小电流接地系统

合集下载

大电流接地系统与小电流接地系统

大电流接地系统与小电流接地系统

大电流接地系统与小电流接地系统(不接地系统)发生故障的区别,对系统设备运行的影响,处理原则和注意事项。

中性点直接接地(包括经小阻抗接地)得系统,当发生单相接地故障时,接地电流一般都比较大,所以称为大电流接地系统.一般110kv及以上的系统采用大电流接地系统。

中性点不接地或经消弧线圈接地的系统,发生单相接地故障时,由于不构成短路回路,接地短路电流比负荷电流小很多,这种系统称为小电流接地系统。

一般66kv及以下系统常采用这种系统1 中性点不接地电网的接地保护中性点不接地系统的接地保护、接地选线装置(1) 系统接地绝缘监视装置:(陡电6.0KV厂用电系统)绝缘监视装置是利用零序电压的有无来实现对不接地系统的监视。

将变电所母线电压互感器其中一个绕组接成星形,利用电压表监视各相对地电压,另一绕组接成开口三角形,接入过电压继电器,反应接地故障时出现的零序电压。

当发生单相接地故障时,开口三角形出现零序电压,过电压继电器动作,发出接地信号。

该保护只能实现监测出接地故障,并能通过三只电压表判别出接地的相别,但不能判别出是哪条线路的接地。

要想判断故障线路,必须经拉线路试验。

且若发生两条线路以上接地故障时,将更难判别。

装置可能会因电压互感器的铁磁谐振、熔断器的接触不良、直流的接地、回路的接触不良而误发或拒发接地信号。

(2) 零序电流保护:零序电流保护是利用故障线路的零序电流比非故障线路零序电流大的特点来实现选择性的保护,如DD-11接地电流继电器和南自厂的RCS-955系列保护。

该保护一般安装在零序电流互感器的线路上,且出线较多的电网中更能保证它的灵敏度和选择性。

但由于零序电流互感器的误差,线路接线复杂,单相接地电容的大小、装置的误差、定值的误差、电缆的导电外皮等的漏电流等影响,发生单相接地故障线路零序电流二次反映不一定比非故障线路大,易发生误判断、误动。

(3) 零序功率保护:零序功率方向保护是利用非故障线路与故障线路的零序电流相差180°来实现有选择性的保护。

小电流接地系统

小电流接地系统

小电流接地系统概念:小电流接地系统——中性点不接地或经消弧线圈接地。

大电流接地系统——中性点直接接地的系统。

1、划分标准。

在我国划分标准:X0/X1>4~5的系统属于小接地电流系统(美国和西欧X0/X1>3的系统属于小接地电流系统)其中:X0为系统零序电抗,X1为系统正序电抗。

2、原因分析。

在实际运行中,常会监视到母线电压不平衡的现象,引起母线电压不平衡的原因很多,处理的办法因故障而异:(1)母线电压互感器一相二次熔丝熔断。

现象为中央信号警铃响,电压互感器一相电压为零,另外两相电压正常。

如10kV母线三相电压为0kV,6.1kV,6.1kV。

处理对策:退出低压等与该互感器有关的保护,更换二次熔丝。

(2)母线电压互感器一相一次熔丝熔断。

从电压表反应出一相电压大幅度降低,其他两相电压有不同程度的降低。

青海湖变母线电压为6.7kV,5.2kV,2.5kV,退出电压互感器检查发现C相一次熔丝熔断,更换之后,投入运行,电压恢复正常。

(3)出线回路发生接地,这是电网常见的不正常运行状态。

发生接地时,故障相对地电压降低,金属性的完全接地时降为0kV,非故障相对地电压升高,金属性的完全接地时升为线电压。

有的变电所有&"小电流接地选检装置&",根据接地时产生零序电流,能判断出接地的线路。

若变电所内无此装置,则通过运行人员的操作选出接地线路之后,通过及时调度通知线路维护人员去处理。

因为接地时常引起母线避雷器爆炸、电压互感器发热喷油、高温的电弧容易损坏设备,引起线路另一点接地,造成两相短路,尤其是间歇性的接地还能引起网络电压不应有的升高。

①要根据运行经验及选检原则,先拉无电源、分支最多、线路最长、负荷最轻和无重要用户的线路,后拉分支较少、线路最短、负荷较重和重要用户的线路。

②熟练掌握运行方式。

如某一变电所,正常方式下两台主变并列运行,接地时,通常断开分段断路器来缩小查找接地的范围。

大电流接地系统与小电流接地系统

大电流接地系统与小电流接地系统

大电流接地系统与小电流接地系统(不接地系统)发生故障的区别,对系统设备运行的影响,处理原则和注意事项。

中性点直接接地(包括经小阻抗接地)得系统,当发生单相接地故障时,接地电流一般都比较大,所以称为大电流接地系统.一般110kv及以上的系统采用大电流接地系统。

中性点不接地或经消弧线圈接地的系统,发生单相接地故障时,由于不构成短路回路,接地短路电流比负荷电流小很多,这种系统称为小电流接地系统。

一般66kv及以下系统常采用这种系统1 中性点不接地电网的接地保护中性点不接地系统的接地保护、接地选线装置(1)系统接地绝缘监视装置:(陡电6.0KV厂用电系统)绝缘监视装置是利用零序电压的有无来实现对不接地系统的监视。

将变电所母线电压互感器其中一个绕组接成星形,利用电压表监视各相对地电压,另一绕组接成开口三角形,接入过电压继电器,反应接地故障时出现的零序电压。

当发生单相接地故障时,开口三角形出现零序电压,过电压继电器动作,发出接地信号。

该保护只能实现监测出接地故障,并能通过三只电压表判别出接地的相别,但不能判别出是哪条线路的接地。

要想判断故障线路,必须经拉线路试验。

且若发生两条线路以上接地故障时,将更难判别。

装置可能会因电压互感器的铁磁谐振、熔断器的接触不良、直流的接地、回路的接触不良而误发或拒发接地信号。

(2)零序电流保护:零序电流保护是利用故障线路的零序电流比非故障线路零序电流大的特点来实现选择性的保护,如DD-11接地电流继电器和南自厂的RCS-955系列保护。

该保护一般安装在零序电流互感器的线路上,且出线较多的电网中更能保证它的灵敏度和选择性。

但由于零序电流互感器的误差,线路接线复杂,单相接地电容的大小、装置的误差、定值的误差、电缆的导电外皮等的漏电流等影响,发生单相接地故障线路零序电流二次反映不一定比非故障线路大,易发生误判断、误动。

(3)零序功率保护:零序功率方向保护是利用非故障线路与故障线路的零序电流相差180°来实现有选择性的保护。

小电流接地系统单相金属接地

小电流接地系统单相金属接地

未来研究方向与展望
深入研究小电流接地系统单相金属接地的暂态过程和 稳态过程的相互作用机制,揭示接地故障的动态演化
规律。
输标02入题
探索接地电阻、接地电流等参数对故障定位精度的影 响,进一步优化接地故障定位方法,提高定位精度和 可靠性。
01
03
结合人工智能和大数据技术,开发智能化的接地故障 诊断和预警系统,实现接地故障的快速识别、定位和
小电流接地系统单相 金属接地
目录
CONTENTS
• 引言 • 小电流接地系统的原理 • 单相金属接地故障分析 • 接地故障的检测与定位技术 • 接地故障的预防与处理措施 • 结论与展望
01 引言
定义与特性
定义
小电流接地系统单相金属接地是指系 统中某一相导线因绝缘损坏或其它原 因导致与大地直接接触,而其它两相 仍保持对地的绝缘状态。
特性
单相金属接地故障会导致系统电压不 平衡,出现零序电压,接地相对地电 压为零,非接地相对地电压升高至线 电压。
接地故障的危害
01
02
03
设备损坏
接地故障可能导致短路电 流的产生,对设备造成损 坏或缩短使用寿命。
运行风险
电压不平衡可能导致设备 异常运行,影响系统的稳 定性和可靠性。
安全隐患
接地故障可能导致触电等 安全隐患,威胁人身安全。
电压变化
发生单相金属接地故障时,故障相对 地电压降低至零,而非故障相对地电 压升高至线电压,通过监测电压变化 可以判断接地故障。
03 单相金属接地故障分析
故障产生的原因
设备老化
长时间运行的电气设备可能因为 绝缘层老化而发生故障。
外部环境因素
如雷击、鸟类或其他外部因素可能 导致设备损坏。

小电流接地系统接地故障的原因分析及对策

小电流接地系统接地故障的原因分析及对策

小电流接地系统接地故障的原因分析及对策引言小电流接地系统是一种有效预防设备接地故障的保护措施,能够降低电气事故的发生率,提高电网的可靠性。

但在使用过程中,也常常会出现一些接地故障,对设备和人员的安全造成威胁。

本文将对小电流接地系统接地故障的原因及对策进行分析探讨。

小电流接地系统接地故障的定义与分类小电流接地系统是指在系统中引入一个小电流,使电流在接地时,因为电阻的存在而形成一定的电压,以达到快速检测和定位接地点的目的。

小电流接地系统的接地故障通常分为以下两种类型:1.接地电压高:指小电流接地系统的接地电压比正常水平高,严重时可致使设备和人员受到电击,甚至导致火灾等重大事故;2.接地电压低:指小电流接地系统的接地电压比正常水平低,无法检测和定位接地点,从而导致接地故障处理不及时,加重事故后果。

小电流接地系统接地故障的原因分析系统参数错误小电流接地系统的参数设置直接影响系统的可靠性和稳定性,系统参数错误则容易导致接地故障的发生。

主要表现在以下几个方面: 1.系统压力设置不当,导致接地电压高于正常值; 2. 接地电流仪设置不当,导致误差过大; 3. 接地电流阈值设置不当,导致检测不灵敏或过于灵敏。

接地电阻不当小电流接地系统的接地电阻决定了其的电流流过的大小和接地电压的高低,接地电阻不当则会导致接地故障的发生。

主要表现在以下几个方面: 1. 接地电阻过大或过小,导致小电流无法在接地时形成足够的电压差; 2. 接地电阻变化引起接地电压波动,导致无法定位接地点。

负载电流异常小电流接地系统的负载电流异常也是导致接地故障的另一个重要原因。

主要表现在以下几个方面: 1. 负载电流突变,导致小电流接地系统的电压、电流波动太大; 2. 负载电流缺失,引起小电流接地系统检测不准确。

小电流接地系统接地故障的对策正确设置系统参数正确设置小电流接地系统的参数,包括系统压力、接地电流仪、接地电流阈值等,可以提高系统的稳定性和可靠性。

小电流接地系统

小电流接地系统

小电流接地系统的概述在中性点非直接接地电网中通常有以下三种方式,即中性点不接地方式;经消弧线圈接地方式;经电阻接地方式,此类系统在发生单相接地时,由于故障点的电流很小,而且三相之间的线电压基本保持对称,对负荷的供电没有影响,因此,在一般情况下都允许再继续运行1~2能会发展为绝缘破坏、两相短路,弧光放电,引起全系统过电压。

为了防止故障的进一步扩大,应及时发出信号,以便运行人员采取措施予以消除。

因此,在单相接地时,一般只要求选择性地发出信号,而不必跳闸。

但当单相接地对人身和设备的安全有危险时,则应动作于跳闸。

另外一种情况是,当中性点非直接接地系统发生单相接地故障时,接地点将通过接地线路对应电压等级电网的全部对地电容电流。

如果此电容电流相当大,就会在接地点产生间歇性电弧,引起过电压,从而使非故障相对地电压极大增加。

在电弧接地过电压的作用下,可能导致绝缘损坏,造成两点或多点的接地短路,使事故扩大。

为此,我国采取的措施是:当各级电压电网单相接地故障时,如果接地电容电流超过一定数值(35kV电网为10A,10kV电网为20A,3~6kV电网为30A),就在中性点装设消弧线圈,其目的是利用消弧线圈的感性电流来补偿接地故障时的容性电流,就可以减少流经故障点的电流,以致自动熄弧,保证继续供电。

该接地方式因电网发生单相接地的故障是随机的,造成单相接地保护装置动作情况复杂,寻找故障点比较难。

消弧线圈采用无载分接开关,靠人工凭经验操作比较难实现过补偿。

消弧线圈本身是感性元件,与对地电容构成谐振回路,在一定条件下能发生谐振过电压,给继电保护的功能实现增加了困难。

所以当电缆线路较长、系统电容电流较大时,也可以采用经电阻接地方式,即中性点与大地之间接入一定阻值的电阻。

该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。

中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。

小电流接地系统接地故障特征分析

小电流接地系统接地故障特征分析

小电流接地系统接地故障特征分析小电流接地系统接地故障特征分析小电流接地系统是现代输电系统中一种重要的保护措施,用于限制电网发生接地故障时对系统和用户的影响和损失,提高电网的可靠性和安全性。

但是,在小电流接地系统运行中,难免会发生接地故障,给系统带来不良影响。

因此,对小电流接地系统接地故障特征进行分析,有助于及时发现和处理故障,保证系统的可靠运行和用户的安全用电。

一、小电流接地系统的基本原理小电流接地系统是通过一定的电路装置和保护措施,将接地故障电流限制在很小的范围内,从而保证系统的安全稳定运行。

小电流接地系统通过引入中性点电感器,将出现故障时的接地电流转化为电压信号,经过灵敏地电流互感器和控制器的监测和控制,控制开关从母线中间引出接地电流,并将接地故障电流限制在安全范围内。

二、小电流接地系统接地故障的类型小电流接地系统的故障类型主要有以下几种:1. 单相接地故障:发生单相接地故障时,系统将出现高电压跳闸和过电压;2. 两相接地故障:发生两相接地故障时,电网将出现三相短路电流,电网振荡频率将增大;3. 地间故障:地间故障是指通过地面传递的两相接地故障,会导致电网起伏不定,电网波动,对系统的影响很大;4. 跨越接地故障:跨越接地故障是指线路跨越水域时,水中的导体发生故障导致故障电流通过地面传递时,会对系统带来很大影响。

三、小电流接地系统接地故障特征分析小电流接地系统的接地故障特征主要包括以下几个方面:1. 接地电流的突变:当系统发生接地故障时,接地电流会突然增大,从而引起系统保护动作,产生抢扫现象;2. 中性点电压变化:接地故障会导致中性点电压的变化,如果系统存在悬垂中性点,则可能会引起电压失调;3. 接地微短暂:接地故障微短暂,持续时间一般在毫秒到几十毫秒,往往会被系统快速检测器检测出来;4. 接地电流的波形:接地故障电流一般呈现半波周期,且在接触器和断路器开关时间内,电流的周期变化很明显;5. 接地电阻阻值特征:接地故障电阻的阻值变化会对接地电流的大小产生影响,因此对变化的电阻阻值进行监测有助于快速发现故障。

小电流接地系统

小电流接地系统

什么是小电流接地系统? 小电流接地系统接地的原因分析及对策中性点不接地或经消弧线圈接地的系统,发生单相接地故障时,由于不构成短路回路,接地短路电流比负荷电流小很多,这种系统称为小电流接地系统。

一般66kv及以下系统常采用这种系统一般10kv-35kv系统中心点不接地,接地时只有较小的电容电流1-20a左右,电压升高1.732倍左右,对设备不利,可以运行1-2小时,接地的特点?小电流接地电力系统中,单相接地是一种常见的临时性故障,发生单相接地后,故障相对地电压降低,非故障两相的相电压升高,系统相电压由对称变成不对称,而线电压却依然对称(因负序电压等于零),因而,对用户的供电不构成影响,但升高的非故障相电压,可能在绝缘薄弱处引起击穿,继而造成短路;可能使电压互感器铁芯严重饱和,导致电压互感器严重过负荷而烧毁。

所以,发生单相接地后,系统仍能继续运行一定时间,但不允许长期对外供电。

小电流接地系统接地的原因分析及对策小电流接地系统特别是35KV及以下的小接地系统,由于线路分支多,走向复杂,电压等级较低,在设计施工中质量不易保证,运行中发生接地故障的几率很高。

为了便于电网值班人员准确判断接地类别,及时处理故障,保证电网的安全可靠运行,提高用户电能质量。

本文通过对兴义市地方电网的运行实践,从小接地系统绝缘监察装置的构成及动作原理,历年接地故障情况的统计、接地原因、故障判别及预防接地的措施等几个方面进行分析,对运行值班人员和工程技术人员有一定的借鉴作用。

1.问题提出目前,小电流接地系统特别是35KV及以下的小接地系统,由于其线路分支多,走向复杂,电压等级较低,在设计施工中线路质量不易保证,运行中发生接地故障的几率是很高的。

从我市地方电网历年来的运行统计资料来看,在小电流接地系统的接地故障中,35KV电网占8.2%,10KV电网占91.8%。

本文通过笔者在实践中对电网运行工况的了解以及运行经验的总结,分析了小电流接地系统在实际运行中易引起误判的几类接地故障,在给出其原因分析的基础上着重阐述了接地故障的判别方法、处理措施及对策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是小电流接地系统?什么又是大电流接地系统?
我国现在的10KV 110KV 220KV 500KV (国网已经有1000KV)高压输电线路都是没有零线的,因为这些电压等级都是不可以直接被设备(少数超高压设备除外)所接受的。

而我们平时用电最多的是3相4线制(TN—C系统),3根火线+1零线。

而零线的作用是:1.中性线(N线),和火线一起接成相电压。

2.充当某些运行设备的中性点接地(工作接地)。

3.和设备外壳相接充当保护(P线)。

而这些在10KV以上电压等级是不需要的,110KV以上的输电线路上方有2条架空零线(或称架空避雷线、架空地线),其作用是起避雷作用(防止雷电波)。

所以日常见到的高压进线没零线。

9 r5 _/ w1 P$ d: C
问到1相接地的问题,高压输电线都是需要保护的(禁止在无保护的条件下运行),110KV一般有一套保护,220KV以上则需要2套原理不同、且来自不同厂家的保护,运用比较广泛的是光纤纵差和高频保护。

当发生一相接地的时候会发生跳闸,因为线路都有重合闸(分单重、3重、综重),在判定为永久性故障后不进行重合。

所以:短路——重合——跳闸。

, _" b" p+ V& h' x" A3 p
关于大、小电流接地系统的问题,大电流接地系统是指中性点直接接地系统,像我们的3相4
线制就属于,因为在发生故障的时候接地电流会比较大。

小电流接地系统包括:中性点不接地系统、中性点经消弧线圈接地系统、中性点经大电阻接地系统。

发生故障的时候接地电流比较小。

电力的变压器为什么需要装有瓦斯保护?在电网的变压器中,差动保护和瓦斯保护一起构成变压器的主保护,差动保护是用首末两端电流的对比判断故障然后动作的,保护的是变压器的绕组、套管、到CT侧,差动保护属于电气量保护。

瓦斯保护是属于非电气量的保护,装在油箱和油枕之间,分过气流和过油流,如果变压器内部发生短路,那么短路电流会分解变压器油而产生气体,让瓦斯继电器发出告警信号(轻瓦斯保护),短路严重的时候,气温很高,会让油面上升,冲到瓦斯继电器的动作位置,发生跳闸信号(重瓦斯保护)。

由于瓦斯保护可以保护到差动保护所保护不到的位置——铁心。

所以瓦斯和差动一起构成变压器的主保护。

我国现在的10KV 110KV 220KV 500KV (国网已经有1000KV)高压输电线路都是没有零线的,因为这些电压等级都是不可以直接被设备(少数超高压设备除外)所接受的。

而我们平时用电最多的是3相4线制(TN—C系统),3根火线+1零线。

而零线的作用是:1.中性线(N线),和火线一起接成相电压。

2.充当某些运行设备的中性点接地(工作接地)。

3.和设备外壳相接充当保护(P线)。

而这些在10KV以上电压等级是不需要的,110KV以上的输电线路上方有2条架空零线(或称架空避雷线、架空地线),其作用是起避雷作用(防止雷电波)。

所以日常见到的高压进线没零线。

9 r5 _/ w1 P$ d: C
问到1相接地的问题,高压输电线都是需要保护的(禁止在无保护的条件下运行),110KV一般有一套保护,220KV以上则需要2套原理不同、且来自不同厂家的保护,运用比较广泛的是光纤纵差和高频保护。

当发生一相接地的时候会发生跳闸,因为线路都有重合闸(分单重、3重、综重),在判定为永久性故障后不进行重合。

所以:短路——重合——跳闸。

, _" b" p+ V& h' x" A3 p
关于大、小电流接地系统的问题,大电流接地系统是指中性点直接接地系统,像我们的3相4
线制就属于,因为在发生故障的时候接地电流会比较大。

小电流接地系统包括:中性点不接地系统、中性点经消弧线圈接地系统、中性点经大电阻接地系统。

发生故障的时候接地电流比较小。

电力的变压器为什么需要装有瓦斯保护?在电网的变压器中,差动保护和瓦斯保护一起构成变压器的主保护,差动保护是用首末两端电流的对比判断故障然后动作的,保护的是变压器的绕组、套管、到CT侧,差动保护属于电气量保护。

瓦斯保护是属于非电气量的保护,装在油箱和油枕之间,分过气流和过油流,如果变压器内部发生短路,那么短路电流会分解变压器油而产生气体,
让瓦斯继电器发出告警信号(轻瓦斯保护),短路严重的时候,气温很高,会让油面上升,冲到瓦斯继电器的动作位置,发生跳闸信号(重瓦斯保护)。

由于瓦斯保护可以保护到差动保护所保护不到的位置——铁心。

所以瓦斯和差动一起构成变压器的主保护。

我国现在的10KV 110KV 220KV 500KV (国网已经有1000KV)高压输电线路都是没有零线的,因为这些电压等级都是不可以直接被设备(少数超高压设备除外)所接受的。

而我们平时用电最多的是3相4线制(TN—C系统),3根火线+1零线。

而零线的作用是:1.中性线(N线),和火线一起接成相电压。

2.充当某些运行设备的中性点接地(工作接地)。

3.和设备外壳相接充当保护(P线)。

而这些在10KV以上电压等级是不需要的,110KV以上的输电线路上方有2条架空零线(或称架空避雷线、架空地线),其作用是起避雷作用(防止雷电波)。

所以日常见到的高压进线没零线。

9 r5 _/ w1 P$ d: C
问到1相接地的问题,高压输电线都是需要保护的(禁止在无保护的条件下运行),110KV一般有一套保护,220KV以上则需要2套原理不同、且来自不同厂家的保护,运用比较广泛的是光纤纵差和高频保护。

当发生一相接地的时候会发生跳闸,因为线路都有重合闸(分单重、3重、综重),在判定为永久性故障后不进行重合。

所以:短路——重合——跳闸。

, _" b" p+ V& h' x" A3 p
关于大、小电流接地系统的问题,大电流接地系统是指中性点直接接地系统,像我们的3相4
线制就属于,因为在发生故障的时候接地电流会比较大。

小电流接地系统包括:中性点不接地系统、中性点经消弧线圈接地系统、中性点经大电阻接地系统。

发生故障的时候接地电流比较小。

电力的变压器为什么需要装有瓦斯保护?在电网的变压器中,差动保护和瓦斯保护一起构成变压器的主保护,差动保护是用首末两端电流的对比判断故障然后动作的,保护的是变压器的绕组、套管、到CT侧,差动保护属于电气量保护。

瓦斯保护是属于非电气量的保护,装在油箱和油枕之间,分过气流和过油流,如果变压器内部发生短路,那么短路电流会分解变压器油而产生气体,让瓦斯继电器发出告警信号(轻瓦斯保护),短路严重的时候,气温很高,会让油面上升,冲到瓦斯继电器的动作位置,发生跳闸信号(重瓦斯保护)。

由于瓦斯保护可以保护到差动保护所保护不到的位置——铁心。

所以瓦斯和差动一起构成变压器的主保护。

相关文档
最新文档