数字图像处理课程论文
数字图像处理相关论文
数字图像处理相关论文“数字图像处理”是一门利用计算机解决图像处理的学科。
并且,现代多媒体计算机中又广泛采用了数字图像处理技术。
下面是店铺给大家推荐的数字图像处理相关论文,希望大家喜欢!数字图像处理相关论文篇一浅谈“数字图像处理”课程教学改革实践摘要:数字图像处理技术是一种发展迅速且应用广泛的新兴技术,就“数字图像处理”课程的特点,从教学内容、教学手段和方法、教学理论和实践等方面进行改革与实践,增强了学生的实践创新能力,提高了教学质量,收到良好的教学效果。
关键词:数字图像处理;教学手段;实践作者简介:刘忠艳(1975-),女,黑龙江依安人,黑龙江科技学院计算机与信息工程学院,副教授;周波(1963-),男,黑龙江绥化人,黑龙江科技学院计算机与信息工程学院,教授。
(黑龙江哈尔滨 150027)一、“数字图像处理”概述数字图像处理技术是集微电子学、光学、应用数学和计算机科学等学科的一门综合性边缘技术。
[1,2]是当今信息社会中发展迅速且应用广泛的新兴科学技术。
数字图像处理技术广泛应用到通信、计算机、交通运输、军事、医学和经济等各个领域,在各个领域发挥着越来越重要的作用。
随着计算机技术的迅速发展,图像处理的技术和理论不断完善和丰富,新的理论、技术也不断涌现,并逐渐进行应用。
面对这样一门理论与实际紧密结合的课程,在学习过程中,学生常常会遇到很多问题,既为数字图像处理技术应用的广泛前景所吸引,也时常对课程的抽象理论感到苦恼,渐渐失去学习兴趣。
为了激发学生的学习兴趣,提高教学质量,对该课程进行教学改革,势在必行。
经过两年半的教学改革与实践,取得了一定的教学效果。
二、教学改革措施为了提高“数字图像处理”课程的教学质量,激发学生学习本课程的兴趣,对本门课程进行改革,采取以下措施:1.整合教学内容随着计算机技术的迅速发展,数字图像处理技术也得到快速发展。
近几年来,有很多新的应用点和研究涌现出来,在“数字图像处理”课程中加入新技术的介绍,对于学生了解国际的研究和应用热点,尽快地投入相应的研究与应用中去大有益处。
数字图像处理技术的应用综述--课程论文
《数字图像处理》课程论文题目:数字图像处理技术的应用综述1 绪论1.1数字图像处理简介数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。
到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。
1.2数字图像处理技术的基本特点1)处理信息量很大。
数字图像处理的信息大多是二维信息,处理信息量很大。
如一幅256×256低分辨率黑白图像,要求约64kbit的数据量;对高分辨率彩色512×512图像,则要求768kbit数据量;如果要处理30帧/秒的电视图像序列,则每秒要求500kbit~22.5Mbit数据量。
因此对计算机的计算速度、存储容量等要求较高。
2)占用频带较宽。
数字图像处理占用的频带较宽。
与语言信息相比,占用的频带要大几个数量级。
如电视图像的带宽约5.6MHz,而语音带宽仅为4kHz左右。
所以在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本亦高,这就对频带压缩技术提出了更高的要。
3)各像素相关性大。
数字图像中各个像素是不独立的,其相关性大。
在图像画面上,经常有很多像素有相同或接近的灰度。
就电视画面而言,同一行中相邻两个像素或相邻两行间的像素,其相关系数可达0.9以上,而相邻两帧之间的相关性比帧内相关性一般说还要大些。
因此,图像处理中信息压缩的潜力很大。
4)无法复现三维景物的全部几何信息。
由于图像是三维景物的二维投影,一幅图象本身不具备复现三维景物的全部几何信息的能力,很显然三维景物背后部分信息在二维图像画面上是反映不出来的。
因此,要分析和理解三维景物必须作合适的假定或附加新的测量,例如双目图像或多视点图像。
在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。
数字图像处理结课论文
郑州航空工业管理学院结课设计(论文)2008 级专业班级课程数字图像处理姓名学号指导教师职称讲师二О一一年十月三十号彩色图像特效处理技术研究与设计摘要数字图像处理是指用计算机对图像进行处理,它广泛用于几乎所有与成像有关的领域。
本文介绍用Visual Basic语言编程的数字图像处理环境,设计并实现了一个彩色图像的特效处理系统,展示如何通过编程实现对图形图像的各种处理。
论述了利用编写的程序实现图像文件(bmp、jpg、gif等)逆反处理、平滑处理、霓虹处理、边缘锐化、浮雕处理、镶嵌处理、曝光处理、扩散处理等功能操作。
关键字:数字图像处理、Visual Basic语言编程、特效处理、逆反处理、平滑处理、霓虹处理、边缘锐化、浮雕处理、镶嵌处理、曝光处理、扩散处理1、简介彩色图像的特效处理是对一幅彩色图像的各像素值的R、G、B分量按一定的算法进行变换,并将变换后的新图像值重新显示出来,则可实现不同效果图像的显示。
逆反处理的目的是使整幅图像的颜色产生逆反效果;平滑处理的目的是将图像的边界变得平缓,使整幅图像变得更柔和,更模糊,具有朦胧感;霓虹处理的目的是为了突出图像的边界,淡化图像内部的颜色,使图像产生夜晚霓虹灯的效果;边缘锐化是为了图像边界,并保留图像内部的颜色,使图像变得更清晰;浮雕处理的目的也是为了突出边界,使图像具有凹凸效果;镶嵌处理的目的是使图像的分辨率降低,具有马赛克效果;曝光处理是使图像整体变亮,产生类似胶片曝光的效果;扩散处理是使图像具有油画效果。
2、系统总体分析本系统实现了对图像(bmp、jpg、gif等)进行选择、读取、退出操作、图像的逆反处理、平滑处理、霓虹处理、边缘锐化、浮雕处理、镶嵌处理、曝光处理、扩散处理(油画处理)的功能操作,以及特效处理后确定、恢复、保存操作,整个界面如图1所示:图1,系统界面2.1、文件读取本部分用Visual Basic语言编程读取图像信息并显示在Picture控件中,图片框用于显示图像,命令按钮“选择文件”用于选择指定图形文件,命令按钮“读图像”用于读入图像数据并存入数组,并且将图像显示在图片框中。
数字图像处理论文
数字图像处理论文数字图像处理在计算机视觉和图像分析领域中扮演着重要角色。
随着数字图像处理算法的不断发展和改进,对于图像的处理和分析有了更深入的理解。
本篇论文主要介绍了数字图像处理的一些基础概念、方法和应用。
首先,数字图像处理是基于计算机的图像处理技术,旨在改善图像的质量、增强图像的特征以及从图像中提取有用的信息。
数字图像处理的基本步骤包括图像获取、预处理、特征提取和图像重建等。
在图像获取的阶段,通过传感器或数码相机等设备获取图像的原始数据。
在预处理的阶段,对图像进行去噪、平滑和增加对比度等操作,以消除图像中的噪声和提高图像的视觉效果。
在特征提取的阶段,根据图像的特定特征,如边缘、纹理和颜色等,进行特征的提取和描述。
在图像重建的阶段,利用图像处理算法对图像进行重建和恢复。
常见的图像处理算法包括滤波、变换和编码等。
滤波算法主要用于图像平滑和去噪,如均值滤波、中值滤波和高斯滤波等。
变换算法主要用于提取图像的频域特征,如傅里叶变换和小波变换等。
编码算法主要用于图像的压缩和存储,如JPEG、PNG和GIF等。
除了基本的图像处理方法,数字图像处理还有许多应用领域。
其中之一是医学图像处理,包括医学图像的分割、配准和识别等。
另一个应用是遥感图像处理,用于地理信息系统和环境监测等领域。
此外,数字图像处理还在安全和认证、图像检索和图像合成等领域发挥重要作用。
总之,数字图像处理是一门研究如何使用计算机技术对图像进行处理和分析的学科。
通过了解数字图像处理的基本概念、方法和应用,可以更好地理解图像的特性和结构,提高图像处理的效果和精度,并在各个领域中发挥重要作用。
数字图像计算机处理技术论文范文
数字图像计算机处理技术论文范文推荐文章无人机应用技术论文优秀范文热度:物联网传感知识技术论文范文热度:维修电工技术论文范文大全热度:无人驾驶技术原理论文优秀范文热度:现代教育技术论文范文热度:数字图像处理技术是研究采用计算机和其他数字化技术对图像信息进行处理的新技术。
小编整理了数字图像处理技术论文,欢迎阅读! 数字图像处理技术论文篇一浅谈数字图像处理技术摘要:本文针对目前广泛应用数字图像识别处理技术国内外研究现状进行了分析,阐述了数字图像处理技术的应用前景。
关键词:数字图像图像处理数字技术应用一、数字图像处理综述数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息,数字图像处理作为一门学科大约形成于20世纪60年代初期,早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
首次获得实际成功应用的是美国喷气推进实验室(JPL),他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。
随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。
在以后的宇航空间技术,医学技术中数字图像处理技术都发挥了巨大的作用。
从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展,人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。
数字图像处理技术的探究论文_数字图像处理课程论文
数字图像处理技术的探究论文_数字图像处理课程论文数字图像处理技术的探究论文篇一《数字图像处理技术的探究》【摘要】目前,图像处理技术得到较好的发展,本文以数字图像处理技术为研究对象,对其发展与应用现状进行简述,并对此技术的优缺点以及制约因素进行系统的分析,概述了此项技术在日后发展中的应用范围。
通过对数字图像处理技术的分析,让我们更深入的了解此项技术,为日后的研究提供一定的理论基础。
【关键词】数字图像处理技术发展就图像处理技术而言,可分为模拟图像与数字图像处理两大类。
数字图像处理技术在发展的过程中,涉及多门学科,其中包括生物学、计算机、信息科学等。
因此,数理与边缘学科与图像处理技术的关系越来越密切。
在最近几年中,数字图像处理技术逐步趋于完善,在遥感、人工智能等多个领域中被广泛使用,并促进相关学科得到较好的发展。
1数字图像处理技术的发展与应用在上世纪六十年代,随着VLS与计算机的发展产生了数字图像处理技术,并不断完善、成熟的一项新技术。
不管是在理论还是实际方面,都取得了较好的进步。
在早期,图像处理主要是为了使图片的质量更加完善。
输入图像的质量较低,而输出图片的质量较高,通常采用复原、压缩等方式进行处理。
此项技术首次应用成功是在美国的喷气推进实验室中。
此后,在航空领域中得到很好的应用,促进了此门学科的发展。
除此之外,数字图像处理技术在医学上也得到了很好的应用。
自上世纪七十年代中期之后,计算机与智能化得到很好的发展,也促进了图像处理技术的进步。
人们开始研究怎样通过计算机,对图像进行系统的解释,这被称作计算机视觉或图像理解。
上世纪几十年代,数字图像处理技术得到大力发展。
截止目前,此项技术在医疗设备、地理信息系统等多个领域中被广泛使用。
2数字图像处理技术的特点2.1优点(1)再现性较好。
数字图像处理技术不会因为各种变换操作而造成图片出现质量退化的现象,始终确保图像可以真实的再现。
(2)处理精度高。
根据当前技术,基本上能够把一副模拟的图像通过数字化做各种二维数组,与图像数字化设备能力有直接的关系。
数字图像处理论文
数字图像处理论文数字图像处理论文篇一:数字图像增强技术摘要:数字图像处理是指利用计算机技术对图像进行各种操作和处理的过程。
图像增强是数字图像处理中的一项重要技术,旨在改善图像的质量和视觉效果。
本文针对数字图像增强技术进行了综述,包括直方图均衡化、滤波和锐化等常用方法。
此外,还介绍了一些新近提出的图像增强算法,如基于深度学习的方法。
最后,对数字图像增强技术的发展趋势进行了展望。
关键词:数字图像处理;图像增强;直方图均衡化;滤波;锐化;深度学习1.引言数字图像处理是计算机科学和图像处理领域的重要研究方向。
随着数字图像在各个领域的广泛应用,对图像质量和视觉效果的要求也越来越高。
图像增强是数字图像处理的一项基础技术,通过改善图像的对比度、亮度和细节等特征,提高图像的可视化效果。
图像增强技术已被广泛应用于医学影像、无人驾驶、图像识别等领域。
2.直方图均衡化直方图均衡化是一种常用的图像增强方法,通过调整图像的像素值分布,提高图像的对比度和显示效果。
其基本思想是将原始图像的像素值映射到一个新的像素值域,使得新图像具有均匀分布的像素值。
直方图均衡化可以有效地增强图像的细节和纹理特征,但在一些情况下会导致图像过度增强或噪声增加。
3.滤波技术滤波是图像处理中常用的一种方法,通过对图像进行平滑或者锐化处理,改善图像的质量和视觉效果。
常用的滤波方法有均值滤波、中值滤波和高斯滤波等。
均值滤波通过计算像素点周围邻域像素的平均值来更新像素的值,可用于图像的平滑处理。
中值滤波通过计算像素点周围邻域像素的中值来更新像素的值,可有效地去除图像中的椒盐噪声。
高斯滤波通过对图像进行加权平均处理,对图像进行平滑和去噪。
4.锐化技术锐化是图像处理中常用的一种技术,通过增加图像中的高频成分,提高图像的边缘和细节等特征。
常用的锐化方法有拉普拉斯算子、Sobel算子和Canny算子等。
拉普拉斯算子通过计算图像的二阶导数来增强图像的边缘和细节。
Sobel算子通过计算图像的一阶导数来提取图像的边缘特征。
数字图像处理结课论文
数字图像处理结课作业--数字图像频域增强方法及在matlab中的实现学生姓名:学号:学院:理学院班级:电科班指导教师:摘要:图像增强的目的是使处理后的图像更适合于具体的应用,即指按一定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息,使之改善图像质量,加强图像判读和识别效果的处理技术。
从总体上可以分为两大类:空域增强和频域增强。
频域处理时将原定义空间中的图像以某种形式转换到其他空间中,利用该空间的特有性质方便的进行图像处理。
而空域增强是在图像空间中借助模板对图像进行领域操作,处理图像每一个像素的取值都是根据模板对输入像素相应领域内的像素值进行计算得到的。
空域滤波基本上是让图像在频域空间内某个范围的分量受到抑制,同时保证其他分量不变,从而改变输出图像的频率分布,达到增强图像的目的。
本文主要从空域展开图像增强技术,重点阐明数字图像增强处理的基本方法,介绍几种空域图像增强方法。
关键词:图像增强 MATLAB 空域增强锐化空间滤波平滑空间滤波目录:1、何为数字图像处理及MATLAB的历史2、空间域图像增强技术研究的目的和意义3、空间域的增强3.1 背景知识3.2 空间域滤波和频域滤波之间的对应关系3.3 锐化滤波3.4 平滑滤波4、结论1、何为数字图像处理及MATLAB的历史数字图像处理(digital image processing),就是利用数字计算机或者其他数字硬件,对从图像信息转换而得到的电信号进行某些数学运算,以提高图像的实用性。
例如从卫星图片中提取目标物的特征参数,三维立体断层图像的重建等。
总的来说,数字图像处理包括运算、几何处理、图像增强、图像复原、图像形态学处理、图像编码、图像重建、模式识别等。
目前数字图像处理的应用越来越广泛,已经渗透到工业、医疗保健、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。
MATLAB是由美国Math Works公司推出的软件产品。
MATLAB是“Matric Laboratory”的缩写,意及“矩阵实验室”。
2024年数字图像处理论文doc
2024年数字图像处理论文doc标题:2024年数字图像处理论文doc一、引言随着技术的不断发展,数字图像处理在各个领域中的应用越来越广泛。
本文旨在探讨2024年数字图像处理领域的发展趋势,以及相关算法和技术的应用。
通过对数字图像处理的研究,希望能够为相关领域的发展提供一定的参考和帮助。
二、数字图像处理的基本原理数字图像处理是一种利用计算机对图像进行加工、处理和分析的技术。
数字图像处理的基本原理是将图像转换为数字信号,然后利用计算机对数字信号进行处理和分析。
数字图像处理技术包括图像增强、图像变换、图像滤波、图像恢复、图像分析等。
三、数字图像处理的应用范围数字图像处理技术的应用范围非常广泛,包括医学影像、安防监控、智能交通、工业生产、环境监测等领域。
随着技术的不断发展,数字图像处理的应用范围将会更加广泛。
四、数字图像处理的热点问题和研究方向目前,数字图像处理的热点问题和研究方向包括深度学习、人工智能、虚拟现实等。
其中,深度学习在数字图像处理中的应用已经得到了广泛的认可,其在图像识别、目标检测、人脸识别等方面的应用已经取得了显著的成果。
此外,人工智能在数字图像处理中的应用也在不断发展,包括机器学习、神经网络等。
虚拟现实技术在数字图像处理中的应用也在逐渐增加,其在虚拟现实游戏、电影制作等方面的应用已经得到了广泛的应用。
五、数字图像处理的发展趋势和未来前景随着技术的不断发展,数字图像处理的应用范围将会更加广泛。
未来,数字图像处理技术将会更加智能化、自动化和人性化,其在各个领域中的应用将会更加深入。
同时,数字图像处理技术也将会面临更多的挑战和机遇,包括如何提高图像处理的精度和速度、如何解决图像处理中的隐私和安全问题等。
六、总结本文对2024年数字图像处理领域的发展趋势进行了探讨,并介绍了相关算法和技术的应用。
数字图像处理技术已经成为各个领域中不可或缺的一部分,其未来的发展前景非常广阔。
希望本文能够对相关领域的发展提供一定的参考和帮助。
数字图像处理论文
Digital image processing course work数字图像处理课程论文学院名称:专业班级:学生姓名:学号:认识数字图像处理内容摘要:数字图像处理是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
数字图像处理作为一门学科大约形成于20世纪60年代初期。
早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
如今,数字图像处理正与当今社会的各个方面紧紧相连,密不可分。
让我们一起来认识数字图像处理技术。
关键词:基本概况及简要发展常用方法实际应用未来发展一、数字图像处理的基本概况及简要发展数字图像处理,即Digital Image Processing,是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。
20世纪20年代,图像处理首次应用于改善伦敦和纽约之间海底电缆发送的图片质量。
到20世纪50年代,数字计算机发展到一定的水平后,数字图像处理才真正引起人们的兴趣。
1964年美国喷气推进实验室用计算机对“徘徊者七号”太空船发回的大批月球照片进行处理,收到明显的效果。
20世纪60年代末,数字图像处理具备了比较完整的体系,形成了一门新兴的学科。
20世纪70年代,数字图像处理技术得到迅猛的发展,理论和方法进一步完善,应用范围更加广泛。
在这一时期,图像处理主要和模式识别及图像理解系统的研究相联系,如文字识别、医学图像处理、遥感图像的处理等。
数字图像处理技术论文
数字图像处理技术论文数字图像处理技术是研究采用计算机和其他数字化技术对图像信息进行处理的新技术。
下面是店铺整理的数字图像处理技术论文,希望你能从中得到感悟!数字图像处理技术论文篇一数字图像处理技术研究[摘要]数字图像处理技术是研究采用计算机和其他数字化技术对图像信息进行处理的新技术。
图像处理科学与技术已经成了工程学、计算机科学、通信科学、信息科学、军事、公安、医学等众多学科学习和研究的对象。
本文从数字图像处理的基本概念,研究内容为出发点,重点探讨了数字图像复原技术,最后介绍了数字图像处理系统,但由于数字图像处理技术领域内容极其广泛,与其他很多学科都有着千丝万缕的联系,所以对这项技术的研究还需要人类的进一步努力。
[关键词]数字图像处理技术数字图像处理主要研究中图分类号:IP391.41 文献标识码:A 文章编号:1009-914X(2015)05-0280-011 引言“图”是物体透射光或反射光的分布,“像”是人的视觉系统对图的接收在大脑中形成的印象或认识。
前者是客观存在的,而后者为人的感觉,图像应是两者的结合。
图像处理就是对图像信息进行加工处理,以满足人的视觉心理和实际应用的要求。
人类获取外界信息有视觉、听觉、触觉、嗅觉、味觉等多种方法,但绝大部分(约80%)是来自视觉所接受的图像信息,即所谓“百闻不如一见”。
因此,图像处理技术的广泛研究和应用是必然的趋势。
2 图像数字化2.1 基本概念一幅黑白静止平面图像(如照片)中各点的灰度值可用其位置坐标(x,y)的函数f(x,y)来描述。
显然f(x,y)是二维连续函数,有无穷多个取值。
这种用连续函数表示的图像无法用计算机进行处理,也无法在各种数字系统中传输或存贮,必须将代表图像的连续(模拟)信号转变为离散(数字)信号。
这样的变换过程,称其为图像数字化。
图像数字化的内容包括两个方面:取样和量化。
2.2 取样点数和量化级数的选取假定一幅图像取M×N个样点,对样点值进行Q级分档取整。
数字图像处理毕业论文
数字图像处理毕业论文目录第一章绪论 (3)1.1论文研究的背景与意义 (3)1.2数字图像评价研究现状及关键技 (3)第二章基本原理 (4)2.1 直方图均衡化 (4)2.2 小波变换 (4)第三章数字图像评价的原理 (5)3.1主观评价方法 (5)3.2客观评价方法 (6)3.3本章小结 (7)第四章数字图像处 (8)4.1数字图像处理系统基本组成 (8)4.2图像变换 (8)4.2.1:傅立叶变换 (8)4.2.2、其他常见变换概述 (9)4.3 数字图像处理容 (9)4.3.1、图像增强 (9)4.3.2、图像恢复 (10)4.3.3、图像压缩 (10)4.3.4、图像分割 (11)第五章总结和展望 (11)5.1总结 (11)5.2对未来的展望 (11)致谢 (13)参考文献 (14)第一章绪论1.1论文研究的背景与意义随着多媒体技术和网络技术的快速发展,数字图像处理已经广泛应用到了人类社会生活的各个方面,如:遥感,工业检测,医学,气象,通信,侦查,智能机器人等。
作为数字图像处理重要环节的图像评价技术的研究也受到广泛关注,在图像处理各项技术,如图像采集,图像压缩,图像增强与复原,以及图像去模糊等算法中,图像质量评价都起到了非常重要的作用。
总的来说,图像质量评价的主要应用有以下几方面:运用于图像或视频系统,使其能够获得最佳图像;作为图像系统的一项基准指标,用以评价图像或视频质量;作为反馈量,优化算法中的各项参量,改善系统性能等[1]。
由此可见,数字图像评价的研究具有重要意义。
数字图像评价是图像处理的重要技术,随着研究的不断深入,视频监控成为了现在数字图像处理很重要的一个研究方向,而且在实际的应用当中非常有实用价值。
如在由于车辆的牌照在交通道口经常会受到对面车灯强光等或外部光源的照射,使得摄像机拍摄出来的车牌照片反光,人眼根本无法识别的情况下,通过进行处理而不断改善图像质量,提取有效信息,从而分辨汽车牌照;又如通过数字图像评价系统的研究,改善摄像机对于一些由于逆光、弱光、暗光、偏色或综合因素影响的监控质量等等。
《Matlab数字图像处理》课程论文
Matlab数字图像处理课程论文匀速直线运动模糊图像的复原1引言运动模糊图像复原是图像复原技术中十分重要的一个分支,在生产生活领域、航天领域、智能交通领域都有着广泛的应用。
由于匀速直线运动模糊是具有普遍意义的一种退化方式,本文针对匀速直线运动模糊图像的复原进行了系统的研究,建立恰当的退化模型和准确的辨识模糊参数是良好复原退化图像的关键。
本文首先根据匀速直线运动模糊图像的特点建立了相应的退化模型,得出其点扩散函数是由模糊长度和模糊角度确定的。
对于匀速直线运动模糊图像,其频谱图像中存在平行排布的暗条纹,这些暗条纹的生成与退化图像的模糊参数存在特定的关系。
本文通过对匀速运动模糊图像的频谱出现平行暗条纹的原因的分析,推导了匀速运动模糊图像点扩散函数的离散域表达式,找到了退化图像频谱暗条纹方向和间距与退化图像模糊参数之间的关系式。
2研究进展随着计算机技术的不断发展,与之相关的学科也随之兴盛起来。
譬如:利用matlab处理图像等。
其中多帧运动模糊图像复原方法的研究就是其研究方向之一。
下面重点介绍多帧运动模糊图像复原方法的研究。
0) 引言电视监控作为安全防范系统的重要组成部分之一,对于惩治犯罪、维护社会稳定起着极为重要作用。
然而,电视影像在形成、传输和记录过程中,由于成像系统、传输介质和记录设备的完善,都会造成影像的质量下降,即图像退化。
其中,摄像设备与景物之间相对运动引起的模图像是一种典型的退化图像。
在图像检验工作中,我们常常遇到不同形式的运动模糊图像处理问题,诸如监控录像中犯罪嫌疑人模糊相貌辨别、交通监测中违章车辆模糊牌照识别等等。
运动模糊图像的复原直接影响着案件的侦破和审理工作。
目前,针对电视摄像的特点,多帧融合理技术已经成为运动模糊图像复原的主要方法。
1) 问题的提出在数字图像处理过程中,需要利用计算机图像采集装置将录象带上记录的模拟图像采样、量化成数字图像,以便于计算机分析和处理。
多帧数字图像可以表示成空间域内取值范围为[O,A]的实函数:0≤f(X,Y,tk)≤A;k=1,2,⋯,M (1)式中,变量X,Y是象素的位置坐标,X,Y=1,2,3,⋯,N 是图像的水平宽度及垂直宽度,t 是摄取第k帧图像的时刻,M是图像的帧数,对于8位量化图像,A的取值是255,即该图像为256级的灰度图像。
数字图像处理技术的浅析论文
数字图像处理技术的浅析论文数字图像技术的发展可以说与计算机的发展同步,数字图像的应用领域也越来越越广泛,目前已经应用到了广告摄影创作、视听资料、地质勘探等众多领域,在各领域均不断实现着突破。
下面是店铺给大家推荐的数字图像处理技术的浅析论文,希望大家喜欢!数字图像处理技术的浅析论文篇一《对数字图像处理技术的浅析》【摘要】数字图像处理技术就是把图像中的信号转化成数字信号,利用计算机进行处理的技术。
在一定程度上,数字图像技术的发展可以说与计算机的发展同步,数字图像的应用领域也越来越越广泛,目前已经应用到了广告摄影创作、视听资料、地质勘探、公安领域、智能交通以及航空航天、医学等众多领域,在各领域均不断实现着突破。
文章从数字处理技术的内容和特点出发,对其在广告摄影创作、视听资料、公安领域及智能交通等领域的应用进行研究,并对其发展进行展望。
【关键词】数字图像处理;内容;特点;关键技术;应用;展望【中图分类号】TP391.41【文献标识码】A【文章编号】1672-5158(2013)02-0129-021.数字图像处理技术的内容及特点1.1 研究内容不管应用到哪个领域的图像处理图像数据都要输入、加工和输出图像,其研究内容:(1)获取、表示和表现图像――把图像信号转化为计算机可以识别的形式,并把数字图像显示和表现出来。
(2)图像复原――已知图像发生退化的缘由时,对图像进行修复,关键是建立退化模型。
复原是以模型和数据的图像恢复为基础,消除退化的影响。
(3)图像增强――对图像质量的常规改善。
当不知道图像退化原因时,还可用此技术比较主观的改善图像。
(4)图像分割――人类视觉系统可以轻松地将观察到的对象区分开来,但计算机却很难。
分割的基本问题目前是将各种方法融合使用,以此提高处理的质量。
(5)图像分析――检测和测量图像中的目标,获取其客观信息,是从图像到数据的过程。
(6)图像重建――指从数据到图像的处理。
(7)图像压缩编码――为减少数据容量、降低数据率、压缩信息量,在不影响其效果的前提下减少图像的数据量。
数字图像处理论文1
Байду номын сангаас线性灰度变换函数:
灰度变换方程为:
其中:fA为线性函数斜率。fB为线性函数在y轴上的截距, 表示输入图像的灰度, 表示输出图像的灰度。当fA=1,fB=0时,输出图像和输入图像相同;当fA=-1,fB=255时,输出图像的灰度正好反转,也就实现了图像反色。
以下是实现反色的关键代码:
当-width<tx<=0时,图像区域的X范围从0到width-|tx|,对应原图的范围从|tx|到width;当0<tx,<width时,图像区域的X范围从tx到width,对应原图的范围从0到width-tx;当tx>=width时,图像完全移出了屏幕,不做任何处理。Y轴方向同理。
关键代码如下:
image_s[(height - i - 1) * www * 3 + 3 * j + 2] = 255-image_s[(height - i - 1) * www * 3 + 3 * j + 2];
2.图像的黑白化
图像的黑白化也就是图像的二值化,是图像灰度处理的一种特殊情况。图像的二值化处理就是将图像上的像素点的灰度值设置为0或255,使得整幅图像只有黑白两种颜色效果。
关键代码如下:
image_s[(height - i - 1) * www * 3 + 3 * j] = image_s[(height - i - 1) * www * 3 + 3 * j + 1] =image_s[(height - i - 1) * www * 3 + 3 * j + 2] =(image_s[(height - i - 1) * www * 3 + 3 * j]+image_s[(height - i - 1) * www * 3 + 3 * j + 1]+image_s[(height - i - 1) * www * 3 + 3 * j + 2])/3;
数字图像处理技术简述论文
数字图像处理技术简述论文在计算机多媒体技术与通信技术迅猛发展的今天,含有大量数据信息的数字图像处理技术应运而生,同时获得了突飞猛进的发展。
下面是店铺给大家推荐的数字图像处理技术简述论文,希望大家喜欢! 数字图像处理技术简述论文篇一《数字图像处理技术简述》摘要:在多媒体技术与通信技术迅猛发展的今天,含有大量数据信息的数字图像处理技术应运而生,同时获得了突飞猛进的发展。
接下来,文章针对数字图像处理技术开展相关浅述,望能够有一定的参考价值。
关键词:数字图像处理技术电子信息伴随着先进的网络技术与多媒体技术的迅猛发展,在人们的日常生活当中,数字图像处理技术获得了较为广泛的运用。
譬如,医学、通信、工业检测、智能机械人等方面,但是不管是哪个方面,数字图像处理技术的运用使得各事物间的逻辑关系都得到了很好的体现,使得数字图像处理技术的作用得到了最大限度上的发挥。
1 数字图像处理技术概述计算机的显著特征在于,能够对各类数据信息进行科学的处理,数字图像在经过采样-量化处理后转变为数字存储在计算机当中,在经过数字图像处理之后,数据信息便会被分割、增强、复原,这一过程就是我们所说的数字图像处理过程。
由此可见,数字图像处理是计算机软硬件有效结合的一种技术,伴随着先进计算机的快速发展及其各行业中广泛运用。
在先进计算机科学技术的推动下,数字图像处理技术在获得大程度发展的同时,展现出以下几方面的特点:1.1 图像处理的多样性数字图像编写算法及程序上存在一定差异,会造成最终的图像处理结果也是有所不同的。
1.2 图像处理精准度较高随着数字图像处理精准度的不断升高,图像再现性质量也得到了相应的提升,数字图像处理实则是利用多种计算方法对图像数据进行的相关编写与计算,伴随着先进计算机技术的进步,促使计算结果的精准度得到了有效的保障,除此之外,多种计算方法的融合会获得相近的计算结果,具有良好的再现性。
1.3 各学科技术的相互融合数学与物理是数字图像处理的基本性因素,除此之外,数字图像处理技术是与计算机技术、通信技术、电视技术等紧密的联系在一起。
数字图像处理相关论文(2)
数字图像处理相关论文(2)数字图像处理相关论文篇二《现代数字信号处理课程的教学改革与实践》摘要:针对现代数字信号处理的课程特点,开展课程的教学改革与实践,建立基于MATLAB实现的教学示例,并应用于课堂与实践教学,有助于提高教学质量,培养学生的研究能力和创新能力,且促进课程由传统课堂教学向研究型教学转化。
关键词:现代数字信号处理;教学;MATLAB;教学示例中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2012)06-0093-02随着计算机和微处理器技术的迅速发展,学科间的交叉与融合,数字信号处理技术得到了飞速发展,出现了以现代滤波器技术、现代谱分析理论、智能信息处理方法等为标志的现代数字信号处理理论及技术,并广泛应用于现代通信、新型雷达、精确遥测、医疗等众多领域。
目前,现代数字信号处理课程主要面向研究生层次学生开设。
由于该课程的理论性和实践性都很强,且其基本原理和方法已广泛应用于各领域,因此教师教好和学生学好该课程都很重要。
一、课程特点及传统教学中存在的困难现代数字信号处理课程具有数学理论推导较多、内容广泛、概念抽象等特点。
由于工科研究生的数学理论水平普遍不高,同时课程的学时有限,若教学方法不当,学生一方面在学习过程中常感到枯燥乏味,难以理解和掌握;另一方面易造成学生畏惧学习的心理,失去学习兴趣。
现代数字信号处理同时是一门以算法为核心,实践性很强的课程,其算法的应用实现主要基于计算机的数值计算。
如果教师采用传统的教学方式,主要讲授基础理论和算法的推导,学生则主要利用大量的公式、算法及推导进行学习和解题,而忽视让学生采用计算机动手设计、调试和分析课程中大量的、应用性较强的内容,会使得学生感觉该课程是一门数学理论课,不利于他们深层次理解数学概念中所蕴含的物理和工程意义,从而造成课后实践受到很大限制,不利于学生以后从事有关信号处理领域的研究工作。
因此,如何提高学生学习的兴趣和主动性,增强他们对知识的理解和掌握,培养学生综合应用所学知识解决实际问题的实践能力是本课程教学所要解决的关键问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
彩色图像处理【摘要】本文主要介绍了彩色图像处理中的全彩色处理,包括三色成像的原理,常见的三种颜色模型——RGB模型、CMY模型和HSI模型,并给出描述颜色空间的转换关系的算法,还介绍了基于彩色增强以及彩色图像复原的滤波,并在Matlab上进行仿真。
【关键字】RGB模型滤波彩色增强图像复原1 引言大千世界五彩斑斓,大多数物体都具有丰富的色彩。
彩色图像提供了比灰度图像更多的信息,伴随信息技术的发展,彩色图像的处理已成为一个重要的研究领域。
由于彩色图像处理的研究范围非常广泛,因此,本文只对几个方面进行了综述性的介绍。
2 彩色基础人眼最内层是视网膜,其表面分布着大量的光敏细胞。
按照形状,光敏细胞可以分为锥状细胞和杆状细胞。
大部分的锥状细胞集中在视轴线和视网膜的交界处,即中央凹区。
中央凹区对光有较高的分辨力,能识别图像的细节。
锥状细胞将电磁光谱的可见部分分成三个波段:红、绿和蓝。
所以,这三种颜色被称为人类视觉的三原色。
三色成像的原理如下:物体的颜色是由该物体所反射的光的波长来决定的,由于物体对光的吸收和反射的属性不同,所以表现出不同的颜色。
电磁波波长范围很大,但是只有波长在400~760nm范围内的电磁波,使人产生视觉,感觉到明亮和颜色。
这个波长范围内的电磁波叫可见光。
人眼的锥状细胞将可见光分成红、绿、蓝三色。
自然界中常见的各种色光都可以用这三原色按照不同比例混合得到。
同样,绝大多数色光也可以分解成红、绿、蓝三种色光,这就是三原色原理。
该原理是T.Young在1802年提出的,其基本内容是:任何颜色都可以用3种不同的基本颜色按不同的比例混合得到,即321cC bC aC C ++=, a,b,c ≥0 (1) 其中1C 、2C 、3C 为三原色(又称为三基色),而a 、b 、c 为三种原色的权值(即三原色的比例或浓度),C 为所合成的颜色,可为任意颜色。
三原色原理指出:1)自然界中的可见颜色都可以用三种原色按一定的比例混合得到;反之,任意一种颜色都可以分解为三种原色。
2)作为原色的三种颜色应该互相独立,即其中任何一种都不能用其他两种混合得到。
3)三原色之间的比例直接决定混合色调的饱和度。
4)混合色的亮度等于各原色的亮度之和。
三原色原理是色度学中最基本的原理。
1931年,国际照明委员会(CIE )规定用波长为700nm 、546.1nm 和435.8nm 的单色光分别作为红(R )、绿(G )、蓝(B )三原色。
红绿蓝三原色按照比例混合可以得到各自颜色,其配色方程为: C=aR+bG+cB , a,b,c ≥0 (2) 其中,C 为任意一种颜色,R 代表红色,G 代表绿色,B 代表蓝色,而a,b,c 则是三原色的权值。
把三原色按不同比例相加进行混色称为相加混色,其中:红色+绿色=黄色红色+蓝色=品红绿色+蓝色=青色红色+绿色+蓝色=白色称黄色、品红、青色为相加二次色。
对于强度相同的不同单色光,人眼的主管亮度感觉不同,相同亮度的三原色,人眼看去的感觉是,绿色光的亮度最亮,而红色光其次,蓝色光最弱。
采用三原色来表示各种颜色,使得彩色图像的获取、表示、传输和复制成为可能。
它也广泛应用于彩色绘制、印染、摄影等多方面。
3 颜色模型:颜色模型指的是某个三维颜色空间中的一个可见光子集,它包含某个色彩域的所有色彩。
一般而言,任何一个色彩域都只是可见光的子集,任何一个颜色模型都无法包含所有的可见光。
常见的颜色模型有RGB、CIE、CMY/CMYK、HSI、NTSC、YcbCr、HSV等。
3.1 RGB模型RGB模型是目前最常用的一种彩色信息表达方式,它使用红、绿、蓝三原色的亮度来定量表示颜色。
该模型也称为加色混色模型,是以RGB三色光互相叠加来实现混色的方法,因而适合于显示器等发光体的显示。
其混色效果如图1所示。
RGB颜色模型可以看做三维直角坐标颜色系统中的一个单位正方体。
任何一种颜色在RGB颜色空间都可以用三维空间中的一个点来表示,其彩色立方体如图2所示。
在RGB颜色空间上,当任何一个基色的亮度值为0时,即在原点处,就显示为黑色。
当三种基色都达到最高亮度时,就表现为白色。
在连接黑色与白色的对角线上,是亮度等量的三基色混合而成的灰色,该线称为灰色线。
立方体位于坐标轴上的三个顶点分别为三基色红、绿、蓝色。
而另外三个顶点则对应于二次色黄色、青色以及品红。
图1 RGB混色效果图图2 彩色立方体一幅M*N的RGB彩色图像可以用一个M*N*3的矩阵来描述,图像中的每一个像素点对应于红、绿、蓝三个分量组成的三元组。
在Matlab中,不同的图像类型,其图像矩阵的取值范围也不一样。
在Matlab中要生成一幅RGB图像可以采用cat函数来得到。
其基本语法如下:B=cat(dim,A1,A2,A3,…)其中,dim为维数,cat函数将A1,A2,A3等矩阵连接成维数为dim的矩阵。
对图像生成而言,可以取dim为3,然后将三个分别代表R,G,B分量的矩阵连接在一起:I=cat(3,iR,iG,iB)在这里iR,iG,iB分别为生成的RGB图像的R,G,B分量。
这样,就可以通过cat函数将三个分量合成一幅彩色图像。
相应地,要分别获取一幅RGB图像I的三个分量的值,可以使用下列语句:iR=I(:,:,1);iG=I(:,:,2);iB=I(:,:,3);例1 生成一幅128*128的RGB图像,该图像左上角为红色,右上角为蓝色,左下角为绿色,右下角为黑色。
其Matlab程序见附录eg1.m,得到一幅采用cat函数生成的RGB图像如图3所示:图3 采用cat函数生成的RGB3.2 CMY模型和CMYK模型CMY模型是硬拷贝设备上输出图形的颜色模型,常用于彩色打印、印刷行业等。
青(Cyan)、品红(Magenta)、黄(Yellow)在彩色立方体中分别是红、绿、蓝的补色,称为减色基,而红、绿、蓝称为加色基。
因此,CMY模型称为减色混合模型。
在CMY模型中,颜色是从白光中减去一定成分得到的;而不是像RGB模型那样,是在黑色光中增加某种颜色。
可以看到,在笛卡尔坐标系中,CMY 颜色模型与RGB 颜色模型外观相似,但原点和顶点刚好相反,CMY 模型的原点是白色,相对的顶点是黑色。
因此,CMY 三种被打印在纸上的颜色可以理解为:青(C )=白色—红色品红(M )=白色—绿色黄(Y )=白色—蓝色因此CMY 坐标可以从RGB 模型中得到:⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛B G R Y M C 111 (3)而白色光是由红、绿、蓝三色相加得到的,上面的等式还可以还原为我们常用的加色等式。
青(C )=(红色+绿色+蓝色)-红色=绿色+蓝色品红(M )=(红色+绿色+蓝色)-绿色=红色+蓝色黄(Y )=(红色+绿色+蓝色)-蓝色=红色+绿色由于在印刷时CMY 模型不可能产生真正的黑色,因此在印刷业中实际上的使用是CMYK 颜色模型,K 为第四种颜色,表示黑色。
在彩色打印及彩色印刷中,由于彩色墨水、油墨的化学特性、色光反射和纸张对颜料的吸附程度等因素,用等量的CMY 三色得不到真正的黑色,所以在CMY 色彩中需要另加一个黑色(K ),才能弥补这三个颜色混合不够黑的问题。
从CMY 到CMYK 的转换公式如下:()Y M C K ,,min =K C C -=K M M -= (4) K Y Y -=RGB 颜色空间与CMY 颜色空间的相互转换可以使用函数imcomplement:I2=imcomplement (I1)该函数得到图像I1的互余图像,其中I1可以是二值图像、灰度图像或者彩色图像,而I2与I1互余。
例2 将一幅RGB 图像转换到CMY 空间。
代码部分见附录eg2.m,运行结果如下。
(a) RGB颜色空间的彩色图像 (b) CMY颜色空间的转换图4 RGB颜色空间与CMY颜色空间的转换3.3 HSI模型HSI(Hue-Saturation-Intensity,HSI)模型用H、S、I三参色数描述颜色特性,它是由Munseu提出的一种颜色模型。
其中H定义为颜色的波长,称为色调;S表示颜色的深浅程度,称为饱和度;I表示强度或亮度。
HSI颜色模型反映了人的视觉对色彩的感觉。
在HIS颜色模型中,色调H和饱和度S包含了颜色信息,而强度I则与彩色信息无关。
色调H由角度表示,它反映了颜色最接近哪种光谱波长,即光的不同颜色,如红、蓝、绿等。
通常假定0°表示的颜色为红色,120°的为绿色,240°的为蓝色,0°~360°的色相覆盖了所有可见光谱的色彩。
饱和度S表征颜色的深浅程度,饱和度越高,颜色越深,如深红,深绿。
饱和度参数是色环的原点(圆心)到色彩点的半径的长度。
由色环可以看出,在环的边界上的颜色饱和度最高,其饱和度值为1;在中心的则是中性(灰色)影调,其饱和度为0。
亮度是指光波作用于感受器所发生的效应,其大小由物体反射系数来决定。
反射系数越大,物体的亮度越大,反之越小。
如果把亮度作为色环的垂线,那么H、S、I构成一个柱形彩色空间,即HIS模型的三个属性定义了一个三维柱形空间。
例3 将一幅三原色图像从RGB空间转换到HSI空间。
代码见附录eg3.m,运行结果如图5.所示,由图可见,H分量的效果不是很好,但是饱和度S与亮度I相互独立。
一般而言,对一种从RGB空间转换到HSI空间的方法,只要该方法保证转换后的色调H是一个角度,饱和度S与亮度I相互独立,并且这个转换是可逆的,那么这种方法就是可行的。
(a)三原色(b)H分量(c)S分量(d)I分量图5 三原色RGB空间及其在HSI空间的各个分量4 全彩色图像处理4.1彩色增强通过分别对彩色图像的R、G、B三个分量进行处理,可以对单色图像进行彩色增强从而达到对彩色图像进行彩色增强的目的。
需要注意的是,在对三色彩色图像的R、G、B分量进行操作时,必须避免破坏彩色平衡。
如果在HSI模型的图像上操作,实际上在许多情况下,强度分量可以不看做单一图像,而包含在色调和饱和度分量中的彩色信息,常被不加改变地保留下来。
对饱和度的增强可以通过将每个像素的饱和度乘以一个大一1的常数,这样会使图像的彩色更为鲜明。
反之,可以乘以小于1的常数来减弱彩色鲜明程度。
我们可以在饱和度图像分量中使用非线性点操作,只要变换函数在原点为零。
变化饱和度接近于零的像素饱和度可能破坏彩色平衡。
由前面的介绍可知色调是一个角度,因此给每个像素的色调加一个常数是可行的。
这样就能够得到改变颜色的效果。
加减一个小的角度只会使彩色图像变得相对“冷”色调和“暖”色调,而加减大的角度将使图像有剧烈的变化。
由于色调是用角度表示的,处理时必须考虑到灰度级“周期性”,例如,在8位/像素的情况下,则有255+1=0和0-1=255。