数字图像处理论文
数字图像处理相关论文

数字图像处理相关论文“数字图像处理”是一门利用计算机解决图像处理的学科。
并且,现代多媒体计算机中又广泛采用了数字图像处理技术。
下面是店铺给大家推荐的数字图像处理相关论文,希望大家喜欢!数字图像处理相关论文篇一浅谈“数字图像处理”课程教学改革实践摘要:数字图像处理技术是一种发展迅速且应用广泛的新兴技术,就“数字图像处理”课程的特点,从教学内容、教学手段和方法、教学理论和实践等方面进行改革与实践,增强了学生的实践创新能力,提高了教学质量,收到良好的教学效果。
关键词:数字图像处理;教学手段;实践作者简介:刘忠艳(1975-),女,黑龙江依安人,黑龙江科技学院计算机与信息工程学院,副教授;周波(1963-),男,黑龙江绥化人,黑龙江科技学院计算机与信息工程学院,教授。
(黑龙江哈尔滨 150027)一、“数字图像处理”概述数字图像处理技术是集微电子学、光学、应用数学和计算机科学等学科的一门综合性边缘技术。
[1,2]是当今信息社会中发展迅速且应用广泛的新兴科学技术。
数字图像处理技术广泛应用到通信、计算机、交通运输、军事、医学和经济等各个领域,在各个领域发挥着越来越重要的作用。
随着计算机技术的迅速发展,图像处理的技术和理论不断完善和丰富,新的理论、技术也不断涌现,并逐渐进行应用。
面对这样一门理论与实际紧密结合的课程,在学习过程中,学生常常会遇到很多问题,既为数字图像处理技术应用的广泛前景所吸引,也时常对课程的抽象理论感到苦恼,渐渐失去学习兴趣。
为了激发学生的学习兴趣,提高教学质量,对该课程进行教学改革,势在必行。
经过两年半的教学改革与实践,取得了一定的教学效果。
二、教学改革措施为了提高“数字图像处理”课程的教学质量,激发学生学习本课程的兴趣,对本门课程进行改革,采取以下措施:1.整合教学内容随着计算机技术的迅速发展,数字图像处理技术也得到快速发展。
近几年来,有很多新的应用点和研究涌现出来,在“数字图像处理”课程中加入新技术的介绍,对于学生了解国际的研究和应用热点,尽快地投入相应的研究与应用中去大有益处。
数字图像处理课程论文

彩色图像处理【摘要】本文主要介绍了彩色图像处理中的全彩色处理,包括三色成像的原理,常见的三种颜色模型——RGB模型、CMY模型和HSI模型,并给出描述颜色空间的转换关系的算法,还介绍了基于彩色增强以及彩色图像复原的滤波,并在Matlab上进行仿真。
【关键字】RGB模型滤波彩色增强图像复原1 引言大千世界五彩斑斓,大多数物体都具有丰富的色彩。
彩色图像提供了比灰度图像更多的信息,伴随信息技术的发展,彩色图像的处理已成为一个重要的研究领域。
由于彩色图像处理的研究范围非常广泛,因此,本文只对几个方面进行了综述性的介绍。
2 彩色基础人眼最内层是视网膜,其表面分布着大量的光敏细胞。
按照形状,光敏细胞可以分为锥状细胞和杆状细胞。
大部分的锥状细胞集中在视轴线和视网膜的交界处,即中央凹区。
中央凹区对光有较高的分辨力,能识别图像的细节。
锥状细胞将电磁光谱的可见部分分成三个波段:红、绿和蓝。
所以,这三种颜色被称为人类视觉的三原色。
三色成像的原理如下:物体的颜色是由该物体所反射的光的波长来决定的,由于物体对光的吸收和反射的属性不同,所以表现出不同的颜色。
电磁波波长范围很大,但是只有波长在400~760nm范围内的电磁波,使人产生视觉,感觉到明亮和颜色。
这个波长范围内的电磁波叫可见光。
人眼的锥状细胞将可见光分成红、绿、蓝三色。
自然界中常见的各种色光都可以用这三原色按照不同比例混合得到。
同样,绝大多数色光也可以分解成红、绿、蓝三种色光,这就是三原色原理。
该原理是T.Young在1802年提出的,其基本内容是:任何颜色都可以用3种不同的基本颜色按不同的比例混合得到,即321cC bC aC C ++=, a,b,c ≥0 (1) 其中1C 、2C 、3C 为三原色(又称为三基色),而a 、b 、c 为三种原色的权值(即三原色的比例或浓度),C 为所合成的颜色,可为任意颜色。
三原色原理指出:1)自然界中的可见颜色都可以用三种原色按一定的比例混合得到;反之,任意一种颜色都可以分解为三种原色。
数字图像处理技术的浅析论文(2)

数字图像处理技术的浅析论文(2)数字图像处理技术的浅析论文篇二《数字图像处理技术的应用前景探索》【摘要】数字图像处理技术是指将图像信号转换成数字信号并利用电脑对信号进行处理的一种技术手段。
本文对数字图像的优点、数字图像处理的特点、数字图像处理的应用等方面进行了研究,对应用前景进行了深入的分析。
【关键词】数字图像技术数字图像处理应用一、数字图像的优点(一)再现性好。
数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。
只要图像在数字化时准确地表现了原稿,则数字图像处理过程始终能保持图像的再现[2] 。
(二)处理精度高。
按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。
现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。
对计算机而言,不论数组大小,也不论每个像素的位数多少,其处理程序几乎是一样的。
换言之,从原理上讲不论图像的精度有多高,处理总是能实现的,只要在处理时改变程序中的数组参数就可以了。
回想一下图像的模拟处理,为了要把处理精度提高一个数量级,就要大幅度地改进处理装置,这在经济上是极不合算的。
(三)适用面宽。
图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像(例如X射线图像、射线图像、超声波图像或红外图像等)。
从图像反映的客观实体尺度看,可以小到电子显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。
这些来自不同信息源的图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像(彩色图像也是由灰度图像组合成的,例如RGB图像由红、绿、蓝三个灰度图像组合而成)组合而成,因而均可用计算机来处理。
即只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。
(四)灵活性高。
图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。
数字图像处理论文

数字图像处理论文数字图像处理在计算机视觉和图像分析领域中扮演着重要角色。
随着数字图像处理算法的不断发展和改进,对于图像的处理和分析有了更深入的理解。
本篇论文主要介绍了数字图像处理的一些基础概念、方法和应用。
首先,数字图像处理是基于计算机的图像处理技术,旨在改善图像的质量、增强图像的特征以及从图像中提取有用的信息。
数字图像处理的基本步骤包括图像获取、预处理、特征提取和图像重建等。
在图像获取的阶段,通过传感器或数码相机等设备获取图像的原始数据。
在预处理的阶段,对图像进行去噪、平滑和增加对比度等操作,以消除图像中的噪声和提高图像的视觉效果。
在特征提取的阶段,根据图像的特定特征,如边缘、纹理和颜色等,进行特征的提取和描述。
在图像重建的阶段,利用图像处理算法对图像进行重建和恢复。
常见的图像处理算法包括滤波、变换和编码等。
滤波算法主要用于图像平滑和去噪,如均值滤波、中值滤波和高斯滤波等。
变换算法主要用于提取图像的频域特征,如傅里叶变换和小波变换等。
编码算法主要用于图像的压缩和存储,如JPEG、PNG和GIF等。
除了基本的图像处理方法,数字图像处理还有许多应用领域。
其中之一是医学图像处理,包括医学图像的分割、配准和识别等。
另一个应用是遥感图像处理,用于地理信息系统和环境监测等领域。
此外,数字图像处理还在安全和认证、图像检索和图像合成等领域发挥重要作用。
总之,数字图像处理是一门研究如何使用计算机技术对图像进行处理和分析的学科。
通过了解数字图像处理的基本概念、方法和应用,可以更好地理解图像的特性和结构,提高图像处理的效果和精度,并在各个领域中发挥重要作用。
数字图像计算机处理技术论文范文

数字图像计算机处理技术论文范文推荐文章无人机应用技术论文优秀范文热度:物联网传感知识技术论文范文热度:维修电工技术论文范文大全热度:无人驾驶技术原理论文优秀范文热度:现代教育技术论文范文热度:数字图像处理技术是研究采用计算机和其他数字化技术对图像信息进行处理的新技术。
小编整理了数字图像处理技术论文,欢迎阅读! 数字图像处理技术论文篇一浅谈数字图像处理技术摘要:本文针对目前广泛应用数字图像识别处理技术国内外研究现状进行了分析,阐述了数字图像处理技术的应用前景。
关键词:数字图像图像处理数字技术应用一、数字图像处理综述数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息,数字图像处理作为一门学科大约形成于20世纪60年代初期,早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
首次获得实际成功应用的是美国喷气推进实验室(JPL),他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。
随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。
在以后的宇航空间技术,医学技术中数字图像处理技术都发挥了巨大的作用。
从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展,人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。
数字图像处理技术的探究论文_数字图像处理课程论文

数字图像处理技术的探究论文_数字图像处理课程论文数字图像处理技术的探究论文篇一《数字图像处理技术的探究》【摘要】目前,图像处理技术得到较好的发展,本文以数字图像处理技术为研究对象,对其发展与应用现状进行简述,并对此技术的优缺点以及制约因素进行系统的分析,概述了此项技术在日后发展中的应用范围。
通过对数字图像处理技术的分析,让我们更深入的了解此项技术,为日后的研究提供一定的理论基础。
【关键词】数字图像处理技术发展就图像处理技术而言,可分为模拟图像与数字图像处理两大类。
数字图像处理技术在发展的过程中,涉及多门学科,其中包括生物学、计算机、信息科学等。
因此,数理与边缘学科与图像处理技术的关系越来越密切。
在最近几年中,数字图像处理技术逐步趋于完善,在遥感、人工智能等多个领域中被广泛使用,并促进相关学科得到较好的发展。
1数字图像处理技术的发展与应用在上世纪六十年代,随着VLS与计算机的发展产生了数字图像处理技术,并不断完善、成熟的一项新技术。
不管是在理论还是实际方面,都取得了较好的进步。
在早期,图像处理主要是为了使图片的质量更加完善。
输入图像的质量较低,而输出图片的质量较高,通常采用复原、压缩等方式进行处理。
此项技术首次应用成功是在美国的喷气推进实验室中。
此后,在航空领域中得到很好的应用,促进了此门学科的发展。
除此之外,数字图像处理技术在医学上也得到了很好的应用。
自上世纪七十年代中期之后,计算机与智能化得到很好的发展,也促进了图像处理技术的进步。
人们开始研究怎样通过计算机,对图像进行系统的解释,这被称作计算机视觉或图像理解。
上世纪几十年代,数字图像处理技术得到大力发展。
截止目前,此项技术在医疗设备、地理信息系统等多个领域中被广泛使用。
2数字图像处理技术的特点2.1优点(1)再现性较好。
数字图像处理技术不会因为各种变换操作而造成图片出现质量退化的现象,始终确保图像可以真实的再现。
(2)处理精度高。
根据当前技术,基本上能够把一副模拟的图像通过数字化做各种二维数组,与图像数字化设备能力有直接的关系。
数字图像处理论文

数字图像处理论文数字图像处理论文篇一:数字图像增强技术摘要:数字图像处理是指利用计算机技术对图像进行各种操作和处理的过程。
图像增强是数字图像处理中的一项重要技术,旨在改善图像的质量和视觉效果。
本文针对数字图像增强技术进行了综述,包括直方图均衡化、滤波和锐化等常用方法。
此外,还介绍了一些新近提出的图像增强算法,如基于深度学习的方法。
最后,对数字图像增强技术的发展趋势进行了展望。
关键词:数字图像处理;图像增强;直方图均衡化;滤波;锐化;深度学习1.引言数字图像处理是计算机科学和图像处理领域的重要研究方向。
随着数字图像在各个领域的广泛应用,对图像质量和视觉效果的要求也越来越高。
图像增强是数字图像处理的一项基础技术,通过改善图像的对比度、亮度和细节等特征,提高图像的可视化效果。
图像增强技术已被广泛应用于医学影像、无人驾驶、图像识别等领域。
2.直方图均衡化直方图均衡化是一种常用的图像增强方法,通过调整图像的像素值分布,提高图像的对比度和显示效果。
其基本思想是将原始图像的像素值映射到一个新的像素值域,使得新图像具有均匀分布的像素值。
直方图均衡化可以有效地增强图像的细节和纹理特征,但在一些情况下会导致图像过度增强或噪声增加。
3.滤波技术滤波是图像处理中常用的一种方法,通过对图像进行平滑或者锐化处理,改善图像的质量和视觉效果。
常用的滤波方法有均值滤波、中值滤波和高斯滤波等。
均值滤波通过计算像素点周围邻域像素的平均值来更新像素的值,可用于图像的平滑处理。
中值滤波通过计算像素点周围邻域像素的中值来更新像素的值,可有效地去除图像中的椒盐噪声。
高斯滤波通过对图像进行加权平均处理,对图像进行平滑和去噪。
4.锐化技术锐化是图像处理中常用的一种技术,通过增加图像中的高频成分,提高图像的边缘和细节等特征。
常用的锐化方法有拉普拉斯算子、Sobel算子和Canny算子等。
拉普拉斯算子通过计算图像的二阶导数来增强图像的边缘和细节。
Sobel算子通过计算图像的一阶导数来提取图像的边缘特征。
2024年数字图像处理论文doc

2024年数字图像处理论文doc标题:2024年数字图像处理论文doc一、引言随着技术的不断发展,数字图像处理在各个领域中的应用越来越广泛。
本文旨在探讨2024年数字图像处理领域的发展趋势,以及相关算法和技术的应用。
通过对数字图像处理的研究,希望能够为相关领域的发展提供一定的参考和帮助。
二、数字图像处理的基本原理数字图像处理是一种利用计算机对图像进行加工、处理和分析的技术。
数字图像处理的基本原理是将图像转换为数字信号,然后利用计算机对数字信号进行处理和分析。
数字图像处理技术包括图像增强、图像变换、图像滤波、图像恢复、图像分析等。
三、数字图像处理的应用范围数字图像处理技术的应用范围非常广泛,包括医学影像、安防监控、智能交通、工业生产、环境监测等领域。
随着技术的不断发展,数字图像处理的应用范围将会更加广泛。
四、数字图像处理的热点问题和研究方向目前,数字图像处理的热点问题和研究方向包括深度学习、人工智能、虚拟现实等。
其中,深度学习在数字图像处理中的应用已经得到了广泛的认可,其在图像识别、目标检测、人脸识别等方面的应用已经取得了显著的成果。
此外,人工智能在数字图像处理中的应用也在不断发展,包括机器学习、神经网络等。
虚拟现实技术在数字图像处理中的应用也在逐渐增加,其在虚拟现实游戏、电影制作等方面的应用已经得到了广泛的应用。
五、数字图像处理的发展趋势和未来前景随着技术的不断发展,数字图像处理的应用范围将会更加广泛。
未来,数字图像处理技术将会更加智能化、自动化和人性化,其在各个领域中的应用将会更加深入。
同时,数字图像处理技术也将会面临更多的挑战和机遇,包括如何提高图像处理的精度和速度、如何解决图像处理中的隐私和安全问题等。
六、总结本文对2024年数字图像处理领域的发展趋势进行了探讨,并介绍了相关算法和技术的应用。
数字图像处理技术已经成为各个领域中不可或缺的一部分,其未来的发展前景非常广阔。
希望本文能够对相关领域的发展提供一定的参考和帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章
人们对外界信息的百分之七十五都来自图像,也就是说人类的大部分信息都是从图像中获取的。利用计算机对图像进行各种形式的处理,促进了图像处理技术的快速发展。图像增强本身就是图像处理中最具吸引力的领域之一。
通过采取适当的增强处理可以将原本模糊不清甚至根本无法分辨的原始图片处理成清楚、明晰的富含大量有用信息的可使用图像,因此图像增强技术在许多领域得到广基于图像增强的数字图像处理研究泛应用。迄今为止,图像增强技术己经广泛用于军事、地质、海洋、森林、医学、遥感、微生物以及刑侦等方面。
第三章
3.1 基本原理
图像增强技术可分为两大类:一类是频域处理法、一类是空域处理法。空域图像增强是指按特定的需要突出一幅图像中的某些信息,同时,削弱或去除某些不需要的信息的处理方法。其主要目的是处理后图像对某些特定的应用比原来的图像更加有效,从而达到改善图像质量的目的。空域处理法是直接对图像中的像素进行处理,基本上是以灰度映射变换为基础的。所用的映射变换取决于增强的目的,例如增加图像的对比度,改善图像的灰度层次等处理均属于空域处理法。直方图是图像处理中比较重要的一个概念,它用于显示图像的灰度值分布情况。
在图像处理过程中图像增强是十分重要的一个环节。本文的主要内容就是围绕图像增强部分的一些基本理论和算法而展开。
1.2 图像增强技术国内发展状况
在借鉴国外相对成熟理论体系和技术应用体系的条件下,国内的增强技术和应用也有了很大的发展。总体来说,图像增强技术的发展大致经历了初创期、发展期、普及期和应用期4个阶段。初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机对其进行处理。在这一时期由于图像存储成本高,处理设备造价高,因而其应用面很窄。20世纪70年代进入了发展期,开始大量采用中、大型机进行处理,图像处理也逐渐改用光栅扫描显示方式,特别是出现了CT和卫星遥感图像,对图像增强处理提出了一个更高的要求。到了20世纪80年代,图像增强技术进入普及期,此时的计算机已经能够承担起图形图像处理的任务。20世纪90年代进入了应用期,人们运用数字图像增强技术处理和分析遥感图像,以有效地进行资源和矿藏的勘探、调查、农业和城市的土地规划、作物估产、气象预报、灾害及军事目标的监视等。在生物医学工程方面,运用图像增强技术对X射线图像、超声图像和生物切片显微图像等进行处理,提高图像的清晰度和分辨率。在工业和工程方面,主要应用于无损探伤、质量检测和过程自动控制等方面;在公共安全方面,人像、指纹及其他痕迹的处理和识别,以及交通监控、事故分析等都在不同程度上使用了图像增强技术。图像增强是图像处理的重要组成部分,传统的图像增强方法对于改善图像质量发挥了极其重要的作用。随着对图像技术研究的不断深入和发展,新的图像增强方法不断出现。例如一些学者将模糊映射理论引入到图像增强算法中,提出了包括模糊松弛、模糊熵、模糊类等增强算法来解决增强算法中映射函数选择问题,并且随着交互式图像增强技术的应用,可以主观控制图像增强效果。同时利用直方图均衡技术的图像增强也有许多新的进展:例如提出了多层直方图结合亮度保持的均衡算法、动态分层直方图均衡算法。这些算法通过分基于图像增强的数字图像处理研究。
1.1
随着电子计算机技术的进步,计算机图像处理近年来得到飞跃的发展,已经成功的应用于几乎所有与成像有关的领域,并正发挥着相当重要的作用。它利用计算机对数字图像进行系列操作,从而获得某种预期的结果。 对图像进行处理时,经常运用图像增强
技术以改善图像的质量。
在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降。在摄影时由于光照条件不足或过度,会使图像过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊, 传输过程中会引入各种类型的噪声。总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为质量问题。尽管由于目的、观点、爱好等的不同,图像质量很难有统一的定义和标准,但是根据应用要求改善图像质量却是一个共同的目标。从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像,有效地去除图像中的噪声、增强图像中的边缘或其他感兴趣的区域从而更加容易对图像中感兴趣的目标进行检测和测量。图像增强的目的是增强图像的视觉效果,将原图像转换成一种更适合于人眼观察和计算机分析处理的形式。它一般要借助人眼的视觉特性,以取得看起来较好地视觉效果,很少涉及客观和统一的评价标准。增强的效果通常都与具体的图像有关系,靠人的主观感觉加以评价。
2.3.2 图像增强的现状与应用
计算机图像处理的发展历史不长,但已经引起了人们的重视。图像处理技术始20世纪60年代,由于当时图像存储成本高,处理设备造价高,因而其应用面很窄。1964年美国加州理工学院的喷气推进实验室,首次对徘徊者7号太空飞船发回的月球照片进行了处理得到了前所未有的清晰图像,这标志着图像处理技术开始得到实际应用。70年代进入发展期出现cr和卫星遥感图像,对图像处理的发展起到了很好的促进作用。80年代进入普及期此时微机己经能够承担起图形图像处理的任务。90年代是图像处理技术实用化时期,图像处理的信息量巨大,对处理的速度要求极高。21世纪的图像处理技术要向高质量化方面发展,实现图像的实时处理,采用数字全息技术使图像包含最为完整和丰富的信息,实现图像的智能生成、处理、理解和识别。
目前图像增强处理的应用已经渗透到医学诊断、航空航天、军事侦察、指纹识别、无损探伤、卫星图片的处理等领域如对 x 射线图片、CT影像、内窥镜图像进行增强,使医生更容易从中确定病变区域,从图像细节区域中发现问题;对不同时间拍摄的同一基于图像增强的数字图像处理研究地区的遥感图片进行增强处理,侦查是否有敌人军事调动或军事装备及建筑出现;在煤矿工业电视系统中采用增强处理来提高工业电视图像的清晰度,克服因光线不足、灰尘等原因带来的图像模糊、偏差等现象,减少电视系统维护的工作量。图像增强技术的快速发展同它的广泛应用是分不开的,发展的动力来自稳定涌现的新的应用,我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用。
2.3 图像增强概述
2.3.1 图像增强的定义
图像增强[6]是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需 要的信息的处理方法,也是提高图像质量的过程。 图像增强的目的是使图像的某些特性方面更加鲜明、突出,使处理后的图像更适合人眼视觉特性或机器分析,以便于实现对 图像的更高级的处理和分析。图像增强的过程往往也是一个矛盾的过程:图像增强希望 既去除噪声又增强边缘。但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,因此,在图像增强的时候,往往是将这两部分进行折中,找到一个好的代价函数达需要的增强目的。传统的图像增强算法在确定转换函数时常是基于整个图像的统计量,如:ST转换,直方图均衡,中值滤波,微分锐化,高通滤波等等。基于图像增强的数字图像处理研究这样对应于某些局部区域的细节在计算整幅图的变换时其影响因为其值较小而常常被忽略掉,从而局部区域的增强效果常常不够理想,噪声滤波和边缘增强这两者的矛盾较难得到解决。
2.2 数字图像处理概述
所谓数字图像处理[4],就是利用计算机对数字图像进行系列操作,从而获得某种预期效果的技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展,数字图像处理离不开计算机,因此又称计算机图像处理;二是数字的发展;三是广泛的农牧业,林业,环境,军事和医学等方面的应用需求的增长。
目前,许多新的增强算法[7]都充分利用了周围邻域这一重要的信息,形成了很多局部处理的灰度调整算法,该方法主要利用了邻域的统计特性。近年来,模糊集合理论在图像处理中得到了广泛的应用。Russoti提出的自适应模糊滤波算子可以较好的保护图像细节和滤除高斯噪声,其算法中窗口的大小由邻域一致性程度决定,该一致性程度由一个模糊逻辑规则导出。对图像进行多尺度小波变换后,不同频率的信号出现在不同尺度的子带图像上,有了这些特性就能很好的对感兴趣的部分进行增强。图像变换的方法是多种多样的。
本文研究了图像增强的一些常用方法,包括空域图像增强、 频率域图像增强, 并用MATLAB 编程设计了相应的实验,对图像增强效果进行了验证。
关键字:图像增强;图像;算法;空域增强;频率增强
Abstract
In our daily life and production, people often can't used the raw image directly, because of the generation and transformation of the original image, itmay be affected by many factors, such as a variety of kinds of noise and channel bandwidth. The sharpness and contrast is decreasing and have low qualities. in order to make the image more suitable for some particular application after processing than the original, we often need to improve image quality.Images enhance is in a particular need to highlight a picture in the information, andweaken or remove certain need of information in the process, its purpose is to make the image of a specific application is better than the original image.