【精品】 六年级数学圆柱与圆锥易错题训练

合集下载

2023-2024学年人教版六年级数学下册圆柱与圆锥常考易错应用题训练(附参考答案)

2023-2024学年人教版六年级数学下册圆柱与圆锥常考易错应用题训练(附参考答案)

2023-2024学年六年级下册数学圆柱与圆锥常考易错应用题训练1.一个圆柱体,如果把它的高截短4dm,它的表面积减少125.6dm²。

这个圆柱体积减少多少立方分米?2.一个正方体包装箱,从里面量棱长是4.1dm。

用它装一件底面周长是12.56dm,体积是62.8dm3的圆柱形玻璃器皿,能否装得下?3.乐乐将一个铁皮油桶在地上滚动一圈,量得其痕迹长12.56分米、宽6分米。

制作这个油桶至少需要铁皮多少平方分米?(桶口和盖忽略不计)4.把一块长10厘米、宽8厘米、高3.14厘米的长方体铁块完全浸没在一个盛有水的圆柱形玻璃容器内,容器的底面直径为20厘米,容器内的水面会上升多少?(已知水不会溢出)5.工地有一堆圆锥形沙土,底面周长是31.4m,高1.5m,把这堆沙土用渣土车运出工地,每辆渣土车每次运8m3,用一辆渣土车运出这些沙土,大约需运多少次?6.一个圆柱形水池,水池内壁和底面都要镶上瓷砖,水池底面直径6米7.节约用水是我们每个人的义务,学校的自来水管内直径为0.2分米,自来水的流速是每秒5分米,若忘记关上水龙头,一分钟将浪费多少升水?8.下图中,以红色线为轴,快速旋转后会形成一个立体图形,请求出这个立体图形的体积。

9.下面是一个圆柱的展开图,制作这样的一个圆柱至少需要铁皮多少平方分米?10.一个无盖的圆柱形铁皮水桶,底面直径是30厘米,高是50厘米。

(得数保留整数) (1)做这样一个水桶,至少需用铁皮多少平方厘米?(2)这个水桶最多能盛水多少升?11.一个圆锥形沙堆,底面周长是12.56米,高是1.8米,把这些沙铺在6米宽的公路上,如果沙后2厘米,可以铺多长?12.一个圆锥形沙堆,底面周长是37.68m,高是5m,用这堆沙在10m宽的公路上铺5cm 厚的路面,能铺多长?,做这个水桶至少13.一个无盖的圆柱形铁皮水桶,高为10分米,底面直径是高的25用铁皮多少平方分米?(得数保留整数)14.把一个高是64厘米的圆柱按照5:3的比截成了两个圆柱,截后的表面积比原来增加了484平方厘米。

【精品】苏教版小学数学六年级下册圆柱圆锥易错题

【精品】苏教版小学数学六年级下册圆柱圆锥易错题

【精品】苏教版小学数学六年级下册圆柱圆锥易错题一、比例1.下面各比中与:组成比例的比是()。

A. 3:4B. 4:3C. 1:12【答案】 B【解析】【解答】:=÷=,选项A,3:4=3÷4=,≠,不能组成比例;选项B,4:3=4÷3=,=,能组成比例;选项C,1:12=1÷12=,≠,不能组成比例。

故答案为:B.【分析】判断两个比是否能组成比例,可以求出比值,用前项÷后项=比值,如果比值相等,就能组成比例,否则不能组成比例.2.下面不能组成比例的是( )。

A. 10∶12=35∶42B. 4∶3=60∶45C. 20∶10=60∶20【答案】 C【解析】【解答】解:因为12×35=420,10×42=420,所以10:12和35:42能组成比例;因为3×60=180,4×45=180,所以4:3和60:45能组成比例;因为10×60=600,20×20=400,所以20、10、60、20不能组成比例。

故答案为:C。

【分析】比例的基本性质:比例的内项之积等于比例的外项之积。

3.与18:15能组成比例的一个比是()A. 6:30B. :C. 0.25 :D. 5:6【答案】 A【解析】【解答】解:18:15=1.2,A、6:30=0.2,不能组成比例;B、=1.2,能组成比例;C、0.25:=0.75,不能组成比例;D、5:6=,不能组成比例。

故答案为:B。

【分析】计算出每个比的比值,与18:15的比值相等的比才能组成一个比例。

4.图上2厘米代表实际距离60千米,甲、乙两地相距120千米,画在这幅图上,应画()厘米。

A. 4B. 6C. 8D. 10【答案】 A【解析】【解答】解:120÷60=2,2×2=4(厘米),应画4厘米。

故答案为:A。

【分析】可以计算出两地的距离是60千米的多少倍,那么图上距离也就是2厘米的多少倍。

人教版六年级下册数学第三单元 圆柱与圆锥 测试卷-精品(易错题)

人教版六年级下册数学第三单元 圆柱与圆锥 测试卷-精品(易错题)

人教版六年级下册数学第三单元圆柱与圆锥测试卷一.选择题(共5题,共9分)1.做一根长2米,半径为10厘米的圆柱体水管需要多少铁皮,就是要计算这个圆柱体水管的()。

A.侧面积B.表面积C.底面面积D.体积2.一个圆柱的底面半径是8厘米,高是7厘米,这个圆柱的体积是()cm3。

3.下面说法正确的是()。

A.一条直线长10m。

B.圆锥的体积比与它等底等高的圆柱的体积小。

C.一年中有6个大月、6个小月。

D.把一根木头锯成7段,若锯每一段所用的时间都相等,那么锯每一段的时间是锯完这根木头所用时间的。

4.小明做了一个圆柱形状的容器和三个圆锥形状的容器(如下图),将圆柱形状容器中的水倒入第()个圆锥形状的容器,正好可以倒满。

A. B. C.5.把圆柱的底面平均分成16份切开后,照图拼成近似的长方体,()发生了变化。

A.底面积B.表面积C.体积二.判断题(共5题,共10分)1.等底等高的圆柱和长方体的体积相等。

()2.如果一个圆锥的体积是一个圆柱体积的3倍,它们的底面积相等,那么圆锥的高一定是圆柱高的9倍。

()3.圆柱的侧面展开是长方形,但不是正方形。

()4.圆柱体的体积与圆锥体的体积比是3:1。

()5.甲、乙两个圆柱的体积相等,如果甲圆柱的高是乙圆柱的,那么甲圆柱的半径则是乙圆柱的1.5倍。

()三.填空题(共8题,共11分)1.一个圆柱的底面直径是15 cm,高是8 cm,这个圆柱的侧面积是()cm2。

2.一个圆柱的侧面积是47.1cm2,高是5cm,它的表面积是() cm2,体积是()cm3。

3.一个圆锥的体积为81立方米,高为3米。

则底面积为()平方米。

4.把一升水倒入容量为2升的圆柱形瓶中,水面约在瓶高的()处;把2升水倒入容量为400毫升的杯中,可以倒满()杯。

5.一个圆柱的体积是94.2立方分米,它的底面周长是12.56分米,这个圆柱的高是()分米。

6.把一个圆锥沿底面直径纵切开,切面是一个()形。

【精品】苏教版小学数学六年级下册圆柱圆锥易错题

【精品】苏教版小学数学六年级下册圆柱圆锥易错题

【精品】苏教版小学数学六年级下册圆柱圆锥易错题一、比例和反比例1.如果竹竿左右两边拴上重物A和B,竹竿平衡。

已知A物体重180g,B物体重多少克?【答案】解:180×5÷3=300(克)答:B物体重300克。

【解析】【分析】观察可知,重物A距离支点5格,重物B距离支点3格,根据重物A的质量×重物A离支点的距离=重物B的质量×重物B离支点的距离,重物的质量和距离成反比例,据此用重物A的质量×重物A离支点的距离÷重物B离支点的距离=重物B的质量,据此列式解答.2.小明打算12天看完一本故事书,平均每天看15页。

如果要提前2天看完,平均每天应看多少页?(用比例知识解)【答案】解:设平均每天应看x页,则(12-2)x=12×15x=18答:平均每天应看15页。

【解析】【分析】根据故事书的总页数不变可得等量关系式:实际看的天数×实际平均每天应看多少页=计划看的天数×计划平均每天看多少页,据此代入数据列方程解答即可。

3.用一批纸张装订毕业纪念册,如果每本40页,可以装订50本。

如果现在用这批纸装订了100本,每本装订多少页?(用比例解)【答案】设每本装订x页。

100x=40×50x=20答:每本装订20页。

【解析】【分析】这批纸的总数一定,每本的页数与可以装订的本数成反比例,先设出未知数,再根据总页数一定列出比例,解比例求出每本装订的页数即可。

4.100克海水可以晒出3克盐。

照这样计算。

多少吨海水可以晒出1.2吨盐?【答案】解:设x吨海水可以晒出1.2吨盐,3:100=1.2:x3x=1.2×100x=120÷3x=40答:40吨海水可以晒出.【解析】【分析】晒出盐的质量与海水的质量比是不变的,因此设海水的吨数是x吨,根据这个比不变列出比例解答即可.5.给一间卧室铺地砖,每块砖的面积和砖的块数成________比例;同一个圆的半径和周长成________比例。

六年级数学下册《圆柱和圆锥》易错题精选

六年级数学下册《圆柱和圆锥》易错题精选

1500立方厘米=(1500 )毫升=( 1.5 )升
圆锥的侧面展开图是一个(扇形),圆锥有(1)条高。

二、易错判断题
长方体中最多有4个面可能是正方形。

(×)
一个圆柱,如果底面直径和高相等,则圆柱的侧面展开是正方形。

(×)
如果一个物体上、下底面是面积相等的两个圆,那么这个物体一定是圆柱。

(×)
如果两个圆柱的侧面积相等,那么他们的底面周长也相等。

(×)
把一个圆柱的底面直径扩大2倍,高不变,那么它的侧面积也扩大2倍。

(√)
圆柱体的高越大,它的侧面积就越大。

( ×)
三、易错应用题
1.画出下面圆柱的展开图,并求出它的表面积。

(单位:厘米)。

【数学】六年级数学圆柱与圆锥 易错题训练

【数学】六年级数学圆柱与圆锥 易错题训练

【数学】六年级数学圆柱与圆锥易错题训练一、圆柱与圆锥1.如图,这是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径为2米的半圆。

大棚内的空间有多大?【答案】解:3.14×(2÷2)2×15÷2=23.55(立方米)答:大棚内的空间有23.55立方米。

【解析】【分析】观察图可知,大棚的形状是一个圆柱的一半,要求大棚内的空间大小,用圆柱的体积÷2=大棚内的空间大小,据此列式解答.2.一个圆柱形钢管,内直径是20cm,水在钢管内的流速是每秒40cm,每秒流过的水是多少cm3?【答案】解:3.14×(20÷2)2×40=314×40=12560(cm3)答:每秒流过的水是12560cm3。

【解析】【分析】钢管是圆柱形,流出的水也是圆柱形。

用钢管的横截面面积乘每秒流出水的长度即可求出流过水的体积。

3.计算圆柱的表面积。

【答案】解:3.14×(6÷2)²×2+3.14×6×10=3.14×18+3.14×60=56.52+188.4=244.92(cm³)【解析】【分析】圆柱的表面积是两个底面积加上侧面积,根据圆面积公式计算底面积,用底面周长乘高求出侧面积。

4.如下图,爷爷的水杯中部有一圈装饰,是悦悦怕烫伤爷爷的手特意贴上的。

这条装饰圈宽5cm,装饰圈的面积是多少cm2?【答案】解:3.14×6×5=94.2(cm²)答:装饰圈的面积是94.2cm2。

【解析】【分析】解:装饰圈的面积就是高5cm的圆柱的侧面积,用底面周长乘5即可求出装饰圈的面积。

5.一个圆柱形铁皮水桶(无盖),高10dm,底面直径是6dm,做这个水桶大约要用多少铁皮?【答案】解:3.14×6×10+3.14×(6÷2)2=18.84×10+3.14×9=188.4+28.26=216.66(平方分米)答:做这个水桶大约要用铁皮216.66平方分米。

《易错题》小学数学六年级下册第三单元圆柱与圆锥测试卷(包含答案解析)

《易错题》小学数学六年级下册第三单元圆柱与圆锥测试卷(包含答案解析)

《易错题》小学数学六年级下册第三单元圆柱与圆锥测试卷(包含答案解析)一、选择题1.一个底面积是20cm2的圆柱,斜着截去了一段后,剩下的图形如图.截后剩下的图形的体积是()cm3.A. 140B. 180C. 220D. 3602.如图是一个直角三角形,两条直角边分别是6cm和2cm,以较长边为轴,旋转一周所形成的立体图形的体积是()立方厘米.A. 25.12B. 12.56C. 75.363.把一个圆柱铸成一个圆锥体,它的()不变。

A. 体积B. 表面积C. 侧面积4.两个圆柱的底面积相等,高之比是2:3 ,则体积之比是()A. 2:3B. 4:9C. 8:27D. 4:6 5.把一个棱长是4分米的正方体木块削成一个最大的圆柱,体积是()立方分米。

A. 50.24B. 100.48C. 646.正方体、圆柱和圆锥的底面积相等,高也相等,下面说法正确的是()。

A. 圆柱的体积比正方体的体积小一些B. 圆锥的体积是正方体体积的C. 圆柱的体积与圆锥的体积相等D. 正方体的体积比圆柱的体积小一些7.有一个圆柱和一个圆锥的体积相等,圆柱的底面积是圆锥的2倍,圆锥的高是9cm,圆柱的高是()。

A. 1.5cmB. 3cmC. 9cm8.圆柱的底面半径和高都乘3,它的体积应乘()A. 3B. 6C. 279.如图所示,把一个底面积是24平方分米,高是8分米的圆柱木料,削成两个完全一样的圆锥体,并且每个圆锥的底面积与圆柱的底面积相等。

则削去部分的体积是()A. 32立方分米B. 64立方分米C. 96立方分米D. 128立方分米10.一个圆锥的体积是12立方厘米,它的底面积是3平方厘米,高是()。

A. 厘米B. 厘米C. 4厘米D. 12厘米11.两块同样的长方形纸板,卷成形状不同的圆柱(接头处不重叠),并装上两个底面,那么制成的两个圆柱体()。

A. 底面积一定相等B. 侧面积一定相等C. 表面积一定相等D. 体积一定相等12.圆柱形通风管的底面周长是31.4厘米,高2分米,制作这样一节通风管需()铁皮。

六年级圆柱与圆锥易错题

六年级圆柱与圆锥易错题

六年级圆柱与圆锥易错题
以下是一些六年级圆柱与圆锥的易错题:
1. 一个圆柱体和一个圆锥体的底面积相等、体积也相等,圆锥的高是27厘米,圆柱的高是多少厘米.
2. 一个圆柱体和一个圆锥体的底面积和体积都相等,圆锥的高是18厘米,圆柱的高是多少厘米.
3. 一个圆柱体和一个圆锥体的底面积相等、体积不相等,圆锥的体积是圆柱的(1/3),圆锥的高是27厘米,圆柱的高是多少厘米.
4. 一个圆柱体和一个圆锥体的底面积相等、高相等,它们的体积之和是144立方厘米,圆锥的体积是多少立方厘米.
5. 圆锥体的底面积不变,高增加(1/5),则体积增加多少
6. 圆柱体与一个圆锥体的底面积相等、高也相等,圆柱的体积是3立方分米,圆锥的体积是多少立方分米.
7. 圆柱体与一个圆锥体的底面积和体积都相等,圆锥的高是9分米,圆柱的高是多少分米.
8. 一个圆柱体和一个圆锥体的底面积和体积都相等,圆锥的高是24厘米,圆柱的高是多少厘米.
9. 一个圆柱体和一个圆锥体的底面积相等、高不相等,圆柱的体积是圆锥的(3/5),圆锥的高是27厘米,圆柱的高是多少厘米.
10. 一个圆柱体和一个圆锥体的底面积和体积都相等,已知圆锥的高是18
厘米,则圆柱的高是多少厘米.
这些题目需要学生仔细理解并应用圆柱和圆锥的体积公式(V=πr^2h)以
及相关的数学知识。

如果他们在这方面有困难,可能需要更多的练习和解释。

【精品】苏教版小学数学六年级下册圆柱圆锥易错题

【精品】苏教版小学数学六年级下册圆柱圆锥易错题

【精品】苏教版小学数学六年级下册圆柱圆锥易错题一、分数的意义和性质1.的分子加上6,要使分数的大小不变,分母应加上________.【答案】10【解析】【解答】解:3+6=9,9÷3=3;5×3-5=10,分母应加上10。

故答案为:10【分析】先计算现在的分子,然后计算分子扩大的倍数,根据分数的基本性质把分母也扩大相同的倍数后计算分母应加上的数即可。

2.五(1)班的同学借了《儿童文学》,的同学借了《聪明屋》.的同学借了《少年时代》,的同学借了《漫画世界》,还有的人看《笑林》.借阅________刊物的同学一样多?【答案】《儿童文学》《聪明屋》和《少年时代》【解析】【解答】解:,,所以借阅《儿童文学》《聪明屋》和《少年时代》刊物的同学一样多。

故答案为:《儿童文学》《聪明屋》和《少年时代》【分析】根据分数的基本性质把第二个和第三个两个分数约分成最简分数,然后判断哪些图书借阅的人数一样多。

3.把、、、按从小到大的顺序排列________【答案】【解析】【解答】解:,,,所以。

故答案为:。

【分析】把化成分子是2和3的分数,然后根据同分母、同分子分数大小的比较方法从小到大排列即可。

4.里有________个【答案】 325【解析】【解答】解:,所以共有325个。

故答案为:325。

【分析】先把带分数化成假分数,然后把假分数化成分母是140的分数,再根据分子确定分数单位的个数即可。

5.把化成最简分数是( )A. B. C.【答案】B【解析】【解答】==.故答案为:B.【分析】将一个分数化简成最简分数,依据分数的基本性质:分数的分子和分母同时除以它们的最大公因数,分数大小不变,据此约分化简.6.下列分数中,与不相等的分数是( )。

A. B. C. D.【答案】 C【解析】【解答】=,=,不能约分,=故答案为:C【分析】将选项中分数分别进行化简,即可得出答案。

7.己知三个数按从大到小的顺序排列是()A. a>b>cB. c>b>aC. b>a>cD. b>c>a【解析】【解答】解:假设c=1,则a=, b=,所以b>c>a。

人教版数学6年级下册 第3单元(圆柱和圆锥)易错题拔高训练(含答案)

人教版数学6年级下册 第3单元(圆柱和圆锥)易错题拔高训练(含答案)

六年级数学下册《第3单元圆柱与圆锥》易错题拔高训练人教版一.选择题1.如图形中,哪项是圆柱的展开图()A.B.C.2.把一张直角三角形硬纸的一条直角边贴在木棒上快速旋转一周,形成的图形是()A.三角形B.球体C.圆锥D.圆柱3.把一张长25.12cm、宽18.84cm的长方形纸卷成一个圆柱形纸筒(接头处刚好对接,没有重叠)。

这个纸筒的底面直径不可能是()厘米。

A.8B.7C.64.一根圆柱形木料,如果沿着底面直径劈成两半,表面积增加120平方厘米。

如果拦腰平均截成两个小圆柱,表面积增加157平方厘米。

这根圆柱形木料原来的高是()厘米。

A.2.4B.6C.12D.245.下面图形中,只有一条高的是()A.三角形B.梯形C.圆柱D.圆锥6.将一个圆锥的底面直径扩大到原来的3倍,要使体积不变,高要缩小到原来的()A.B.C.D.二.填空题7.一个圆柱的底面直径是2分米,高10分米,这个圆柱的侧面积是平方分米,表面积是平方分米,体积是立方分米。

8.把一个圆柱形木料削成一个最大的圆锥体,削去部分的体积是圆柱体的。

9.一个圆锥体的体积是4.5立方分米,高是4.5分米,底面积是平方分米.10.一个圆柱形茶叶筒的侧面正好包裹了一张长方形的商标纸。

圆柱底面半径是5cm,高是2dm。

这张商标纸的面积是cm2。

11.一个圆锥的底面直径是8厘米,高12厘米,沿底面直径将它切成两个完全相等的部分,表面积增加平方厘米.12.一个圆锥的底面半径是4厘米,高是6厘米,沿着顶点到圆心切开,表面积增加平方厘米.三.判断题13.把一个圆柱体拼成一个近似的长方体,体积不变,表面积变了..14.一个圆柱形的玻璃杯可盛水1立方分米,我们就说玻璃杯容积是1升..15.圆锥的高有无数条..16.把一个圆柱体削成一个最大的圆锥体,削去的部分的体积与原来的体积之比是2:3.17.圆柱的侧面展开后是正方形,说明底面直径和高的比是1:1..四.计算题18.计算下面立体图形的体积19.计算下面图形的表面积和体积.五.应用题20.把一个底面直径12厘米的圆锥形金属铸件浸没在棱长1.5分米的正方体容器中,水面比原来升高1.2厘米,求这个圆锥的体积.21.一个无盖的圆柱形铁桶,底面周长是6.28dm,桶深4dm.做这个铁桶至少需要多大面积的铁皮?这个铁桶最多能装多少升水(铁皮厚度忽略不计)?22.一张长方形的铁皮(如下图),剪下图中的阴影部分恰好可以做成一个油桶(接头处不计)。

六年级圆柱圆锥易错题精选

六年级圆柱圆锥易错题精选

六年级圆柱圆锥易错题精选圆柱圆锥易错题1.用一张长30厘米,宽18厘米的长方形纸,围成一个圆柱,这个圆柱体的侧面积是()平方厘米。

解:首先,我们需要知道圆柱的侧面积公式为2πrh,其中r为底面半径,h为圆柱的高。

由于题目没有给出高,我们需要先求出底面半径。

根据长方形纸的长度和宽度,可以得到圆柱的底面周长为2(30+18)=96厘米,即2πr=96,解得r=48/π。

再根据圆柱的高为18厘米,代入公式2πrh,即可得到圆柱体的侧面积为2π×48/π×18=1728平方厘米。

2.一个圆柱的侧面展开是正方形,当圆柱的高是15分米时,圆柱的底面周长是()分米。

解:根据题意,圆柱的侧面展开是正方形,说明圆柱的高等于底面周长。

因此,底面周长为15分米。

3.等底等高的圆柱和圆锥。

圆柱的体积是36立方厘米,圆锥的体积是()立方厘米;圆锥的体积是36立方厘米圆柱体积比圆锥大()立方厘米。

解:由于圆柱和圆锥等底等高,它们的底面积相等。

设它们的底面积为S,圆柱的高为h,圆锥的高为H,则圆柱的体积为V1=S×h=36,圆锥的体积为V2=1/3×S×H。

将V1代入可得S×h=36,带入V2可得V2=1/3×S×(3h)=1/3×36×3h=36h。

因此,圆锥的体积为36h立方厘米,圆柱的体积比圆锥大36-36h立方厘米。

如果圆锥的体积是36立方厘米,则圆柱的体积比圆锥大0立方厘米,圆锥的体积为1立方厘米。

4.把一个底面直径和高都是6分米的圆柱的,底面分成若干等份,再切开拼成一个长方体。

这个长方体的长是()分米,宽是()分米,高是()分米,体积是()立方分米。

解:首先,我们需要知道圆柱的底面积为πr²,其中r为底面半径。

由于底面直径为6分米,即r=3分米。

将底面分成n等份,则每份的弧长为2πr/n,每份的面积为πr²/n。

(易错题)小学数学六年级下册第三单元圆柱与圆锥测试卷(答案解析)

(易错题)小学数学六年级下册第三单元圆柱与圆锥测试卷(答案解析)
π×( )2×2
=π× ×2
= (m2)。 故答案为:B。 【分析】 用正方形铁皮卷成一个圆柱形粮囤,粮囤的底面周长与高都是正方形的边长,底 面周长÷2π=底面半径,据此求出圆柱的底面半径; 要求圆柱的容积,依据公式:V=πr2h,据此列式解答。
9.C
解析: C 【解析】【解答】2×2²=2×4=8 故答案为:C。 【分析】圆锥体积扩大的倍数=圆锥高扩大的倍数×圆锥底面半径扩大倍数的平方。
17.785;1570【解析】【解答】628÷20÷314÷2=5cm 即圆柱的底面半径为 5cm 圆柱的表面积=628+2×314×52=628+157=785(cm2);圆柱的体积=314×52×20=15
解析: 785;1570 【解析】【解答】628÷20÷3.14÷2=5cm,即圆柱的底面半径为 5cm。 圆柱的表面积=628+2×3.14×52 =628+157 =785(cm2); 圆柱的体积=3.14×52×20=1570(cm3)。 故答案为:785;1570。 【分析】圆柱的侧面积=底面周长(2πr,r 为半径)×高,代入数值,即可得出圆柱的底面 半径;圆柱的表面积=圆柱的侧面积+两个圆柱的底面面积(πr2),代入数值即可得出答 案;圆柱的体积=底面积×高,代入数值计算。
3.B
解析: B 【解析】【解答】解:8×4×2=64(平方厘米),所以表面积增加了 64 平方厘米。 故答案为:B。 【分析】增加的面积就是 2 个长是 8 厘米,宽是 4 厘米的长方形的面积,其中长方形的面 积=长×宽。
4.B
解析: B 【解析】【解答】解:长方形和正方形都可以旋转成圆柱体。 故答案为:B。 【分析】将圆柱体沿着底面圆心纵向切开,获得到一个正方形或长方形,所以长方形和正 方形都可以旋转成圆柱体。

【精品】 六年级数学圆柱与圆锥易错题训练

【精品】 六年级数学圆柱与圆锥易错题训练

【精品】六年级数学圆柱与圆锥易错题训练一、圆柱与圆锥1.看图计算.(1)求圆柱的表面积(单位:dm)(2)求零件的体积(单位:cm)【答案】(1)解:3.14×10×20+3.14×(10÷2)2×2=628+3.14×25×2=628+157=785(平方分米)答:圆柱的表面积是785平方分米。

(2)解: ×3.14×(2÷2)2×3+3.14×(2÷2)2×4= ×3.14×1×3+3.14×1×4=3.14+12.56=15.7(立方厘米)答:零件的体积是15.7立方厘米。

【解析】【分析】(1)圆柱的表面积是两个底面积加上一个侧面积,根据圆面积公式计算出底面积,用底面周长乘高求出侧面积;(2)圆柱的体积=底面积×高,圆锥的体积=底面积×高×,根据公式计算,用圆柱的体积加上圆锥的体积就是总体积。

2.一个圆锥形沙堆,底面周长是31.4米,高是1.2米.每立方米黄沙重2吨,这堆黄沙重多少吨?【答案】解:底面半径:31.4÷(2×3.14)=31.4÷6.28=5(米)这堆沙子的总重量: ×3.14×52×1.2×2=3.14×25×0.4×2=78.5×0.4×2=31.4×2=62.8(吨)答:这堆黄沙重62.8吨。

【解析】【分析】用底面周长除以圆周率的2倍即可求出底面半径。

根据圆锥的体积公式计算出沙子的体积,再乘每立方米沙子的重量即可求出总重量。

3.计算下面圆柱的表面积和体积,圆锥的体积。

(1)(2)【答案】(1)解:表面积:3.14×52×2+3.14×5×2×13=157+408.2=565.2(cm2)体积:3.14×52×13=1020.5(dm3)(2) ×3.14×82×15= ×3.14×64×15=1004.8(cm3)【解析】【分析】(1)圆柱的表面积=底面积×2+侧面积,侧面积=底面周长×高,圆柱的体积=底面积×高,根据公式计算即可;(2)圆锥的体积=底面积×高×,根据公式计算体积即可。

六下数学 圆柱与圆锥 易错题专项训练50题 带答案

六下数学 圆柱与圆锥 易错题专项训练50题  带答案

六年级下学期圆柱与圆锥易错题专项训练50题1、圆柱的侧面展开是一个长方形,长方形的长等于圆柱的(底面周长),长方形的宽等于圆柱的(高)2、一个圆柱的底面半径扩大2倍,高不变,它的底面积扩大(4)倍,侧面积扩大(2)倍,体积扩大(4)倍;一个圆柱的底面半径扩大2倍,高也扩大2倍,它的底面积扩大( 4 )倍,侧面积扩大(4)倍,体积扩大( 8)倍;一个圆柱的底面半径扩大2倍,高扩大3倍,它的底面积扩大(4)倍,侧面积扩大( 6 )倍,体积扩大(12 )倍。

3、一个圆柱的底面半径为2厘米,侧面展开后正好是一个正方形,这个圆柱的体积是(157.7536立方厘米)4、等底等高的圆柱和圆锥的体积的和是96立方分米,这个圆柱的体积是(72 )立方分米,这个圆锥的体积是(24)立方分米。

5、把一个圆锥体浸没在底面积是30平方厘米的圆柱形盛有水的容器里,水面升高4厘米,这个圆锥体的体积是(120 )立方厘米。

6、用一个高36厘米的圆锥形容器盛满水,倒入和它等底等高的圆柱形容器中,水的高度是( 12 )厘米。

7、一个棱长是3分米的正方形容器装满水后,倒入一个底面积是3平方分米的圆锥形容器里正好装满,这个圆锥的高是(27)分米。

8、一个圆柱和一个圆锥的体积相等,底面积相等。

圆锥的高是6分米,圆柱的高是( 2 )分米。

9、一个圆锥的体积是126立方厘米,底面积是42平方厘米,高是(9)厘米。

10将一个边长为5分米的正方形纸片卷成圆柱筒,这个圆柱的侧面积是(25 )平方分米。

11、一段圆钢长4米,底面半径是5厘米,把他平均分成3段后,表面积增加了(117.75)平方厘米。

12、一个圆柱的底面面积是25平方厘米,高是10分米,它的体积是( 2500 )立方厘米。

13、有一块正方体木料,棱长是6分米,把它削成为一个最大的圆柱体,这个圆柱体的体积是(169.56)立方分米。

14、一个圆柱体,把它削成一个与圆柱等底等高的圆锥体,圆锥体的体积是削去部分的(1/2)。

【数学】六年级数学圆柱与圆锥 易错题训练

【数学】六年级数学圆柱与圆锥 易错题训练

【数学】六年级数学圆柱与圆锥易错题训练一、圆柱与圆锥1.具有近600年历史的北京天坛祈年殿为砖木结构,殿高38米,底层直径32米,三层重檐向上逐层收缩作伞状。

殿内有28根金丝楠木大柱,里圈的4根寓意春、夏、秋、冬四季,每根高约19米,直径1.2米。

因为它们是殿内最高的柱子,所以也叫通天柱,取的是和上天互通声息的意思。

(x取整数3)(1)请你根据上面信息,计算祈年殿的占地面积是多少平方米?(2)如果要给4根通天柱刷油漆,则刷漆面积一共是多少平方米?【答案】(1)解:3×(32÷2)2=768(平方米)答:计算祈年殿的占地面积是768平方米。

(2)解:3×1.2×19×4=273.6(平方米)答:刷漆面积一共是273.6平方米。

【解析】【分析】(1)根据圆面积公式计算占地面积,底面直径是32米;(2)通天柱是圆柱形,刷漆的部分是侧面积,侧面积=底面周长×高,根据公式计算一个侧面积,再乘4就是刷漆的总面积。

2.一个圆锥形沙堆,底面周长是31.4米,高是1.2米.每立方米黄沙重2吨,这堆黄沙重多少吨?【答案】解:底面半径:31.4÷(2×3.14)=31.4÷6.28=5(米)这堆沙子的总重量: ×3.14×52×1.2×2=3.14×25×0.4×2=78.5×0.4×2=31.4×2=62.8(吨)答:这堆黄沙重62.8吨。

【解析】【分析】用底面周长除以圆周率的2倍即可求出底面半径。

根据圆锥的体积公式计算出沙子的体积,再乘每立方米沙子的重量即可求出总重量。

3.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口2.24厘米.若将一个半径为9厘米的圆锥形铅锤完全浸入水中,水会溢出314立方厘米.求铅锤的高.【答案】解:3.14×(20÷2)2×2.24+314=3.14×100×2.24+314=703.36+314=1017.36(立方厘米),1017.36 ÷(3.14×92)=1017.36×3÷254.34=3052.08÷254.34=12(厘米),答:铅锤的高是12厘米。

【精品】北师大版数学六年级(下册)圆柱与圆锥经典易错题型

【精品】北师大版数学六年级(下册)圆柱与圆锥经典易错题型

【精品】北师大版数学六年级(下册)圆柱与圆锥经典易错题型一、圆柱与圆锥1.计算圆柱的表面积。

【答案】解:3.14×(6÷2)²×2+3.14×6×10=3.14×18+3.14×60=56.52+188.4=244.92(cm³)【解析】【分析】圆柱的表面积是两个底面积加上侧面积,根据圆面积公式计算底面积,用底面周长乘高求出侧面积。

2.计算圆锥的体积。

【答案】解:3.14×2²×15×=3.14×4×5=62.8(dm³)【解析】【分析】圆锥的体积=底面积×高×,根据圆锥的体积公式计算体积即可。

3.一种圆柱形状的铁皮油桶,量得底面直径8dm,高5dm.做一个这样的铁皮油桶至少需多少平方米铁皮?(铁皮厚度不计,结果保留整数)【答案】解:8dm=0.8m5dm=0.5m0.8÷2=0.4(m)3.14×0.8×0.5+3.14×0.42×2=1.256+3.14×0.16×2=1.256+1.0048=2.2608(平方米)≈3(平方米)答:做一个这样的铁皮油桶至少需3平方米铁皮。

【解析】【分析】1dm=0.1m;d=2r;所以做一个这样的铁皮油桶至少需要铁皮的平方米数=πdh+2πr2,据此代入数据作答即可。

4.一个圆柱体容器的底面直径是16厘米,容器中盛有10厘米深的水,现在把一个圆锥形铁块浸没到水中,水面上升了3厘米,圆锥形铁块的体积是多少立方厘米?【答案】解:3.14×(16÷2)2×3=3.14×64×3=200.96×3=602.88(立方厘米)答:圆锥形铁块体积是602.88立方厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【精品】六年级数学圆柱与圆锥易错题训练一、圆柱与圆锥1.计算下面圆柱的表面积和体积,圆锥的体积。

(1)(2)【答案】(1)解:表面积:3.14×52×2+3.14×5×2×13=157+408.2=565.2(cm2)体积:3.14×52×13=1020.5(dm3)(2) ×3.14×82×15= ×3.14×64×15=1004.8(cm3)【解析】【分析】(1)圆柱的表面积=底面积×2+侧面积,侧面积=底面周长×高,圆柱的体积=底面积×高,根据公式计算即可;(2)圆锥的体积=底面积×高×,根据公式计算体积即可。

2.工地上有一个圆锥形的沙堆,高是1.5米,底面半径是6米,每立方米的沙约重1.7吨。

这堆沙约重多少吨?(得数保留整吨数)【答案】解:3.14×6²×1.5××1.7=3.14×18×1.7=56.52×1.7≈96(吨)答:这堆沙约重96吨。

【解析】【分析】圆锥的体积=底面积×高×,先计算圆锥的体积,再乘每立方米沙的重量即可求出总重量。

3.如下图,已知圆锥底面周长是18.84dm,求圆锥的体积。

【答案】解:18.84÷3.14÷2=3(dm)3.14×3²×5×=3.14×15=47.1(dm²)【解析】【分析】用底面周长除以3.14再除以2求出底面半径,然后用底面积乘高再乘求出体积。

4.图“蒙古包”是由一个近似的圆柱形和一个近似的圆锥形组成,这个蒙古包的空间大约是多少立方米?【答案】解:3.14×(8÷2)2×2+3.14×(8÷2)2×1×=3.14×16×2+3.14×16×1×≈100.48+16.75=117.23(立方米)答:这个蒙古包所占的空间大约是117.23立方米。

【解析】【分析】这个蒙古包是由圆锥和圆柱组成,所以这个蒙古包的空间是圆锥的体积和圆柱的体积,圆柱的底面半径=底面直径÷2,圆柱的底面积=圆锥的底面积,所以圆柱的体积=πr2h,那么圆锥的体积=πr2h。

5.一种圆柱形状的铁皮油桶,量得底面直径8dm,高5dm.做一个这样的铁皮油桶至少需多少平方米铁皮?(铁皮厚度不计,结果保留整数)【答案】解:8dm=0.8m5dm=0.5m0.8÷2=0.4(m)3.14×0.8×0.5+3.14×0.42×2=1.256+3.14×0.16×2=1.256+1.0048=2.2608(平方米)≈3(平方米)答:做一个这样的铁皮油桶至少需3平方米铁皮。

【解析】【分析】1dm=0.1m;d=2r;所以做一个这样的铁皮油桶至少需要铁皮的平方米数=πdh+2πr2,据此代入数据作答即可。

6.一个圆锥体钢制零件,底面半径是3cm,高是2m,这个零件的体积是多少立方厘米?【答案】解: ×3.14×32×2=3.14×6=18.84(立方厘米)答:这个零件的体积是18.84立方厘米。

【解析】【分析】圆锥的体积=底面积×高×,根据公式计算体积即可。

7.计算下列图形的体积.(1)(2)【答案】(1)6÷2=32÷2=13.14×(3×3﹣1×1)×5=3.14×(9﹣1)×5=3.14×8×5=125.6(2) ×3.14×(2÷2)2×3+3.14×(2÷2)2×4=3.14×1+3.14×4=3.14×5=15.7(立方厘米)【解析】【分析】(1)图形体积=π×(大圆柱半径的平方-小圆柱半径的平方)×高;(2)图形体积=圆锥体积+圆柱体积。

8.一根圆柱形木料锯下5分米长的一段后,剩下的木料的表面积比原来减少了94.2平方分米。

锯下的这段木料的体积是多少立方分米?【答案】解:94.2÷5÷3.14÷2=3(分米) 4.14×32=28.26(平方分米)28.26×5=141.3(立方分米)答:锯下的这段木料的体积是141.3立方分米。

【解析】【解答】解:94.2÷5÷3.14÷2=3(分米),3.14×32=28.26(平方分米),28.26×5=141.3(立方分米)大:锯下的这段木料的体积是141.3立方分米。

【分析】剩下的木料的表面积比原来减少的部分就是减少部分圆柱的侧面积;用减少部分的面积除以5即可求出底面周长,用底面周长除以3.14再除以2求出底面半径;然后用底面积乘锯下部分的长度即可求出锯下的木料的体积。

9.有一个圆锥形沙堆,底面半径是10米,高是4.8米,把这些沙子均匀地铺在一条宽20米,厚40厘米的通道上,可以铺多长?【答案】 40厘米=0.4米3.14×102×4.8÷3÷(20×0.4)=502.4÷8=62.8(米)答:可以铺62.8米。

【解析】【分析】可铺的米数=圆锥的底面积×高÷3÷(宽×厚)10.(1)计算下面立体图形的表面积(2)计算下面立体图形的体积【答案】(1)244.92dm2(2)56.52m3【解析】【解答】解:(1)先计算出圆柱的半径:18.84÷3.14÷2=3dm;再计算圆柱的两个底面积:3×3×3.14×2=56.52dm2;接着计算圆柱的侧面积:18.84×10=188.4dm2;最后圆柱的表面积为:56.52+188.4=244.92dm2;(2)先计算出圆锥的半径:6÷2=3m;再计算圆锥的体积为:×3×3×3.14×6=56.52m3。

故答案为:(1)244.92dm2;(2)56.52m3。

【分析】圆柱的表面积=底面积×2+侧面积;圆锥的体积=×底面积×高。

11.计算下面图形的体积。

(单位:cm)(1)(2)【答案】(1)解:3.14×32×5.4=152.604(cm3)(2)解:3.14×(8÷2)2×6×=3.14×16×2=100.48(cm3)【解析】【分析】圆柱的体积=底面积×高,圆锥的体积=底面积×高×,根据公式分别计算即可.12.求下列各图形的表面积。

(单位:cm)(1)(2)【答案】(1)解:3.14×(6÷2)²×2+3.14×6×20=3.14×18+3.14×120=56.52+376.8=433.32(cm²)(2)解:3.14×(8÷2)²+3.14×8×10÷2+8×10=3.14×16+3.14×40+80=50.24+125.6+80=255.84(cm²)【解析】【分析】(1)用底面积的2倍加上侧面积即可求出表面积;(2)这个物体的表面积包括一个圆形的底面面积和侧面积的一半,还要加上长10、宽8的长方形的面积.13.请你制作一个无盖的圆柱形水桶,有以下几种型号的铁皮可供搭配选择。

(1)你选择的材料是________号和________号。

(2)你选择的材料制成水桶的容积是几升?【答案】(1)②;③(2)解:3.14×(4÷2)²×5=3.14×20=62.8(升)答:制成水桶的容积是62.8升.【解析】【解答】解:(1)②周长:3.14×4=12.56(分米),④周长:3.14×3×2=18.84(分米);因此应选择②和③.故答案为:②、③【分析】(1)选择的圆形的周长应该与长方形的长或宽相等才能组成一个圆柱;(2)圆柱的体积=底面积×高,根据体积公式计算容积即可.14.图沿着图中虚线旋转一周可以得到一个立体图形(单位:厘米)(1)这个图形的名称叫________.(2)计算这个立体图形的体积.【答案】(1)圆锥(2)解:圆锥的体积= ×3.14×32×4.5= ×3.14×9×4.5=9.42×4.5=42.39(立方厘米);答:这个立体图形的体积是42.39立方厘米.【解析】【解答】解:(1)沿着图中的虚线旋转一周,可以得到一个立体图形,这个立体图形叫做圆锥.【分析】(1)沿着图中的虚线旋转一周,可以得到一个立体图形,这个立体图形叫做圆锥.(2)圆锥的体积= ×底面积×高,圆锥的底面半径和高已知,从而可以求出圆锥的体积.15.请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选(1)你认为________和________的材料搭配较合适.(2)你选择的材料制作水桶的容积是________升,王师傅用40平方分米的铁皮做成了这个水桶,王师傅制作水桶时的铁皮损耗率是________%【答案】(1)B;C(2)15.7;13.65【解析】【解答】解:(1)因为3.14×2=6.28(分米),所以B和C的材料搭配合适.(2)3.14×(2÷2)2×5,=3.14×5,=15.7(立方分米),=15.7(升),3.14×(2÷2)2+6.28×5,=3.14+31.4,=34.54(平方分米),(40﹣34.54)÷40,=5.46÷40,=13.65%;故答案为:B、C;15.7;13.65.【分析】(1)因为所制作的水桶的底面周长即图中圆的周长等于长方形的长,由此得出B 和C的材料搭配合适;(2)根据圆柱的体积公式:V=sh=πr2h,即可求出水桶的容积;再求出理论上做水桶用的铁皮的面积数,用40减去理论上做水桶用的铁皮的面积数再除以40即可.本题主要考查了圆柱的侧面展开图与圆柱的关系及利用圆柱的体积公式,表面积公式与基本的数量关系解决问题.。

相关文档
最新文档