程可以看出在第几步出现问题,然后根据有理数的加减进行计算即可解答本题;(2)根据明明的计算方法可以解答本题.【详解】解:(1)明明的解法从第三步开始出现错误,改正:原式=2513 (4)(1)18(133624 -+-++-=2513 [(4)()][(1)(18[(13)(3624 -+-+-+-+++-+-=[(﹣4)+(﹣1)+18+(﹣13)]+[2513 ()()() 3624 -+-++-]=0+(﹣7 4)=﹣7 4;(2)1123 (102)(96)54(48 6234 ---++-=1123 (1029654(48) 6234 -+++-=1123 [(102)(9654[(48)()]6234 -+-+++++-+-=[(﹣102)+96+54+(﹣48)]+[1123 ()() 6234 -+++-]=0+1 4=1 4.【点拨】本题考查有理数加减混合运算,解题的关键是明确有理数加减混合运算的运算法则以及加法运算律.17.(1)-3;(2)0;(3)334-;(4)154;(5)4.5;(6)2936【分析】(1)根据有理数的加减混合运算法则解答;(2)根据加法的交换律与结合律以及互为相反数的两个数之和为0解答;(3)根据加法的交换律与结合律解答;(4)先统一成加法,再根据加法的交换律与结合律解答;(5)先统一成小数形式,再根据加法的交换律与结合律解答;(6)先把带分数化为整数部分与小数部分,再根据加法的交换律与结合律解答【详解】(1)26-18+5-16=31-34=-3;(2)(+7)+(-21)+(-7)+(+21)=(+7)+(-7)+(-21)+(+21)=0;(3)211111172832432⎛⎫⎛⎫⎛⎫⎛⎫-++++-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭211111218733224⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-+-+ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()14774⎡⎤=-+-+⎢⎥⎣⎦343=-;(4)113.587(5)5(7)3(1.587)24⎛⎫⎛⎫--+-++-+-+ ⎪ ⎪⎝⎭⎝⎭113.5875573(1.587)24⎛⎫⎛⎫=++-++-+- ⎪ ⎪⎝⎭⎝⎭[]113.587(1.587)(57)5324⎡⎤⎛⎫⎛⎫=+-+++-+- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦321284⎛⎫=++- ⎪⎝⎭154=;(5)132.2532 1.87584+-+(2.25 2.75)(3.125 1.875)=-++0.55=-+4.5=;(6)1355354624618-++-1355354624618=--++++--1355(3546)24618⎛⎫=-++-+-++- ⎪⎝⎭18273010036-++-=+2936=.【点拨】本题主要考查了有理数的加减混合运算,在进行加减混合运算时,(1)先将各式中的减法运算转化为加法运算;(2)观察各加数之间的关系,再运用“技巧”适当交换加数的位置,注意交换时各加数要带着符号一起交换.18.(1)①7+21;②10.82-;③22.83+;(2)9;(3)20194042【分析】(1)根据绝对值的性质:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值是0即可得出结论;(2)首先判断式子的符号,再根据绝对值的性质去掉绝对值,然后进行有理数加减运算即可解答;(3)首先判断式子的符号,再根据绝对值的性质去掉绝对值,然后进行有理数加减运算即可解答.【详解】(1)①|7+21|=7+21,故答案为:7+21;②10.82-+=10.82-,故答案为:10.82-;③22.83--=22.83+,故答案为:22.83+;(2)1111924233202033⎛⎫-++---+ ⎪⎝⎭=1111924233202033-++-=7-2+4=9;(3)1111111111... 3243542020201920212020 -+-+-++-+-=1111111111 ()((()() 2334452019202020202021 -+-+-++-+-=11 22021 -=2019 4042.【点拨】本题考查了绝对值的性质、有理数加减混合运算,此题的难点是符号相反的两个数相加,做题时要多注意观察各项之间的关系,使运算简便.19.(1)8-;(2)364-;(3)0.【分析】(1)先根据有理数的减法法则将减法变成加法,再利用有理数加法法则进行计算即可;(2)先根据有理数的减法法则将减法变成加法,再利用有理数的加法运算律进行简便运算;(3)先进行绝对值计算,再利用有理数的加法运算律进行简便运算.【详解】解:(1)311 16101442⎛⎫⎛⎫⎛⎫----+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=311 16101442⎛⎫⎛⎫-++-⎪ ⎪⎝⎭⎝⎭=11 61 22⎛⎫-+- ⎪⎝⎭=8-;(2)7111 45438248⎛⎫⎛⎫⎛⎫⎛⎫---+--+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=7111 45438248⎛⎫⎛⎫⎛⎫-++-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=712143548844⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-+-+-⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦=1 814 -+=364 -;(3)21510549 3663⎛⎫⎛⎫-+-+-+-⎪ ⎪⎝⎭⎝⎭=2151549 3663⎛⎫⎛⎫-+++-⎪ ⎪⎝⎭⎝⎭=2115954 3366⎡⎤⎛⎫⎛⎫⎛⎫-+-++⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=1010 -+ =0.【点拨】本题考查了有理数的加减混合运算及绝对值的计算.熟练掌握运算法则是解本题的关键.注意:能简便运算的要简便运算.20.(1)10;(2)8;(3)0;(4)1920-;(5)-4【分析】(1)先化简绝对值,再利用有理数的加减法法则计算即可(2)利用有理数的加减法法则计算即可(3)将537-和267-相加,15.5+和152-相加,再计算异号两整数的和.(4)先化简绝对值,再利用有理数的加法法则计算即可(5)先分别将同分母的分数相加,再计算异号两数相加;【详解】()1原式16243010=+-=;()2原式125143931398=---+=-+=;()3原式()5213615.5510100772⎛⎫⎛⎫⎛⎫=-+-+++-=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;()4原式32313195545420⎛⎫⎛⎫=--++-=-+-=- ⎪ ⎪⎝⎭⎝⎭.()5原式=31345127344477⎛⎫--++=-+=- ⎪⎝⎭;【点拨】本题主要考查有理数的加减法运算,熟练掌握有理数的加法法则及简便运算是解题的关键.21.(1)-5;(2)-4.【分析】(1)利用加法交换律与结合律分别将同符号的数结合起来,然后根据有理数加法法则按顺序进行计算即可;(2)先利用减法法则将减法转化化加法,然后再利用交换律与结合律将同符号的数结合起来,然后按顺序进行计算即可.【详解】(1)(6)(12)8.3(7.3)++-++-=[](68.3)(12)(7.3)+++-+-=()14.319.3+-=(19.314.3)--=-5;(2)1111(6.25)3 1.752263⎛⎫⎛⎫-+----+ ⎪ ⎪⎝⎭⎝⎭=()1111(6.25)3 1.752263⎛⎫-+-++-+ ⎪⎝⎭=()1111(6.25) 1.7523236⎡⎤⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=119522-+=-4.【点拨】本题考查了有理数的加减混合运算,弄清运算顺序,熟练掌握和灵活运用相关法则及运算律是解题的关键.22.(1)﹣19.56;(2)﹣30;(3)﹣2;(4)145【分析】(1)运用加法的交换律和结合律,结合运算法则计算可得;(2)运用加法的交换律和结合律,结合运算法则计算可得;(3)先把分数化成小数,再根据有理数的加减混合运算法则计算就即可;(4)运用加法的交换律和结合律,结合运算法则计算可得;.【详解】解:(1)(12.56)(7.25) 3.01(10.01)7.25-+-++-+=(-12.56)+(-7.25+7.25)+(3.01-10.01)=(-12.56)+0+(-7)=﹣19.56;(2)(2)23+(-72)+(-22)+57+(-16)=23+57-(72+22+16)=80-110=-30;(3)11172.254(2.5)2 3.4425⎛⎫⎛⎫+-+-+++- ⎪ ⎪⎝⎭⎝⎭=2.25-4.25-2.5+2.5+3.4-3.4=2.25-4.25=﹣2;(4)11143(2.16)83(3.84)(0.25)3435⎛⎫-+-+++-+-+ ⎪⎝⎭=(133-+133)-(2.16+3.84+0.25)+184+45=0-6.25+184+45=2+4 5=14 5.【点拨】本题考查的是有理数的加减混合运算,掌握有理数的加减混合运算法则是解题的关键.23.(1)132;(2)155-.【分析】(1)先去绝对值符号和括号,再相加减即可;(2)先去括号,再利用加法的交换律和结合律进行计算.【详解】(1)131 |2|(1|1| 442 ---+--=131 211 442++-+=131 211 442++-+=13 2(2)11411 (1)(1(7()(15)23523 +----+--+=11411 11715 23523++--=11114 11157 22335-+-+=15 5 -【点拨】考查了有理数的加减法和去括号,解题关键是熟记去括号法则和利用计算法则进行计算.24.-1 3【分析】首先分析(1)的运算方法:将带分数分解为一个整数和一个分数;然后重新组合分组:整数一组,分数一组;再分别计算求值.【详解】解:原式=(﹣2008)+(﹣56)+(﹣2007)+(﹣23)+4017+23+(﹣1)+(﹣12),=(﹣2008﹣2007+4017﹣1)+(﹣56﹣23+23﹣12),=1﹣4 3,=﹣1 3.【点拨】此题是一个阅读理解题,要求学生首先阅读(1),结合有理数运算的法则,理解拆项法的原理及应用,然后仿照(1)的方法,进行计算.。
人教版七年级数学上册《有理数的加减法》培优提升训练【含答案】
人教版七年级数学上册《1.3有理数的加减法》培优提升训练1.计算:﹣2+5的结果是( )A.﹣7B.﹣3C.3D.72.数6,﹣1,15,﹣3中,任取三个不同的数相加,其中和最小的是( )A.﹣3B.﹣1C.3D.23.5﹣3+7﹣9+12=(5+7+12)+(﹣3﹣9)是应用了( )A.加法交换律B.加法结合律C.分配律D.加法的交换律与结合律4.桂林去年冬天的某天气温变化范围是﹣2℃~6℃,那么最高温度与最低温度相差( )A.﹣8℃B.8℃C.4℃D.﹣4℃5.下列各式中正确的是( )A.﹣4﹣3=﹣1B.5﹣(﹣5)=0C.10+(﹣7)=﹣3D.﹣5﹣4﹣(﹣4)=﹣56.时代超市出售的三种品牌月饼袋上,分别标有质量为:(500±5)g、(500±10)g、(500±20)g的字样,从中任意拿出两袋,它们的质量最多相差( )A.10g B.20g C.30g D.40g7.如图,现有3×3的方格,每个小方格内均有不同的数字(1﹣10),要求方格内每一行、每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则P处对应的数字是( )A.7B.5C.4D.18.若|x﹣2|=5,|y|=4,且x<y,则x+y的值为 9.绝对值不大于5的所有整数的和是 .10.计算:(+8)+(﹣10)﹣(﹣2)﹣(﹣1).11.计算:(﹣1.5)﹣(+2.5)﹣(﹣0.75)+(+0.25).12.计算:﹣5+(+2)+(﹣1)﹣(﹣)13.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)﹣0.5+(﹣3)+(﹣2.75)+(+7).14.计算:.15.计算:(1)(+9)﹣(+10)+(﹣2)﹣(﹣8)+3;(2)﹣5.13+4.62+(﹣8.47)﹣(﹣2.3);(3)(+4)﹣(+)﹣8;(4)﹣+(﹣)﹣(﹣)﹣1.16.计算:(﹣7.3)﹣(﹣6)+|﹣3.3|+1.17.计算:(1)(﹣7)+(+15)﹣(﹣25);(2)(﹣13)+(﹣7)﹣(+20)﹣(﹣40)+(+16);(3)(+)+(﹣)+(+1)+(﹣);(4)(+1.9)+3.6﹣(﹣10.1)+1.4;(5)1+2﹣3+﹣4.25;(6)3+(﹣1)+(﹣3)+1+(﹣4).18.计算(1)(2).19.计算:.20.某股民上星期五买进某公司股票1000股,每股20元,下表为本周内每日该股票的涨跌情况(“+”号表示与前一天相比涨,“一”号表示与前一天相比跌).星期一二三四五每股涨跌(元)+1.2+0.4﹣1﹣0.5+0.9(1)星期三收盘时,每股是多少元?(2)本周内最高收盘价是每股多少元?收盘价最低是每股多少元?(3)已知此股民买进和卖出股票时都要付0.15%的手续费和卖出时0.1%的交易税,如果他在星期五以收盘价将股票全部卖出,他的收益情况如何?21.出租车司机小王某天下午的一段时间内营运全是在南北走向的北海路上进行的.如果向南记作“+”,向北记作“﹣”.他这段时间内行车情况如下:﹣4,+7,﹣2,﹣3,﹣8,+8(单位:千米;每次行车都有乘客).请解答下列问题:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每次乘坐出租车的起步价是8元,且3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收1.8元钱.那么小王这段时间内收到的乘客所给车费共多少元?(3)若小王的出租车每千米耗油0.1升,每升汽油5元.不计汽车的损耗的情况下,除去汽油钱,请你帮小王计算一下这段时间他赚了多少钱?答案1.解:﹣2+5=3.故选:C.2.解:∵三个不同的数相加,使其中和最小,∴三个较小的数相加即可,因此取﹣1+(﹣3)+6=2.故选:D.3.解:根据意义得:5﹣3+7﹣9+12=(5+7+12)+(﹣3﹣9),故用了加法的交换律与结合律.故选:D.4.解:根据题意得:6﹣(﹣2)=6+2=8,则最高温度与最低温度相差8℃,故选:B.5.解:A、﹣4﹣3=﹣7,故本选项错误;B、5﹣(﹣5)=5+5=10,故本选项错误;C、10+(﹣7)=3,故本选项错误;D、﹣5﹣4﹣(﹣4)=﹣5﹣4+4=﹣5,故本选项正确.故选:D.6.解:由题意知:任意拿出两袋,最重的是520g,最轻的是480g,所以质量相差520﹣480=40(g).故选:D.7.解:设下面中间的数为x,则三个数字之和为8+x,8﹣3=5,8+x﹣3﹣6=x﹣1,8+x﹣2﹣(x﹣1)=7,5+6+7﹣7﹣3=8,如图所示:P+6+8=7+6+5,解得P=4.故选:C.8.解:∵|x﹣2|=5,|y|=4,∴x﹣2=±5,y=±4,∴x1=7,x2=﹣3,∵x<y,∴x=﹣3,y=4,∴x+y=﹣3+4=1,故1.9.解:绝对值不大于5的所有整数为﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,它们的和为0.故0.10.解:(+8)+(﹣10)﹣(﹣2)﹣(﹣1)=8﹣10+2+1=﹣2+2+1=111.解:(﹣1.5)﹣(+2.5)﹣(﹣0.75)+(+0.25)=﹣1.5﹣2.5+0.75+0.25=﹣4+1=﹣3.12.解:﹣5+(+2)+(﹣1)﹣(﹣)=(﹣5﹣1)+(2+)=﹣7+3=﹣4.13.解:(1)12﹣(﹣18)+(﹣7)﹣15=30﹣7﹣15=8.(2)﹣0.5+(﹣3)+(﹣2.75)+(+7)=[﹣0.5+(+7)]+[(﹣3)+(﹣2.75)]=7+(﹣6)=1.14.解:原式====.15.解:(1)(+9)﹣(+10)+(﹣2)﹣(﹣8)+3=﹣1﹣2+8+3=8.(2)﹣5.13+4.62+(﹣8.47)﹣(﹣2.3)=[﹣5.13+(﹣8.47)]+[4.62﹣(﹣2.3)]=﹣13.6+6.92=﹣6.68.(3)(+4)﹣(+)﹣8=4﹣8=﹣3.(4)﹣+(﹣)﹣(﹣)﹣1=﹣+﹣1=﹣.16.解:原式=(﹣7.3)﹣(﹣6)+3.3+1=[(﹣7.3)+3.3]+[6+1]=﹣4+8=4.17.解:(1)(﹣7)+(+15)﹣(﹣25)=﹣7+15+25=33;(2)(﹣13)+(﹣7)﹣(+20)﹣(﹣40)+(+16)=﹣13﹣7﹣20+40+16=16;(3)(+)+(﹣)+(+1)+(﹣)=(++1)+(﹣﹣)=2﹣1=1;(4)(+1.9)+3.6﹣(﹣10.1)+1.4=(+1.9+10.1)+(3.6+1.4)=12+5=17;(5)1+2﹣3+﹣4.25=(1+)+2+(﹣3﹣4.25)=2+2﹣8=﹣3;(6)3+(﹣1)+(﹣3)+1+(﹣4)=(3﹣3)+(﹣1+1)+(﹣4)=0+0+(﹣4)=﹣4.18.解:(1)原式=﹣6.62+2.62+3﹣=﹣4+2=﹣1;(2)原式=12+2﹣1.75﹣7.25+5﹣2.5=15﹣9+3=9.19.解:原式=4﹣﹣3+6﹣5=+1=1.20.解:(1)周三收盘时,股价为20+1.2+0.4﹣1=20.6(元);(2)本周内最高收盘价是每股20+1.2+0.4=21.6元;最低20+1.2+0.4﹣1﹣0.5=20.1(元);(3)星期五以收盘价将股票全部卖出的价格是1000×(20+1.2+0.4﹣1﹣0.5+0.9)=21000(元),手续费和交易税为1000×20×0.15%+21000×0.15%+21000×0.1%=82.5(元).他的最后收益是21000﹣20000﹣82.5=917.5(元).21.解:(1)﹣4+7﹣2﹣8+8=﹣2,故小王在下午出车的出发地的北方,距离出发地2km处;(2)8×6+1.8+1.8×(7﹣3)+1.8×2×(8﹣3)=75(元),所以小王这天下午收到乘客所给的车费共75元;(3)|﹣4|+|7|+|﹣2|+|﹣3|+|﹣8|+|8|=4+7+2+3+8+8=32(km),32×0.1×5=16(元),75﹣16=59(元),所以小王这天下午赚了59元.。
人教版七年级数学上册《有理数的加减混合运算》专题训练-附带答案
人教版七年级数学上册《有理数的加减混合运算》专题训练-附带答案一.选择题(共10小题 满分20分 每小题2分)1.(2分)(2022·台湾)算式91123722182218⎛⎫+-- ⎪⎝⎭之值为何?( ) A .411 B .910 C .19 D .54【答案】A【完整解答】解:91123722182218⎛⎫+-- ⎪⎝⎭ 91123722182218=+-+ 92311722221818⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭ 7111=-+ 411=. 故答案为:A.【思路引导】首先根据去括号法则“括号前面是负号 去掉括号和负号 括号内各项都要变号”先去括号 再利用加法的交换律和结合律 将分母相同的加数结合在一起 进而根据有理数的加法法则算出答案.2.(2分)(2021六下·哈尔滨期中)一天早晨的气温为-3℃ 中午上升了7°C 半夜又下降了8℃ 则半夜的气温是( )A .-5°CB .-4°C C .4°CD .-16°C 【答案】B【完整解答】根据题意可得:-3+7-8=-4故答案为:B【思路引导】根据题意可得算式:-3+7-8 计算即可。
3.(2分)(2022·雄县模拟)下面算式与11152234-+的值相等的是( ) A .111324234⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭ B .11133234⎛⎫--+ ⎪⎝⎭C.111227234⎛⎫+-+⎪⎝⎭D.11143234⎛⎫--+⎪⎝⎭【答案】C【完整解答】解:1111115 52527 23423412 -+=+-++=A1111111117 3243243241 23423423412⎛⎫⎛⎫--+-=++-=+++--=⎪ ⎪⎝⎭⎝⎭B 1111111111 3333337 23423423412⎛⎫--+=++=++++=⎪⎝⎭C1111115 2272277 23423412⎛⎫+-+=+--++=⎪⎝⎭D1111111 43438 23423412⎛⎫--+=++++=⎪⎝⎭故答案为:C【思路引导】利用有理数的加减法的运算方法求解即可。
最新人教版七年级上册数学同步培优训练第一章有理数 有理数的乘除法 第2课时 有理数的加减乘除混合运算
20.(河北中考)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+, -,×,÷中的某一个(可重复使用),然后计算结果.
(1)计算:1+2-6-9; (2)若1÷2×6□9=-6,请推算□内的符号; (3)在“1□2□6-9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.
7.计算: (1)5×(-3)+6÷2; 解:原式=-12
(2)(-3)-(-24)÷(-4); 解:原式=-9
(3)25×(-4)-(-3)÷1328 ; 解:原式=28
(4)-8-[-7+(1-23 ×0.6)÷(-3)]. 解:原式=-54
知识点 2:用计算器计算
134-211=
8.用计算器计算 134-211 的按键顺序是____________________________,结 果是_-__7_7.
a A.b
>0
B.a-b>0
C.a(b-1)<0
D.(b-1)(a+1)<0
15.在算式1-|-2( )3|中的( )里,填入一个运算符号,使得算式的值最小,则 这个符号是( C )
A.+ B.- C.× D.÷ 16.一个热气球从高度为60米的位置开始,先以2米/秒的速度垂直上升60秒,后 以1.2米/秒的速度垂直下降100秒,这时热气球所在高度是__6_0_米.
最新人教版七年级上册数学同步培优训练第一章有理数 有理数的加减法 有理数的加法第2课时 加法的运算律
星期
一
二
三
四
五
每股涨跌
+4+4.5ຫໍສະໝຸດ -1 -2.5-6
则在星期五收盘时,每股的价格是_5_3__元.
18.用适当的方法计算: (1)0.26+(-6.4)+0.5+(-0.6)+0.74; 解:原式=-5.5
3 (2)34
+(-816
)+221
+(-156
).
解:原式=-334
19.出租车司机小李某天下午营运全是在东西走向的大道上行驶,如果规定向 东行驶为正,向西行驶为负,这天下午行车里程如下(单位:千米):+10,-3, +16,-11,+12,-10,+5,-15,+18,-16.
计算:(-202156 )+(-202223 )+404423 +(-112 ).
解:原式=[(-2021)+(-65 )]+[(-2022)+(-32 )]+(4044+23 )+[(-1)+(-12 )] =[(-2021)+(-2022)+4044+(-1)]+[(-56 )+(-23 )+23 +(-21 )] =0+(-34 ) =-43
(1)如果每袋余粮以200千克为标准,求这10袋余粮总计超过多少千克或者不足 多少千克?
(2)这10袋余粮一共多少千克? 解:(1)以200千克为基准,超过200千克的数记作正数,不足200千克的数记作 负数,则这10袋余粮对应的数分别为:-1,+1,-3,+3,0,-5,-3,-1, +2,-4,∴(-1)+1+(-3)+3+0+(-5)+(-3)+(-1)+2+(-4)=-11(千 克),答:这10袋余粮总计不足11千克 (2)200×10+(-11)=2000-11=1989(千克), 答:这10袋余粮一共1989千克
(1)当最后一名乘客被送到目的地时,距出车地点的距离为多少千米? (2)若每千米的营运额为7元,则这天下午的营运额为多少? 解:(1)10+(-3)+16+(-11)+12+(-10)+5+(-15)+18+(-16)=6(千米), 当最后一名乘客被送到目的地时,距出车地点的距离为6千米 (2)(|10|+ |- 3|+ |16|+ |- 11|+ |12|+ |-10|+ |5|+ |- 15|+|18|+ |- 16|)×7= 812(元),则这天下午的营运额为812元
最新人教版七年级上册数学同步培优训练第一章有理数专题训练(一) 有理数的加减法及其应用
1 5
……从计算结果中找规律,利用规律计算:1×1 2
+2×1 3
+3×1 4
+…+2020×1 2021
+2021×1 2022 .
解:原式=1-12 +12 -31 +13 -14 +…+20120 -20121 +20121 -20122 =1 -20122 =22002212
5.计算:12 +16 +112 +210 +310 +412 +516 +712 .
解:设标志物向乙队方向移动为负,向甲队方向移动为正,则-0.2+0.5-0.4 +1.3+0.9=2.1>2,故甲队赢了
11.某中学图书馆上周借书记录如下:(超过100册记为正,少于100册记为负). (1)上星期五借出多少册书? (2)上星期四比上星期三多借出几册? (3)上周平均每天借出几册? 解:(1)100+(-12)=88(册),答:上星期五借出88册书 (2)[100+(+6)]-[100+பைடு நூலகம்-17)]=23(册),答:上星期四比上星期三多借出23册 (3)100+[(+23)+0+(-17)+(+6)+(-12)]÷5=100(册),答:上周平均每天 借出100册
从表中可以看到,第2行自左向右第三个数是_7___,第3行自左向右第二个数是 __1_1_,那么第99行自左向右第二个数是_3_9_5___,-1000是第_2_5_0___行自左向右第 _二___个数.
七、实际应用题 9.在班级举办的元旦晚会上,主持人请小明和小华做一场游戏,游戏规则: (1)每人每次抽取四张卡片,如果抽到正方形的卡片,那么就加上卡片上的数; 如果抽到圆形的卡片,那么就减去卡片上的数; (2)比较两人所抽取的四张卡片计算的结果,结果大的为胜者,结果小的为同学 们表演节目. 两人抽取的卡片如下图所示:
最新人教版七年级上册数学同步培优训练第一章有理数 有理数的加减法 有理数的加法第1课时 有理数的加法
18.某人某天收入 265 元,支出 200 元,则该天结余__6_5_元. 19.(1)若|x|=3,|y|=7,且 x>y,则 x+y 的值为___-__1_0_或__-__4___; (2)若|x+52 |与|y-0.4|互为相反数,则 x+y 的值为__0__.
20.计算: (1)0+(-321 ); 解:原式=-312 (3)315 +(-225 );
解:原式=45
(2)-23+(-19); 解:原式=-42 (4)(-4.75)+143 ;
解:原式=-3
4 (5)15
+(-235
);
解:原式=-45
(6)(-7.25)+(-134 ). 解:原式=-9
21.已知有理数a,b,c在数轴上的位置如图所示,请根据有理数的加法法则 判断下列各式的正负性:
①a;②b;③-c;④a+b;⑤a+c;⑥b+c;⑦a+(-b). 解:①③⑦为正;②④⑤⑥为负
22.(1)试用“>”“<”或“=”填空: |(+5)+(+8)|_=___|+5|+|+8|; |(-5)+(-8)|_=___|-5|+|-8|; |(+5)+(-8)|_<___|+5|+|-8|; |(-5)+(+8)|__<__|-5|+|+8|; |0+(-8)|_=___0+|-8|; (2)做完上述这组填空题,你可以得出什么结论?你能用字母表述你的结论吗? 解:(2)两个有理数的和的绝对值小于或等于这两个数的绝对值的和,用字母表 示为|a+b|≤|a|+|b|(a,b为有理数)
10.A地的海拔为-24 m,B地的海拔比A地高5 m,则B地的海拔为-__1_9_m.
11.根据题意列式计算. (1)比-10大-20的数; (2)16的相反数与-8的绝对值的和; (3)某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,求这天的最高气温. 解:(1)(-10)+(-20)=-30 (2)(-16)+|-8|=-8 (3)(-5)+8=3(℃)
1.3.2有理数的减法(学案 分阶训练)-2022-2023学年七年级数学上册培优导练测(人教版)
1.3.2有理数的减法(学案分阶训练)-2022-2023学年七年级数学上册培优导练测(人教版)一、知识回顾在上一节课中,我们学习了有理数的加法运算。
有理数的加法可以通过数轴上的正负方向来表示。
对于两个有理数的加法,我们可以按照以下步骤进行计算:1.将两个有理数表示在数轴上的相应位置;2.根据正负方向,移动其中一个数到另一个数的旁边;3.再次确定两个数在数轴上的位置,并标记和的位置。
本节课,我们将学习有理数的减法运算,通过学习,你将掌握有理数的减法法则和运算方法。
二、知识拓展1. 有理数的减法法则有理数的减法法则是:两个有理数相减,可以转化为加法运算。
具体做法是将减法转变成加法,通过改变被减数的符号,然后进行加法运算。
2. 有理数的减法运算有理数的减法运算可以按照以下步骤进行:1.先确定减法运算的两个有理数;2.将减法转化为加法,即改变被减数的符号;3.按照有理数加法的运算方法进行运算。
三、分阶训练1. 计算题根据上述知识,我们来尝试计算以下几个题目。
1.5−32.−6−23.−4−(−3)4.−8−55.0−(−2)首先,我们可以通过将减法转化为加法,然后进行加法运算来计算这些题目。
具体步骤如下:1.将减数转化为加数,即改变符号;2.根据有理数加法的运算方法,进行加法运算;3.根据加法运算结果,确定最终减法运算的结果。
2. 应用题下面是几个应用题,我们需要将问题翻译成数学表达式,然后进行减法运算来求解。
1.今年公司总共有150名员工,其中男性员工有80人,问女性员工有多少人?2.食堂有50个鸡腿,今天卖出了25个,问还剩下多少个?3.小明的储蓄为500元,他想要买一双价值120元的鞋子,问他还需要存钱多少?在解答这些应用题之前,我们需要将问题转化成数学表达式并进行计算,具体步骤如下:1.根据问题,将问题中的具体数值用符号代替;2.根据问题,确定减法运算的表达式;3.根据减法运算法则,将减法转变为加法运算;4.根据加法运算方法,进行运算;5.根据最终结果,回答问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级上册数学课时4有理数的加减混合运算
1.[2018重庆巴蜀中学课时作业]在正整数中,前50个偶数的和减去前50个奇数的和所得的结果是()
A.50
B.﹣50
C.100
D.﹣100
2.[2018山西大学附中课时作业]规定图形表示运算a﹣b+c,图形表示运算x+z-y-w,则+=______.(直接写出答案)
3.[2018江西吉安一中课时作业]已知a是3的相反数,b是﹣1
3
的绝对值,c与
原点的距离是2,则a-c+b=_____.
4.[2018河北石家庄二十七中课时作业]计算下列各式:
(1)﹣32
7
-(﹣6)+11
6
7
-(+5
3
7
);
(2)(﹣3
7
)-(﹣
1
5
)-(﹣
2
7
)+(﹣
1
5
);
(3)﹣0.5+(﹣15)-(﹣17)-|12|;
(4)(﹣81
2
)-[﹣(+6.5)﹣(﹣3.3)﹣6
1
5
].
5.[2018湖北襄阳四中课时作业]做数学游戏,其乐无穷,游戏规则:
(1)每人每次抽取4张卡片,如果抽到方块卡片,那|么加上卡片上的数字,如果抽到阴影卡片,那么;减去卡片上的数字;
(2)比较两人所抽4张卡片上的计算结果,结果大的为胜者.
小明抽到图1中的4张卡片,小丽抽到图2中的4张卡片,你知道本次游戏的获胜者吗?请说明理由.
6.[2018江苏盐城市初级中学课时作业]依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作.第二次经过同样的操作,也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8,继续依次操作下去. (1)第一次操作后,增加的所有新数之和是多少?
(2)第二次操作后所得的数串比第一次操作后所得的数串增加的所有新数之和是多少?
(3)第一百次操作后所得的数串比第九十九次操作后所得的数串增加的所有新数之和是多少?
参考答案
1.A【解析】由题意,可得2+4+6+…+100)﹣(1+3+5+…+99)=(2﹣1)+(4﹣3)+(6﹣5)+…+(100﹣99)=1+1+1+…+1=50.故选A.
2.0【解析】由题意,可知=1﹣2+3=2,=4+6﹣5﹣7=﹣2,所以
+=2+(﹣2)=0.
3.﹣42
3
或﹣
2
3
【解析】因为a是3的相反数,b是的绝对值,c与原点的距离是
2,所以a=﹣3,b=1
3
,c=±2.当a=﹣3,b=
1
3
,c=2时,a﹣c+b=﹣3﹣2+
1
3
=
﹣42
3
;当a=﹣3,b=
1
3
,c=﹣2时,a﹣c+b=﹣3﹣(﹣2)+
1
3
=﹣3+2+
1
3
=
﹣2
3
.
综上,a-c+b=﹣42
3
或﹣
2
3
.
4.(1)﹣32
7
-(﹣6)+11
6
7
-(﹢5
3
7
)
=﹣32
7
+6+11
6
7
-5
3
7
=6+(﹣32
7
+11
6
7
-5
3
7
)
=6+31 7
=91
7
.
(2)(﹣3
7
)-(﹣
1
5
)-(﹣
2
7
)+(﹣1
1
5
)
=(﹣3
7
)+(﹢
1
5
)+[(﹢
1
5
)+(﹣1
1
5
)]
=(﹣1
7
)+(﹣1)
=﹣11 7
(3)﹣0.5+(﹣15)﹣(﹣17)﹣|﹣12|=﹣0.5+(﹣15)+(+17)+(﹣12) =(+17)+[﹣0.5+(﹣15)+(﹣12)]
=(+17)+(﹣27.5)
=﹣10.5.
(4)(﹣81
2
)﹣[﹣(+6.5)﹣(﹣3.3)﹣6
1
5
]
=﹣8.5﹣[(﹣6.5)+(﹣6.2)+3.3]
=﹣8.5—(﹣12.7+3.3)
=﹣8.5-(﹣9.4)
=﹣8.5+9.4
=0.9.
名师点睛
利用加法交换律和结合律,把正数分别相加、负数分别相加、分母相同的数分别相加、和为整数的数分别相加,这样可简化计算过程.
5.【解析】获胜者是小明.理由如下:
小明抽取的4张卡片计算的结果是(﹣1
2
)+(﹣
2
3
)﹣(﹣5)+4=7
小丽抽取的4张卡片计算的结果是(﹣1
3
)+(﹣
6
7
)﹣0+5=3
1
2
因为7>31
2
,所以获胜者是小明.
6.【解析】(1)第一次操作后,增加的所有新数之和为6+(﹣1)=5.
(2)第二次操作后所得的数串比第一次操作后所得的数串增加的所有新数之和为3+3+(﹣10)+9=5.
(3)第一百次操作后所得的数串比第九十九次操作后所得的数串增加的所有新数之和为5.。