庆阳市2013年初中毕业会考数学试卷

合集下载

2013年初中毕业生中考数学试卷及答案

2013年初中毕业生中考数学试卷及答案

2013年初中毕业生中考数学试卷本试卷共5页,分二部分,共25小题,满分150分。

考试用时120分钟。

注意事项:1、答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;同时填写考场试室号、座位号,再用2B铅笔把对应这两号码的标号涂黑。

2、选择题答案用2B铅笔填涂;将答题卡上选择题答题区中对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;答案不能答在试卷上。

3、非选择题答案必须用黑色字迹的钢笔或签字笔写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔、圆珠笔和涂改液。

不按以上要求作答的答案无效。

4、考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第一部分选择题(共30分)一、选择题:1、比0大的数是()A -1 B12C 0D 12、图1所示的几何体的主视图是()(A)(B) (C) (D)正面3、在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格4、计算:()23m n的结果是( )A 6m nB 62m nC 52m nD 32m n5、为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( ) A 全面调查,26 B 全面调查,24 C 抽样调查,26 D 全面调查,246、已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A 1032x y y x +=⎧⎨=+⎩B 1032x y y x +=⎧⎨=-⎩C 1032x y x y +=⎧⎨=+⎩D 1032x y x y +=⎧⎨=-⎩7、实数a 在数轴上的位置如图4所示,则 2.5a -=( )图42.5aA 2.5a -B 2.5a -C 2.5a +D 2.5a -- 8、若代数式1xx -有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且9、若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A 没有实数根 B 有两个相等的实数根 C 有两个不相等的实数根 D 无法判断10、如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A 23B 22 C114 D 554图5ADBC第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11.点P 在线段AB 的垂直平分线上,P A =7,则PB =______________ .12.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ .13.分解因式:=+xy x 2_______________.14.一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ . 15.如图6,ABC Rt ∆的斜边AB =16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .16.如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分9分) 解方程:09102=+-x x .18.(本小题满分9分)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.CODAB图819.(本小题满分10分)先化简,再求值:yx y y x x ---22,其中.321,321-=+=y xC'图6ACB O A'B'A O 图7yx( 6, 0 )P已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.(1) 利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法);(2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE .21.(本小题满分12分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当m ≥10时为A 级,当5≤m <10时为B 级,当0≤m <5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1) 求样本数据中为A 级的频率;(2) 试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数; (3) 从样本数据为C 级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.22.(本小题满分12分)如图10, 在东西方向的海岸线MN 上有A 、B 两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东58°方向,船P 在船B 的北偏西35°方向,AP 的距离为30海里.(1) 求船P 到海岸线MN 的距离(精确到0.1海里);(2) 若船A 、船B 分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处.AD图9BCPB A图10北东N M如图11,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(2,2),反比例函数ky x=(x >0,k ≠0)的图像经过线段BC 的中点D .(1)求k 的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D 重合),过点P 作PR ⊥y 轴于点R,作PQ ⊥BC 所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围。

甘肃省庆阳市往年会考题

甘肃省庆阳市往年会考题

A.B.C.D.图12008年甘肃省庆阳市中考数学试题及答案友情提示:1、抛物线2y ax bx c =++的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,.2、扇形面积公式为:S 扇形=2360n R π;其中,n 为扇形圆心角度数,R 为扇形所在圆半径.3、圆锥侧面积公式:S 侧=r π ;其中,r 为圆锥底面圆半径, 为母线长.一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内. 1.( )A .8B .-8C .-4D .42. 下面四张扑克牌中,图案属于中心对称的是图1中的( )3. 两圆半径分别为3和4,圆心距为7,则这两个圆( )A.外切B.相交C.相离D.内切4. 下列说法中,正确的是( )A.买一张电影票,座位号一定是偶数B.投掷一枚均匀的一元硬币,有国徽的一面一定朝上 C.三条任意长的线段都可以组成一个三角形D.从1、2、3这三个数字中任取一个数,取得奇数的可能性大 5.正方形网格中,AOB ∠如图2放置,则sin AOB ∠=( )C.12D.26. 在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( )A.12个 B.9个 C.6个 D.3个7. 如图3,身高为1.6米的某学生想测量学校旗杆的高度,当他站在C 处时,他头顶端的影子正AB O图2图4CDAO B E图6好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( ) A.6.4米 B.7米 C.8米D.9米 8. 某商品经过两次连续降价,每件售价由原来的55元降到了35元.设平均每次降价的百分率为x ,则下列方程中正确的是( )A .55 (1+x )2=35B .35(1+x )2=55C .55 (1-x )2=35D .35(1-x )2=559. 如图4,AB 是O 的直径,CD 为弦,CD AB ⊥于E ,则下列结论中不成立...的是( ) A.COE DOE ∠=∠ B.CE DE = C.=OE BE D.BD BC = 10. 若2y=A.243y x x =-+ B.234y x x =-+C.233y x x =-+D.248y x x =-+二、填空题:本大题共10小题,每小题4分,共40分.把答案填在题中的横线上. 11. 方程24x x =的解是 .12. x 应满足的条件是 . 13. “明天下雨的概率为0.99”是 事件.14. 二次函数24y x =+的最小值是 .15.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小(填 “相同”、“不一定相同”、“不相同”之一). 16. 两个相似三角形的面积比S 1:S 2与它们对应高之比h 1:h 2之间的关系为 . 17.如图5,一架梯子斜靠在墙上,若梯子底端到墙的距离AC =3米,3cos 4BAC ∠=,则梯子长AB = 米.18. 兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)图3ABC图5图7图8二楼 一楼4mA 4m4mB28°C图9的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上(如图6所示),则6楼房子的价格为 元/平方米. 19. 图7中ABC △外接圆的圆心坐标是 .20. 如图8,D 、E 分别是ABC △的边AB 、AC 上的点,则使AED △∽ABC △的条件是 .三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.21.(6.22.(7分)如图9,某超市(大型商场)在一楼至二楼之间安装有电梯,天花板(一楼的楼顶墙壁)与地面平行,请你根据图中数据计算回答:小敏身高1.85米,他乘电梯会有碰头危险吗?(sin28o ≈0.47,tan28o ≈0.53)23.(7分)图10是某几何体的展开图.(1)这个几何体的名称是 ; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π取3.14)24.(8分)在如图11的方格纸中,每个小方格都是边长为1个单位的正方形,ABC △的三个顶点都在格点上(每个小方格的顶点叫格点).图10(1) 画出ABC △绕点O 顺时针旋转90后的111A B C △; (2)求点A 旋转到1A 所经过的路线长.25.(10分)如图12,线段AB 与O 相切于点C ,连结OA 、OB ,OB 交O 于点D ,已知6cm OA OB ==,AB =.求:(1)O 的半径;(2)图中阴影部分的面积.四、解答题(二):本大题共4小题,共42分.解答时,应写出必要的文字说明、证明过程或演算步骤.26. (10分)如图13,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?27.(10分)图14(1)是夹文件用的铁(塑料)夹子在常态下的侧面示意图.AC BC ,表示铁夹的两个面,O 点是轴,OD AC ⊥于D .已知15mm AD =,24mm DC =,10mm OD =.已知文件夹是轴对称图形,试利用图14(2),求图14(1)中A B ,26)OACBD图12图1328. (10分) 甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表).甲超市:乙超市:(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况; (2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.29. (12分)一条抛物线2y x mx n =++经过点()03,与()43,.(1)求这条抛物线的解析式,并写出它的顶点坐标;(2)现有一半径为1、圆心P 在抛物线上运动的动圆,当P 与坐标轴相切时,求圆心P 的坐标;图14图7(3)P 能与两坐标轴都相切吗?如果不能,试通过上下平移抛物线2y x mx n =++使P 与两坐标轴都相切(要说明平移方法).附加题:15分1.(6分)如图16,在Rt ⊿ABC 中,BC 、AC 、AB 三边的长分别为a 、b 、c ,则 sinA=a c , cosA=bc ,tanA=a b. 我们不难发现:sin 260o +cos 260o =1,… 试探求sinA 、cosA 、tanA理由.2.(9分)对于本试卷第19题:“图7中ABC △外接圆的圆心坐标是 .” 请再求:(1) 该圆圆心到弦AC 的距离;(2)以BC 为旋转轴,将ABC △旋转一周所得几何体的全面积(所有表面面积之和).图15图16庆阳市2009年初中毕业学业监测与高中阶段学校招生考试数 学 试 卷友情提示:1.抛物线2y ax bx c =++的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 2.扇形面积公式:2π360n R S =扇形;其中,n 为扇形圆心角度数,R 为圆的半径. 本试卷满分为150分,考试时间为120分钟.一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内. 1.8的立方根是( )A .2B .2-C .±2D .2.方程240x -=的根是( ) A .2x =B .2x =-C .1222x x ==-,D .4x =3.图1中不是中心对称图形的是( )A .B .C .D .图14.下列说法中,正确的是( ) A .“明天降雨的概率是80%”表示明天有80%的时间降雨 B .“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上 C .“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖 D .在同一年出生的367名学生中,至少有两人的生日是同一天 5.将抛物线22y x =向下平移1个单位,得到的抛物线是( ) A .22(1)y x =+B .22(1)y x =-C .221y x =+D .221y x =-6.如图2,晚上小亮在路灯下散步,在小亮由A 处径直走到B 处这一过程中,他在地上的影子( ) A .逐渐变短 B .先变短后变长 C .先变长后变短 D .逐渐变长7.如图3,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( ) A .1米 B .1.5米 C .2米 D .2.5米图2 图3 图4 图58.如图4,在平行四边形ABCD 中,E 是AB 的中点,CE 和BD 交于点O ,设△OCD 的面积为m ,△OEB) A .5m =B.m =C.m =D .10m =9.如图5,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 不可能为( ) A .2 B .3 C .4 D .510.图6(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图6(2)建立平面直角坐标系,则抛物线的关系式是( ) A .22y x =- B .22y x = C .212y x =-D .212y x =二、填空题:本大题共10小题,每小题4分,共40分.把答案填在题中的横线上. 11在实数范围内有意义的x 应满足的条件是 . 12.若关于x 的方程2210x x k ++-=的一个根是0,则k = .13.如图7,将正六边形绕其对称中心O 旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是 度.14.若100个产品中有95个正品、5个次品,从中随机抽取一个,恰好是次品的概率是 . 15.如图8,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个. 16.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)的函数关系式是29.8 4.9h t t =-,那么小球运动中的最大高度为 米.17.如图9,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5A =,则这个菱形的面积 = cm 2.18.如图10,两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .图6(1) 图6(2)图7 图8图9 图10 图11 图1219.如图11,正方形OEFG 和正方形ABCD 是位似形,点F 的坐标为(1,1),点C 的坐标为(4,2),则这两个正方形位似中心的坐标是 . 20.图12为二次函数2y ax bx c =++的图象,给出下列说法:①0ab <;②方程20ax bx c ++=的根为1213x x =-=,;③0a b c ++>;④当1x >时,y 随x 值的增大而增大;⑤当0y >时,13x -<<.其中,正确的说法有 .(请写出所有正确说法的序号) 三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.21.(62sin 45°.22.(7分)一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图13所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).23.(8分)如图14,在平面直角坐标系中,等腰Rt △OAB 斜边OB 在y 轴上,且OB =4. (1)画出△OAB 绕原点O 顺时针旋转90°后得到的三角形;(2)求线段OB 在上述旋转过程中所扫过部分图形的面积(即旋转前后OB 与点B 轨迹所围成的封闭图形的面积).图13 主视图 左视图 俯视图24.(8分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?25.(9分)一只不透明的袋子中,装有2个白球(标有号码1、2)和1个红球,这些球除颜色外其他都相同.(1)搅匀后从中摸出一个球,摸到白球的概率是多少?(2)搅匀后从中一次摸出两个球,请用树状图(或列表法)求这两个球都是白球的概率.四、解答题(二):本大题共4小题,共42分.解答时,应写出必要的文字说明、证明过程或演算步骤.(1)26.(10分)如图15(1),一扇窗户打开后用窗钩AB可将其固定.(1)这里所运用的几何原理是()(A)三角形的稳定性(B)两点之间线段最短(C)两点确定一条直线(D)垂线段最短(2)图15(2)是图15(1)中窗子开到一定位置时的平面图,若∠AOB=45°,∠OAB=30°,OA=60cm,求点B到OA边的距离. 1.7,结果精确到整数)27.(10分)如图16,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点. △ACB 和△DCE 的顶点都在格点上,ED 的延长线交AB 于点F . (1)求证:△ACB ∽△DCE ;(2)求证:EF ⊥AB .28.(10分)如图17,在边长为2的圆内接正方形ABCD 中,AC 是对角线,P 为边CD 的中点,延长AP 交圆于点E .(1)∠E = 度;(2)写出图中现有的一对不全等的相似三角形,并说明理由; (3)求弦DE 的长.29.(12分)如图18,在平面直角坐标系中,将一块腰长为5的等腰直角三角板ABC 放在第二象限,且斜靠在两坐标轴上,直角顶点C 的坐标为(1-,0),点B 在抛物线22y ax ax =+-上. (1)点A 的坐标为 ,点B 的坐标为 ; (2)抛物线的关系式为 ;(3)设(2)中抛物线的顶点为D ,求△DBC 的面积;(4)将三角板ABC 绕顶点A 逆时针方向旋转90°,到达AB C ''△的位置.请判断点B '、C '是否在(2)中的抛物线上,并说明理由.图16 图17附加题:如果你的全卷得分不足150分,则本题的得分记入总分,但记入总分后全卷得分不得超过150分,超过按150分算. 30.(10分)图19是二次函数2122y x =-+的图象在x 轴上方的一部分,若这段图象与x 轴所围成的阴影部分面积为S ,试求出S 取值的一个范围.图19庆阳市2007年高中阶段招生考试数学试卷本试卷满分为150分,考试时间为120分钟.一、选择题(本题有10道小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不得分)1.下列各图中,不是中心对称图形的是()A.B.C.D.2.圆柱底面直径为2cm,高为4cm,则圆柱的侧面积为2cm.()A.8πB.16πC D.3.在ABC△中,90C∠=°,2B A∠=∠,则cos A等于()A B.12C D4.1O的半径为4,2O的半径为2,两圆的圆心距为1,则两圆的位置关系是()A.内含B.内切C.相交D.外切5.在半径为1的O中,弦1AB=,则 AB的长是()A.π6B.π4C.π3D.π26.在频率分布直方图中,各长方形的面积表示()A.相应各组的频数B.样本C.相应各组的频率D.样本容量7.二次函数221(0)y kx x k=++<的图象可能是()8.函数()2cosf x x x=-在()-+∞,∞上()A.是增函数B.是减函数C.有最大值D.有最小值9.若0k<,则函数1y kx=,2ky=的图象可能是()A.B.C.D.10.下列关于二次函数的说法错误的是( ) A .抛物线2231y x x =-++的对称轴是直线34x =B .抛物线223y x x =--,点(30)A ,不在它的图象上 C .二次函数2(2)2y x =+-的顶点坐标是(22)--, D .函数2243y x x =+-的图象的最低点在(15)--,二、填空题(本题共有10道小题,每小题3分,共30分)11.矩形面积为26cm ,长为cm x ,那么这个矩形的宽(cm)y 与长(cm)x 的函数关系为 . 12.若等腰梯形下底长为4cm ,高是2cm ,下底角的正弦值是45,则上底长为 cm ,腰长是 cm .13.方程23(1)532m x mx m +-+=两根互为相反数,则m 的值为 .14.2(2)(3)y x x =-+二次函数图象的顶点坐标是 ,对称轴是 ,开口方向 .15.试求2()287f x x x =-+的极值 .16.军事演习在平坦的草原上进行,一门迫击炮发射的一发炮弹飞行的高度(m)y 与飞行时间(s)x 的关系满足21105y x x =-+.经过 秒时间炮弹到达它的最高点,最高点的高度是米,经过 秒时间,炮弹落到地上爆炸了.17.2006年,某市的国民生产总值是3000亿元,预计2007年比2006年、2008年比2007年每年增长率为x ,则2007年这个市的国民生产总值为 亿元;设2008年该市的国民生产总值为y 亿元,则y 与x 之间的函数关系为 ,y 是x 的 次函数.18.一文具店老板购进一批不同价格的文具盒,它们的售价分别为10元,20元,30元,40元和50元,销售情况如图所示.这批文具盒售价的平均数、众数和中位数分别是 、 、 .19.你手拿一枚硬币和一枚骰子,同时掷硬币和骰子,硬币出现正面、且骰子出现6的概率是 .20.轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用① ② ③④⑤ 6% 12% 34% 30% 18%①10元 ②20元 ③30元 ④40元 ⑤50元的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时. 三、作图题(每小题5分,本题满分10分)21.需要在高速公路旁边修建一个飞机场,使飞机场到A B ,两个城市的距离之和最小,请作出机场的位置.22.已知:点A 及线段a求作:一个O 和一个三角形ABC ,使O 经过点A ,ABC △的AC AB a ==,且所作的圆和三角形所构成的图形是轴对称图形.(说明:只要求作出符合条件的一个圆和一个三角形,要求写作法,不要求证明)四、解答题(第23题8分,其余均是9分,共80分.要求写出必要的解题步骤) 23.计算(本小题满分8分)01(123sin30---+--°24.解方程(本小题满分9分) (1)2173x x --=(2)22311383y x x xy +=⎧⎨+=-⎩25.(本小题满分9分)如图在ABCD 中,AE BD ⊥,CF BD ⊥.垂足分别为E F ,. (1)写出图中每一对你认为全等的三角形;(2)选择(1)中的其中一对全等三角形进行证明.26.(本小题满分9分) 已知一次函数y kx b =+的图象与x 轴相交于点(20)A -,,与函数3y x=的图象相交于点(3)M m N ,,两点.(1)求一次函数y kx b =+的解析式; (2)求点N 的坐标. 27.(本小题满分9分) 如图EB 是O 的直径,A 是BE 的延长线上一点,过A 作O的切线AC ,切点为D ,过B 作O 的切线BC ,交AC 于点C ,若6EB BC ==, 求:AD AE ,的长.B 公路A BE FDC28.(本小题满分9分)已知直角三角形两个锐角的正弦sin sin A B ,是方程2210x -+=的两个根,求A B ∠∠,的度数.29.(本小题满分9分)如图,水坝的横断面是梯形,迎水坡BC 的坡角30B ∠=°,背水坡AD的坡度为坝顶DC 宽25米,坝高CE 是45米,求:坝底AB 的长?迎风坡BC 的长?以及BC 的坡度?(答案可以带上根号) 30.(本小题满分9分)ABC △中,90C ∠=°,43AC BC ==,,以点C 为圆心,以R 长为半径画圆,若C 与AB 相交,求R 的范围.31.(本小题满分9分)如图,一个直角三角形两条直角边分别为3cm 和4cm ,以斜边AB 所在直线为轴旋转一周得到一D CA F E 30 C个几何体,在虚线框内画出这个几何体的草图,求这个几何体的表面积.2011年甘肃兰州市初中毕业生学业考试数学试卷注意事项:1.全卷共150分,考试时间120分钟.2.考生必须将姓名、准考证号、考场、座号等个人信息填(涂)写在答题卡的相应位置.3.考生务必将答案直接填(涂)写在答题卡的相应位置.一、选择题(本题15小题,每小题4分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列方程中是关于x 的一元二次方程的是A. 2210x x+= B. 20ax bx c ++= C. (1)(2)1x x -+= D.223250x xy y --=2.如图,某反比例函数的图像过(-2,1),则此反比例函数表达式为A. 2y x =B. 2y x =-C. 12y x =D. 12y x=-3.如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于点C ,若∠A=25°,则∠D 等于A. 20°B. 30°C. 40°D. 50°4.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC B ''则tan B '的值为A.12 B. 13 C. 14 D. 45.抛物线221y x x =-+的顶点坐标是A. (1,0)B. (-1,0)C. (-2,1)D. (2,-1)6.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是7.一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是A. m=3,n=5B. m=n=4C. m+n=4D. m+n=88.点M(-sin60°,con60°)关于x轴对称的点的坐标是A.12) B. (12-) C. (-12) D. (12-,9.如图所示的二次函数2y ax bx c=++的图像中,刘星同学观察得出了下面四条信息:(1)24b ac->0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的有A. 2个B. 3个C. 4个D. 1个10.用配方法解方程250x x--=时,原方程应变形为A. 2(1)6x+= B. 2(2)9x+= C. 2(1)6x-= D.2(2)9x-=11.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x名学生,根据题意,列出方程为A. (1)2070x x-= B. (1)2070x x+=C. 2(1)2070x x+= D.(1)20702x x-=12.如图,⊙O过点B、C,圆心O在等腰R t△ABC的内部,∠BAC=90°,OA=1,BC=6.则⊙O的半径为A. 6B. 13C.D.13.现给出下列四个命题:①无公共点的两圆必外离;②位似三角形是相似三角形;③菱形的面积等于两条对角线的积;④对角线相等的四边形是矩形.其中真命题的个数是A. 1B. 2C. 3D. 414.如图,正方形ABCD的边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是15.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行与坐标轴,点C在反比例函数221k kyx++=的图像上.若点A的坐标为(-2,-2),则k的值为A. 1B. -3C. 4D. 1或-3二、填空题(本题5小题,每小题4分,共20分)16.如图,OB是⊙O的半径,点C、D在⊙O上,∠DCB=27°,则∠OBD= 度.17.某水库大坝的横截面是梯形,坝内斜坡的坡度i=1i=1:1,则两个坡角的和为.18.已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m,半圆的直径为4m,则圆心O所经过的路线长是m.(结果用π表示)19.关于x的方程2()0a x m b++=的解是12x=-,21x=(a,m,b均为常数,a≠0).则方程2(2)0a x m b+++=的解是.20.如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第一个矩形的面积为1,则第n个矩形的面积为.三、解答题(本题8小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤.)21. (2011甘肃兰州,21,7分)已知a是锐角,且sin(a+15°)计算-4cos α-0( 3.14)π-+tan α+11()3-的值. 22.(本小题满分7分)如图,有A 、B 两个转盘,其中转盘A 被分成4等份,转盘B 被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A 转盘指针指向的数字记为x ,B 转盘指针指向的数字记为y ,从而确定点P 的坐标为P (x ,y ).记s=x+y.(1)请用列表或画树状图的方法写出所有可能得到的点P 的坐标;(2)李刚为甲、乙两人设计了一个游戏:当s <6时甲获胜,否则乙获胜.你认为这个游戏公平吗?对谁有利?23.(本小题满分7分)今年起,兰州市将体育考试正式纳入中考考查科目之一,其等级作为考生录取的重要依据之一.某中学为了了解学生体育活动情况,随即调查了720名初二学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,利用所得的数据制成了扇形统计图和频数分布直方图.根据图示,解答下列问题:(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的是“每天锻炼超过1小时”的学生的概率是多少?(2)“没时间”锻炼的人数是多少?并补全频数分布直方图;(3)2011年兰州市区初二学生约为2.4万人,按此调查,可以估计2011年兰州市区初二学生中每天锻炼未超过1小时的学生约有多少万人?(4)请根据以上结论谈谈你的看法.24.(本小题满分7分)如图,一次函数3y kx =+的图像与反比例函数m y x =(x >0)的图像交与点P ,PA ⊥x 轴于点A ,PB ⊥y 轴于点B.一次函数的图像分别交x 轴、y 轴于点C 、点D ,且DBP S ∆=27,OC CA =12. (1)求点D 的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图像写出当x 取何值时,一次函数的值小于反比例函数的值?25. (本小题满分9分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A 、B 、C.(1)请完成如下操作:①以点O 为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D 的位置(不用写作法,保留作图痕迹),并连结AD 、CD.(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C 、D ;②⊙D 的半径= (结果保留根号);③若扇形ADC 是一个圆锥的侧面展开图,则该圆锥的地面面积为 (结果保留π);④若E (7,0),试判断直线EC 与⊙D 的位置关系并说明你的理由.26. (本小题满分9分)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角正对(sad ),如图①,在△ABC 中,AB=AC ,顶角A 的正对记作sadA ,这时sadA=底边/腰=BC AB.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°= .(2)对于0°<A <180°,∠A 的正对值sadA 的取值范围是 .(3)如图②,已知sinA=35,其中∠A 为锐角,试求sadA 的值.27. (本小题满分12分)已知:如图所示的一张矩形纸片ABCD(AD >AB),将纸片折叠一次,使点A 与点C 重合,再展开,折痕EF 交AD 边于点E ,交BC 边于点F ,分别连结AF 和CE.(1)求证:四边形AFCE 是菱形;(2)若AE=10cm ,△ABF 的面积为242cm ,求△ABF 的周长;(3)在线段AC 上是否存在一点P ,使得22AE AC AP =⋅?若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由.28.(本小题满分12分)如图所示,在平面直角坐标系X0Y中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线2y ax bx c=++经过点A、B和D(4,23 -).(1)求抛物线的表达式.(2)如果点P由点A出发沿AB边以2cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动,设S=2PQ(2cm).①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S取54时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.。

2013年甘肃省兰州市初中毕业生学业考试数学试卷

2013年甘肃省兰州市初中毕业生学业考试数学试卷

2013年兰州市初中毕业生学业考试数 学(A )注意事项:1.全卷共150分,考试时间120分钟.2.考生必须将姓名、准考证号、考场、座位号等个人信息填(涂)写在答题卡上.3.考生务必将答案直接填(涂)写在答题卡的相应位置上.参考公式:二次函数顶点坐标公式:(a b2-,ab ac 442-)一、选择题:本大题共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下图是由八个相同的小正方体组合而成的几何体,其左视图是2.“兰州市明天降水概率是30%”,对此消息下列说法中正确的是 A .兰州市明天将有30%的地区降水 B .兰州市明天将有30%的时间降水 C .兰州市明天降水的可能性较小D .兰州市明天肯定不降水3.二次函数3122+--=)(x y 的图象的顶点坐标是A .(1,3)B .(1-,3)C .(1,3-)D .(1-,3-)4.⊙O 1的半径为1cm ,⊙O 2的半径为4cm ,圆心距O 1O 2=3cm ,这两圆的位置关系是A .相交B .内切C .外切D .内含5.当0>x 时,函数x y 5-=的图象在A .第四象限B .第三象限C .第二象限D .第一象限6.下列命题中是假命题的是正面 第1题图A B C DA .平行四边形的对边相等B .菱形的四条边相等C .矩形的对边平行且相等D .等腰梯形的对边相等7.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是 班级 1班 2班 3班 4班 5班 6班 人数526062545862A .平均数是58B .中位数是58C .极差是40D .众数是608.用配方法解方程0122=--x x 时,配方后所得的方程为A .012=+)(xB .012=-)(x C .212=+)(x D .212=-)(x 9.△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,如果222c b a =+,那么下列结论正确的是 A .c sin A =aB .b cos B =cC .a tan A =bD .c tan B =b10.据调查,2011年5月兰州市的房价均价为7600元/m 2,2013年同期将达到8200元/m 2,假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为 A .8200%)1(76002=+xB .8200%)1(76002=-xC .8200)1(76002=+xD .8200)1(76002=-x 11.已知A (1-,1y ),B (2,2y )两点在双曲线xmy 23+=上,且21y y >,则m 的取值范围是 A .0>mB .0<mC .23->mD .23-<m12.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为8cm ,水的最大深度为2cm ,则该输水管的半径为 A .3cm B .4cm C .5cm D .6cm13.二次函数)0(2≠++=a c bx ax y 的图象如图所示.下列说法中BA△1△2△3 △4O yx第19题图不正确的是 A .042>-ac b B .0>aC .0>cD .02<-ab14.圆锥底面圆的半径为3cm ,其侧面展开图是半圆,则圆锥母线长为A .3cmB .6cmC .9cmD .12cm15.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为二、填空题:本大题共5小题,每小题4分,共20分.16.某校决定从两名男生和三名女生中选出两名同学作为兰州国际马拉松赛的志愿者,则选出一男一女的概率是 .17.若041=-+-a b ,且一元二次方程02=++b ax kx 有实数根,则k 的取值范围是 .18.如图,量角器的直径与直角三角板ABC 的斜边AB 重合,其中量角器0刻度线的端点N 与点A 重合,射线CP 从CA 处出发沿顺时针方向以每秒3度的速度旋转,CP 与量角器的半圆弧交于点E ,第24秒时,点E 在量角器上对应的读数是 度.19.如图,在直角坐标系中,已知点A (3-,0)、B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013 的直角顶点的坐标为 .O S t OS t O S t OS tA B C D AP B 第15题图 第18题图A (N )CBO30° 60°90° 120°150°P E20.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线k x y +=221与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 .三、解答题:本大题共8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤. 21.(本小题满分10分)(1)计算:01201314.330sin 21)()(-++---π(2)解方程:0132=--x x 22.(本小题满分5分)如图,两条公路OA 和OB 相交于O 点,在∠AOB 的内部有工厂C 和D ,现要修建一个货站P ,使货站P 到两条公路OA 、OB 的距离相等,且到两工厂C 、D 的距离相等,用尺规作出货站P 的位置.(要求:不写作法,保留作图痕迹,写出结论.)23.(本小题满分6分)在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A :乒乓球,B :篮球,C :跑步,D :跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图.请你结合图中信息解答下列问题: (1)样本中喜欢B 项目的人数百分比是 ,其所在扇形统计图中的圆心角的度数是 ;(2)把条形统计图补充完整;(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?A B O DC第22题图yxOA B45°2第20题图24.(本小题满分8分)如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB )是1.7m ,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M 在同一条直线上,测得旗杆顶端M 仰角为45°;小红的眼睛与地面的距离(CD )是1.5m ,用同样的方法测得旗杆顶端M 的仰角为30°.两人相距28米且位于旗杆两侧(点B 、N 、D 在同一条直线上).求出旗杆MN 的高度.(参考数据:4.12≈,7.13≈,结果保留整数.)25.(本小题满分9分)已知反比例函数xky =1的图象与一次函数b ax y +=2的图象交于点A (1,4)和点B (m ,2-). (1)求这两个函数的表达式;(2)观察图象,当x >0时,直接写出1y >2y 时自变量x 的取值范围; (3)如果点C 与点A 关于x 轴对称,求△ABC 的面积.CDBNMA小红小明第24题图项目 A B 人数(单位:人) 10 C D 2030 4050 44 8 28 A 44%DC B 28%8% 第23题图第26题图 图1 A O B C DE 图2G FA OB C26.(本小题满分10分)如图1,在△OAB 中,∠OAB =90°,∠AOB =30°,OB =8.以OB 为边,在△OAB 外作等边△OBC ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)如图2,将图1中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG ,求OG 的长.27.(本小题满分10分)如图,直线MN 交⊙O 于A 、B 两点,AC 是直径,AD 平分∠CAM 交⊙O 于D ,过D 作DE ⊥MN 于E .(1)求证:DE 是⊙O 的切线; (2)若DE =6cm ,AE =3cm ,求⊙O 的半径.CO B A D M E N 第27题图 y A x B O第25题图28.(本小题满分12分)如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,23-),点M 是抛物线C 2:m mx mx y 322--=(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.2013年兰州市初中毕业生学业考试 数学(A )参考答案及评分参考本答案仅供参考,阅卷时会制定具体的评分细则和评分标准。

2013甘肃中考数学试题答案解析

2013甘肃中考数学试题答案解析

2013甘肃中考数学试题答案解析甘肃省2013年中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内1.(3分)(2012•绍兴)3的相反数是( )A . 3B . ﹣3C .D .﹣考点:相反数.分析:根据相反数的意义,3的相反数即是在3的前面加负号.解答: 解:根据相反数的概念及意义可知:3的相反数是﹣3.故选B .点评: 本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2013•白银)下列运算中,结果正确的是( )A .4a ﹣a=3a B . a 10÷a 2=a 5 C . a 2+a 3=a 5 D .a 3•a 4=a 12考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.专题:计算题.分析: 根据合并同类项、同底数幂的除法法则:底数不变,指数相减,同底数幂的乘法法则:底数不变,指数相加,可判断各选项.解答: 解:A 、4a ﹣a=3a ,故本选项正确;B 、a 10÷a 2=a 10﹣2=a 8≠a 5,故本选项错误;C 、a 2+a 3≠a 5,故本选项错误;D 、根据a 3•a 4=a 7,故a 3•a 4=a 12本选项错误;故选A .点评: 此题考查了同类项的合并,同底数幂的乘除法则,属于基础题,解答本题的关键是掌握每部分的运算法则,难度一般.3.(3分)(2011•桂林)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是( )4.(3分)(2012•襄阳)如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是()A .B.C.D.考点:简单组合体的三视图.分析:主视图是从正面看,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看,圆锥看见的是:三角形,两个正方体看见的是两个正方形.故答案为B.点评:此题主要考查了三视图的知识,关键是掌握三视图的几种看法.5.(3分)(2013•白银)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A .15°B . 20°C . 25°D .30° 考点:平行线的性质.分析:根据两直线平行,内错角相等求出∠3,再求解即可.解答: 解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选C .点评:本题考查了两直线平行,内错角相等的性质,是基础题,熟记性质是解题的关键.6.(3分)(2008•包头)一元二次方程x 2+x ﹣2=0根的情况是( )A 有两个不相等的实数B 有两个相等的实数根. 根 .C . 无实数根D .无法确定考点:根的判别式.分析:判断上述方程的根的情况,只要看根的判别式△=b 2﹣4ac 的值的符号就可以了.解答: 解:∵a=1,b=1,c=﹣2,∴△=b 2﹣4ac=1+8=9>0∴方程有两个不相等的实数根.故选A点评: 本题考查了一元二次方程根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.(3分)(2012•广西)分式方程的解是()A x=﹣2B x=1C x=2D x=3.. . .考点:解分式方程.分析:公分母为x (x+3),去括号,转化为整式方程求解,结果要检验.解答: 解:去分母,得x+3=2x ,解得x=3,当x=3时,x (x+3)≠0,所以,原方程的解为x=3,故选D .点评: 本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,(2)解分式方程一定注意要验根.8.(3分)(2013•白银)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( )A . 48(1﹣x )2=36B . 48(1+x )2=36C . 36(1﹣x )2=48D . 36(1+x )2=48考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:三月份的营业额=一月份的营业额×(1+增长率)2,把相关数值代入即可.解答:解:二月份的营业额为36(1+x),三月份的营业额为36(1+x)×(1+x)=36(1+x)2,即所列的方程为36(1+x)2=48,故选D.点评:考查列一元二次方程;得到三月份的营业额的关系是解决本题的关键.9.(3分)(2013•白银)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0,错误的个数有()A .1个B . 2个C . 3个D .4个 考点:二次函数图象与系数的关系.分析: 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,利用图象将x=1,﹣1,2代入函数解析式判断y 的值,进而对所得结论进行判断.解答: 解:①∵由函数图象开口向下可知,a <0,由函数的对称轴x=﹣<0,故b >0,所以2a ﹣b <0,①正确;②∵a <0,对称轴在y 轴左侧,a ,b 同号,图象与y 轴交于负半轴,则c <0,故abc <0;②正确;③当x=1时,y=a+b+c <0,③正确;④当x=﹣1时,y=a ﹣b+c <0,④错误;⑤当x=2时,y=4a+2b+c <0,⑤错误;故错误的有2个.故选:B.点评:此题主要考查了图象与二次函数系数之间的关系,将x=1,﹣1,2代入函数解析式判断y的值是解题关键.10.(3分)(2010•岳阳)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()A .B.C.D.考点:动点问题的函数图象;多边形内角与外角;切线的性质;切线长定理;扇形面积的计算;锐角三角函数的定义.专题计算题.分析:连接OB、OC、OA,求出∠BOC的度数,求出AB、AC的长,求出四边形OBAC和扇形OBC的面积,即可求出答案.解答:解:连接OB、OC、OA,∵圆O切AM于B,切AN于C,∴∠OBA=∠OCA=90°,OB=OC=r,AB=AC∴∠BOC=360°﹣90°﹣90°﹣α=(180﹣α)°,∵AO平分∠MAN,∴∠BAO=∠CAO=α,AB=AC=,∴阴影部分的面积是:S四边形BACO﹣S扇形OBC=2×××r ﹣=(﹣)r2,∵r>0,∴S与r之间是二次函数关系.故选C.评:三角形和扇形的面积,锐角三角函数的定义,四边形的内角和定理等知识点的理解和掌握,能综合运用性质进行计算是解此题的关键.二、填空题:本大题共8小题,每小题4分,共32分,把答案写在题中的横线上11.(4分)(2011•连云港)分解因式:x2﹣9=(x+3)(x ﹣3).考点:因式分解-运用公式法.分析:本题中两个平方项的符号相反,直接运用平方差公式分解因式.解答:解:x2﹣9=(x+3)(x﹣3).点评:主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.12.(4分)(2012•广安)不等式2x+9≥3(x+2)的正整数解是1,2,3.考点:一元一次不等式的整数解.专题:计算题.分析:先解不等式,求出其解集,再根据解集判断其正整数解.解答:解:2x+9≥3(x+2),去括号得,2x+9≥3x+6,移项得,2x﹣3x≥6﹣9,合并同类项得,﹣x≥﹣3,系数化为1得,x≤3,故其正整数解为1,2,3.点评:本题考查了一元一次不等式的整数解,会解不等式是解题的关键.13.(4分)(2012•随州)等腰三角形的周长为16,其一边考点:等腰三角形的性质;三角形三边关系.分析:此题分为两种情况:6是等腰三角形的腰或6是等腰三角形的底边.然后进一步根据三角形的三边关系进行分析能否构成三角形.解答:解:当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理,故该等腰三角形的另两边为:6,4或5,5.故答案为:6,4或5,5.点评:本题考查了等腰三角形的性质,应从边的方面考查三角形,涉及分类讨论的思想方法,难度适中.14.(4分)(2009•朝阳)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为5米.点:分析:易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.解答:解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.点评:本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长.15.(4分)(2013•白银)如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为AC=CD.(答案不唯一,只需填一个)点:专题:开放型.分析:可以添加条件AC=CD,再由条件∠BCE=∠ACD,可得∠ACB=∠DCE,再加上条件CB=EC,可根据SAS定理证明△ABC≌△DEC.解答:解:添加条件:AC=CD,∵∠BCE=∠ACD,∴∠ACB=∠DCE,在△ABC和△DEC 中,∴△ABC≌△DEC(SAS),故答案为:AC=CD(答案不唯一).点评:此题主要考查了考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的16.(4分)(2012•温州)若代数式的值为零,则x=3.考点:分式的值为零的条件;解分式方程.专题:计算题.分析:由题意得=0,解分式方程即可得出答案.解答:解:由题意得,=0,解得:x=3,经检验的x=3是原方程的根.故答案为:3.点评:此题考查了分式值为0的条件,属于基础题,注意分式方程需要检验.17.(4分)(2012•盐城)已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且O1O2=t+2,若这两个圆相切,则t=2或0.点:解法.分析:先解方程求出⊙O1、⊙O2的半径,再分两圆外切和两圆内切两种情况列出关于t的方程讨论求解.解答:解:∵⊙O1、⊙O2的半径分别是方程x2﹣4x+3=0的两根,解得⊙O1、⊙O2的半径分别是1和3.①当两圆外切时,圆心距O1O2=t+2=1+3=4,解得t=2;②当两圆内切时,圆心距O1O2=t+2=3﹣1=2,解得t=0.∴t为2或0.故答案为:2或0.点评:考查解一元二次方程﹣因式分解法和圆与圆的位置关系,同时考查综合应用能力及推理能力.注意:两圆相切,应考虑内切或外切两种情况是解本题的难点.18.(4分)(2013•白银)现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是﹣1或4.点:专题:新定义.分析:根据题中的新定义将所求式子转化为一元二次方程,求出一元二次方程的解即可得到x 的值.解答:解:根据题中的新定义将x★2=6变形得:x2﹣3x+2=6,即x2﹣3x﹣4=0,因式分解得:(x﹣4)(x+1)=0,解得:x1=4,x2=﹣1,则实数x的值是﹣1或4.故答案为:﹣1或4点评:此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程右边化为0,左边变为积的形式,然后根据两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.三、解答题(一):本大题共5小题,共38分,解答时,应写出必要的文字说明、证明过程或演算步骤。

2013年初中毕业生毕业升学考试数学试卷

2013年初中毕业生毕业升学考试数学试卷

A B C D2013年初中毕业生毕业升学考试数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的代号填入题后的括号内,每小题3分,共24分)1.5-的绝对值是 ( ) A .5- B .5±C .51D .5 2.据测算,我国每天因土地沙漠化造成的经济损失约为5.1亿元,一年的经济损失约为05475000000元,用科学记数法表示这个数为 ( )A .1110475.5⨯元 B .1010475.5⨯元 C .11105475.0⨯元 D .8105475⨯元 3.如图,下列水平放置的几何体中,主视图是三角形的是 ( )4.下列图形中,既是轴对称图形,又是中心对称图形的是 ( )A B C D5.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元),55,50,25,30,50,20,50这组数据的众数和中位数分别是( )A .50元,20元B .50元,40元 C.50元,50元 D .55元,50元 6.不等式组⎩⎨⎧+>-+xx x 2125)5(2的解集在数轴上表示正确的是 ( )7.炎炎夏日,甲安装队为A 小区安装60台空调,乙安装队为B 小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是 ( )≥6B C DA第13题图第16题图A.25060-=x x B.x x 50260=- C .25060+=x x D .xx 50260=+ 8.如图1,在矩形ABCD 中,动点E 从点B 出发,沿B AD C 方向运动至点C 处停止,设点E 运动的路程为x,△BCE 的面积为y ,如果y 关于x 的函数图象如图2所示,则当7=x 时,点E 应运动到( )A .点C 处B .点D 处C .点B 处D .点A 处二、填空题(每小题3分,共24分)9.函数5-=x y 中,自变量x 的取值范围是 . 10.=-+-- 60cos 2)21()2013(10π .11.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数均是9.1环,方差分别为56.02=甲s ,45.02=乙s ,61.02=丙s ,则三人中射击成绩最稳定的是 .12.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠D =65,则∠AEC = . 13.二次函数c bx x y ++-=2的图象如图所示,则一次函数c bx y +=的图象不经过第 象限.14.一个圆锥形零件,高为8cm ,底面圆的直径为12cm ,则此圆锥的侧面积是 2cm .15.已知双曲线x y 3=和xky =的部分图象如图所示,点C 是y 轴正半轴上一点,过点C 作AB ∥x 轴分别交两个图象于点B A 、.若CB =CA 2,则k = .16.按如图方式作正方形和等腰直角三角形.若第一个正方形的边长AB =1,第一个正方形与第一个等腰直角三角形的面积和为1S , 第二个正方形与第二个等腰直角三角形的面积和为2S ,……,则 第n 个正方形与第n 个等腰直角三角形的面积和n S = .三、解答题(17、18、19小题,每小题8分,共24分)第15题图 第8题图1第8题图2第12题图 D A C B FE17.先化简,再求值:122)13154(22+-+÷---+x x x x x x ,其中3=x . 18.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫做格点). (1)画出△ABC 向下平移3个单位后的△111C B A ;(2)画出△ABC 绕点O 顺时针旋转90后的△222C B A ,并求出点A 旋转到2A 所经过的路线长.(结果保留π)19.如图,△ABC 中,AC AB =,AD 是△ABC 一个外角的平分线,且∠BAC =∠ACD . (1)求证:△ABC ≌△CDA ;(2)若∠ACB =60,求证:四边形ABCD 是菱形.第18题图 DA CBFE四、解答题(20小题10分,21小题10分,共20分)20.某中学为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选. 同时把调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整). 请根据图中提供的信息解答下列问题: (1)在这次调查中,一共抽取了多少名学生? (2)通过计算补全条形统计图;(3)在扇形统计图中, “公交车”部分所对应的圆心角是多少度?(4)若全校有1600名学生,估计该校乘坐私家车上学的学生约有多少名?21.小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下..的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛. (1)用列表法或画树状图法,求小丽参赛的概率. (2)你认为这个游戏公平吗?请说明理由.其他其他家车交车行 行车282420161284第20题图五、解答题(22小题8分,23小题10分,共18分)22.如图,某人在山坡坡脚C 处测得一座建筑物顶点A 的仰角为60,沿山坡向上走到P 处再测得该建筑物顶点A 的仰角为45.已知BC =90米,且B 、C 、D 在同一条直线上,山坡坡度为21(即21tan =∠PCD ). (1)求该建筑物的高度(即AB 的长).(2)求此人所在位置点P 的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)23.如图,点C 是以AB 为直径的⊙O 上的一点,AD 与过点C 的切线互相垂直.D (1)求证:AC 平分BAD ∠;(2)若10,1==AC CD ,求⊙O 的半径长.第22题图六、解答题(本题满分12分)24.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=802+-x.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?25.如图1,△ABC为等腰直角三角形,90=∠ACB,F是AC边上的一个动点(点F与A、C 不重合),以CF为一边在等腰直角三角形外作正方形,CDEF连接BF、AD.(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形,CDEF绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形. 图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图.2.证明你的判断.(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,90=∠ACB,正方形CDEF改为矩形CDEF,如图4,且4=AC,3=BC,=CD34,1=CF,BF交AC于点H,交AD于点O,连接BD、AF,求22AFBD+的值.评卷人七、解答题(本题满分14分)AB EFH OC26.如图,抛物线与x 轴交于A ()0,1 、)03(,B 两点,与y 轴交于点C (),3,0设抛物线的顶点为D . (1)求该抛物线的解析式与顶点D 的坐标.(2)试判断△BCD 的形状,并说明理由.(3)探究坐标轴上是否存在点P ,使得以C A P 、、为顶点的三角形与△BCD 相似? 若存在,请直接写出点P八、解答题(本题满分14分)2013年初中毕业生毕业升学考试数学试卷答案说明:1.此答案仅供参考,阅卷之前请做答案。

2013年甘肃省兰州市初中毕业生学业考试数学(A)试卷

2013年甘肃省兰州市初中毕业生学业考试数学(A)试卷

2013年兰州市初中毕业生学业考试数 学(A )注意事项:1.全卷共150分,考试时间120分钟.2.考生必须将姓名、准考证号、考场、座位号等个人信息填(涂)写在答题卡上.3.考生务必将答案直接填(涂)写在答题卡的相应位置上.参考公式:二次函数顶点坐标公式:(a b2-,ab ac 442-)一、选择题:本大题共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下图是由八个相同的小正方体组合而成的几何体,其左视图是2.“兰州市明天降水概率是30%”,对此消息下列说法中正确的是 A .兰州市明天将有30%的地区降水 B .兰州市明天将有30%的时间降水 C .兰州市明天降水的可能性较小D .兰州市明天肯定不降水3.二次函数3122+--=)(x y 的图象的顶点坐标是A .(1,3)B .(1-,3)C .(1,3-)D .(1-,3-)4.⊙O 1的半径为1cm ,⊙O 2的半径为4cm ,圆心距O 1O 2=3cm ,这两圆的位置关系是 A .相交 B .内切 C .外切 D .内含5.当0>x 时,函数x y 5-=的图象在A .第四象限B .第三象限C .第二象限D .第一象限6.下列命题中是假命题的是A .平行四边形的对边相等B .菱形的四条边相等C .矩形的对边平行且相等D .等腰梯形的对边相等7.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,第1题图A B C DA .平均数是58B .中位数是58C .极差是40D .众数是60 8.用配方法解方程0122=--x x 时,配方后所得的方程为A .012=+)(xB .012=-)(x C .212=+)(x D .212=-)(x 9.△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,如果222c b a =+,那么下列结论正确的是 A .c sin A =aB .b cos B =cC .a tan A =bD .c tan B =b10.据调查,2011年5月兰州市的房价均价为7600元/m 2,2013年同期将达到8200元/m 2,假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为 A .8200%)1(76002=+xB .8200%)1(76002=-xC .8200)1(76002=+xD .8200)1(76002=-x 11.已知A (1-,1y ),B (2,2y )两点在双曲线xmy 23+=上,且21y y >,则m 的取值范围是 A .0>mB .0<mC .23->m D .23-<m12.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为8cm ,水的最大深度为2cm ,则该输水管的半径为 A .3cm B .4cm C .5cm D .6cm13.二次函数)0(2≠++=a c bx ax y 的图象如图所示.下列说法中不正确的是 A .042>-ac b B.0>aC .0>cD .02<-ab14.圆锥底面圆的半径为3cm ,其侧面展开图是半圆,则圆锥母线长为A .3cmB .6cmC .9cmD .12cm15.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动第15题图过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为二、填空题:本大题共5小题,每小题4分,共20分.16.某校决定从两名男生和三名女生中选出两名同学作为兰州国际马拉松赛的志愿者,则选出一男一女的概率是 .17.若041=-+-a b ,且一元二次方程02=++b ax kx 有实数根,则k 的取值范围是 .18.如图,量角器的直径与直角三角板ABC 的斜边AB 重合,其中量角器0刻度线的端点N 与点A 重合,射线CP 从CA 处出发沿顺时针方向以每秒3度的速度旋转,CP 与量角器的半圆弧交于点E ,第24秒时,点E 在量角器上对应的读数是 度.19.如图,在直角坐标系中,已知点A (3-,0)、B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013 的直角顶点的坐标为 .20.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线k x y +=221与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 .三、解答题:本大题共8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤. 21.(本小题满分10分)(1)计算:01201314.330sin 21)()(-++---π(2)解方程:0132=--x x第20题图第18题图CB22.(本小题满分5分)如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论.)23.(本小题满分6分)在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图.请你结合图中信息解答下列问题:(1)样本中喜欢B项目的人数百分比是,其所在扇形统计图中的圆心角的度数是;(2)把条形统计图补充完整;(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?24.(本小题满分8分)如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB )是1.7m ,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M 在同一条直线上,测得旗杆顶端M 仰角为45°;小红的眼睛与地面的距离(CD )是1.5m ,用同样的方法测得旗杆顶端M 的仰角为30°.两人相距28米且位于旗杆两侧(点B 、N 、D 在同一条直线上).求出旗杆MN 的高度.(参考数据:4.12≈,7.13≈,结果保留整数.)DBN第24题图A 44%D C B 28%8%第23题图第26题图 图1 A O B C DEB25.(本小题满分9分)已知反比例函数xky =1的图象与一次函数b ax y +=2的图象交于点A (1,4)和点B (m ,2-). (1)求这两个函数的表达式;(2)观察图象,当x >0时,直接写出1y >2y 时自变量x 的取值范围; (3)如果点C 与点A 关于x 轴对称,求△ABC 的面积.26.(本小题满分10分)如图1,在△OAB 中,∠OAB =90°,∠AOB =30°,OB =8.以OB为边,在△OAB 外作等边△OBC ,D 是OB 的中点,连接AD 并延长交OC 于E . (1)求证:四边形ABCE 是平行四边形;(2)如图2,将图1中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG ,求OG的长.27.(本小题满分10分)如图,直线MN 交⊙O 于A 、第27题图第25题图点,AC 是直径,AD 平分∠CAM 交⊙O 于D ,过D 作DE ⊥MN 于E . (1)求证:DE 是⊙O 的切线;(2)若DE =6cm ,AE =3cm ,求⊙O 的半径.28.(本小题满分12分)如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,23-),点M 是抛物线C 2:m mx mx y 322--=(m <0)的顶点. (1)求A 、B 两点的坐标; (2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由; (3)当△BDM 为直角三角形时,求m 的值.2013年兰州市初中毕业生学业考试 数学(A )参考答案及评分参考本答案仅供参考,阅卷时会制定具体的评分细则和评分标准。

2013年陕西省初中毕业学业考试数学试题样卷

2013年陕西省初中毕业学业考试数学试题样卷

2013年陕西省初中毕业学业考试·数学试题·(样题)注意事项:1.本试卷共8页,分为第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟;2.请考生直接在试卷指定相应区域内答题并在密封区内填写个人信息,凡超出指定区域的答案均无效;3.数学真题卷难度不高于本卷难度。

第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.在一本名为《数学和想象》的书中,作者爱德华•卡斯纳和詹姆斯•纽曼引入了一个名叫“Googol”的大数,这个数既大且好,很快就被著书撰文者采用并普及到数学文章中,“Googol”是这样一个数,即在1这个数字后面跟上一百个零.如果用科学记数法表示“Googol”这个大数,它的指数是 ……………………………………………………【 】 A. 98 B. 99 C. 100 D. 1012.下列数据:23,22,22,21,18,16,22的众数和中位数分别是………………【 】 A .21,22 B .22,23 C .22,22 D .23,213.取一长方形的纸条,扭转半圈并把两端接在一起,形成著名的“麦比乌斯带”(麦 比乌斯是德国的一位数学家、天文学家).试问:如果沿着这条带子的正中央剪开带子,纸带会变成什么样子呢?……………………………………………………………………【 】 A .两个分开的细纸环 B .两个细纸环,一个套住一个 C .一个更大的细纸环 D .一 条更长的纸带 4.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是………………【 】 A .1k > B .1k < C .1k >- D .1k <-5.如图,梯形ABCD 中,∠DAB=∠ABC=90°,E 点在CD 上,且DE :EC=1:4.若AB=5,BC=4,AD=8,则四边形ABCE 的面积为………………………………………………【 】 A. 24 B. 25 C. 26 D. 276.反比例函数xy 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<, 则1y ,2y ,3y 的大小关系是………………………………………………………………【 】AB C GFED O y OABCP DxA .321y y y <<B .312y y y <<C .213y y y <<D .123y y y <<7. 在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为………………【 】 A .12B .22C .32D .338.如图,AB 为⊙O 的直径,C 是⊙O 上一点,连接AC ,过点C 作直线CD ⊥AB 交AB 于点D ,E 是OB 上一点,直线CE 与⊙O 交于点F ,连接AF 交直线CD 于点G .若AC =22,则AG ·AF =……………………………………………………………………【 】 A .10 B .12 C .8 D .169.在平面直角坐标系中有一抛物线y=x 2+ax+b ,其中a 、b 为整数.已知此函数在坐标系上的图形与x 轴交于两点,且两交点的距离为4.若此图形的对称轴为x=﹣5,则此图形通过下列哪一点? ………………………………………………………………………【 】 A. (﹣6,﹣1) B. (﹣6,﹣2) C. (﹣6,﹣3) D. (﹣6,﹣4) 10.如右图,正方形OABC 的边长为6,点A 、C 分别在x 轴、y 轴的正半轴上,点D (2,0)在OA 上,P 是OB 上一动点,则P A +PD 的最小值为…………………………【 】A .210B .10C .4D .6第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,计18分)11.计算112cos 453(2007π)2-⎛⎫-+⨯- ⎪⎝⎭的结果是…………………【 】12.如图所示,直线a //b ,∠1=130°,∠2=70°,则∠3的度数是……【 】a2 13b432 3 57339 113413 1517 1913.如图,MN 为⊙O 的直径,A 、B 是O 上的两点,过A 作AC ⊥MN 于点C ,过B 作BD⊥MN 于点D ,P 为DC 上的任意一点,若MN =20,AC =8,BD =6,则PA +PB 的最小值是………………………………………………………………【 】 14.选作题【....要求在(1)、(2)、(3)中任选一题作答,若多选,则本小题不计分】 (1)若2|4|(5)0m n -+-=,将22mx ny -分解因式为………………【 】 (2)如下图,a ,b ,c 三种物体的质量的大小关系是…………………………【】(3) m 132x y --和n m+n 1x y 2是同类项,则()2012n m =-……………………【 】15.已知一个自然数的立方,可以分裂成若干个连续奇数的和.例如:32,33和34分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即3235=+;337911=++;3413151719=+++;……;若36也按照此规律来进行“分裂”,则36“分裂”出的奇数中,最大的奇数是……………………………………【 】(13、15题图)16.如图所示,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,BC =3,CD =4,EF 是梯形的中位线,DH 为梯形的高,则下列结论正确的有……………………【 】(填序号). ①四边形EHCF 为菱形②60BCD ∠=③12BEH CEH S S =△△④以AB 为直径的圆与CD 相切于点FO NMC AP BD EBA D FE BHC三、解答题(共9小题,计72分) 19.(本题满分5分) 先化简2211112-÷⎪⎭⎫ ⎝⎛+--x x x x ,然后从-1、-2、1、2中选取一个数作为x 的值代入求值.18.(本题满分6分)如图,在□ABCD 中,延长CD 到E ,使DE =CD ,连接BE 交AD 于点F ,交AC 于点G 。

2013年安徽中考数学试卷及答案

2013年安徽中考数学试卷及答案

2013年安徽省初中毕业学业考试数 学本试卷共8大题,计23小题,满分150分,考试时间120分钟。

题号 一二三四五六七八总分 得分一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A,B,C,D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1、2-的倒数是( ) A.12-B.12 C.2 D.2-答案:A2、用科学记数法表示537万正确的是( )A.453710⨯ B.55.3710⨯ C.65.3710⨯ D.70.53710⨯ 答案:C3、图中所示的几何体为圆台,其主(正)视图正确的是( )A. B. C. D. 答案:A4、下列运算正确的是( )A.235x y xy +=B.23555m m m ⋅=C.222()a b a b -=- D.236m m m ⋅=答案:B5、已知不等式组3010x x ->⎧⎨+≥⎩其解集在数轴上的表示正确的是( )A.B.C.D.答案:D6、如果AB//CD ,∠A+∠E=75°,则∠C 为( )A.60°B.65°C.75°D.80° 答案:C7、我国已经建立了比较完善的经济困难学生资助体系,某校去年上半年发给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A.2438(1)389x += B.2389(1)438x +=C.2389(1)438x +=D.2438(12)389x +=答案:B8、如果随机闭合开关123,,k k k ,则能让两盏灯泡同时发光的概率为( ) A.16 B.13 C.12 D.23答案:B9、图1所示矩形ABCD 中,BC=z ,CD=y ,y 与x 满足反比例函数关系式如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是( )A.当x =3时,EC<EMB.当y =9时,EC>EMC.当z 增大时,EC CF ⋅的值增大D.当y 增大时,BE DF ⋅的值不变0 1 2 3-1 -2 0 1 2 3-1-2 0 1 2 3-1-2 0 1 2 3-1 -2答案:D10、如图点P 是等边三角形ABC 外接圆⊙O 上的点,在以下判断中不正确的是( )A.当弦PB 最长时,△APC 是等腰三角形B.当△APC 是等腰三角形时,PQ 垂直ACC.当PQ 垂直AC ,∠ACP=30°D.∠ACP=30°时,△BPC 是直角三角形。

【精校】2013年江西省初中毕业暨中等学校招生考试数学(含答案)

【精校】2013年江西省初中毕业暨中等学校招生考试数学(含答案)

机密★2013年6月19日江西省2013年初中毕业暨中等学校招生考试数学试题说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(共6小题,每小题3分,满分18分)说明:1.本卷共有七个大题,24个小题,全卷满分120分,考试时间120分钟。

2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。

一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.1.-1的倒数是().A.1 B.-1 C.±1D.02.下列计算正确的是().A.a2+a2=a5 B.(3a-b)2=9a2-b2 C.a6b÷a2=a3b D.(-ab3)2=a2b6 3.下列数据是2013年3月7日6点公布的中国六大城市的空气污染指数情况:则这组数据的中位数和众数分别是().A.164和163 B.105和163 C.105和164 D.163和164 4.如图,直线y=x+a-2与双曲线y=交于A,B两点,则当线段AB的长度取最小值时,a 的值为().A.0 B.1 C.2 D.55.一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则他的左视图可以是().6.若二次涵数y=ax+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M (x0,y0)在x轴下方,则下列判断正确的是().A.a>0 B.b2-4ac≥0C.x1<x0<x2D.a(x0-x1)( x0-x2)<0二、填空题(本大题共8小题,每小题3分,共24分)7.分解因式x2-4= .8.如图△ABC中,∠A=90°点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为.9.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组是.10.如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接 DE和BF,分别取DE、BF 的中点M、N,连接AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为.11.观察下列图形中点的个数,若按其规律再画下去,可以得到第n个图形中所有的个数为(用含n的代数式表示).12.若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个..符合题意的一元二次方程.13.如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.14.平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是.三、(本大题共2小题,每小题5分,共10分)15.解不等式组⎩⎨⎧>-+≥+,33)3(2,12x x x 并将解集在数轴上表示出来.16.如图AB 是半圆的直径,图1中,点C 在半圆外;图2中,点C 在半圆内,请仅用无刻度...的直尺按要求画图. (1)在图1中,画出△ABC 的三条高的交点; (2)在图2中,画出△ABC 中AB 边上的高.四、(本大题共2小题,每小题6分,共12分)17.先化简,再求值:12244222+-÷+-xxx x x x ,在0,1,2,三个数中选一个合适的,代入求值.18.甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件. (1)下列事件是必然事件的是( ). A .乙抽到一件礼物B .乙恰好抽到自己带来的礼物C .乙没有抽到自己带来的礼物D .只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A ),请列出事件A 的所有可能的结果,并求事件A 的概率.五、(本大题共2小题,每小题8分,共16分) 19.如图,在平面直角坐标系中,反比例函数xky(x>0)的图象和矩形ABCD 的第一象限,AD 平行于x 轴,且AB=2,AD=4,点A 的坐标为(2,6) . (1)直接写出B 、C 、D 三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.20.生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml 的矿泉水,会后对所发矿泉水的情况进行统计,大至可分为四种:A .全部喝完;B .喝剩约;C .喝剩约一半;D .开瓶但基本未喝.同学们根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?在图(2)中D 所在扇形的圆心角是多少度?并补全条形统计图;(计算结果请保留整数).(2)若开瓶不但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升..? (3)据不完全统计,该单位每年约有此类会议60人,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶.?(可使用科学计算器)21.如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB ,如图2所示,量得连杆OA 长为10cm ,雨刮杆AB 长为48cm,∠OAB=120°.若启动一次刮雨器,雨刮杆AB 正好扫到水平线CD 的位置,如图3所示.(1)求雨刮杆AB 旋转的最大角度及O 、B 两点之间的距离;(结果精确到0.01) (2)求雨刮杆AB 扫过的最大面积.(结果保留π的整数倍) (参考数据:sin60°=23,cos60°=,tan60°=3,721≈26.851,可使用科学计算器)22.如图,在平面直角坐标系中,以点O 为圆心,半径为2的圆与y 轴交于点A ,点P (4,2)是⊙O 外一点,连接AP ,直线PB 与⊙O 相切于点B ,交x 轴于点C . (1)证明PA 是⊙O 的切线; (2)求点B 的坐标; (3)求直线AB 的解析式.七、(本大题共2小题,第23题10分,第24 题12分,共22分)23.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是(填序号即可)①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧..作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程;●类比探索:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:.24.已知抛物线y n=-(x-a n)2+a n(n为正整数,且0<a1<a2<…<a n)与x轴的交点为A n-1(b n-1,0)和A n(b n,0),当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.(1)求a1,b1的值及抛物线y2的解析式;(2)抛物线y3的顶点坐标为(,);依此类推第n条抛物线y n的顶点坐标为(,);所有抛物线的顶点坐标满足的函数关系是;(3)探究下列结论:①若用A n-1A n表示第n条抛物线被x轴截得得线段长,直接写出A0A1的值,并求出A n-1A n;②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得得线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.参考答案一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项. 1.B 2.D 3.A 4.C 5.C 6.D 二、填空题(本大题共8小题,每小题3分,共24分) 7.(x+2)(x -2) 8.65° 9.⎩⎨⎧+==+12,34y x y x 10.6 11. (n+1)2 12.x 2-5x+6=013.25° 14. 2,3,4三、(本大题共2小题,每小题5分,共10分) 15.解:由x+2≥1得x≥-1,由2x+6-3x 得x<3,∴不等式组的解集为-1≤x<3. 将解集在数轴上表示为:16.解:在图1中,点P 即为所求;在图2中,CD 即为所求.四、(本大题共2小题,每小题6分,共12分)17.解:原式=xx 2)2(2-·)2(2-x x x +1=12+-xx =. 当x=1时,原式=. 18.解:(1)A(2)依题意可画树状图(下列两种方式均可):(直接列举出6种可能结果也可) 符合题意的只有两种情况: ①乙丙甲②丙甲乙(按左图)或①(甲乙),(乙丙),(丙甲);②(甲丙),(乙甲),(丙乙)(按右图) ∴P (A)= = .五、(本大题共2小题,每小题8分,共16分) 19.解:(1)B (2,4),C (6,4),D (6,6)如图,矩形ABCD 平移后得到矩形A′B′C′D′, 设平移距离为a ,则A′(2,6-a ),C′(6,4-a ) ∵点A′,点C′在y=的图象上, ∴2(6-a)=6(4-a), 解得a=3, ∴点A′(2,3),∴反比例函数的解析式为6y x. 20.解:(1)根据所给扇形统计图可知,喝剩约的人数是总人数的50%,∴25÷50%=50,参加这次会议的总人数为50人, ∵505×360°=360°, ∴D 所在扇形圆心角的度数为36°, 初全条形统计图如右;(2)根据条形统计图可得平均每人浪费矿泉水量约为:(25××500+10×500×+5×500)÷50 =327500÷50≈183毫升; (3)该单位每年参加此类会议的总人数约为24000人~3600人,则浪费矿泉水约为3000×183÷500=1098瓶.六、(本大题共2小题,每小题9分,共18分)21.解:(1)雨刮杆AB 旋转的最大解度为180° .连接OB ,过O 点作AB 的垂线交BA 的延长线于EH 噗,∵∠OAB=120°,∴∠OAE=60°在Rt△OAE 中,∵∠OAE=60°,OA=10, ∴sin∠OAE=OA OE =10OE , ∴OE=53,∴AE=5∴EB=AE+AB=53,在Rt△OEB 中,∵OE=53,EB=53,∴OB=22BE OE =2884=2721≈53.70;(2)∵雨刮杆AB 旋转180°得到CD ,即△OCD 与△OAB 关于点O 中心对称, ∴△BAO≌△OCD,∴S △BAO =S △DCO ,(直接证明全等得到面积相等的也给相应的分值) ∴雨刮杆AB 扫过的最大面积S=π(OB 2-OA 2) =1392π22.解:(1)证明:依题意可知,A (0,2)∵A(0,2),P (4,2),∴AP∥x 轴,∴∠OAP=90°,且点A 在⊙O 上,∴PA 是⊙O 的切线;(2)解法一:连接OP ,OB ,作PE⊥x 轴于点E ,BD⊥x 轴于点D ,∵PB 切⊙O 于点B ,∴∠OBP=90°,即∠OBP=∠PEC又∵OB=PE=2,∠OCB=∠PEC∴△OBC≌△PEC∴OC=PC(或证Rt△OAP≌△OBP,再得到OC=PC 也可)设OC=PC=x ,则有OE=AP=4,CE=OE -OC=4-x ,在Rt△PCE 中,∵PC 2=CE 2+PE 2,∴x 2=(4-x)2+22,解得x=,∴BC=CE=4-=,∵OB·BC=OC·BD,即×2×=××BD,∴BD= ∴OD=22BD OB -=25364-=, 由点B 在第四象限可知B (,56-); 解法二:连接OP ,OB ,作PE⊥x 轴于点E ,BD⊥y 轴于点D ,∵PB 切⊙O 于点B ,∴∠OBP=90°即∠OBP=∠PEC又∵OB=PE=2,∠OCB=∠PEC∴△OBC≌△PEC∴OC=PC(或证Rt△OAP≌△OBP,再得到OC=PC 也可)设OC=PC=x ,则有OE=AP=4,CE=OE -OC=4-x ,在Rt△PCE 中,∵PC 2=CE 2PE 2,∴x 2=(4-x)2+22,解得x=,∴BC=CE=4-=,∵BD∥x 轴,∴∠COB=∠OBD,又∵∠OBC=∠BDO=90°,∴△OBC∽△BDO, ∴BD OB =OD CB =BO OC , 即BD 2=BD 23=225, ∴BD=,OD=,由点B 在第四象限可知B (,56-); (3)设直线AB 的解析式为y=kx+b ,由A (0,2),B (,56-),可得⎪⎩⎪⎨⎧-=+=5658,2b k b ; 解得⎩⎨⎧-==,2,2k b ∴直线AB 的解析式为y=-2x+2.七、(本大题共2小题,第23题10分,第24 题12分,共22分)23.解:●操作发现:①②③④答:MD=ME ,MD⊥ME,先证MD=ME ;如图2,分别取AB ,AC 的中点F ,G ,连接DF ,MF ,MG ,EG ,∵M 是BC 的中点,∴MF∥AC,MF=AC ,又∵EG 是等腰Rt△AEC 斜边上的中线,∴EG⊥AC 且EG=AC ,∴MF=EG,同理可证DF=MG ,∵MF∥AC,∠MFA=∠BAC=180°同事可得∠MGA+∠BAC=180°,∴∠MFA=∠MGA,又∵EG⊥AC,∴∠EGA=90°,同理可得∠DFA=90°,∴∠MFA+∠DFA=∠MGA=∠EGA,即∠DFM=∠MEG,又MF=EG,DF=MG,∴△DFM≌△MGE(SAS),∴MD=ME,再证MD⊥ME;证法一:∵MG∥AB,∴∠MFA+∠FMG=180°,又∵△DFM≌△MGE,∴∠MEG=∠MDF,∴∠MFA+∠FMD+∠DME+∠MDF=180°,其中∠MFA+∠FMD+∠MDF=90°,∴∠DME=90°,即MD⊥ME;证法二:如图2,MD与AB交于点H,∵AB∥MG,∴∠DHA=∠DMG,又∵∠DHA=∠FDM+∠DFH即∠DHA=∠FDM+90°∵∠DMG=∠DME+∠GME,∴∠DME=90°即MD⊥ME;●类比探究答:等腰直角三解形24.解:(1)∵y1=―(x―a1)2+a1与x轴交于点A0(0,0),∴―a12+ a1=0,∴a1=0或1,由已知可知a1>0,∴a1=1,即y1=―(x―1)2+1方法一:令y1=0代入得:―(x―1)2+1=0,∴x1=0,x2=2,∴y1与x轴交于A0(0,0),A1(2,0)∴b1=2,方法二:∵y1=―(x―a1)2+a1与x轴交于点A0(0,0),∴―(b1―1)2+1=0,b1=2或0,b1=0(舍去),∴b1=2,又∴抛物线y2=―(x―a2)2+a2与x轴交于点A1(2,0),∴―(2―a2)2+ a2=0,∴a2=1或4,∵a2> a1,∴a2=1(舍去),∴取a2=4,抛物线y2=―(x―4)2+4.(2)(9,9);(n2,n2)y=x.详解如下:∵抛物线y2=―(x―4)2+4令y2=0代入得:―(x―4)2+4=0,∴x1=2,x2=6,∴y2与x轴交于点A1(2,0),A2(6,0),又∵抛物线y3=―(x―a3)2+a3与x轴交于A2(6,0),∴―(6―a3)2+a3=0∴a3=4或9,∵a3> a3,∴a3=4(舍去),只取a3=9,招物线y3的顶点坐标为(9,9),∵由y1的顶点坐标为(1,1),y2的顶点坐标为(4,4),抛物线y3的的顶点坐标为(9,9),依次类推抛物线y n的顶点坐标为(n2,n2).∵所有抛物线的顶点的横坐标等于纵坐标,∴顶点坐标满足的函数关系式是:y= x;③∵A0(0,0),A1(2,0),∴A0 A1=2,又∵y n=―(x―n2)2+n2,令y n=0,∴―(x―n2)2+n2=0,即x1=n2+n,x2=n2-n,∴A n-1(n2-n,0),A n(n2+n,0),即A n-1 A n=( n2+n)-( n2-n)=2 n②存在,是平行于y=x且过A1(2,0)的直线,其表达式为y=x-2.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

2013年安徽省初中毕业学业考试数学试题(word版答案扫描)

2013年安徽省初中毕业学业考试数学试题(word版答案扫描)
一、整体知2013年中考数学试题特点
3、注重数学思想方法的考查,关注初高中衔接
试题注重思想方法的考查,主要涉及待定系数法、数 形结合思想、归纳思想、方程思想、函数模型思想、样本 估计总体的统计思想、分类思想等。特别对分类思想考查
的比较多,如试卷的第10、14、21、22、23题就需要分类
讨论,如果欠缺全面考虑就会失分。这些思想、方法对于 考生进入高中学习是十分必要的,同时也考查出了数学的 本质。考生是否理解题意,是否分类讨论,是否规范答题 都会影响到数学总分。
- 新世纪教育网版 权所有

2.【2013年陕西省初中毕业学业考试·数学副题】.

2.【2013年陕西省初中毕业学业考试·数学副题】.

2013年陕西省初中毕业学业考试·数学(副题)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.全卷共120分.考试时间为120分钟.第Ⅰ卷(选择题 共30分)注意事项:1.答第Ⅰ卷前,请你千万别忘了将自己的姓名、准考证号、考试科目、试卷类型(A 或B )用2B 铅笔和钢笔准确涂写在答题卡上;并将本试卷左侧的项目填写清楚.2.当你选出每小题的答案后,请用2B 铅笔把答题卡上对应题号的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案标号.把答案填在试题卷上是不能得分的.3.考试结束,本卷和答题卡一并交给监考老师收回.一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.32-的倒数是 ( ) A .23- B .23 C .32- D .322.如图,将直角三角形绕其一条直角边所在直线l 旋转一周,得到的几何体是 ( )第2题图3.若0≠a ,则下列运算正确的是 ( )A .a a a =-23B .326a a a ⋅= C .523a a a =+ D .a a a =÷234.如图,AB ∥CD,AE 平分∠CAB 交CD 于点E ,若05=∠C ,则AED ∠的大小为 ( ) A .55° B .105° C .65° D .115°第4题图 第7题图5.某校给足球队的十一位运动员每人购买了一双运动鞋.尺码及购买数量如下表:尺码/码 40 41 42 43 44 购买数量/双24221则这十一双运动鞋尺码的众数和中位数分别为 ( ) A .40,41 B .41,41 C .41,42 D .42,43 6.若一个正比例函数的图象经过点(−3,2),则这个图象一定也经过点 ( ) A .(2,3)B .(23,−1) C .(−1,1) D .(2,−2)7.如图,在菱形ABCD 中,∠ABC =60°,AB =4,若点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,连接EF 、FG 、GH 、HE ,则四边形EFGH 的面积为 ( ) A .8 B .36 C .34 D .68.如果点A (m ,n )、B (m +1,n +2)均在一次函数y =kx +b (k ≠0)的图象上,那么k 的值 为 ( ) A .2 B .1 C .−1 D .−29.在矩形ABCD 中,AB =3.4,BC =5,以BC 为直径作半圆O ,点P 是半圆O 上的一点.若PB =4,则点P 到AD 的距离为 ( ) A .54 B .1 C .56 D .5810.若一个二次函数()0342≠+-=a ax ax y 的图象经过两点A (m+2,1y)、B (2−m,2y ),则下列关系正确的是 ( )第7题图A .21y y >B .21y y <C .21y y =D .21y y ≥第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分)11.在5,−1,722,π这四个数中,无理数有________个.12.不等式x x >+-231的正整数解为__________.13.请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分. A .如图,一斜坡的坡角03=α,坡长AB 为100米,则坡高BO 为________米.B .用计算器计算:≈-1725cos 9 __________.(精确到0.01)第13A 题图 第16题图14.某商场一种商品的进价为96元,若标价后再打8折出售,仍可获利10%,则该商品的标价 为_________元.15.若一个反比例函数的图象经过两点A (2,m )、B (m −3,4),则m 的值为________.16.如图,在半圆O 中,AB 是直径,CD 是一条弦,若AB =10,则△COD 面积的最大值是________. 三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分)解分式方程:132312=----xx x x .18.(本题满分6分)如图,在正方形ABCD中,M、N分别是边AD、CD的中点,连接BM、AN交于点E.求证:AN⊥BM.第18题图19.(本题满分7分)为了庆祝六一儿童节,红旗中学七年级举办了文艺演出.该校学生会为了了解学生最喜欢演出中的哪类节目,对这个年级的学生进行了抽样调查.我们根据调查结果绘制了两幅统计图.第19题图请依据以上两幅统计图提供的相关信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该校七年级有800名学生,求这些学生中最喜欢歌唱类节目的约多少名?20.(本题满分8分)小明想利用所学知识测量一公园门前热气球直径的大小.如图,当热气球升到某一位置时,小明在点A 处测得热气球底部点C 、中部点D 的仰角分别为50°和60°.已知点O 为热气球中心,EA ⊥AB ,OB ⊥AB ,OB ⊥OD ,点C 在OB 上,AB =30米,且点E 、A 、B 、O 、D 在同一平面内.根据以上提供的信息,求热气球的直径约为多少米?(精确到0.1米) (参考数据:192.1tan500.6428,05cos ,0.766005sin ≈≈≈ )第20题图21.(本题满分8分)某市为了倡导居民节约用水,生活用自来水按阶梯式水价计费.如图是居民每户每月的水(自来水)费y (元)与所用的水(自来水)量x (吨)之间的函数图象.根据下面图象提供的信息,解答下列问题:(1)当0317≤≤x 时,求y 与x 之间的函数关系式;(2)当一户居民在某月用水为15吨时,求这户居民这个月的水费是多少元? (3)已知某户居民上月水费为91元,求这户居民上月用水量多少吨?第21题图22.(本题满分8分)甲、乙两人利用五个小球做“找象限”游戏,这五个小球的球面上分别标有数字−2、−1、1、2、3,这些小球除球面上数字不同外其他完全相同.他们俩约定:把这五个小球放在一个不透明的口袋中,甲先从口袋中任摸一个小球,记下数字作为一点的横坐标,再将这个小球放回这个袋中摇匀,接着乙从口袋中任摸一个小球,记下数字作为这个点的纵坐标,这样就得到坐标平面上的一个点.若此点在第一、三象限,则甲胜,否则乙胜.这样的游戏对甲、乙双方公平吗?为什么?23.(本题满分8分)如图,⊙O是△ABC的外接圆,过A、B两点分别作⊙O的切线P A、PB交于一点P,连接OP.(1)求证:∠APO=∠BPO;(2)若∠C=60°,AB=6,点Q是⊙O上的一动点,求PQ的最大值.第23题图24.(本题满分10分)如图,在平面直角坐标系中,点A(−1,0)、B(0,2),点C在x轴上,且∠ABC=90°.(1)求点C的坐标;(2)求经过A、B、C三点的抛物线表达式;(3)在(2)中的抛物线上是否存在点P,使∠P AC=∠BCO?若存在,求出点P的坐标;若不存在,说明理由.第24题图25.(本题满分12分)平面上有三点M、A、B,若MA=MB,则称点A、B为点M的等距点.问题探究(1)如图①,在△ABC中,AB=AC,点P为AB上一点,试在AC上确定一点Q,使点P、Q为点A的等距点;(2)如图②,平行四边形ABCD的对角线AC、BD交于点O,点P是AD边上一定点,试在BC边上找点Q,使点P、Q为点O的等距点,并说明理由.问题解决(3)如图③,在正方形ABCD中,AB=1,点P是对角线AC上一动点,在边CD上是否存在点Q,使点B、Q为点P的等距点,同时使四边形BCQP的面积为正方形ABCD面积的一半?若存在这样的点Q,求出CQ的长;若不存在,说明理由.第25题图2013年陕西省初中毕业学业考试·数学(副题)答案及评分参考一、选择题(共10小题,每小题3分,计30分)题号 1 2 3 4 5 6 7 8 9 10 答案ABDDBBCABC二、填空题(共6小题,每小题3分,计18分) 题号 11 12 13 14 15 16 A B 答案21,2504.03132612.5三、解答题(共9小题,计72分)(以下给出了各题的一种解法及评分参考,其它符合提议的解法请参照相应题的解答赋分)17.解:去分母,得()2123x x x x --=-,,…………………………………………………(2分)2223x x x x --=-,1=x . …………………………………………………………………………………(4分) 经检验:1=x 是原方程的根.……………………………………………………………(5分) 18.证明:∵,,09DC AD BA D BAD ===∠=∠又点M 、N 分别是AD 、CD 的中点, ∴AD DN AM 21==. ∴△ABM ≌△DAN .…………………………………………………………………………(3分) ∴∠ABM =∠DAN . 而∠BAN +∠DAN =90°, ∴∠BAN +∠ABM =90°. ∴∠AEB =90°.即AN ⊥BM .………………………………………………………………………………(6分) 19.解:(1)本次抽样调查的学生人数:012%56=÷(名);…………………………………………………………………………(2分)(2)舞蹈类人数:4235%012=⨯(名),歌唱类的百分数:30%00%101236=⨯. 小品类的百分数:20%00%101224=⨯. 补全统计图如解图所示.………………………………………………………………………(5分)第19题解图(3)∵02430%008=⨯(名),∴最喜欢歌唱类节目的有240名学生.……………………………………………………(7分) 20.解:设热气球半径为r 米.如解图,过点E 作EF ⊥OB 交OB 于点F ,过点D 作DG ⊥EF 交EF 于点G ,则四边形ODGF 为矩形,∴DG =OF ,GF =OD =r ,…………………………………………(2分) 在Rt △ECF 中,∠CEF =50°,EF =AB =30,∴CF =EF tan ∠CEF =30tan50°.∴DG =r +30tan50°,EG =30-r .…………………………………(4分)在Rt △DEG 中,∠DEG =60°, ∴tan ∠DEG =30tan5030-rDG r EG+︒=,第20题解图∴93.5tan6010tan5030tan603≈︒+︒-︒=r (米),∴9.1193.522≈⨯≈r (米)所以,热气球的直径约为11.9米.……………………………………………………………(8分) 21.解:(1)设b kx y +=, …………………………………………………………………(1分) 由图象知:当x =20时,y =66; 当x =30时,y =166, 则有⎩⎨⎧=+=+116036602b k b k解得5,34k b ==-⎧⎨⎩∴()5341730;y x x =-≤≤…………………………………………………………………(4分) (2)当17=x 时,y =5x −34=51, ∵51÷17=3,∴此时每吨水的价格为3元, ∴15×3=45元,∴这户居民这个月的水费为45元.……………………………………………………………(6分)(3)当y =91时,91=5x −34, ∴x =25,∴当水费为91元时,该居民上月用水25吨.………………………………………………(8分) 22.解:这个游戏对双方不公平.…………………………………………………………(1分) 根据题意,列表如下:由表知,共有25种等可能结果.………………………………………………………………(4分) 其中点在第一、三象限的有13种,点在第二、四象限的有12种.∵P (点在第一、三象限)=2513, P (点在第二、四象限)=2512,而2513≠2512 ∴这样的游戏对双方不公平.…………………………………………………………………(8分)23.(1)证明:如解图,连接AO 、BO .∵P A 、PB 是⊙O 的切线,∴∠P AO =∠PBO =90°.………………………………(1分)又AO =BO ,PO =PO ,∴Rt △P AO ≌Rt △PBO ,∴∠APO =∠BPO ;……………………………………(3分)(2)解:∵∠C =60°, 第23题解图∴∠AOB =2∠C =120°,又∵∠P AO =∠PBO =90°,∴∠APB =60°,由(1)知P A =PB , ∴P A =PB =6,∠APO =21∠APB =30°.……………………………………………………………(5分) ∴在Rt △APO 中,PO =3403cos =︒PA ,OA =P A ·tan30°=32 延长PO 交⊙O 于点Q ',则此时Q P '是PQ 的最大值, ∴363234max =+='+='=Q O PO Q P PQ .………………………………………(8分)24.解:(1)∵A (−1,0)、B (0,2),∴OA =1,OB =2,∵∠ABC =90°,OB ⊥AC ,∴△AOB ∽△BOC ,∴2OB OA OC =⋅,即OC =22,∴OC =4.∴C (4,0),……………………………………………………………………………………(3分)(2)设抛物线的表达式为()()41-+=x x a y ,∵点B (0,2)在抛物线上,∴2=−4a ∴a =21-. ∴()()4121-+-=x x y .即213 2.22y x x =-++…………………………………………(5分) (3)存在.……………………………………………………………………………………(6分) 如解图,作PH ⊥x 轴,垂足为H . 设⎪⎭⎫ ⎝⎛++-22321,2m m m P , ∵A (−1,0)∴AH =m +1,∵∠P AC =∠BCO ,∴tan ∠P AH =tan ∠BCO =21, ∴PH =112m +(),…………………………………………………………………………(7分) i )当点P 在x 轴上方时,()121223212+=++-m m m . 解之,得m =3,m =−1(舍).此时,()2121=+m . ii )当点P 在x 轴下方时,()121223212+-=++-m m m . 解之,得m =5,m =−1(舍).此时,(),3121-=+-m ∴P (5,−3).∴符合条件的点有两个P (3,2)或P (5,−3).……………………………………………(10分)25.解:(1)如解图①,在AC 上截取AQ =AP ,则点Q 为所求.………………………………(2分) 第24题解图(2)如解图②,连接PQ并延长交BC于点Q,以点O为圆心,OQ长为半径画弧交BC于1Q点,则Q、1Q两点都满足题意.∵在平行四边形ABCD中,AD∥BC,AO=CO,∴∠1=∠又∵∠3=∠4,∴△AOP≌△COQ,∴PO=QO,PO=OQ1,即点P、Q、1Q为点O的等距点.………………………………………………………(5分)(3)存在.如解图③,以点P为圆心,PB长为半径画弧,交DC于D、Q两点,则D、Q两点都为点P的等距点,………(7分)i)当点B、Q为点P的等距点时,过点P作PF⊥BC交BC于点F,作PE⊥CD交CD于点E,则四边形PFCE为正方形,∴BF=DE=EQ,PFCEBCQPSS正方形四边形=,要使ABCDBCQPSS正方形四边形21=,则ABCDPFCESS正方形四边形21=.即212=CE.第25题解图①第25题解图②第25题解图③∴CE =22,DE =221-.∴CQ =CD −2DE =12-,ii )当点B 、D 为点P 的等距点时, 若1,2BCDP ABCD S S =正方形正方形则B 、P 、D 三点共线,与题意不符.综上所述,符合题意的点Q 存在,且CQ =12-.………………………………………(12分)。

2013-2014学年甘肃省庆阳市宁县金村初中九年级上第一次月考数学试题

2013-2014学年甘肃省庆阳市宁县金村初中九年级上第一次月考数学试题

金村初中2013—2014学年度第一学期第一次月考九年级数学试题(卷)一、选择题1、式子1-x 在实数范围内有意义,则X 的取值范围为( ) A 、X>1 B 、X ≥0 C 、X =1 D 、X ≥12、下列式子中,是最简二次根式的是( ) A 、22y x + B 、25.31 C 、x 4 D 、3x 3、方程X 2-2=0的根是( ) A 、±2 B 、2C 、2D 、不能确定4、16的算术平方根是( )A 、2B 、-2C 、±2D 、165、下列方程是关于X 的一元二次方程的是( )A 、X 2+21x =0 B 、ax 2+bx+c=0C 、(x-1)(x+2)=0D 、3x 2-2xy-5y 2=06、下列运算正确的是( ) A 、25=±5 B 、43-27=1 C 、18÷2=9 D 、24˙23=6 7、已知X=1是方程X 2+bx-2=0的一个根,则方程的另一个根是( ) A 、1 B 、2 C 、-2 D 、-1 8、如果2)12(-a =1-2a 则( ) A 、a<21 B 、a ≤21 C a >21 D 、a ≥21 9、已知y=52-x +x 25--3则2xy 的值是( )A 、0B 、-22C 、-15D 、1510、若1-+y x +(y+3)2=0,则x-y 的值是( ) A 、1 B 、-22 C 、-23 D 、1 11、将a a -根号外的因式移到根号内,结果是( ) A 、-a - B 、3a - C 、 -3a - D 、a -12、若ax 2-5x+3=0是一元二次方程,则不等式3a+6>0的解是:( )A a>-2B a>-2且a ≠0C a<-2D a>21二、填空题(4分*10=40分)13、已知3-x +6-y =0,则以x,y 为两边长的等腰三角形的周长是 14(x -)2=-x 成立时,x 的取值范围是15、已知二次根式a 45,30,212,240b ,22b a +其中是最简二次根式的是16、若-1<x<2则2)2(-x -32)1(+x = 17、(2+3)(3-6)=18、若方程(m-3)x 1-m -2x=3是关于x 的一元二次方程,则m 的取值范围是19若分式242--x x 的值为0,那么x=20、若关于x 的方程2(x-1)2=m-1有实数根,则m 的取值范围是 21、当m= 时,x 2+mx+36是完全平方式22、如果x,y 分别是矩形的长和宽,且x 2+y 2+2x-4y+5=0,则矩形的面积为三、解答题: 23、计算与化简:(4分*4)(1)(-332)2 (2) b a 15*52ab ÷b a 32(3)(-21)0+(31)1-+132-+31- (4)211x x -24、已知x=121+,y=121-,求3x 2+4xy+3y 225、解方程(4分*4)(1) x 2-2x-3=0 (2)2x 2+5x-3=0(配方法)(3)(x+2)2-(x-2)2=x 2+1 (公式法) (4)49(x-3)2=16(x+6)226、如果关于x的一元二次方程a(1+x2)+2bx-c(1-x)2=0有两个相等的实数根,那么以 a ,b ,c 为边的△ABC是什么形状的三角形? (10分)27某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,若果每件衬衫每降价1元,商场平均每天可多售出2件。

2013年庆阳市中考试题

2013年庆阳市中考试题

- 1 -学校班级考号姓名__________________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ 2013年庆阳市中考试题 历 史 第Ⅰ卷(客观题 共20分)一、选择题:(本大题共20小题,每小题1分,共20分)1.西周时,为加强国家统治而产生了众多诸侯的制度是 A.禅让制 B.分封制C.世袭制D.奴隶制2.秦末农民战争中,对推翻秦朝统治起决定性作用的战役A.长平之战B.巨鹿之战C.城濮之战D.马陵之战3.右图人物是世界上第一次把圆周率的数值,精确计算到小数点以后第七位的数学家,他是A.刘歆B.刘徽C.何承天D.祖冲之4.中国历史源远流长,朝代众多,请指出下列朝代建立的先后顺序应为① 东汉 ② 西晋 ③ 三国 ④ 南朝 ⑤ 西汉 A.②③⑤①④ B.⑤①③②④C.⑤①②③④D.③④②①⑤5.下列叙述,正确的是 ①唐朝杰出的工匠李春设计并主持建造了赵州桥②赵州桥是现存世界上最古老的一座石拱桥 ③唐朝都城洛阳城北的大明宫含元殿气势宏伟,富丽堂皇 ④唐朝印制的《金刚经》,是世界上现存最早的、标有确切日期的雕版印刷品 ⑤唐朝是我国诗歌创作的黄金时代 A.①②③ B.③④⑤ C.②④⑤ D.①③⑤ 6.1945年10月25日与祖国分离了半个世纪的台湾重新回到祖国的怀抱,这一事件的历史是A.19世纪60年代美国入侵台湾B.19世纪70年代日本入侵台湾C.19世纪8 0年代法国侵略台湾D.《马关条约》规定将台湾割让给日本 7.揭开维新变法运动序幕的事件是 A.公车上书 B.《万国公报》的创办 C.强学会的成立 D.光绪帝发布了一系列变法法令 8.某校历史兴趣小组,计划利用暑假重走长征路,实地考察土地革命时期中央红军的历史足迹。

请你为他们选择正确的路线 A.瑞金→赤水河→遵义→泸定桥→会宁 B.瑞金→遵义→赤水河→泸定桥→会宁 C.遵义→瑞金→泸定桥→赤水河→会宁 D.会宁→遵义→赤水河→瑞金→泸定桥 9.右图人物曾任中国国民党陆军军官学校政治部主任,他是 A.孙中山 B.蒋介石 C.汪精卫 D.周恩来 10.排列下列事件的先后顺序 ①九一八事变②南京大屠杀③七七事变④西安事变 A.①②③④ B.①④③② C.④①③② D.①④②③ 11.在新中国历史的进程中,曾经在中国大地上发生过一场十年浩劫,给国家和人们带来了严重的灾难,这场浩劫最后结束的时间是 A.1978年12月 B.1966年10月 C.1976年10月 D.1954年12月- 2 -学校班级考号姓名__________________________ ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ 12.右图是我国第一颗人造地球卫星“东方红1号”,下列关于她的叙述,正确是 A.1966年4月“东方红1号”的升空标志着中国成功地掌握了人造卫星的空间技术 B.1970年4月长征运载火箭将我国第一颗人造地球卫星送入太空轨道C.“东方红1号”的升空标志着我国成为第一个掌握太空技术的国家D. 这颗卫星的发射成功是在苏联科学家的帮助之下进行的13.希腊是西方文明的摇篮。

2013年陕西初中中考毕业考试卷数学(带解析)

2013年陕西初中中考毕业考试卷数学(带解析)

2013年陕西初中中考毕业考试卷数学(带解析)考试范围:xxx ;考试时间:100分钟;命题人:xxx学校:注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释 一、单选题(注释)1、下列四个数中最小的数是【 】 A .B .C .D .2、如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是【 】A .B .C .D .3、如图,AB ∥CD ,∠CED=90°,∠AEC=35°,则∠D 的大小【 】A .65°B .55°C .45°D .35°4、不等式组的解集为【 】A .B .C .D .5、我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105,则这七天空气质量指数的平均数是【 】 A .71.8 B .77 C .82 D .95.76、如果一个正比例函数的图象经过不同象限的两点A (2,m ),B (n ,3),那么一定有【 】A .m>0,n>0B .m>0,n<0C .m<0,n>0D .m<0,n<07、如图,在四边形中,对角线AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有【 】A .1对B .2对C .3对D .4对】 A .1 B .-1 C .3 D .-39、如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 上,连接BM 、DN ,若四边形MBND 是菱形,则等于【 】A .B .C .D .10、已知两点均在抛物线上,点是A.B.C.D.分卷II分卷II 注释二、填空题(注释)11、计算:.12、一元二次方程的根是.13、请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.在平面直角坐标第中,线段AB的两个端点的坐标分别为,将线段AB经过平移后得到线段,若点A的对应点为,则点B的对应点的坐标是.14、比较大小:(填“>”,“=”,“<”).15、如图,四边形ABCD的对角线AC、BD相交于点O,且BD平分AC,若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为 .(结果保留根号)16、如果一个正比例函数的图象与一个反比例函数的图象交,那么值为 .17、如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为.三、解答题(注释)18、解分式方程:.19、如图,∠AOB=90°,OA=0B ,直线经过点O,分别过A 、B 两点作AC ⊥交于点C ,BD ⊥交于点D. 求证:AD=OD.20、我省教育厅下发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.某市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A -了解很多”,“B -了解较多”,“C -了解较少”,“D -不了解”),对本市一所中学的学生进行了抽样调查,我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题: 被调查学生对“节约教育”内容了解程度的统计图(1)本次抽样调查了多少名学生? (2)补全两幅统计图;(3)若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?21、一天晚上,李明和张龙利用灯光下的影子来测量一路灯D 的高度,如图,当李明走到点A 处时,张龙测得李明直立身高AM 与其影子长AE 正好相等,接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段AB ,并测得AB=1.25m 。

2013届初中毕业生学业考试模拟试卷数学试题

2013届初中毕业生学业考试模拟试卷数学试题

参考答案一、选择题(每小题3分,共36分)题1 2 3 4 5 6 7 8 9 10 11 12号答C B B C BD C D A B B C案二、填空题(每小题3分,共18分)题号13 14 15 16 17 18答案 3.61×1083(x+3)(x﹣3)39 80 30°三、解答题(本大题共8小题,共76分,其中第19题6分,第20、21各7分,第22、23各9分,第24、25各12分,第26题14分;请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算:(﹣1)2008﹣(π﹣3)0+解:原式=1﹣1+2=2 对一个得一分,答案对得3分,共6分20.解:(1)根据BC2=32+22,∴BC=,tanB==,故答案为:BC=,tanB=;2分(2)如图所示,∵△DEF∽△ABC,并且DE:AB=2:1.∴△DEF与△ABC的周长之比为:2:1.故答案为:2:1.4分7分21.解(1)∵=,∴选出的恰好是“每天锻炼超过1小时”的学生的概率是; 2 分(2)720×﹣120﹣20=400 4分故“没时间”锻炼的人数是400名.频数分布图为:5分(3)1.2×=0.9(万人)故估计2011年我县八年级学生中每天锻炼未超过1小时的学生约有0.9万人.7分22.解:如图,过点A作AD⊥BC,垂足为D.根据题意,可得∠BAD=30°,∠CAD=60°,AD=66.在Rt△ADB中,由tan∠BAD=,得BD=AD•tan∠BAD=66×tan30°=66×.3分在Rt△ADC中,由tan∠CAD=,得CD=AD•tan∠CAD=66×tan60°=66×.6分∴BC=BD+CD=≈152.2.答:这栋楼高约为152.2m.9分23. 解:(1)∵∠AOB=60°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C.∴∠DPC=120°,∴劣弧的长为:=2πcm;3分(2)可分两种情况,①如图2,当P在∠AOB内部,连接PE,PC,过点P做PM⊥EF于点M,延长CP交OB 于点N,∵EF=cm,∴EM=2cm,在Rt△EPM中,PM==1cm,∵∠AOB=60°,∴∠PNM=30°,∴PN=2PM=2cm,∴NC=PN+PC=5cm,在Rt△OCN中,OC=NC×tan30°=5×=cm.7分②如图3,当P在∠AOB外部,连接PF,PC,PC交EF于点N,过点P作PM⊥EF于点M,由①可知,PN=2cm,∴NC=PC﹣PN=1cm,在Rt△OCN中,OC=NC×tan30°=1×=cm.9分综上所述,OC的长为cm或cm.24.解:(1)从B地返回到A地所用的时间为4小时;2分(2)小王出发6小时.由于6>3,可知小王此时在返回途中,于是,设DE所在的直线的解析式为y=kx+b.由图象可知:解得:∴DE 的解析式是y=﹣60x+420(3≤x ≤7). 当x=6时,有y=﹣60x+420=60.∴小王出发6小时后距A 地60千米; 7分(3)设AD 所在直线的解析式是y=mx . 由图象可知3m=240,解得m=80∴AD 所在直线的解析式是y=80x (0≤x ≤3)设小王从C 到B 用了n 小时,则去时C 与A 的距离为y=240﹣80n . 返回时,从B 到C 用了(﹣n )小时,这时C 与A 的距离为y=﹣60[3+(﹣n )]+420=100+60n由240﹣80n=100+60n ,解得n=1故C 与A 的距离为240﹣80n=240﹣80=160千米. 12分另解:设从C 到B 用1t 小时,从B 到C 用2t 小时,从A 到B 的速度为80千米/小时,从B 到A 的速度为60千米/小时,则121122743380601t t t t t t ⎧⎧+==⎪⎪⇒⎨⎨⎪⎪==⎩⎩所以,AC=240-80=160千米25.解:①观察图形即可发现△ABC ≌△AC ′D ,即BC=AD ,∠C ′AD=∠ACB , ∴∠CAC ′=180°﹣∠C ′AD ﹣∠CAB=90°; 故答案为:AD ,90. 2分②∵∠FAQ+∠CAG=90°,∠FAQ+∠AFQ=90°, ∴∠AFQ=∠CAG ,同理∠ACG=∠FAQ , 又∵AF=AC ,∴△AFQ ≌△CAG , ∴FQ=AG , 同理EP=AG ,∴FQ=EP . 7分③HE=HF .理由:过点E 作EP ⊥GA ,FQ ⊥GA ,垂足分别为P 、Q . ∵四边形ABME 是矩形, ∴∠BAE=90°,∴∠BAG+∠EAP=90°, 又AG ⊥BC ,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.∵∠AGB=∠EPA=90°,∴△ABG∽△EAP,∴AG:EP=AB:EA.同理△ACG∽△FAQ,∴AG:FQ=AC:FA.∵AB=k•AE,AC=k•AF,∴AB:EA=AC:FA=k,∴AG:EP=AG:FQ.∴EP=FQ.又∵∠EHP=∠FHQ,∠EPH=∠FQH,∴Rt△EPH≌Rt△FQH(AAS).∴HE=HF.12分26.解:(1)∵抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,∴,解得:,∴y=x2﹣x+3;∴点C的坐标为:(0,3);3分(2)假设存在,分两种情况:①当△PAB是以AB为直角边的直角三角形,且∠PAB=90°,如图1,过点B作BM⊥x轴于点M,∵A(3,0),B(4,1),∴AM=BM=1,∴∠BAM=45°,∴∠DAO=45°,∴AO=DO,∵A点坐标为(3,0),∴D点的坐标为:(0,3),∴直线AD解析式为:y=kx+b,将A,D分别代入得:∴0=3k+b,b=3,∴k=﹣1,∴y=﹣x+3,∴y=x2﹣x+3=﹣x+3,∴x 2﹣3x=0,解得:x=0或3,∴y=3,y=0(不合题意舍去),∴P点坐标为(0,3),∴点P、C、D重合,7分②当△PAB是以AB为直角边的直角三角形,且∠PBA=90°,如图2,过点B作BF⊥y轴于点F,由(1)得,FB=4,∠FBA=45°,∴∠DBF=45°,∴DF=4,∴D点坐标为:(0,5),B点坐标为:(4,1),∴直线BD解析式为:y=kx+b,将B,D分别代入得:∴1=4k+b,b=5,∴k=﹣1,∴y=﹣x+5,∴y=x2﹣x+3=﹣x+5,∴x2﹣3x﹣4=0,解得:x1=﹣1,x2=4(舍),∴y=6,∴P点坐标为(﹣1,6),∴点P的坐标为:(﹣1,6),(0,3);10分求出一个得四分求出二个得七分(3)如图3:作EM⊥AO于M,∵直线AB的解析式为:y=x﹣3,∴tan∠OAC=1,∴∠OAC=45°,∴∠OAC=∠OAF=45°,∴AC⊥AF,∵S△FEO=OE×OF,OE最小时S△FEO最小,∵OE⊥AC时OE最小,∵AC⊥AF∴OE∥AF∴∠EOM=45°,∴MO=EM,∵E在直线CA上,∴E点坐标为(x,﹣x+3),∴x=﹣x+3,解得:x=,∴E点坐标为(,).14分。

2013年安徽省初中毕业学业考试数学试卷及答案

2013年安徽省初中毕业学业考试数学试卷及答案

2013年安徽省初中毕业学业考试数学试卷及答案一、选择题:(每小题4分,满分40分) 1.-2的倒数是( )A.-21 B.21C.2D.-2 2.用科学记数法表示537万正确的是( )A.537×104B.5.37×105C.5.37×106D.0.537×1073.图中所示的几何体为圆台,其主(正)视图正确的是( )4.下列运算正确的是( )A.2x+3y=5xyB.5m 2·m 3=5m 5C.(a-b)2=a 2-b 2D.m 2·m 3=m 65.已知不等式组⎩⎨⎧≥+〉-0103x x 其解集在数轴上表示正确的是( )6.如图,AB ∥CD,∠A+∠E=750,则∠C 为( )A.600B.65C.750D.8007.目前我国已建立了比较完善的经济困难学生资助体系。

某校去年上半年发给每个经济困难学生398元,今年上半年发放了438元,设每半年...发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A.438(1+x)2=389B.389(1+x)2=438 C.389(1+2x)=438 D.438(1+2x)=389 8.如图,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时..发光的概率为( ) A.61 B.31 C.21 D.32EAB CFBADC第3题图ABC D9.图1所示矩形ABCD 中,BC=x,CD=y,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过点C ,M 为EF 的中点,则下列结论正确的是( ) A.当x=3时,EC <EM B.当y=9时,EC >EMC.当x 增大时,EC ·CF 的值增大D.当y 增大时,BE ·DF 的值不变10.如图,点P 是等边三角形ABC 外接圆⊙O 上点,在以下判断中,不正确...的是( ) A.当弦PB 最长时,△APC 是等腰三角形 B.当△APC 是等腰三角形时,PO ⊥ACC.当PO ⊥AC 时,∠ACP=300D.当∠ACP=300时,△BPC 是直角三角形二、填空题:11.若x 31 在实数范围内有意义,则x 的取值范围是12.分解因式:x 2y-y=13.如图,P 为平行四边形ABCD 边AD 上一点,E,F 分别是PB,PC 的中点,△PEF,△PDC,△PAB 的面积分别为S,S 1,S 2,若S=2,则S 1+S 2=·OABCPM第9题 图1第9题 图2 L 1L 214.已知矩形纸片ABCD 中,AB=1,BC=2,将该纸片折叠成一个平面图形,折痕EF 不经过A 点(E,F 是该矩形边界上的点),折叠后点A 落在点A /处,给出以下判断: ①当四边形A /CDF 为正方形时,EF=2;②当EF=2时,四边形A /CDF 为正方形;③当EF=5时,四边形BA /CD 为等腰梯形;④当四边形BA /CD 为等腰梯形时,EF=5.其中正确的是 (把所有正确结论的序号都填在横线上)三、解答题:15.计算:2sin300+(-1)2-2216.已知二次函数图像的顶点坐标为(1,-1),且过原点(0,0),求该函数解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档