正负数 有理数 相反数 数轴 绝对值测试.
有理数-数轴-绝对值-加减法练习卷

2016.6有理数、数轴、绝对值、加减法练习卷一•选择题(共15小题)1 •六月份某登山队在山顶测得温度为零下32度,此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A. 20°B. - 20CC. 44C D • - 44C2 . 2的相反数是()A._ 1B.C.-2D.2223. 如图, 数轴上有A,B, G D四个点,其中到原点距离相等的两个点是( )A•■C2-2 -1 0 1 2A.点B与点DB.点A与点C C点A与点D D.点B与点C4. 如图,数轴上有M, N, P, Q四个点,其中点P所表示的数为a,则数 -3a所对应的点可能是()MNPQ—♦ --- ■■乙------ *—>A. MB. N CP D. Q5. a , b在数轴上的位置如图,化简∣a+b∣的结果是()A. - a - bB. a+bC. a - b D . b - a6. 如图,数轴上有四个点MP, N Q若点M, N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()-- «----- • ■ •>M P X QA. 点MB.点NC.点PD.点Q7. | - 2∣=x ,贝U X 的值为( JA. 2B. - 2 C ±. D. ■:&下列说法错误的是()A. 绝对值最小的数是OB. 最小的自然数是1C最大的负整数是-1D绝对值小于2的整数是:1, O, - 19. a、b是有理数,如果Ia - b∣=a+b ,那么对于结论:(1) a 一定不是负数;(2)b可能是负数,其中()A只有(1)正确 B.只有(2)正确C. (1) , (2)都正确D. (1), (2)都不正确10. 若|a|=8 , |b|=5 , a+b>0,那么a- b 的值是()A. 3 或13B. 13 或-13C. 3 或-3D.- 3 或1311. 若a≤,则∣a∣+a+2 等于()A. 2a+2 B . 2 C 2 - 2a D. 2a - 212. 下列式子中,正确的是()A. | - 5|= - 5B.- | - 5|=5C.-(- 5)=- 5D.-(- 5)=513. 下列说法正确的是()A. 最小的正整数是1B. —个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D —个数的绝对值一定比0大14. (2015秋?东明县期末)有理数a在数轴上的对应点的位置如图所示,b a则a、b、- a、|b|的大小关系正确的是()••A. |b| > a>- a> bB. |b| > b > a>- aC. a > |b| > b>- aD. a>∣b∣>- a> b15. 对于实数a, b,如果a>0, b v 0且∣a∣V ∣b∣,那么下列等式成立的是()A. a+b=∣a∣+∣b∣B. a+b= -(∣a∣+∣b∣)C. a+b=—(Ial - |b| )D. a+b=-(∣b∣- ∣a∣)二•解答题(共15小题)16. 某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入•下表是某周的生产情况(超产记为正、减产记为负):星期一二四五六日增减+5-2-4+ 13-10+ 16-9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?17. 先阅读第(1)小题,仿照其解法再计算第(2)小题:解:原式=I :.:6 3 4 2=' :;: ■'」[¢-1) + (-5) +24+ (-3) ] + E (-⅛ + (--|) 4+(_吉)]O ,=∙l 1Z √s (1)计算:=15+ .-;(2)计算mf;18. 计算:31+ (- 102) + (+39) + (+102) + (- 31)19. 口算:(-13) + (+19)=(-4.7 ) + (- 5.3 )=(-2009) + (+2010)=(+125) + (- 128)=(+0.1 ) + (- 0.01 )=(-1.375 ) + (- 1.125 )=(-0.25 ) + (+ ')=4(-8 J + (- 4 :)=3 2u(-r + (-)=3 4 127(-1.125) + (+ )=g(-15.8 ) + (+3.6 )=(-5 ) +0=620. 已知凶=2003 , ∣y∣=2002 ,且x>0, y V 0,求x+y 的值.21. 计算题(1) 5.6+4.4+ (- 8.1 )(2)(- 7) + (- 4) + (+9) + (- 5)(3) ' + (- :) + - : ^ I : ' I4 3 6 4 3(6) (- 18-) + (+53 J + (- 53.6 ) + (+18 :) + ( - 100)5 5 522. 计算下列各式:(1)(- 1.25 ) + ( +5.25 )(2)(- 7) + (- 2)(3)— + Wl - 8(5)0.36+ (- 7.4 ) +0.5+0.24+ (- 0.6 )(6):∣f •-「一」」23. 在右面空格内填上的适当的不相同的整数,使得横、竖、对角线上的所有3个数之和为0.24.观察算式:1+3+5+7」"1+3」',1+3+5^ ',21+3+5+7+9= ' ,按规律计算:(1)1+3+5+∙∙+99(2) 1+3+5+7+∙∙+ (2n- 1)25. 已知:∣m∣=3 , ∣n∣=2 ,且mκ n,求m+n的值.26. 计算题(1) 5.6+ (—0.9 ) +4.4+ (—8.1 ) + (- 0.1 )(2)- 0.5+ (- 3—) + (- 2.75 ) + ( +7—)42(3) 1 '+ (- 1 ')+ + (- 1)+ (- 3 ;)3535(4)+ (- :) +(-')+ (--)+ (- ^)2 3523(5) (- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5(6) (- 1 J + (-6 ) + (- 2.25 ) + '.4 3 327. 已知∣a∣=5 , ∣b∣=3 ,且Ia - b∣=b - a,求a+b 的值.28. 若|a|=5 , |b|=3 , (1)求a+b 的值;(2)若∣a+b∣=a+b ,求a- b 的值.29. 已知|a|=2 , |b|=3 , |c|=4 , a>b>c,求a- b - C 的值. 30.若a,b,c 是有理数,|a|=3 ,|b|=10 ,|c|=5 ,且a,b 异号,b,c 同号,求a- b- (- C)的值.2016.6有理数、数轴、绝对值、加减法练习卷参考答案与试题解析一•选择题(共15小题)1.(2014?南岗区校级一模)六月份某登山队在山顶测得温度为零下32度, 此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A. 20°B. - 20 C C. 44 C D . - 44 C【分析】用山脚下的温度减去山顶的温度,然后根据有理数的减法运算,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12-(- 32)=12+32=44 C.故选C.2. (2016?德州)2的相反数是()A^- - B. C- 2 D. 22 2【分析】根据相反数的概念解答即可.【解答】解:2的相反数是-2,故选:C.3. (2016?亭湖区一模)如图,数轴上有A, B, C, D四个点,其中到原点距离相等的两个点是()AB C D—*-------- ⅛-------- 1—•—I ---------- •->-2 -1 0 1 2A.点B与点DB.点A与点CC.点A与点DD.点B与点C 【分析】根据数轴上表示数a的点与表示数-a的点到原点的距离相等,即可解答.【解答】解:由数轴可得:点A表示的数为-2 ,点D表示的数为2, 根据数轴上表示数a的点与表示数-a的点到原点的距离相等,•••点A与点D到原点的距离相等,故选:C.4. (2016?海淀区二模)如图,数轴上有M N P, Q四个点,其中点P所表示的数为a ,则数-3a所对应的点可能是()MNPQOA. MB. N C P D. Q【分析】根据数轴可知-3a 一定在原点的左边,且到原点的距离是点P到原点距离的3倍,即可解答.【解答】解:•••点P所表示的数为a,点P在数轴的右边,•••- 3a 一定在原点的左边,且到原点的距离是点P到原点距离的3倍,•••数-3a所对应的点可能是M故选:A.5. (2016?花都区一模)a, b在数轴上的位置如图,化简∣a+b∣的结果是()A.- a - bB. a+bC. a - b D . b - a【分析】根据数轴判断出a、b的正负情况,然后根据绝对值的性质解答即可. 【解答】解:由图形可知,a v 0,b v 0,所以a+b V0,所以∣a+b∣= - a - b.故选:A.6. (2016?石景山区二模)如图,数轴上有四个点M, P,N, Q,若点M N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()--- «---- •_∙→-- >M PΛ' QA.点MB.点NC.点PD.点Q【分析】先利用相反数的定义确定原点为线段MQ的中点,则可判定点Q 到原点的距离最大,然后根据绝对值的定义可判定点Q表示的数的绝对值最大.【解答】解:•••点M N表示的数互为相反数,•原点为线段MQ的中点,•点Q到原点的距离最大,•点Q表示的数的绝对值最大.故选D.7. (2016?鄂城区一模)I - 2∣=x ,则X的值为()A. 2B. - 2 C ⅛2 D. √j【分析】根据负数的绝对值等于它的相反数,即可解答.【解答】解:••• | - 2|=2 ,.∙. x=2,故选:A.& (2016春?上海校级月考)下列说法错误的是()A. 绝对值最小的数是0B. 最小的自然数是1C最大的负整数是-1D.绝对值小于2的整数是:1, 0, - 1【分析】根据绝对值,和有关有理数的定义逐项分析即可.【解答】解:A.有理数的绝对值都是非负数,0的绝对值是0,绝对值最小的数是0,所以此选项正确;B. 最小的自然数是0 ,所以此选项错误;C. 最大的负整数是1 ,所以此选项正确;D. 可以根据数轴得到答案,到原点距离小于2的整数只有三个:-1 , 1, 0,所以绝对值小于2的整数是:-1 , 0, 1,所以此选项正确.故选B.9. (2015秋?苏州期末)a、b是有理数,如果|a - b∣=a+b ,那么对于结论:(1) a 一定不是负数;(2)b可能是负数,其中()A.只有(1)正确B.只有(2)正确C (1) , (2)都正确D. (1), (2)都不正确【分析】分两种情况讨论:(1)当a- b≥0时,由|a - b∣=a+b得a- b=a+b, 所以b=0, (2)当 a - b V 0 时,由|a - b∣=a+b 得-(a - b)=a+b,所以a=0.从而选出答案.【解答】解:因为|a - b| ≥0,而a- b有两种可能性.(1)当a- b≥0 时,由|a - b∣=a+b 得a- b=a+b,所以b=0,因为a+b≥,所以a≥);(2)当a- b V 0 时,由|a - b∣=a+b 得-(a- b)=a+b,所以a=0,因为a- b v 0,所以b>0.根据上述分析,知(2)错误.故选A.10. (2 015秋?内江期末)若|a|=8 , ∣b∣=5 , a+b> 0,那么a - b的值是()A. 3 或13 B. 13 或-13 C. 3 或-3 D.- 3 或13【分析】绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.有理数的减法运算法则:减去一个数,等于加这个数的相反数.【解答】解:∙∙∙∣a∣=8 , ∣b∣=5 ,.∙. a= ±, b=±5, 又T a+b> 0,∙'∙ a=8, b=±5.∙∙∙ a - b=3 或13 .故选A.11. (2015秋?青岛校级期末)若a≤),则∣a∣+a+2等于( )A. 2a+2B. 2C. 2- 2aD. 2a- 2【分析】由a≤)可知IaF - a,然后合并同类项即可.【解答】解:T a ≤),∙IaI= - a. 原式=- a+a+2=2. 故选:B.12. (2015秋?南京校级期末)下列式子中,正确的是( )A. I - 5I=- 5B.- I - 5I=5C.-(- 5) =- 5D.-(- 5)=5【分析】根据绝对值的意义对A、 B 进行判断;根据相反数的定义对C、D进行判断.【解答】解:A、| - 5|=5 ,所以A选项错误;B- | - 5|= - 5,所以B选项错误;C-(- 5) =5,所以C选项错误;D-(- 5) =5,所以D选项正确.故选D.13. ( 2015 秋?高邮市期末)下列说法正确的是( )A. 最小的正整数是1B. —个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. —个数的绝对值一定比0大【分析】A根据整数的特征,可得最小的正整数是 1 ,据此判断即可.B:负数的相反数比它本身大,0的相反数等于它本身,据此判断即可.C:绝对值等于它本身的数是正数或0 ,据此判断即可.D: —个非零数的绝对值比0大,0的绝对值等于0 ,据此判断即可.【解答】解:•••最小的正整数是1,•••选项A正确;•••负数的相反数一定比它本身大,O的相反数等于它本身,•选项B不正确;•••绝对值等于它本身的数是正数或O,•选项C不正确;•一个非零数的绝对值比O大,O的绝对值等于O,•选项D不正确.故选:A.14. (2O15秋?东明县期末)有理数a在数轴上的对应点的位置如图所示,b a贝U a、b、- a、∣b∣的大小关系正确的是()? A∙ ∣b∣> a>- a> b B. ∣b∣> b > a >-a C. a > ∣b∣> b>- a D. a>∣b∣>- a> b【分析】观察数轴,则a是大于1的数,b是负数,且∣b∣> ∣a∣,再进一步分析判断.【解答】解:• a是大于1的数,b是负数,且∣b∣> ∣a∣,•∣b∣>a>- a>b.故选A.15. (2OO7?天水)对于实数a, b,如果a > O, b v O且∣a∣< ∣b∣,那么下列等式成立的是()A. a+b=∣a∣+∣b∣B. a+b= -(∣a∣+∣b∣)C. a+b=-(∣a∣- ∣b∣)D. a+b=-(∣b∣- ∣a∣)【分析】题中给出了a, b的范围,根据正数的绝对值是其本身,负数的绝对值是其相反数,O的绝对值是O”进行分析判断.【解答】解:由已知可知:a, b异号,且正数的绝对值<负数的绝对值.• a+b= -(∣b∣- ∣a∣).故选D.二.解答题(共15小题)16. (2O15秋?民勤县校级期末)某自行车厂计划一周生产自行车14OO辆,平均每天生产2OO辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?【分析】(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车 (5 - 2 - 4+13 - 10+16 - 9) +200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16-(- 10) =26 辆;(4)这一周的工资总额是200×7>60+ (5- 2 - 4+13- 10+16- 9) ×( 60+15)=84675 辆.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13 辆,故该厂星期四生产自行车213辆;(2)根据题意 5 - 2- 4+13 - 10+16 - 9=9,200X7+9=1409 辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216- 190=26 辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×50+9×75=84675元,故该厂工人这一周的工资总额是84675元.17. (2015秋?简阳市校级期中)先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:「.- .■: ■ -6342 4—解:原式=| '' '' ::'-■ '-' II1[¢-1) + (-5) +24+ (-3) ] + [ (-⅛ + (--∣) 4+ (-i)]'∙.∙l,J1Z√s=15+ ; Λj =13 ;;4【分析】 首先分析(1)的运算方法:将带分数分解为一个整数和一个分 数;然后重新组合分组:整数一组,分数一组;分别计算求值.【解答】 解:原式=(-205) +400+ + (-204) + (- :) + (- 1 )+(-•)=-Y: •18. (2015秋?克拉玛依校级期中)计算: 31+ (- 102) + (+39) + (+102) + (- 31)【分析】先将互为相反数的两数相加,然后再进行计算即可. 【解答】 解:原式=[31+ (- 31) ]+[ (- 102) + ( +102) ]+39=0+0+39 =39.19. (2015秋?南江县校级月考)口算: (-13) + (+19)= (-4.7 ) + (- 5.3 )= (-2009) + (+2010)= (+125) + (- 128)= (+0.1 ) + (- 0.01 )= (-1.375 ) + (- 1.125 )= (-0.25 ) + (+ ;)=(-8 ■) + (- 4 J =3 2「"+(-_:) + (-')=(2)计算 I二仁'4 =(400 - 205- 204 - 1) + (—'-)4 3 Ξ3 4 12(-1.125) + (+ )=S(-15.8 ) + (+3.6 )=(-5 ) +0=6【分析】根据有理数的加法,即可解答.【解答】解:(-13) + (+19) =6;(-4.7 ) + (- 5.3 ) =- 10;(-2009) + (+2010) =1;(+125) + (- 128) =- 3;(+0.1 ) + (- 0.01 ) =0.09 ;(-1.375 ) + (- 1.125 ) =-2.5 ;(-0.25 ) + (+ J =;4 Ξ(-8?+ (- T =-12';⑴+ (- J + (- ') =0;3 4 127 1(-1.125) + (+ )=-;8 4(-15.8 ) + (+3.6 ) =- 12.2 ;(-5—) +0=- 5 .6 620. (2015 秋?德州校级月考)已知∣x∣=2003 , ∣y∣=2002 ,且x>0, y V 0, 求x+y的值.【分析】根据正数的绝对值是它本身,负数的绝对值是它的相反数,根据异号两数相加,取绝对值较大加数的符号,用较大的绝对值减较小的绝对值,可得答案. 【解答】解:由∣x∣=2003 , ∣y∣=2002 ,且X > 0, y v 0,得x=2003, y= - 2002.x+y=2003 - 2002=1 .21. (2015秋?盐津县校级月考)计算题(1) 5.6+4.4+ ( - 8.1 )(2)(- 7) + (- 4) + (+9) + (- 5)(3)' + (- ') +'•4 3 64 3(5) (- 9十)+15 I ' - ■ ; ! - :... ! - J'-(6)(- 18 ) + (+53 ') + (- 53.6 ) + (+18 J + (- 100) 5 5 5【分析】(1)从左往右依此计算即可求解;(2)先化简,再计算加减法;(3)(4) (5)根据加法交换律和结合律计算即可求解;(6)先算相反数的加法,再相加即可求解.【解答】解:(1) 5.6+4.4+ (- 8.1 )=10- 8.1=1.9 ;(2)(- 7) + (- 4) + (+9) + (- 5)=-7 —4+9— 5=-16+9=-7 ;(3)^+ (- :) + .-亠■--4 3 6 √3=(5^) +(- 5 - >=10- 6=4;=0- 1+ :(5) 0.36+ (- 7.4 ) +0.5+0.24+ (- 0.6 )(6)斤「〔一 - . _: !. ■【分析】(1)根据有理数的加法法则计算,即可解答; (2) 根据有理数的加法法则计算,即可解答; (3) 根据有理数的加法法则计算,即可解答; (4) 利用加法的结合律和交换律,即可解答; (5) 禾U 用加法的结合律和交换律,即可解答. 【解答】解; (1) (- 1.25 ) + (+5.25 ) =5.25 - 1.25 =4; (2) (- 7) + (- 2) =-(7+2) =-7 ; (3)二;+ - - : - 83 2=-3 二+7— - 86 6(5) (- 9 ) +15 I12 4(-3⅛÷(-22.5)÷(-ι⅛ =(-9— - 15一) +[ (15三-3 )- 22.5] 121244=-25+[12.5 - 22.5] =-25- 10 =-35;(6) (- 18 ) + (+53 J + (- 53.6 ) + (+18 ) + (- 100) 5 5 5=(-18 +18 ) + ( +53 '- 53.6 ) + (- 100)5 5 5=0+0- 100 =-100.22. (2015秋?克什克腾旗校级月考)计算下列各式: (1) (- 1.25 ) + ( +5.25 ) (2) (- 7) + (- 2)(3)-Ty - 8=11 '; 6(5) 0.36+ (- 7.4 ) +0.5+0.24+(- 0.6 ) =1.1+ ( - 8)=-6.9 ;(6) .: ! : . . - . _: !.:=8.7 - 3.7=5.23. (2014秋?巩留县校级期中)在右面空格内填上的适当的不相同的整数, 【分析】由于竖线上的所有 3个数之和为0,所以第一排第二个数(即-1 右边的数)等于0+2=2的相反数,是-2;由于横线上的所有 3个数之和 为0,所以第一排第三个数等于- 1 - 2=- 3的相反数,是3;同样,第三 排第一个数等于2+1=3的相反数,是-3;同理,求出第二行的两个数.24. (2014秋?文登市校级期中)观察算式: d O (1+3) ×2 dn c (1+5) ×3 TCUr (IT) X4 1+3= , 1+3+5=, 1+3+5+7= , 2 2 2 (1+9) X 5 1+3+5+7+9= ,…, 按规律计算:(1) 1+3+5+∙∙+99(2) 1+3+5+7+∙∙+ (2n - 1)【分析】(1)根据公式,可得出结果;(2)再根据题意,可得出公式 ___ 「:2【解答】 解:(1)由题意得:1+3+5+∙∙+99=「 ’ ' =2500;2 (2) 1+3+5+7+∙∙+ (2n - 1) = '〔' =nl使得横、竖、对角线上的所有【解答】-1-2 3 40 -4 -32 1225. (2014秋?滕州市校级月考)已知:∣m∣=3 , ∣n∣=2 ,且πκ n,求m+n 的值.【分析】利用绝对值求出m n的值,再代入求值.【解答】解:∙∙∙∣m∣=3 , ∣n∣=2 ,∕∙ m=±3, n=⅛2■/ m< n,∕∙ m=- 3, n =翌,.∙. m+n=— 3±2= - 1 或—5.26. (2014秋?长沙校级月考)计算题(1) 5.6+ (- 0.9 ) +4.4+ (- 8.1 ) + (- 0.1 )(2)- 0.5+ (- 3 ') + (- 2.75 ) + (+7 )4 2(3) 1 :+ (- V :) +■+ (- 1) + (- 3 J3 5 3 512 4 1 1(4)+ (- ') + (- ) + (- ) + (-)2 3 5 2 3(5)(- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5(6)(- 1 ') + (-6—) + (- 2.25 ) + * '.4 3 3【分析】根据有理数的加法,逐一解答即可.【解答】解:(1) 5.6+ (- 0.9 ) +4.4+ (- 8.1 ) + (- 0.1 )=5.6+4.4+ (- 0.9 - 8.1 - 0.1 )=10+ (- 9.1 )=0.9 .(2)- 0.5+ (- 3 ) + (- 2.75 ) + (+7 )4 2=(-0.5 ) + (+7 ) +[ (- 3 ) + (- 2.75 )]2 4=6+ (- 6)=0.(3) 1 '+ (- V :) +■+ (- 1) + (- 3 J3 5 3 5=(1 :+厶)+ (- 1 —1 - 3 ')3 3 5 5=3+ (- 6)=-3.(4)'+ (- :) + (- J + (- ^) + (- ^ )2 3 5 2 3=[+ ( — )]+[ (- :) + (- J +(-一)]2 23 5 3=0+ (- 1 )(5) (- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5=[(-0.8) +0.8]+[ (- 0.7 ) + (- 2.1 ) ]+ (1.2+3.5 ) =0+ (- 2.8 ) +4.7=1.9 .(6)(- 1 ;) + (-6 ) + (- 2.25 ) + '4 3 3=(-1 - 2.25 ) +[ (- 6 ) + ']4 3 3=-4+ (- 3)=-7.27. (2015 秋?自贡期末)已知∣a∣=5 , ∣b∣=3 ,且Ia - b∣=b - a,求a+b 的值.【分析】根据绝对值的性质求出a、b ,再判断出a、b的对应情况,然后相加即可得解.【解答】解:∙∙∙∣a∣=5 , |b|=3 ,.∙. a= ±, b=±3,■/ |a - b|=b - a,.∙. a= - 5 时,b=3 或-3,.∙. a+b= - 5+3= - 2,或a+b= - 5+ (- 3) = - 8,所以,a+b的值是-2或-8.28.(2013 秋?滨湖区校级期末)若|a|=5 ,|b|=3 ,(1)求a+b 的值;(2)若∣a+b∣=a+b ,求 a - b 的值.【分析】(1)由∣a∣=5 , ∣b∣=3可得,a=±5, b= ±,可分为4种情况求解;(2)由|a+b|=a+b 可得,a=5,b=3 或a=5,b=- 3,代入计算即可. 【解答】解:(1)τ ∣a∣=5 , |b|=3 ,.∙∙ a= ±,b=±3,当a=5,b=3 时,a+b=8;当a=5, b=- 3 时, a+b=2;当a=- 5, b=3 时, a+b=- 2;当a=- 5, b=- 3 时, a+b=- 8.(2)由|a+b|=a+b 可得, a=5, b=3 或a=5, b=- 3.当a=5, b=3 时, a- b=2,当a=5, b=- 3 时, a- b=8.29. 已知∣a∣=2 , ∣b∣=3 , ∣c∣=4 , a>b>c,求a- b - C 的值.【分析】根据绝对值的性质和有理数的大小比较确定出a、b、C的值,然后代入代数式进行计算即可得解.【解答】解:∙∙∙∣a∣=2 , ∣b∣=3 , ∣c∣=4 ,.∙. a=塑,b=±3 , C= ±,■/ a > b > C ,.∙∙ a=塑,b=- 3 , C= - 4 ,.∙. a - b - C=2 -(- 3)-(- 4)=2+3+4=9 ,或a- b- C=(- 2)-(- 3)-(- 4)=- 2+3+4=5综上所述,a+b - C的值为9或5.30. 若a , b , C 是有理数,∣a∣=3 , Ibl=Io , ∣c∣=5 ,且a , b 异号,b ,C 同号,求a- b-(- C)的值.【分析】根据题意,利用绝对值的代数意义求出 a , b , C的值,即可确定出原式的值.【解答】解:∙∙∙ a , b , C是有理数,|a|=3 , |b|=10 , |c|=5 ,且a , b异号, b , C同号,• ∙a=3, b= —10, C= —5; a= —3, b=10, c=5, 则原式=a- b+C=8 或- 8.。
人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案

人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案满分:100分时间:90分钟一、选择题(每小题3分共36分)1.(2022春•沙依巴克区校级期中)下列各数中是负数的为()A.﹣1B.0C.0.2D.【答案】A【解答】解:﹣1是负数;0既不是正数也不是负数;0.2是正数;是正数.故选:A.2.(2022春•明水县期末)一种食品包装袋上标着:净含量200g(±3g)表示这种食品的标准质量是200g这种食品净含量最少()g为合格.A.200B.198C.197D.196【答案】C【解答】解:∵200﹣3=197(g)∴这种食品净含量最少197g为合格故选:C.3.(2022•牡丹区三模)中国人很早开始使用负数中国古代数学著作《九章算术》的“方程”一章在世界数学史上首次正式引入负数用正、负数来表示具有相反意义的量.一次数学测试以80分为基准简记90分记作+10分那么70分应记作()A.+10分B.0分C.﹣10分D.﹣20分【答案】C【解答】解:以80分为基准简记90分记作+10分那么70分应记作:70﹣80=﹣10分故选:C.4.(2022春•朝阳区期中)某机器零件的实物图如图所示在数轴上表示该零件长度(L)合格尺寸正确的是()A.B.C.D.【答案】C【解答】解:已知图可知L的取值范围是9.8≤L≤10.2A选项表示的是L≤9.8 不正确;B选项表示的是L≥10.2 不正确;C选项表示的是9.8≤L≤10.2 正确;D选项表示的是L≥10.2或L≤9.8 不正确;故选:C.5.(2022春•杨浦区校级期中)下列说法正确的是()A.有理数都可以化成有限小数B.若a+b=0 则a与b互为相反数C.在数轴上表示数的点离原点越远这个数越大D.两个数中较大的那个数的绝对值较大【答案】B【解答】解:A、有理数是有限小数和无限循环小数所以此选项错误;B、a+b=0 两个数的和为零则这两个数互为相反数此选项正确;C、在数轴上右边的数离原点越远这个数越大左边的数离原点越远这个数越小此选项错误;D、特殊值法2>﹣3 但|2|<|﹣3| 此选项错误.故选:B.6.(2021秋•荷塘区期末)有理数a在数轴上的位置如图所示则|a﹣5|=()A.a﹣5B.5﹣a C.a+5D.﹣a﹣5【答案】B【解答】解:∵a<5∴|a﹣5|=﹣(a﹣5)=5﹣a.故选:B.7.(2022•玉屏县二模)数轴上表示数m和m+2的点到原点的距离相等则m为()A.﹣2B.2C.1D.﹣1【答案】D【解答】解:由题意得:|m|=|m+2|∴m=m+2或m=﹣(m+2)∴m=﹣1.故选:D.8.(2021秋•渑池县期末)若|a﹣1|与|b﹣2|互为相反数则a+b的值为()A.3B.﹣3C.0D.3或﹣3【答案】A【解答】解:∵|a﹣1|与|b﹣2|互为相反数∴|a﹣1|+|b﹣2|=0又∵|a﹣1|≥0 |b﹣2|≥0∴a﹣1=0 b﹣2=0解得a=1 b=2a+b=1+2=3.故选:A.9.(2021秋•房县期末)已知:有理数a b满足ab≠0 则的值为()A.±2B.±1C.±2或0D.±1或0【答案】C【解答】解:∵ab≠0∴a>0 b<0 此时原式=1﹣1=0;a>0 b>0 此时原式=1+1=2;a<0 b<0 此时原式=﹣1﹣1=﹣2;a<0 b>0 此时原式=﹣1+1=0故选:C.10.(2021秋•镇平县校级期末)若|a|=8 |b|=5 且a>0 b<0 a﹣b的值是()A.3B.﹣3C.13D.﹣13【答案】C【解答】解:∵|a|=8 |b|=5 且a>0 b<0∴a=8 b=﹣5∴a﹣b=13故选:C.11.有理数a b在数轴上的对应点的位置如图所示.把﹣a b0按照从小到大的顺序排列正确的是()A.0<﹣a<b B.﹣a<0<b C.b<0<﹣a D.b<﹣a<0【答案】A【解答】解:由数轴可知a<0<b|a|<|b|∴0<﹣a<b故选:A.12.(2021秋•勃利县期末)有理数a b在数轴上的对应点如图所示则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【答案】B【解答】解:∵从数轴可知:b<0<a|b|>|a|∴①正确;②错误∵a>0 b<0∴ab<0 ∴③错误;∵b<0<a|b|>|a|∴a﹣b>0 a+b<0∴a﹣b>a+b∴④正确;即正确的有①④故选:B.二、填空题(每小题2分共10分)13.(2022春•南岗区校级期中)如果向东走6米记作+6米那么向西走5米记作米.【答案】-5【解答】解:向东走6米记作+6米则向西走5米记作﹣5米故答案为:﹣5.14.(2022春•崇明区校级期中)小明在小卖部买了一袋洗衣粉发现包装袋上标有这样一段字样:“净重800±5克”请说明这段字样的含义.【答案】一袋洗衣粉的重量在795克与805克之间.【解答】解:“净重800±5克”意思是标准为800克最多为800+5=805克最少为800﹣5=795克.故答案为一袋洗衣粉的重量在795克与805克之间.15.(2022春•嘉定区校级期中)数轴上的A点与表示﹣2的点距离3个单位长度则A点表示的数为.【答案】﹣5或1【解答】解:设A点表示的数为x则|x﹣(﹣2)|=3∴x+2=±3∴x=﹣5或x=1.故答案为:﹣5或1.16.(2021秋•许昌期末)如果a的相反数是2 那么(a+1)2022的值为.【答案】1【解答】解:∵a的相反数是2∴a=﹣2∴(a+1)2022=(﹣2+1)2022=1.故答案为:1.17.(2022•宽城县一模)如图在数轴原点O的右侧一质点P从距原点10个单位的点A处向原点方向跳动第一次跳动到OA的中点A1处则点A1表示的数为;第二次从A1点跳动到OA1的中点A2处第三次从A2点跳动到OA2的中点A3处如此跳动下去则第四次跳动后该质点到原点O的距离为.【答案】5;.【解答】解:根据题意A1是OA的中点而OA=10所以A1表示的数是10×=5;A2表示的数是10××=10×;A3表示的数是10×;A4表示的数是10×=10×=;故答案为:5;.三.解答题(共54分)18.(8分)(2021秋•荣成市期中)把下列各数填在相应的集合中:15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 π﹣1..正数集合{…};负分数集合{…};非负整数集合{…};有理数集合{…}.【解答】解:正数集合{15 0.81 171 3.14 π…};负分数集合{﹣﹣3.1 ﹣1.…};非负整数集合{15 171 0…};有理数集合{15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1.…}.故答案为:15 0.81 171 3.14 π;﹣﹣3.1 ﹣1.;15 171 0;15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1..19.(8分)(昌平区校级期中)画出数轴并把这四个数﹣2 4 0 在数轴上表示出来.【解答】解:在数轴上表示出来如下:20.(8分)(2021秋•太康县期末)已知|x|=3 |y|=7.(1)若x<y求x+y的值;(2)若xy<0 求x﹣y的值.【解答】解:由题意知:x=±3 y=±7(1)∵x<y∴x=±3 y=7∴x+y=10或4(2)∵xy<0∴x=3 y=﹣7或x=﹣3 y=7∴x﹣y=±1021.(10分)(2021秋•安居区期末)小虫从某点O出发在一直线上来回爬行假定向右爬行路程记为正向左爬行的路程记为负爬过的路程依次为(单位:厘米):+5 ﹣3 +10 ﹣8 ﹣6 +12 ﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中如果每爬行1厘米奖励一粒芝麻则小虫共可得到多少粒芝麻?【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0所以小虫最后能回到出发点O;(2)根据记录小虫离开出发点O的距离分别为5cm、2cm、12cm、4cm、2cm、10cm、0cm所以小虫离开出发点的O最远为12cm;(3)根据记录小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm)所以小虫共可得到54粒芝麻.22.(10分)(2021秋•常宁市期末)超市购进8筐白菜以每筐25kg为准超过的千克数记作正数不足的千克数记作负数称后的记录如下:1.5 ﹣3 2 ﹣0.5 1 ﹣2 ﹣2 ﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售为促销超市决定打九折销售求这8筐白菜现价比原价便宜了多少钱?【解答】解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)答:以每筐25千克为标准这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)25×8﹣5.5=194.5(千克)答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元)583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.23.(10分)(2021秋•高新区校级期末)新华文具用品店最近购进了一批钢笔进价为每支6元为了合理定价在销售前五天试行机动价格卖出时每支以10元为标准超过10元的部分记为正不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况如表所示:第1天第2天第3天第4天第5天每支价格相对标准价格(元)+3+2+1﹣1﹣2售出支数(支)712153234(1)这五天中赚钱最多的是第天这天赚钱元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?【解答】解:(1)第1天到第5天的每支钢笔的相对标准价格(元)分别为+3 +2 +1﹣1 ﹣2则每支钢笔的实际价格(元)分别为13 12 11 9 8第1天的利润为:(13﹣6)×7=49(元);第2天的利润为:(12﹣6)×12=72(元);第3天的利润为:(11﹣6)×15=75(元);第4天的利润为:(9﹣6)×32=96(元);第5天的利润为:(8﹣6)×34=68(元);49<68<72<75<96故这五天中赚钱最多的是第4天这天赚钱96元.(2)49+72+75+96+68=360(元)故新华文具用品店这五天出售这种钢笔一共赚了360元钱.。
正负数 有理数 相反数 数轴 绝对值测试

《正、负数 数轴 相反数 绝对值》测试一.选择题(在四个选项中选出唯一正确的选项,每题3分,共30分)1. 有一种记分法,80分以上如85分记为+5分.某学生得分为72分,则应记为( )A .72分B .+8分C .-8分D .-72分2.一个数在数轴上所对应的点向右移动5个单位长度后得到它的相反数对应的点,则这个数是( )A .-52 B .-5 C .52D .+53.一个数的相反数大于它本身,这个数是( )A.. 正数B. 负数C. 0D. 非负数 4. 用-m 表示的数一定是( ) A .负数 B .负数或正数 C .负整数 D .以上都不对 5. M 点在数轴上表示-4,N 点离M 的距离是3,那么N 点表示( )A. -1 B . -7 C . -1或-7 D. -1或1 6.下列说法中正确的是( )A. - a 不是正数B. -a -是负数C. a -不是负数D. a -是正数7.若|a |=2,|b |=5,则a +b = ( ) A. ±3或±7 B. ±3; C. ±7; D . 3或7; 8.若a +b =0,则有理数a 、b 一定( )A .都是0B .互为相反数C .两数异号D .至少有一个是0 9.以下关系一定成立的是( )A.. 若|a |=|b |,则a =bB. 若|a |=a ,则a >0C. 若|a |+a =0,则a ≤0D. 若 a >b , 则|a |>|b |.10.下列语句:①一个数的绝对值一定是正数;②-a 一定是一个负数;③ 没有绝对值为-3的数;④若a =a ,则a 是一个正数;⑤离原点左边越远的数就越小.正确的有( )个. A. 0 B. 3 C. 2 D. 4 二.填空题(每题3分,共30分)11.相反数是它本身的数是 ;绝对值是它本身的数是 . 12.数轴上表示-5和表示-14的两点之间的距离是 . 13.若4a =,5b =,且ab <0,则a b -= . 14.|m +7|+2013的最小值为 ,此时m = . 15.数轴上与表示124的点的距离为5个单位长度的点所表示的数为 . 16.若2<a <4,则42a a -+-= .17.如果a a=-1,则a 的取值范围是 .18. 计算:111134232323+-----= . 19.点A 、B 在数轴上对应的数分别是-7和6,则线段AB 的中点对应的数是: . 20.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为5,则2a b cm cd c+++-= . 三.解答题(共60分)21.(8分)若2120x y ++-=,分别求x 、y 的值. 22. (10分)若|x |=3,|y |=2,且|x -y |=y -x ,求x +y .23. (10分)已知:a >0,b <0,且∣a │<∣b │,请你借助数轴比较a 、b 、-a 、-b 四个数的大小。
初中数学有理数数轴、相反数、绝对值基础题(含答案)

七年级数学上册数轴、相反数、绝对值基础题北
师版
一、单项选择题(共10道,每道10分)
1.若是60m表示“向北走60m”,那么“向南走40m”能够表示为()
答案:B
试题难度:三颗星知识点:正数和负数的意义
2.在:0、一、-二、这四个数中,是负整数的是()
答案:C
试题难度:三颗星知识点:有理数及其分类
3.以下图为数轴的是()
A. B.
C. D.
答案:C
试题难度:三颗星知识点:数轴的概念
4.如图,在数轴上点A表示的数是()
C.±2
答案:A
试题难度:三颗星知识点:用数轴表示数
,b为有理数,在数轴上的位置如下图,那么以下关于a,b,0三者之间的大小关系,表示
正确的选项是()
<a<b <0<b
<0<a <b<0
答案:B
试题难度:三颗星知识点:用数轴比较大小
6.到原点的距离等于3的数是()
或-3
答案:C
试题难度:三颗星知识点:用数轴表示任意点到原点距离
7.数轴上表示-2和-101的两个点别离为A、B,那么A、B两点间的距离等于()
答案:C
试题难度:三颗星知识点:用数轴表示任意两点之间距离
的相反数是()
A. B.
答案:D
试题难度:三颗星知识点:相反数
9.假设|x|=-x,那么x的取值范围是()
=-1 =0
≥0 ≤0
答案:D
试题难度:三颗星知识点:绝对值及其法那么
的结果是()
A. B.
C. D.
答案:A
试题难度:三颗星知识点:绝对值。
正数和负数有理数数轴相反数绝对值补考测试题

1.1——1.2(补考A卷)选择题必须用2B铅笔涂满方框,其余问题必须用黑色中性笔答题。
一、选择题,共12个小题,每题3分,共36分。
1、在35,-0.0001,-3.14 ,0,10.33,-2017这几个数中,负数的个数是()A.0个B.1个C.2个D.3个2、下列说法正确的是:()A、“上升”和“下降”表示具有相反意义的量;B、“快”和“慢”表示具有相反意义的量;C、“收入增加10元”和“支出减少10元”表示具有相反意义的量;D、“向前移动5m”和“向后移动3m”表示具有相反意义的量。
3、非负整数就是()A.0 B.正数C.正整数D.自然数4、下列说法不正确的是()A.有理数可以分为正整数、正分数、0、负整数和负分数。
B.一个有理数不是分数就是整数。
C.一个有理数不是正数就是负数。
D.若一个数是整数,则这个数一定是有理数。
5、下列说法错误的是()A.没有最大的正数,却有最大的负整数。
B.数轴上离原点越远,表示的数越大。
C.0不大于一切非负数。
D.在原点左边离原点越远,表示的数越小。
6、数轴上点A,B,C对应的有理数分别是a,b,c,且点A在点B,C中间,点C在点B左侧,则有()A、a<b<cB、b<a<cC、 c<b<aD、c<a<b7、-(-2)的相反数是()A .2B .2C .21D .-2 8、x+6的相反数是 ( ) A .-x+6 B .x -6 C .-(x+6) D .-(x -6)9、 -20171的绝对值是 ( ) A .2017 B .-2017 C .20171 D .-2017110、若∣a ∣=3,则a= ( )A .3B .-3C .3或-3D .以上都不对11、下列关系式正确的是 ( ) A .3>391B .-3<-3.1C .0<-2017D .∣a ∣≥0 12、观察下列一组数:-6,- 4,-2,0, 2, 4, 6, 8, 10,…,则第2017个数是( ) A 、4034 B 、4030 C 、4026 D 、4022 二、 填空题,共5个小题,每题4分,共20分。
考试卷正负数相反数绝对值练习试卷

七年级有理数(正负数、相反数、绝对值)数学练习试卷一、选择题(共8小题;共24分)1. 检查个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:则质量较好的篮球的编号是A. 号B. 号C. 号D. 号2. 下列说法正确的个数为① 是整数;② 是负分数;③ 不是正数;④自然数一定是正数.A. B. C. D.3. 如图,数轴上有,,,四个点,其中表示互为相反数的点是A. 点与点B. 点与点C. 点与点D. 点与点4. 把四个数,,,,从大到小用“ ”连接起来,正确的是?( )A. B.C. D.5. 如果海平面的高度为米,用负数表示低于海平面某处的高度,一潜水艇在海平面下米处航行,一条鲨鱼在潜水艇上方米处游动,那么鲨鱼所在的高度是?( )A. 米B. 米C. 米D. 米6. 下列说法正确的是A. 在有理数中,的意义仅表示没有B. 一个有理数,它不是正数就是负数C. 正有理数和负有理数组成有理数集合D. 是自然数7. 如图,数轴上有,,,四个点,其中表示绝对值相等的两个实数的点是A. 点与点B. 点与点C. 点与点D. 点与点8. 如图,数轴上的,,三点所表示的数分别为,,,其中,如果,那么该数轴的原点的位置应该在?( )A. 点的左边B. 点与点之间C. 点与点之间D. 点的右边二、填空题(共12小题;共36分)9. 在,,,这四个有理数中,整数有 ?.10. ?, ?, ?.11. 在下列横线上填上适当的词,使前后构成具有相反意义的量:(1)收入元, ? 元;(2) ? 米,下降米;(3)向北前进米, ? 米.12. 表示 ? 的相反数,即 ?;表示 ? 的相反数,即?.13. 比较大小: ? (填“”,“”或“”).14. 在数轴上到原点的距离等于的点所表示的数是 ?.15. 如图,数轴上表示的点是点 ?,表示的点是点 ?,它们到原点的距离 ?,所以与是 ?.16. 已知数轴上有,两点,,之间的距离为,点与原点的距离为,则所有满足条件的点与原点的距离的和为 ?.17. 一跳蚤在一直线上从点开始,第次向右跳个单位长度,紧接着第次向左跳个单位长度,第次向右跳个单位长度,第次向左跳个单位长度,,依此规律跳下去,当它跳第次落下时,落点处离点的距离是 ? 个单位长度.18. 观察下面一列数的规律并填空:,,,,,,则它的第个数是 ?,第个数是 ?.19. 一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数,,,,就可以构成一个集合,记为.类比有理数有加法运算,集合也可以"相加".定义:集合与集合中的所有元素组成的集合称为集合与集合的和,记为.若,,则 ?.20. 如图,数轴上,点的初始位置表示的数为,现点做如下移动:第次点向左移动个单位长度至,第次点向右移动个单位长度至,第次从点向左移动个单位长度至,,按照这种移动方式进行下去,点表示的数是 ?,如果点与原点的距离不小于,那么的最小值是 ?.三、解答题(共6小题;共60分)21. 去掉中的绝对值符号.22. 把下列各数填人它属于的集合圈内:,,,,,,,,,,.23. 分别写出,,的相反数,在数轴上表示出各数及它们的相反数,并说明各对数在数轴上的位置特点.24. 张大妈在超市买了一袋食盐,发现包装上标有字样“净重:”,怎么也看不明白是什么意思,你能给她解释清楚吗?25. 已知数轴上三点,,对应的数分别为,,,点为数轴上任意一点,其对应的数为.Ⅰ如果点到点、点的距离相等,那么的值是 ?;Ⅱ数轴上是否存在点,使点到点、点的距离之和是;如果存在,求出的值;如果不存在,请说明理由;Ⅲ如果点以每秒钟个单位长度的速度从点向右运动时,点和点分别以每秒钟个单位长度和每秒钟个单位长度的速度也向右运动,且三点同时出发,那么经过几秒钟,点到点、点的距离相等.26. 请阅读下面材料:已知点,在数轴上分别表示有理数,,,两点之间的距离表示为.当,两点中有一点在原点时,不妨设点在原点,如图所示,.当,两点都不在原点时:()如图所示,点,都在原点右边,;()如图所示,点,都在原点左边,;()如图所示,点,在原点两边,.综上所述,数轴上,两点之间的距离表示为.回答下列问题:Ⅰ数轴上表示和两点之间的距离是 ?,数轴上表示和两点之间的距离是 ?.Ⅱ数轴上表示和两点和之间的距离是 ?;如果,那么 ?.Ⅲ当代数式取最小值时,的取值范围是 ?.答案第一部分1. D2. B3. B4. C5. A6. D7. C8. C第二部分9. ;10. ;;11. (1)支出;(2)上升;(3)向南前进12. ;;;13.14.15. ;;相等;相反数16.17.18. ;19. (注:各元素的排列顺序可以不同)20. ;第三部分21. (1)当时,,;(2)当时,,;(3)当时,,.22.23. ,,的相反数分别是,,.在数轴上表示如图所示:各对数在数轴上的位置特点是到原点的距离相等.24. “净重:”的意思是这袋食盐的净重在到的范围内,即的范围内.25. (1)??????(2),点在不在线段上.当点在点的左侧时,.解得 .当点在点的右侧时,.解得.存在点,使点到点、点的距离之和是,此时或.??????(3)设经过秒点到点、点的距离相等.点表示的数是,点表示的数是,点表示的数是,由题意,得...26. (1);??????(2);或??????(3)。
有理数数轴相反数绝对值练习题[1]
![有理数数轴相反数绝对值练习题[1]](https://img.taocdn.com/s3/m/340a982d76c66137ef06191e.png)
有理数、数轴、相反数、绝对值一、选择题1. 如图所示的图形为四位同学画的数轴,其中正确的是( )2. 下列说法正确的是( )A. 有原点、正方向的直线是数轴B. 数轴上两个不同的点可以表示同一个有理数C. 有些有理数不能在数轴上表示出来D. 任何一个有理数都可以用数轴上的点表示3. 下列各组数中,大小关系正确的是( )A. -<-<-752B. ->->752C. -<-<-725D. ->->-275 4. 数轴上原点及原点右边的点表示的数是( ) A. 正数B. 负数C. 非负数D. 非正数 5. 数轴上点M 到原点的距离是5,则点M 表示的数是( ) A. 5 B. -5C. 5或-5D. 不能确定 6. 在数轴上表示-206315,,,.的点中,在原点右边的点有( ) A. 0个B. 1个C. 2个D. 3个 7.如果一个数的相反数是负数,那么这个数一定是( )A. 正数B. 负数C. 零D. 正数、负数或零 8. __________的相反数是它本身。
9. 一个数的相反数是非负数,这个数一定是( )A. 正数或零B. 非零的数C. 负数或零D. 零10. 下列叙述正确的是( )A. 符号不同的两个数是互为相反数B. 一个有理数的相反数一定是负有理数C. 234与2.75都是-114的相反数 D. 0没有相反数 11.下列说法中正确的是( )A .a -一定是负数 B .只有两个数相等时它们的绝对值才相等 C .若b a =则a 与b 互为相反数D .若一个数小于它的绝对值,则这个数是负数 12.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有( )A .0个B .1个C .2个D .3个 13.如果a a 22-=-,则a 的取值范围是( )A .a >OB .a ≥OC .a ≤OD .a <O 16.绝对值等于其相反数的数一定是( )A .负数B .正数C .负数或零D .正数或零二、填空题1.如果向南走5米,记作+5米,那么向北走8米应记作___________. 2、如果向南走5 km 记为-5 km ,那么向北走10 km 记为____3、大于-5.1的所有负整数为__________________.4、珠穆朗玛峰高出海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为_________.5、原点表示的数是_______,原点右边的数是________,左边的数是________.6.把下列各数分别填在相应的大括号里:+9,-1,+3,312-,0,213-,-15,45,1.7. 正数集合:{…}, 负数集合:{ …}. 8. 化简下列各数:()--82 ______= ()-+373.______= --⎛⎝ ⎫⎭⎪27______= ______7.3=-;______0=;______3.3=--;______75.0=+-.______31=+;______32=-+.______510=-+-;______36=-÷-;______5.55.6=---.9.当a a -=时,0______a ;当0>a 时,______=a .10.______5=-;______312=-;______31.2=-;______=+π.11.粮食产量增产11%,记作+11%,则减产6%应记作______________.三、比较大小1. π和3.142; 2.-0.001和0; 3.0.0001和-10004.-56和-67 5.-59和-13 6.-20042003和-20052004四、解答题1. 在数轴上表示下列各数,并用“<”连接起来,-214,4,-1,1.2,313,-5,0.2、在给出的数轴上,标出以下各数及它们的相反数.-1,2,0,52,-4。
《数轴、相反数、绝对值》专题练习(含答案)

《数轴、相反数、绝对值》专题练习一、选择题(每小题3分,共30分)1.-5的绝对值为 ( )A .-5B .5C .-15D .152.-18的相反数是 ( )A .-8B .18 C .0。
8 D .83.在下面所画的数轴中,你认为正确的数轴是 ( )4.下列说法正确的是 ( )A .正数与负数互为相反数B .符号不同的两个数互为相反数C .数轴上原点两旁的两个点所表示的数互为相反数D .任何一个有理数都有它的相反数5.数轴上的点A ,B 位置如图所示,则线段AB 的长度为 ( )A .-3B .5C .6D .76.若a =7,b =5,则a -b 的值为 ( )A .2B .12C .2或12D .2或12或-12或-27.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A . a +b =0B . b <aC . a b >0D . |b |<|a |8.下列式子不正确的是 ( )A .44-=B .1122= C .00= D . 1.5 1.5-=-9.如果有理数a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,d 是倒数等于它本身的数,那么式子a-b+c2-d的值是()A.-2 B.-1 C.0 D.110.如果abcd<0,a+b=0,cd〉0,那么这四个数中的负因数至少有() A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.数轴上最靠近-2且比-2大的负整数是______.12.-112的相反数是______;-2是______的相反数;_______与110互为倒数.13.数轴上表示-2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A,B表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x的值,使1x =x-1成立,你写出的x的值是______.17.若x,y是两个负数,且x〈y,那么x_______y.18.如图,数轴上的A,B,C三点所表示的数分别是a,b,c,其中AB=BC,若a〉b>c,则该数轴的原点O的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:-135,-(+6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《正负数数轴相反数绝对值》测试
(45分钟满分100分)
班级姓名
一.选择题(在四个选项中选出唯一正确的选项,每题3分,共30分)
1. 有一种记分法,80分以上如85分记为+5分.某学生得分为72分,则应记为()A.72分B.+8分C.-8分D.-72分
2.一个数在数轴上所对应的点向右移动5个单位长度后得到它的相反数对应的点,则这个数是()
A.-B.-5 C.D.+5
3.一个数的相反数大于它本身,这个数是()
A.. 正数
B. 负数
C. 0
D. 非负数
4. 用-m表示的数一定是()
A.负数 B.负数或正数 C.负整数 D.以上都不对
5. M点在数轴上表示-4,N点离M的距离是3,那么N点表示()
A. -1
B. -7 C . -1或-7D. -1或1
6.下列说法中正确的是()
A. - a不是正数
B. -是负数
C.不是负数
D.是正数
7.若|a|=2,|b|=5,则a+b= (
A. ±3或±7
B. ±3;
C. ±7;D . 3或7;
8.若a+b=0,则有理数a、b一定()
A.都是0
B.互为相反数
C.两数异号
D.至少有一个是0
9.以下关系一定成立的是()
A.. 若|a|=|b|,则a=b
B. 若|a|=a ,则a>0
C. 若|a|+a=0,则a ≤0
D. 若a>b,则|a|>|b|.
10.下列语句:①一个数的绝对值一定是正数;②-a一定是一个负数;③没有绝对值为-3的数;④若=a,则a是一个正数;⑤离原点左边越远的数就越小.正确的有()个.
A. 0
B. 3
C. 2
D. 4
二.填空题(每题3分,共30分)
11.与原点距离为2个单位的点对应的有理数为 .
12.相反数是它本身的数是;绝对值是它本身的数是.
13. 数轴上表示-5和表示-14的两点之间的距离是 .
14.若,,且<0,则 .
15.|m+7|+2011的最小值为,此时m= .
16.数轴上与表示的点的距离为5个单位长度的点所表示的数为 .
17.若2<<4,则 .
18.如果=-1,则a的取值范围是 .
19. 计算:= .
20.已知=2010,=2011,且a<b,则a、b的值分别是 .
三.解答题(每题8分,共40分)
21.已知:a>0,b<0,且∣a│<∣b│,请你借助数轴比较a、b、-a、-b四个数的大小。
22. 已知│2x-5│=3,求x的值. 23.用两种方法比较大小:与.
24.若|x|=3,|y|=2,且|x-y|=y-x,求x+y. 25.若│2x+1│+│y-2│=0,分别求x、y的值.。