5功能复合材料

合集下载

无机复合材料

无机复合材料

无机复合材料
无机复合材料是由两种或两种以上的无机物质组成的材料,具有多种优良性能,被广泛应用于航空航天、汽车制造、建筑材料等领域。

无机复合材料的研究和应用,对推动工业技术进步和提高产品质量具有重要意义。

首先,无机复合材料具有优异的力学性能。

由于无机复合材料通常由高强度的
无机物质组成,因此其具有较高的抗拉、抗压和抗弯强度,能够承受较大的力学载荷。

这使得无机复合材料在航空航天领域得到广泛应用,用于制造飞机、火箭等载具结构件,提高了载具的安全性和可靠性。

其次,无机复合材料具有优良的耐腐蚀性能。

无机复合材料中的无机物质通常
具有良好的化学稳定性,能够抵抗酸、碱、盐等腐蚀介质的侵蚀,因此在化工设备、海洋工程等领域得到广泛应用。

这些领域的设备和结构往往需要长期暴露在恶劣的环境中,对材料的耐腐蚀性能提出了较高的要求,而无机复合材料正是能够满足这一要求的材料之一。

此外,无机复合材料还具有优秀的绝缘性能。

由于无机复合材料中的无机物质
通常具有较高的电阻率和介电常数,因此能够有效地隔离电场和电流,具有良好的绝缘性能。

这使得无机复合材料在电气设备、通讯设备等领域得到广泛应用,提高了设备的安全性和稳定性。

总的来说,无机复合材料具有多种优良性能,被广泛应用于各个领域,对推动
工业技术进步和提高产品质量起到了重要作用。

随着科学技术的不断进步和发展,相信无机复合材料在未来会有更加广阔的应用前景,为人类社会的发展做出更大的贡献。

人教版高中化学选修5 有机化学基础 第五章 第三节 功能高分子材料(第1课时)

人教版高中化学选修5 有机化学基础 第五章 第三节 功能高分子材料(第1课时)
2014年9月1日星期一 29
功能高分子材料
4 下列不属于新型有机高分子材料的是: ( D ) A.高分子分离膜材料 B.液晶高分子 C.生物高分子材料 D.有机玻璃 5.下列对新型高分子材料说法中,不对的是….( D )
A.高分子分离膜应用于食品工业中,可用于浓缩天然果汁 乳制品加工、酿造业等。 B.复合材料一般是以一种材料作为基体,另一种材料作为 增强剂。 C.导电塑料是用于电子工业的一种新型有机高分子材料 D.合成高分子材料制成的人工器官都受人体的排斥作用, 难以达到生物相容的程度。
28
功能高分子材料
随堂练习 1.下列物质不属于有机高分子化合物的是 ( C ) A.淀粉 B.蛋白质 C.酒精 D.电木 2.下列不属于合成纤维的是 ( B ) A.的确良 B.棉 C.人造棉 D.尼龙 3.有一张照片,一只可爱的小猫站在一块高分子合 成材料上,下面是烈火灼烧,而小猫却若无其事 。这说明此高分子材料一定具有的性质是…( C ) A.良好的导热性 B.良好的绝缘性 C.良好绝热性 D.熔点低
2014年9月1日星期一
4
功能高分子材料
高分子分离膜
2014年9月1日星期一
5
功能高分子材料
分离膜具有神奇的魔术师般的本领,从下面的实验中 不难领会.将一瓶含酒精4.5%的普通啤酒用水稀释成两瓶, 然后倒入玻璃容器内,只要将这种溶液通过薄薄的一层分 离膜,就能够在几分钟内提取出酒精浓度达 93%的乙醇. 这种乙醇用一根火柴就能点燃.这个实验中在分离膜的表 面施加了高频电场,促使乙醇溶解、扩散、和水分离,所耗 电能仅为蒸馏法的十分之一.在过去要从液体中分离另一 种液体,只能使用蒸馏法。
20
功能高分子材料
功能高分子材料的应用:

高中化学选修五功能高分子材料人教版优秀课件

高中化学选修五功能高分子材料人教版优秀课件
【练一练】
高分子材料发展的主要趋势是高性能化、功能 化、复合化、精细化和智能化,下列材料不属 于功能高分子材料的是( B )
A.用于生产光盘等产品的光敏高分子材料 B.用于制造CPU芯片的良好半导体材料单晶硅 C.能用于生产“尿不湿”的高吸水性树脂 D.能导电的材料掺杂聚乙炔
高中化学选修五5功.3能-功高能分高子分材子料材人料教-版人优教秀版p p(t共课23件张PPT)
高中化学选修五5功.3能-功高能分高子分材子料材人料教-版人优教秀版p p(t共课23件张PPT)
高中化学选修五5功.3能-功高能分高子分材子料材人料教-版人优教秀版p p(t共课23件张PPT)
3.功能高分子材料的用途 功能高分子材料广泛应用于通信、交通、 航空航天、医疗、医药、建筑、印刷、海 水淡化、农林园艺等领域。
高中化学选修五5功.3能-功高能分高子分材子料材人料教-版人优教秀版p p(t共课23件张PPT)
高中化学选修五5功.3能-功高能分高子分材子料材人料教-版人优教秀版p p(t共课23件张PPT)
2.高吸水性树脂的用途 高吸水性树脂就可以在干旱地区用于农业、
林业、植树造林时抗旱保水,改良土壤,改造沙 漠。
网状结构
的化合物聚合得到
高中化学选修五5功.3能-功高能分高子分材子料材人料教-版人优教秀版p p(t共课23件张PPT)
高中化学选修五5功.3能-功高能分高子分材子料材人料教-版人优教秀版p p(t共课23件张PPT)
三、功能高分子材料的实例
1.高吸水性树脂的获得 获得高吸水性树脂,主要有如下两种方法: (1)对淀粉、纤维素等天然吸水材料进行 改性,在它们的高分子链上再接上含强亲水 性原子团的支链,以提高它们的吸水能力; (2)以带有强吸水性原子团的化合物为单 体,均聚或两种单体共聚得到亲水性高聚物。

复合材料理化实验室功能描述

复合材料理化实验室功能描述

复合材料理化实验室功能描述
复合材料理化实验室是用于研究和测试复合材料的物理和化学
性质的实验室。

该实验室通常包括多个功能区域,以支持不同类型
的实验和研究。

以下是复合材料理化实验室的功能描述:
1. 材料制备区,这个区域通常包括材料混合、成型和固化设备,用于制备不同类型的复合材料样品。

这些设备可能包括搅拌设备、
压制机、烘箱等,以支持复合材料的制备工作。

2. 材料性能测试区,这个区域通常包括各种测试设备,用于评
估复合材料的力学性能、热学性能、电学性能等。

例如,拉伸试验机、冲击试验机、热分析仪、扫描电镜等设备可用于评估复合材料
的性能。

3. 化学分析区,这个区域通常包括用于分析复合材料成分和结
构的设备和仪器。

例如,质谱仪、红外光谱仪、元素分析仪等设备
可用于分析复合材料的化学成分和结构。

4. 环境模拟区,这个区域通常包括用于模拟不同环境条件下复
合材料性能的设备。

例如,恒温恒湿箱、紫外光老化箱等设备可用
于模拟复合材料在不同环境条件下的性能变化。

5. 数据分析区,这个区域通常包括用于处理和分析实验数据的计算机和软件。

研究人员可以使用这些设备对实验数据进行统计分析、建模和模拟,以支持复合材料研究的进一步发展。

综上所述,复合材料理化实验室的功能包括材料制备、性能测试、化学分析、环境模拟和数据分析,以支持复合材料的研究和开发工作。

这些功能区域相互配合,为研究人员提供了一个全面的实验平台,以深入理解复合材料的物理和化学特性。

材料学科基础试题答案

材料学科基础试题答案

材料科学基础试题及答案一、出题形式一:填空类1.在立方系中,晶面族{123}中有 24 组平面,晶面族{100}中有3组平面。

2.获得高能量的原子离开原来的平衡位置,进入其它空位或迁移至晶界或表面,形成肖脱基空位。

如果离位原子进入晶体间隙,形成费仑克尔空位。

3.点缺陷的类型分为空位和间隙原子;当相遇时两者都消失,这一过程称为复合或湮灭。

4.刃型位错的柏氏矢量b与位错线t互相垂直,刃型位错移动的方向与b方向一致。

螺型位错的移动方向与柏氏矢量b 垂直,螺型位错的柏氏矢量b方向与位错线t的方向平行。

5.由于界面能的存在,当晶体中存在能降低界面能的异类原子时,这些原子将向境界偏聚,这种现象叫内吸附。

6.均匀形核必须具备的条件是:1.必须过冷;2. 必须具备与一定多冷度相适应的能量起伏和结构起伏。

7.面心立方结构的滑移面是{111},共有 4组,每组滑移面上包含 3 个滑移方向,共有 12 个滑移系。

8.由于晶界阻滞效应及取向差效应,使多晶体的变形抗力比单晶体大,其中,取向差效应是多晶体加工硬化更主要的原因。

9.滑移面应是面间距最大的密排面,滑移方向是原子最密排方向。

10.金属塑性变形时,外力所作的功除了转化为热量之外,还有一小部分被保留在金属内部,表现为残余应力。

11.金属的热变形是指金属材料在再结晶温度以上的加工变形,在此过程中,金属内部同时进行着加工硬化和回复再结晶软化两个过程。

12. 扩散的驱动力是化学位梯度;再结晶的驱动力为冷变形所产生的储存能的释放;再结晶后晶粒的长大的驱动力是:晶粒长大前后的界面能差,纯金属结晶的驱动力是温度梯度。

13. 晶体中原子在表面、晶界、位错处的扩散速度比原子在晶内的扩散速度快,这种现象叫短路扩散。

14. 回复的初始阶段回复机制以空位迁移为主,后期以位错攀移为主。

15.材料的结合方式有共价键、离子键、金属键和范德华力四种化学键结合方式。

21.细化铸件晶粒的方法有:1、提高过冷度 2、变质处理 3、振动、搅拌。

复合材料结构设计

复合材料结构设计

(一)柔量分量
求应变分量:
1 S11 1 S12 2 (25.91 400 6.736 30) 106 10.162 103
2 S 21 1 S 22 2 (6.736 400 120.9 30) 106 0.933 103
根据能量守恒原理可知,正的正应力或剪应力乘上对 应的正应变或剪应变一定是作正功。 举例:在只有σ1作用应力的条件下,其功 1/2 σ1ε1=1/2S11 σ12为正值。从而E1=1/S11为正值。同样, 在只有ε1应变的条件下,其功1/2 σ1ε1=1/2Q11 ε12应为正 值上,所以Q11为正值。 E1 , E2 , G12 0 同理可得: S11 , S 22 , S 66 0 Q11 , Q22 , Q66 0
求应力分量:
1 Q11 1 Q12 2 39.18 0.01 2.18 0.001 0.39398 GPa 2 Q21 1 Q22 2 2.18 0.01 8.39 0.001 0.03019 GPa 12 12 Q66 0.003 4.14 0.01242 GPa
(三)柔量分量与模量分量之间的关系

1 Q 1 因: 等式两端乘以[Q]-1,得 Q 1 1 Q 1 Q 1
Q1 Q I , I 1 1

式中[I]是单位矩阵。故
1 Q11
1 Q 1
(二)模量分量
②模量分量与工程弹性常数的关系
Q11 Q22 E1 ,E 2 , G12 Q66 M M 2 Q12 Q21 Q12 2 , 1 , M (1 ) 1 Q11 Q22 Q11Q22

复合材料的组成和结构

复合材料的组成和结构

复合材料的组成和结构随着科技的不断发展,复合材料已经成为了现代工业领域不可或缺的一部分。

它们可以广泛应用于飞机、汽车、船舶、建筑、电子设备和医学器械等领域。

那么,什么是复合材料呢?复合材料的组成和结构是什么?下面将为您详细解答。

一、何为复合材料?复合材料(Composite Materials)是指由两种或两种以上不同材料组合而成的新型材料。

它的特点在于不同材料之间有更强的结合力,这种结合力可以使复合材料具有独特的性质和优良的性能。

二、复合材料的组成1. 基体材料基体材料通常是具有良好强度和刚度的聚合材料(如环氧树脂),金属(如铝、钛等)或陶瓷(如氧化铝)等。

基体材料形成了复合材料的主要骨架结构。

2. 增强材料增强材料通常是一种纤维材料,如碳纤维、玻璃纤维、芳纶纤维等。

这些纤维具有高强度和高模量特性,经过加工可以将它们布置在基体材料的表面上,形成所谓的增强材料。

3. 界面材料由于基体材料和增强材料的化学和物理性质有很大的差异,所以界面材料的作用是防止它们之间的层间剥离,保证复合材料整体强度。

目前,界面改性技术已经成为大量研究的主要方向之一。

三、复合材料的结构复合材料结构是由增强材料和基体材料的交替叠加形成的。

正常情况下,复合材料的厚度都很小,只有几毫米到几十厘米不等。

其结构特点主要包括以下几个方面:1. 纤维结构复合材料中的纤维结构通常是由排列有序的纤维复合体构成的。

这样的排列方式可以使纤维之间相互贯通,在应力作用下相互支撑,提高复合材料的抗拉强度和抗剪强度。

2. 层间结构层间结构是由交替叠加的增强材料和基体材料构成的。

由于增强材料比基体材料更硬,所以在外力作用下,增强材料首先承受应力,从而优化整个结构的抗振性能。

3. 裂纹结构相对于单一材料的均质结构而言,复合材料内部有很多不同性质的材料组合而成,因此对外部应力有更强的韧性和耐久性。

裂纹结构是在复合材料发生破裂时形成的,通过层间叠加的结构来缓解应力并防止破碎。

新型复合材料的种类有哪些

新型复合材料的种类有哪些

新型复合材料的种类有哪些复合材料是由两种或以上不同性质的材料组合而成,形成了新的材料。

在新材料领域,复合材料具有许多独特的特性,如轻质、高强度、耐腐蚀、耐磨损、导电、导热、隔热、阻燃等。

因此,复合材料在许多领域中得到了广泛应用,如航空、汽车、建筑、体育用品、医疗设备等。

下面是常见的新型复合材料种类及其特点。

一、纳米复合材料纳米复合材料是由纳米颗粒和基质材料组成的。

纳米颗粒的尺寸在1-100纳米之间,因其具有高比表面积和量子效应等独特的性质,可以在材料基质中形成新的界面和相互作用。

这些特性使得纳米复合材料具有优异的力学性能、导电性能、热稳定性和化学稳定性等。

例如,纳米碳管复合材料在导电性和力学性能方面具有优异的表现,可用于电子器件和结构材料。

二、高分子基复合材料高分子基复合材料是以高分子材料为基体,添加其他材料而形成的材料。

这种复合材料具有高分子材料的特性,如可塑性、韧性、耐化学性、耐热性等,并且由于添加了其他材料,具有更高的强度、硬度、导电性、导热性等性能。

例如,碳纤维增强聚合物复合材料在航空、航天等领域中得到了广泛应用。

三、金属基复合材料金属基复合材料是由金属基体和其他材料组成的。

这种复合材料通常具有优异的力学性能和导热性能,但也容易发生热膨胀不匹配和腐蚀等问题。

为解决这些问题,近年来出现了许多新型金属基复合材料,如纳米晶金属复合材料、金属基纤维复合材料、金属基碳纤维复合材料等。

四、陶瓷基复合材料陶瓷基复合材料是以陶瓷为基体,添加其他材料而形成的材料。

陶瓷基复合材料具有优异的耐磨性、耐腐蚀性和高温稳定性等特性,因此在航空航天、能源、化工、医疗等领域中得到了广泛应用。

例如,碳化硅纤维增强陶瓷复合材料可以用于高温部件和高速机械设备。

五、纤维增强复合材料纤维增强复合材料是由纤维和基质组成的。

纤维可以是碳纤维、玻璃纤维、芳纶纤维等,基质可以是聚合物、金属、陶瓷等。

纤维增强复合材料具有高强度、高刚度、轻质等特性,因此广泛应用于汽车、航空、体育器材等领域。

形状记忆聚合物及其多功能复合材料

形状记忆聚合物及其多功能复合材料

形状记忆聚合物及其多功能复合材料形状记忆聚合物及其多功能复合材料形状记忆聚合物(shape memory polymers,SMPs)是一种聚合物材料,具有特殊的自修复能力和形状记忆特性。

SMPs的基本特征是具有两种形态:一种是高温下的一种形态,是低弹性模量和高分子链密度的形态;另一种是低温下的一种形态,是高弹性模量和低分子链密度的形态。

SMPs的自修复能力是指在破坏或变形后,该材料可以通过热处理或其他方式恢复原来的形状和性能。

这种自修复能力使得SMPs在医学和航空航天等领域具有广泛的应用前景。

例如,SMPs可以用作医学中的生物医学材料,如微型支架、人工骨骼等,也可以用于制作机器人或机械手等。

SMPs的形状记忆特性是指该材料可以在一定的温度范围内,从一种形态转变为另一种形态,然后随着温度的变化再次恢复原来的形状。

这种形状记忆特性使得SMPs在多种领域具有重要的应用。

例如,SMPs可以用于制作自适应材料,在不同的环境中改变形状,在安全和保护等方面具有良好的应用前景。

在多功能复合材料中,SMPs可以与其他材料相结合,形成一种多功能的复合材料。

这种复合材料具有SMPs的形状记忆特性和其他材料的特点,如导电性、抗菌性和阻燃性等。

例如,SMPs可以与碳纤维相结合,形成一种具有形状记忆特性的复合材料,具有先进的机械性能和良好的导电性能,可以用于制作太空船的结构材料。

总之,形状记忆聚合物及其多功能复合材料在医学、航空航天等领域具有广泛的应用前景。

随着科技的发展和应用的不断推广,形状记忆聚合物及其复合材料将会更加完善和多样化,为我们的生活带来更多的便利和创新。

聚合物基复合材料实例

聚合物基复合材料实例

聚合物基复合材料实例一、引言聚合物基复合材料是一种具有优异性能的材料,其广泛应用于汽车、航空航天、建筑等领域。

本文将介绍几个聚合物基复合材料的实例,以展示其在不同领域的应用。

二、汽车领域1.碳纤维增强聚酰亚胺树脂复合材料碳纤维增强聚酰亚胺树脂复合材料是一种轻质高强度的材料,其在汽车制造中得到了广泛应用。

这种复合材料可以用于制造轻量化零部件,如车身、底盘等。

与传统的金属车身相比,这种复合材料可以降低汽车的重量,并提高其燃油效率和行驶性能。

2.热塑性聚氨酯/玻璃纤维布层板热塑性聚氨酯/玻璃纤维布层板是一种具有优异耐久性和抗冲击性能的材料,其在汽车制造中得到了广泛应用。

这种复合材料可以用于制造汽车内饰件,如仪表板、门板等。

与传统的塑料内饰相比,这种复合材料可以提高汽车内部的美观性和舒适性,并提高其耐用性和抗冲击性能。

三、航空航天领域1.碳纤维增强环氧树脂复合材料碳纤维增强环氧树脂复合材料是一种轻质高强度的材料,其在航空航天领域得到了广泛应用。

这种复合材料可以用于制造飞机结构件,如机翼、尾翼等。

与传统的金属结构相比,这种复合材料可以降低飞机的重量,并提高其飞行速度和燃油效率。

2.热塑性聚酰胺/玻璃纤维布层板热塑性聚酰胺/玻璃纤维布层板是一种具有优异耐久性和抗冲击性能的材料,其在航空航天领域得到了广泛应用。

这种复合材料可以用于制造飞机内部结构件,如座椅、壁板等。

与传统的塑料结构相比,这种复合材料可以提高飞机内部的美观性和舒适性,并提高其耐用性和抗冲击性能。

四、建筑领域1.玻璃纤维增强聚酯树脂复合材料玻璃纤维增强聚酯树脂复合材料是一种具有优异耐久性和抗紫外线性能的材料,其在建筑领域得到了广泛应用。

这种复合材料可以用于制造建筑外墙板、屋顶板等。

与传统的混凝土、砖墙相比,这种复合材料可以降低建筑物的重量,并提高其耐久性和抗紫外线能力。

2.聚氨酯/玻璃纤维布层板聚氨酯/玻璃纤维布层板是一种具有优异隔音性和保温性能的材料,其在建筑领域得到了广泛应用。

什么是复合材料

什么是复合材料

什么是复合材料
复合材料是由两种或两种以上的材料通过物理或化学方法组合而成的材料,具有优良的综合性能。

复合材料通常由增强材料和基体材料组成,增强材料可以是玻璃纤维、碳纤维、芳纶纤维等,而基体材料则通常是树脂、金属、陶瓷等。

复合材料具有轻质、高强、耐腐蚀、耐磨损等优点,因此在航空航天、汽车制造、建筑工程、体育器材等领域得到广泛应用。

复合材料的优点之一是其轻质高强的特性。

以碳纤维复合材料为例,其比重只有钢铁的四分之一,但却具有比钢铁更高的强度和刚度。

这种轻质高强的特性使得复合材料在航空航天领域得到广泛应用,可以减轻飞机、火箭等载具的重量,提高其载荷能力和燃油效率。

另外,复合材料还具有良好的耐腐蚀性能。

在海洋环境或化工领域,金属材料容易受到腐蚀的影响,而复合材料可以有效地抵抗腐蚀,延长使用寿命。

因此,在船舶制造、海洋工程等领域,复合材料也得到了广泛的应用。

此外,复合材料还具有良好的耐磨损性能。

在汽车制造领域,复合材料可以用于制造车身零部件,提高汽车的耐久性和安全性。

在体育器材领域,复合材料可以用于制造高尔夫球杆、网球拍等,提高其使用寿命和性能。

总的来说,复合材料具有轻质高强、耐腐蚀、耐磨损等优点,因此在各个领域得到了广泛的应用。

随着科学技术的不断进步,复合材料的性能将会不断提升,应用领域也将会不断扩大。

相信在未来的发展中,复合材料将会发挥越来越重要的作用,为人类社会的发展做出更大的贡献。

复合材料组成

复合材料组成

复合材料组成
复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上复合而成的一种新型材料。

复合材料主要由两部分组成:
•增强材料(或称为粒料、纤维或片状材料),主要用于承受载荷,提供复合材料力学性能。

增强材料包括玻璃纤维、碳纤维、硼纤维、天然纤维、合成纤维等,以及各种金属和非金属基体。

•基体材料(或称为粘结材料),主要用于保护固定增强材料,并改善复合材料部分性能。

基体材料可以分为金属基体和非金属基体,常用的金属基体材料有钛、铝、铜、镁及其合金;常用的非金属基体材料有树脂、碳、石墨、橡胶等。

这两部分材料在复合材料中发挥着不同的作用,通过精心的组合和设计,可以显著提高材料的综合性能,使其优于各单独的组分材料。

根据增强材料的形态,复合材料大致可以分为纤维增强复合材料、细粒增强复合材料和薄片增强复合材料三类。

其中,纤维增强复合材料由纤维状增强材料和基体材料组成,其纤维材料包括玻璃纤维、石棉纤维、天然纤维、合成纤维以及碳纤维、硼纤维、陶瓷纤维、晶须等。

常用的基体材料有塑料、橡胶、水泥、陶瓷、金属等。

复合材料因其比强度高、抗疲劳性和减振性好、耐高温、易成型及性能可按使用要求设计等特点,广泛应用于宇航、航空、国防、机电、建筑、化工、交通等各部门。

粉末冶金材料的分类和牌号表示方法综合版

粉末冶金材料的分类和牌号表示方法综合版

粉末冶金材料牌号表示方法在粉末冶金行业,大家都非常熟悉“粉末冶金材料牌号”这个词,在众多的粉末冶金材料中,依靠牌号对其进行区分已经成为业界不成文的规定。

根据中国人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会发布的《粉末冶金材料分类和牌号表示方法》,小编今天带大家来了解一下粉末冶金材料牌号中那些不同的字符都代表了怎样的意义。

粉末冶金材料按照用途和特征的不同主要分为九大类,分别是:结构材料类、摩擦材料类和减磨材料类、多孔材料类、工具材料类、难熔材料和耐热材料类、耐蚀材料和耐热材料类、电工材料类、磁性材料类以及其他材料类。

在个大类粉末冶金材料下,按照用途和性质的不同又分为若干小类,必须采用一种简单易懂的科学表示方法才能如此众多的材料种类标识清楚,使人们能够顺利而方便地在生产实践中应用这些材料及其制品。

《粉末冶金材料分类和牌号表示方法》中采用由汉语拼音字母和阿拉伯数字组成的六位符号体系表示材料的牌号,排在第一位的是汉语拼音“F”,表示粉末冶金材料;排在第二位的是阿拉伯数字“0,1,2,3…”代表着材料所属的大类;排在第三位的是阿拉伯数字“0,1,2,3…”分别表示大类中各材料所属的小类;排在第四位的是两位阿拉伯数字“00,01,02,03…”表示同一小类中每种材料的顺序号;排在最后一位的是汉语拼音字母,它代表了材料的状态或特性。

例如,结构类材料的牌号通式为:F0xXXX,该符号中含义及相应的细分类别就如上所述,分别代表了不同的意义。

粉末冶金材料应该统一分类,牌号也应统一编制和管理,只有这样才能在全行业形成一种通用的,比较科学的材料表示方法。

随着近年来PIM等新型粉末冶金工艺的出现和应用,粉末冶金材料具有科学的牌号表示方法在工业生产和应用中也越来越重要。

粉末冶金材料:/注:SMS1种相当SUS316和SUS304,SMS2种相当SUS410粉末冶金材料的分类和牌号表示方法标准简析张宪铭张江峰(全国有色粉末冶金分标准化技术委员会,北京,100814)摘要对国家标准《粉末冶金材料分类和牌号表示方法》的修订情况及标准内容作了介绍和分析,该标准的实施提出了措施和建议。

功能复合材料

功能复合材料

功能复合材料功能复合材料,指的是利用两种或两种以上具有不同功能的材料进行复合而成的材料。

相比于传统的单一材料,功能复合材料具有更加优越的性能和广泛的应用领域。

功能复合材料的制备过程一般分为两个步骤:首先选择适当的基体材料,然后添加一种或多种功能材料,通过化学反应、物理交联或热处理等方法将两种或两种以上材料复合在一起。

基体材料一般具有优异的力学性能和稳定性,而功能材料则具有某种特殊的功能,如导电、导热、防腐蚀、防紫外线等。

功能复合材料具有多种优点。

首先,它们能够充分利用各种材料的优点,弥补各种材料单一性能的不足。

例如,将陶瓷与金属复合,可以获得既有金属良好导电性能、韧性和陶瓷优异的耐磨性能的材料。

其次,功能复合材料具有高度的可定制性。

我们可以根据不同需要选择不同的基体材料和功能材料,以达到特定的性能要求。

再次,功能复合材料具有广泛的应用领域。

它们可以用于汽车、航空航天、电子、建筑等领域,满足不同行业的需求。

功能复合材料有许多应用。

其中,导电功能复合材料是应用最广泛的一种。

例如,导电复合材料可以用于制作电子产品的触摸屏、电子线路板等;导热复合材料可以用于散热器、电子元件散热等。

此外,防腐蚀功能复合材料可用于化学管道、海洋结构等;防紫外线功能复合材料可用于建筑材料、汽车外壳等。

这些功能复合材料的应用大大提高了产品的性能和寿命。

然而,功能复合材料的制备过程较为复杂,成本较高。

同时,复合材料中不同组分之间的界面问题也较为复杂,需要进一步研究和解决。

另外,功能复合材料的回收与再利用也是一个重要的问题。

综上所述,功能复合材料具有高度的可定制性和广泛的应用领域。

它们通过充分利用各种材料的优点,提高了产品的性能和寿命。

功能复合材料是材料科学和工程领域的重要发展方向,将为我们的生活带来更多的便利和创新。

5 功能高分子

5 功能高分子

充的情形相类似。但由于纤维状填料的接触几率更大,因
此在填充量很少的情况下便可获得较高的导电率。
结构型导电高分子是指高分子材料本身或经少量掺 杂后具有导电性的高分子物质,一般由电子高度离域的共
轭聚合物经过适当电子给体或受体掺杂后制得。
离子型导电高分子通常又叫高分子固体电解质,其导电
时的载流子主要是离子。 电子型导电高分子指的是以共轭高分子为主体的导电高
p型掺杂是由于导电高分子的部分氧化,即: x 聚合物 (聚合物+y)x + (xy)en型掺杂则是由于导电高分子的部分还原,即: x聚合物+ (xy)e- (聚合物-y)x 上述过程可通过电化学或化学方法完成。为了维持 电中性,p型掺杂和n型掺杂都必须提供一个对离子,如 (聚合物+y)x + (xy)A- (聚合物+y)A-yx (聚合物-y)x + (xy)M+ M+y(聚合物-y) x
3.复合功能
高分子、高分子吸附剂、高分子絮凝剂、高分子 表面活性剂、高分子染料、高分子稳定剂、高分 子相溶剂、高分子功能膜和高分子功能电极等 4.生物、医用功能
抗血栓、控制药物释放和生物活性等
从制造和结构的角度考虑: 结构型功能高分子 复合型功能高分子
按照功能特性通常可分成以下几类:
(1)分离材料和化学功能材料 (2)电磁功能高分子材料 (3)光功能高分子材料 (4)生物医用高分子材料
隐身材料
所谓隐身材料是指能够减少军事目标的雷达特征、
红外特征、光电特征及目视特征的材料的总称。由于雷 达是军事目标侦查的主要手段,所以雷达波吸收材料的研 制是关键。自从导电聚合物的出现,其作为新型的雷达波 吸收材料成为研究的热点。美国、日本、法国、印度及 中国相继开展了导电聚合物雷达波吸收材料的研制,尤其 是美国空军投资开发的高聚物雷达波吸收材料,为隐身 战斗机和侦察机制造“灵巧蒙皮”的设想和计划奠定了 基础,进一步刺激了导电聚合物雷达隐身技术的发展。

人教版高中化学选修5课件-功能高分子材料

人教版高中化学选修5课件-功能高分子材料

(1)合成化合物 A 的三种物质是 HCN、____________________、
___C_H_3_C_H__2_O_H_________(用结构简式表示)。 (2)写出 A 发生固化的反应方程式:_________________。
技能素养 提升点 材料的分类 [例] 下列材料中属于功能高分子材料的是( ) ①有机玻璃 ②合成橡胶 ③高分子分离膜 ④生物高分子 材料 ⑤隐身材料 ⑥液晶高分子材料 ⑦光敏高分子材料 ⑧智能高分子材料 A.①③④⑥⑧ B.②④⑥⑦⑧ C.③④⑤⑥⑦⑧ D.①②③④⑤⑥⑦⑧
解析:以强亲水性原子团作支链,同时与交联剂反应生成具有 网状结构的聚合物才有强吸水性。
答案:D
3.下列材料属于复合材料的是( ) ①合金 ②玻璃钢 ③隔热陶瓷瓦 ④耐高温结构陶瓷 A.①② B.②③ C.③④ D.②④
解析:合金是由两种或两种以上的金属(或金属与非金属)熔合 而成的具有金属特性的物质,属于金属材料;耐高温结构陶瓷多是 单一材料,属于无机非金属材料;玻璃钢为玻璃纤维和合成树脂形 成的复合材料;隔热陶瓷瓦为纤维(如碳纤维)和陶瓷形成的复合材 料。
A.1 种 加聚反应 B.2 种 缩聚反应 C.3 种 加聚反应 D.3 种 缩聚反应 答案:D
3.婴儿用的一次性纸尿布中有一层能吸水保水的物质。下列 物质中有可能被采用的是( )
解析:该物质必须有亲水性基团,而—OH 是亲水性基团,故 选 B。
答案:B
4.下列材料属于复合材料的是( ) A.聚丙烯 B.铝合金 C.黏合剂 D.玻璃钢
形成性自评 1.下列材料中,属于功能高分子材料的是( ) ①高分子膜 ②生物高分子 ③导电高分子 ④离子交换树 脂 ⑤医用高分子 ⑥高吸水性树脂 ⑦液晶高分子 A.①③⑤⑥ B.②④⑤⑥ C.②③④⑤ D.全部 答案:D

什么是复合材料

什么是复合材料

什么是复合材料复合材料是由两种或更多种不同性质的材料经过结合制备而成的新型材料。

复合材料具有多个材料的优点,能够实现不同材料之间的协同作用,以获得更好的性能和功能。

复合材料由两个基本组成部分组成:增强材料和基体材料。

增强材料通常是纤维或颗粒,如碳纤维、玻璃纤维、陶瓷颗粒等,用于提供强度和刚度。

基体材料则是支撑和固定增强材料的介质,通常是聚合物、金属或陶瓷等,用于提供保护和连接。

复合材料的制备过程通常分为两个步骤:增强材料预处理和制备。

在增强材料预处理阶段,增强材料通常需要进行表面处理,以提高与基体材料的粘附性和连接性。

在制备阶段,通过层层堆积或浸渍法将增强材料与基体材料结合在一起,然后通过热固化或化学固化将其固化成为一体。

复合材料具有许多优点。

首先,复合材料具有优异的强度和刚度,远远超过传统的材料。

其次,复合材料具有较低的密度,重量轻,有助于减小结构的自重,提高运载效率。

此外,复合材料还具有良好的磨损性能、耐腐蚀性能和热稳定性能等。

复合材料在许多领域都有广泛的应用。

在航空航天领域,复合材料可以制作轻量化的飞机、导弹和航天器,以提高载荷能力和飞行性能。

在汽车工业中,复合材料可以制作汽车车身和零部件,以减轻重量和提高燃油效率。

在建筑领域,复合材料可以制作高强度、耐久性和绝缘性能优良的建筑材料。

尽管复合材料具有诸多优点,但也存在一些挑战。

首先,复合材料的制备过程较为复杂,需要严格的工艺控制和设备要求。

其次,复合材料的成本较高,只能用于一些对性能要求较高的特殊领域。

此外,复合材料的可回收性和环境友好性也需要进一步研究和改进。

总之,复合材料是一种具有优越性能和广泛应用前景的材料。

随着科技的不断发展,复合材料将在更多领域展示其独特的优势,为人们创造更加美好的生活。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
对于脆性的高强度纤维增强体与韧性 基体复合时,两相间若能得到适宜的结合 而形成的复合材料,其性能显示为增强体 与基体的互补。
14
相抵效应
基体与增强体组成复合材料时, 若组分间性能相互制约,限制了整体 性能提高,则复合后显示出相抵效应。
15
例如,脆性的纤维增强体与韧 性基体组成的复合材料,当两者界 面结合很强时,复合材料整体显示 为脆性断裂。
对于吸波材料,同样可以根据外来波 长的频率特征,调整复合频率,达到吸收 外来波的目的。
27
系统效应
这是材料的一种复杂效应,至目前为 止,这一效应的机理尚不很清楚,但在实 际现象中已经发现这种效应的存在。
28
例如,交替叠层镀膜的硬度大于原来 各单一镀膜的硬度和按线性混合率估算值, 说明组成了复合系统才能出现的现象。
20
因此,通常可以将一种具有两种性能相 互转换的功能材料X/Y和另一种换能材料Y/Z 复合起来,可用下列通式来表示,即:
X Y X YZ Z
式中,X、Y、Z分别表示各种物理性能。
上式符合乘积表达式,所以称之为相乘 效应。
21
相乘效应的组合可以非常广泛,已 被用于设计功能复合材料。
常用的物理乘积效应见下表所示:
25
共振效应
两个相邻的材料在一定条件下,会产生 机械的或电、磁的共振。
由不同材料组成的复合材料,其固有频 率不同于原组分的固有频率,当复合材料中 某一部位的结构发生变化时,复合材料的固 有频率也会发生改变。
26
利用共振效应,可以根据外来的工作 频率,改变复合材料固有频率而避免材料 在工作时引起的破坏。
61
复合材料电导率不仅与金属填加物体 积分数有关,与温度也有密切关系,从而 显现出正温度效应和负温度效应。
62
在一温度范围内,复合材料的电阻随 着温度的升高而升高(正温度效应)。
当超过某一温度时,其电阻值又随温 度的升高而下降(负温度效应)。
63
由于电阻的正温度效应、负温度效应 的存在,使复合材料成为一种开关材料。
31
例如,利用线性效应的混合法则,通过 合理铺设可以设计出某一温度区间膨胀系数 为零或接近于零的构件。
又如XY平面是压电,XZ平面呈电致发光 性,通过铺层设计可以得到YZ平面压致发光 的复合材料。
32
另外,模仿生物体中的纤维和基体的 合理分布,通过数据库和计算机辅助设计 可望设计出性能优良的仿生功能材料。
下图显示了在1MHz高频下,复合材料 磁损耗与粉末颗粒尺寸D的关系。
53
从图中可看
出,粉末尺寸越
磁 损
小,损耗越低。 耗
因此,可以 通过调整磁性粉 末颗粒的尺寸来 调节损耗PL值。
PL/kW.m-3
磁粉粒度/ um 磁损耗与软磁粉粒度的关系
54
3、 导电复合材料
作为复合材料的电导率没有明确的数 值来划分导体、半导体和绝缘体。
35
2.1.1 永磁复合材料
典型的永磁材料包括永磁铁氧体、铝镍 钴以及稀土永磁材料。
36
一般情况下,永磁材料的密度较高, 脆而硬,不易加工成复杂的形状。
但是,制成高聚物基或软金属基复合 材料后,上述难加工的缺点可得到克服。
37
永磁复合材料的功能组元是磁性粉末, 高聚物和软金属起到粘结剂的作用。
59
这一临界填料量称之为复合材料的“渗流 阈值” 。
临界浓度值与金属填充颗粒的尺寸、分布、 形状以及制造工艺有很大关系。
例如宽粒分布的铝粉末的临界体积分数为 0.4,而窄颗粒分布的粉末临界体积分数为0.2。
60
很多研究表明,一些绝缘性复合材料当承 受电压达到临界值时,会变成高导电性材料。
如果没有大的电流通过,则消除电压后样 品仍保持较低的电阻率,尔后再恢复到样品的 绝缘状态。
T V T
T, V和R分别为复合材料的温度、体积和电阻变化
66
PTC材料的应用
● 自限温加热器:广泛用于液体输送管道、罐体 等的防冻保温、地暖及各类融雪装置。
Ec EmVm E fVf
10
平行效应
显示这一效应的复合材料,它的各 组分材料在复合材料中,均保留本身 的作用,既无制约,也无补偿。
11
对于增强体(如纤维)与基体界 面结合很弱的复合材料,所显示的复 合效应,可以看作是平行效应。
12
相补效应
组成复合材料的基体与增强体,在性 能上相互补充,从而提高了综合性能,则 显示出相补效应。
29
平均效应、相乘效应、平行效应、诱导效 应、相补效应、共振效应、相抵效应、系统效 应等各种复合效应,都是复合材料科学所研究 的对象和重要内容,这也是开拓新型复合材料, 特别是功能型复合材料的基础理论问题。
30
2、功能复合材料的设计
复合材料的最大特点在于它的可设计性。 因此,在给定的性能要求、使用环境及 经济条件限制的前提下,从材料的选择途径 和工艺结构途径上进行设计。
功能复合材料
1
复合材料按使用目的可分为两类: 结构复合材料和功能复合材料
2
功能复合材料是指除机械性能以外而 提供其他物理性能的复合材料,如导电、 超导、半导、磁性、压电、阻尼、吸声、 摩擦、吸波、屏蔽、阻燃、防热、隔热等 功能复合材料。
3
功能复合材料主要由功能体和 基体组成,或由两种(或两种以上)功 能体组成。
其中,高聚物使用较为普遍,常用的 有环氧树脂、尼龙和橡胶等材料。
38
永磁复合材料的制造方法常采用模压、 注塑、挤压等工艺技术。
对于软金属粘结工艺来说,由于它较为 复杂,因此除磁体要求在较高温度下(>200 ℃)使用外,很少采用这种金属基复合磁体。
39
很显然,与高密度的金属磁体或陶 瓷磁体(铁氧体)相比,复合磁体的优良加 工性能是以牺牲一部分磁性能为代价的。
将金属颗粒混入高分子聚合物,高分子 聚合物的电阻率就会发生变化,然而这个变 化并非依据加和法则,而是当金属填料浓度 达到一临界体积c时,金属填充聚合物发生 一个如下图所示的突然转换,由绝缘体变成 导电体。
58

Al




Fe
/ .cm
金属的体积分数
苯乙烯—丙烯腈共聚物中Al粉和Fe粉的体积分数和电阻率的关系
也可以选用两种或两种以上的不同磁 粉与高分子材料复合,以便得到更宽范围 的实用性能。
45
2.1.2 软磁复合材料
电器元件的小型化,导致磁路中追求更 高的驱动频率,为此应用的软磁材料,除在 静态磁场下经常要求的高饱和磁化强度和高 磁导率外,还要求它们具有低的交流损耗PL。
46
通常较大尺寸的金属软磁材料,其相对 磁导率 r 随驱动频率的增大而急速下降, 如下图所示:
因此,可用于制备各种电子开关器件。
64
导电高分子复合材料的正温度系数电阻效应
Positive Temperature Coefficient ( PTC )
log / . cm
9
8
7
6
5
4
3
2
0
20
40
60
80 100 120 140 160 180
T / oC
65
复合材料的乘积效应 PTC效应 V R R
42
由于复合永磁材料的易成形和良好加工 性能,因此常用来制作薄壁的微型电机使用 的环状定子,例如计算机主轴电机,钟表步 进电机等。
43
复合永磁材料的良好成型性,使其适用 于制作体积小、形状复杂的永磁体。如汽车 仪表用磁体,磁推轴承及各类蜂鸣器等。
44
复合永磁材料的功能体可看作是各类 磁体粉末(如铁氧体、铝镍钴、Sm--Co、 Nd--Fe--B等)制成的粘结磁体。
4
在单一功能体的复合材料中,其功能 性质虽然由功能体提供,但基体不仅起到 粘结和赋形作用,同时也会对复合材料整 体的物理性能有影响。
5
多元功能体的复合材料可以具有多种 功能,同时还有可能由于产生复合效应而 出现新的功能。
因此,多功能复合材料成为功能复合 材料的发展方向。
6
1、功能复合材料的复合效应
是复合材料所显示的最典型的一种复合效 应。它可以表示为:
Pc PmVm Pf V f
式中,P为材料性能,V为材料体积 含量,角标c、m、f分别表示复合材料、 基体和增强体(或功能体)。
9
复合材料的某些功能性质,例如电导、 热导、密度和弹性模量等服从平均效应这 一规律。
例如,复合材料的弹性模量,若用混 合率来表示,则为
22
复合材料的乘积效应
A相性质X/Y
压磁效应 压磁效应 压电效应 磁致伸缩效应 光导效应 闪烁效应 热致变形效应
B相性质Y/Z
复合后的乘积性质
(X/Y)(Y/Z)=X/Z
磁阻效应
压敏场致发光效应
压力发光效应
压阻效应
磁阻效应
电致效应
光致伸缩
光导效应
辐射诱导导电
压敏电阻效应
热敏电阻效应
50
这种复合软磁材料的相对磁导率r值可 由下式描述:
r (cd ) /(d 2c )
式中d、c和分别表示金属粒子尺寸、 块状金属相的磁导率和包覆层厚度。
51
显然,选择合适的金属粒子尺寸和包 覆层厚度即可获得所需的相对磁导率r值, 这对电感器和轭源圈的设计是十分重要的。
52
由于绝缘物质的包覆,这类材料的电阻 率比其母体合金高得多(高1011倍),因此在交 变磁场下具有低的磁损耗PL。
47
Fe--Si---Al粉末颗粒复合体相对磁导率随驱动频率的变化
48
如果把软磁材料(例如Fe--Si--A1合金) 制成粉末,表面被极薄的A12O3层或高聚物 分隔绝缘,然后热压或模压固化成块状软 磁体,则
49
相关文档
最新文档